Aufgabenblatt 1

Abgabe: 27.10.2009

Aufgabe 1 (2 Punkte)

Sei \mathcal{P} eine Familie von Halbnormen auf einem Vektorraum V. Zeigen Sie: Trennt \mathcal{P} Punkte, so ist die von \mathcal{P} auf V induzierte Topologie Hausdorffsch.

Lösung

Ist $x \neq y$ dann gibt es $p \in \mathcal{P}$, so dass $p(x - y) \neq 0$ (da \mathcal{P} Punkte trennt). Sei also $p(x - y) \geq \epsilon > 0$. Dann ist $U := \{z \in V | p(x - z) < \epsilon/3\}$ eine Umgebung von x und $V := \{z \in V | p(y - z) < \epsilon/3\}$ ist eine Umgebung von y, und es gilt $U \cap V = \emptyset$.

Aufgabe 2 (4 Punkte)

Vervollständigen Sie den Beweis von Satz 1.6 der Vorlesung, zeigen Sie also, dass die dort definierte Familie von Halbnormen $\{p_n\}_{n\geq 1}$ die selbe Topologie erzeugt wie die Metrik ρ . Hinweis: Sie können zum Beispiel zeigen, dass für eine Nullfolge $\{x_i\}_{i\geq 1}$ in V für jedes n auch $\{p_n(x_i)\}_{i\geq 1}$ Nullfolge ist und umgekehrt.

Lösungshinweis

Siehe John B. Conway, A Course in Functional Analysis, Springer, 1985, S. 109.

Aufgabe 3 (2 Punkte)

"Dirac'sche δ -Distribution". Zeigen Sie: Für $a \in \mathbb{R}^n$ definiert die Vorschrift

$$g \mapsto \delta_a(g) := g(a)$$

für $q \in \mathcal{S}(\mathbb{R}^n)$ (Schwartzfunktion auf \mathbb{R}^n) eine temperierte Distribution.

Lösung

Zu zeigen ist nur die Stetigkeit, und diese folgt wegen $|\delta_a(g)| \leq ||g||_{0,0}$.

Weitere Aufgaben (Anwesenheitsübung)

Aufgabe 4

Überzeugen Sie sich zunächst davon, dass die Familien von Halbnormen, die in den Beispielen 1.8. ii) und iii) der Vorlesung für $\mathcal{S}(\mathbb{R}^n)$ und $C_0^{\infty}(K)$ definiert wurden, tatsächlich Punkte trennen.

Zur Vollständigkeit von $\mathcal{S}(\mathbb{R}^n)$ und $C_0^{\infty}(K)$ bzgl. der durch diese Familien von Halbnormen induzierten Topologie: Untersuchen Sie hierzu den Spezialfall von Folgen einmal stetig differenzierbarer Funktionen.