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1.1. Semigroups on Banach spaces

Hölder’s inequality shows that x 7→ [x, y] is an element of (ℓp)∗ for any y ∈ ℓq; proving
that every functional arises this way is an exercise. Furthermore, the same pairing gives
an isomorphism between (ℓ1)∗ and ℓ∞. [The dual of ℓ∞ is much larger than ℓ1; it is
isomorphic to the space M(βN) of regular complex Borel measures on the Stone–Čech
compactification of the natural numbers.]

Similarly, for conjugate indices p, q ∈ (1,∞), the dual of Lp(Ω,A, µ) is identified
with Lq(Ω,A, µ), and the dual of L1(Ω,A, µ) with L∞(Ω,A, µ), via the pairing

[f, g] :=

∫

Ω

f(x)g(x)µ(dx).

In particular, ℓ2 and L2(Ω,A, µ) are conjugate-linearly isomorphic to their dual spaces.
This is a general fact about Hilbert spaces, known as the Riesz–Fréchet theorem: if H
is a Hilbert space then

H∗ =
{

〈x| : x ∈ H
}

, where 〈x|y := 〈x, y〉 for all y ∈ H.

If K is a compact Hausdorff space then the dual of C(K) is naturally isomorphic to the
space M(K) of regular complex Borel measures on K, with dual pairing

[f, µ] :=

∫

K

f(x)µ(x) for all f ∈ C(K) and µ ∈ M(K).

The Hahn–Banach theorem implies that the dual space separates points: if x ∈ X then
there exists φ ∈ X∗ such that ‖φ‖ = 1 and φ(x) = ‖x‖.

Definition 1.15. A family of operators T = (Tt)t∈R+
⊆ B(X) is a one-parameter

semigroup if

(i) T0 = I, the identity operator

and (ii) Ts Tt = Ts+t for all s, t ∈ R+.

The semigroup T is strongly continuous if

lim
t→0+

‖Ttx− x‖ = 0 for all x ∈ X.

The semigroup T is uniformly continuous if

lim
t→0+

‖Tt − I‖ = 0.

Exercise 1.16. Prove that a uniformly continuous semigroup is strongly continuous.
Give an example to show that the converse is false.

Theorem 1.17. Let T be a strongly continuous one-parameter semigroup on the Banach
space X . There exist constants M > 1 and a ∈ R such that ‖Tt‖ 6 Meat for all t ∈ R+.
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1. Operator semigroups

Proof. See [3, Theorem 6.2.1].

Remark 1.18. The semigroup T of Theorem 1.17 is said to be of type (M, a). A
semigroup of type (1, 0) is also called a contraction semigroup.

By replacing Tt with e−atTt, one can often reduce to the case of semigroups with uniformly
bounded norm. However, it is not always possible to go further and reduce to contraction
semigroups; see [3, Example 6.2.3 and Theorem 6.3.8].

Exercise 1.19. Prove that a strongly continuous semigroup is continuous everwhere:
if t > 0 then lim

h→0
‖Tt+hx− Ttx‖ = 0. [The same is true, mutatis mutandis, for uniformly

continuous semigroups.]

Exercise 1.20. Given any A ∈ B(X), let exp(A) :=

∞
∑

n=0

1

n!
An.

(i) Prove that this series is convergent, so that exp(A) ∈ B(X). Prove further
that ‖ exp(A)‖ 6 exp ‖A‖.

(ii) Prove that if A, B ∈ B(X) commute, in the sense that AB = BA, then so
do exp(A) and exp(B), with exp(A) exp(B) = exp(A+B). [Hint: consider
the derivatives of

t 7→ exp(tA) exp(−tA) and t 7→ exp(tA) exp(tB) exp
(

−t(A +B)
)

.]

(iii) Prove that setting exp(tA) for all t ∈ R+ defines a uniformly continuous
one-parameter semigroup.

The converse of Exercise 1.20(iii) is true, and we state it as a theorem.

Theorem 1.21. If T is a uniformly continuous one-parameter semigroup then there
exists an operator A ∈ B(X) such that Tt = exp(tA) for all t ∈ R+.

Proof. By continuity at the origin, there exists t0 > 0 such that

‖Ts − I‖ < 1/2 for all s ∈ [0, t0].

Then
∥

∥

∥
t−1
0

∫ t0

0

Ts ds− I
∥

∥

∥
= t−1

0

∥

∥

∥

∫ t0

0

Ts − I ds
∥

∥

∥
6 1/2 < 1.

Hence X := t−1
0

∫ t0

0
Ts ds ∈ B(X) is invertible, because the Neumann series

∞
∑

n=0

(I −X)n = I + (I −X) + (I −X)2 + . . .
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1.1. Semigroups on Banach spaces

is convergent. Furthermore,

h−1(Th − I)

∫ t0

0

Ts ds = h−1

∫ t0

0

Ts+h − Ts ds = h−1

∫ t0+h

h

Ts ds− h−1

∫ t0

0

Ts ds

= h−1

∫ t0+h

t0

Ts ds− h−1

∫ h

0

Ts ds

→ Tt0 − I

as h → 0+. Hence

A := lim
h→0+

h−1(Th − I) = (Tt0 − I)(t0X)−1.

Moreover, for any t ∈ R+,

Tt0 = I + A

∫ t0

0

Ts ds = I + A
(

t0I +

∫ t0

0

∫ s

0

Tr dr ds
)

= . . .

= I + t0A+
t20
2
A2 + · · ·+ An

∫ t0

0

· · ·

∫ tn

0

Ttn+1
dtn+1 . . . dt1

→
∑

n>0

1

n!
(t0A)

n = exp(t0A) as n → ∞,

since
∥

∥

∥
An

∫ t0

0

· · ·

∫ tn

0

Ttn+1
dtn+1 . . . dt1

∥

∥

∥
6

3tn+1‖A‖n

2(n+ 1)!
.

This working shows that Tt = exp(tA) for any t ∈ [0, t0], so for all t ∈ R+, by the
semigroup property: there exists n ∈ Z+ and s ∈ [0, t0) such that t = nt0 + s, and

Tt = T n
t0
Ts = exp(nt0A + sA) = exp(tA).

Remark 1.22. The integrals in the previous proof are Bochner integrals ; they are an
extension of the Lebesgue integral to functions which take values in a Banach space. We
will only be concerned with continuous functions, so do not need to concern ourselves
with notions of measurability. All the theorems that one would expect carry over to
from the Lebesgue to the Bochner setting, together with the fact that if T is a bounded
operator then T

∫

f =
∫

Tf .

Definition 1.23. If T is a uniformly continuous one-parameter semigroup then the
operator A ∈ B(X) such that Tt = exp(tA) for all t ∈ R+ is the generator of the
semigroup.

Exercise 1.24. Prove that the generator of a uniformly continuous one-parameter semi-
group T is unique. [Hint: consider the limit of t−1(Tt − I) as t → 0+.]
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1. Operator semigroups

Example 1.25. Given t ∈ R+ and f ∈ X := Lp(R+), where p ∈ [1,∞), let

(Ttf)(x) := f(x+ t) for all x ∈ R+.

Then Tt ∈ B(X), with ‖Tt‖ = 1, and T = (Tt)t∈R+
is a one-parameter semigroup. If f is

continuous and has compact support then an application of the Dominated Convergence
Theorem gives that Ttf → f as t → 0+ ; since such functions are dense in X , it follows
that T is strongly continuous.

Exercise 1.26. Prove the assertions in Example 1.25. Prove further that if f ∈ X is
absolutely continuous, so that there exists f ′ ∈ X such that

f(x) = f(0) +

∫ x

0

f ′(y) dy for all x ∈ R+,

then
lim
t→0+

t−1(Ttf − f) = f ′,

where the limit exists in X = Lp(R+). [Hint: show that

‖t−1(Ttf − f)− f ′‖pp = t−1

∫ t

0

‖Tyf
′ − f ′‖pp dy

and then use the strong continuity of T at the origin.]

1.2 Beyond uniform continuity

Throughout this section, X denotes a Banach space.

Definition 1.27. An unbounded operator in X is a linear transformation A defined on
a linear subspace X0 ⊆ X , its domain; we write domA = X0.

An extension of A is an unbounded operator B in X such that domA ⊆ domB and the
restriction B|domA = A.

An unbounded operator A in X is densely defined if domA is dense in X for the norm
topology.

Definition 1.28. Given operators A and B, let A+B and AB be defined by setting

dom(A +B) := domA ∩ domB, (A+B)x := Ax+Bx

and
domAB := {x ∈ domA : Ax ∈ domB}, (AB)x := A(Bx).

Note that neither A+B nor AB need be densely defined, even if A and B were.

Definition 1.29. Let T be a strongly continuous one-parameter semigroup on X . Its
generator A has domain

domA :=
{

x ∈ X : lim
t→0+

t−1(Ttx− x) exists in X
}
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1.2. Beyond uniform continuity

and action

Ax :=
d

dt
Ttx

∣

∣

∣

t=0

:= lim
t→0+

t−1(Ttx− x) for all x ∈ domA.

It is readily verified that A is an unbounded operator.

Exercise 1.30. Prove that if x ∈ X and t ∈ R+ then

∫ t

0

Tsx ds ∈ domA

and

(Tt − I)x = A

∫ t

0

Tsx ds.

Deduce that domA is dense in X . [Hint: begin by imitating the proof of Theorem 1.21.]

Lemma 1.31. Let the strongly continuous semigroup T have generator A. If x ∈ domA
and t ∈ R+ then Ttx ∈ domA and TtAx = ATtx; thus Tt(domA) ⊆ domA. Furthermore,

(Tt − I)x =

∫ t

0

TsAx ds =

∫ t

0

ATsx ds.

Proof. First, note that

h−1(Th − I)Ttx = Tth
−1(Th − I)x → TtAx as h → 0+,

by the boundedness of Tt, so Ttx ∈ domA and ATtx = TtAx, as claimed. For the second
part, let

F : R+ → X ; t 7→ (Tt − I)x−

∫ t

0

TsAx ds.

Note that F is continuous and F (0) = 0; furthermore, if t > 0 then

h−1(F (t+ h)− F (t)) = Tth
−1(Th − I)x− h−1

∫ h

0

Ts+tAx ds → TtAx− TtAx = 0

as h → 0+, whence F ≡ 0.

Definition 1.32. An unbounded operator A inX is closed if, whenever (xn)n∈N ⊆ domA
is such that xn → x ∈ X and Axn → y ∈ X , it follows that x ∈ domA and Ax = y.
Note that a bounded operator is automatically closed.

The operator A is closable if it has a closed extension, in which case its closure A is the
smallest such.

Exercise 1.33. Prove that the graph

G(A) := {(x,Ax) : x ∈ domA}
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1. Operator semigroups

of an unbounded operator A in X is a normed vector space for the product norm

‖ · ‖ : (x,Ax)‖ 7→ ‖x‖+ ‖Ax‖.

Prove further that A is closed if and only if G(A) is a Banach space, and that A is
closable if and only if the closure of its graph in X ⊕X is the graph of some operator.

Exercise 1.34. Let A be the generator of the strongly continuous one-parameter semi-
group T . Use Lemma 1.31 and Theorem 1.17 to show that A is closed.

Proof. Suppose (xn)n∈N ⊆ domA is such that xn → x and Axn → y. Let t > 0 and note
that

Ttxn − xn =

∫ t

0

TsAxn ds for all n > 1.

Furthermore,
∥

∥

∥

∫ t

0

TsAxn ds−

∫ t

0

Tsy ds
∥

∥

∥
6

∫ t

0

Meas‖Axn − y‖ ds 6 Mtemax{a,0}t‖Axn − y‖ → 0

as n → ∞, so

Ttx− x =

∫ t

0

Tsy ds.

Dividing both sides by t and letting t → 0+ gives that x ∈ domA and Ax = y, as
required.

Definition 1.35. Let A be an unbounded operator in X . Its spectrum is the set

σ(A) := {z ∈ C : zI − A is not invertible in B(X)}

and its resolvent is the map

C \ σ(A) → B(X); z 7→ (zI − A)−1.

In other words, z ∈ C is not in the spectrum of A if and only if there exists a bounded
operator B ∈ B(X) such that B(zI − A) = IdomA and (zI − A)B = IX . In particular,
the operator zI − A is a bijection from domA onto X .

Exercise 1.36. Let A be an unbounded operator in X and suppose z ∈ C is such
that zI −A is a bijection from domA onto X . Prove that (zI −A)−1 is bounded if and
only if A is closed. [Thus algebraic invertibility of zI −A is equivalent to its topological
invertibility if and only if A is closed.]

The following theorem shows that the resolvent of a semigroup generator may be thought
of as the Laplace transform of the semigroup.

Theorem 1.37. Let A be the generator of a one-parameter semigroup T of type (M, a)
on X . Then σ(A) ⊆ {z ∈ C : Re z 6 a}. Furthermore, if Re z > a then

(zI −A)−1x =

∫ ∞

0

e−ztTtx dt for all x ∈ X (1.2)
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