1.2. Beyond uniform continuity

and ||(z] — A)7Y| < M(Rez —a)™L.
Proof. Fix z € C with Re z > a and note first that
R:X— X; x»—>/ e AT dt
0

is a bounded linear operator, with ||R|| < M(Rez —a)™".
If z € X and y = Rx then

Tty:/ e *° S_H{EdS:/ e_z(“_t)Tuxdu:e“/ e *"Tyx du,
0 t t

and therefore, if ¢t > 0,

t T, — Iy = t_le“/ e Trds —t 1 / e *T.xds
t 0

t 00
- —t_leZt/ e *Tyrds+t1(e” — 1)/ e “Tyxds
0 0

— —x+ 2y as t — 0+.

Thus y € dom A and (z/ — A)y = x. It follows that ran R C dom A and (2] —A)R = Ix.
However, since (7; — I)R = R(T; — I) and R is bounded, the same working shows that

RAr = —x+ 2Rx <= R(zl —A)x==x for all x € dom A.

Thus R(2] — A) = Igom 4 and R = (zI — A)~1, as claimed. O

Theorem 1.38. (Feller—Miyadera—Phillips) A closed, densely defined operator A in
the Banach space X is the generator of a strongly continuous semigroup of type (M, a)
if and only if

g(A) C{z€C:Rez<a}

and
|(zI —A)™|| < M(z—a)™ for all z > a and m € N.

Proof. Suppose A is the generator of a strongly continuous semigroup 7" of type (M, a).
The spectral condition is a consequence of Theorem 1.37, and applying (1.2) repeatedly
shows that
(2 — A"y = / . / ettt L dt, ... db
0 0

forall z>a, m>1and x € X. Thus

(21 — A)™|| < M(/O (ot dt)m = M(z —a)™.
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1. OPERATOR SEMIGROUPS

For the converse, see [3, Theorem 8.3.1]. The idea is to approximate the generator A by
bounded operators A, = zA(zI — A)~!, where z € (a, 00), then show that the uniformly
continuous semigroup with generator A, converges to a strongly continuous semigroup
with generator A as z — oo. In particular, it suffices to assume that o(A) N (a,00) is
empty. ]

Theorem 1.39. (Hille-Yosida) Let A be a closed, densely defined operator in the
Banach space X. The following are equivalent.

(i) A is the generator of a strongly continuous contraction semigroup.

(ii)) 0(A) C {z € C:Rez <0} and

(21 — A7 < (Rez)™ whenever Rez > 0.

(iii) o(A) N (0,00) is empty and
(2] — A)7H| <27t whenever z > 0.

Proof. Note that (i) implies (ii), by Theorem 1.37, and (ii) implies (iii) trivially. That
(iii) implies (i) follows from the extension of Theorem 1.38 noted in its proof. O

1.3 The Lumer—Phillips theorem

Throughout this section, X denotes a Banach space and X* its topological dual.

Definition 1.40. For all x € X, let

T(x) == {o € X*: ¢(x) = [|=[* = [l¢]*}

is the set of normalised tangent functionals to x. The Hahn—Banach theorem implies
that 7'(x) is non-empty for all z € X.

Exercise 1.41. Prove that if H is a Hilbert space then T'(z) = {(z|} for all z € H,
where the Dirac functional (x| is such that (z|y := (z,y) for all y € H. [Recall the
Riesz—Fréchet theorem, that H* = {(z| : x € H}.]

Exercise 1.42. Prove that if f € X = C(K) and zy € K is such that |f(xo)| = || f]]
then setting ¢(g) := f(x0)g(zo) for all g € X defines a normalised tangent functional
for f. Deduce that T'(f) may contain more than one element.

Definition 1.43. An unbounded operator A on X is dissipative if and only if, for
all © € dom A, there exists ¢ € T'(z) such that Re ¢(Az) < 0.

Exercise 1.44. Prove that an operator A on a Hilbert space H is dissipative if and only
if Re(z, Az) <0 for all z € dom A.

12



1.3. The Lumer—Phillips theorem

Exercise 1.45. Prove that an operator A on a Hilbert space H is dissipative if and only
if [(1+ A)x|| < ||(I —A)z| for all x € dom A.

Exercise 1.46. Suppose T is a contraction semigroup with generator A. Prove that A
is dissipative.

Proof. If x € dom A and ¢ € T'(x) then

- i -1 — < ] -1 — 2:
Reo(Ar) = lim ' Re¢(Tir — ) < Jim +]}6]] ]| — [lz]* =0,
so A is dissipative. O

Lemma 1.47. If A is dissipative then

|(zI — A)x|| = z||=|| for all z > 0 and = € dom A. (1.3)

If, further, 2I — A is surjective for some z > 0 then z € o(A) and [|(2] — A)7!|| < 27!

Proof. If z >0, x € dom A and ¢ € T'(x) is such that Re ¢(Ax) < 0 then
[ 1] = A)z]| > [o((2] = A)z)| = |2l|2]|* — p(Az)| > 2]

In particular, zI — A is injective.

If zI — A is also surjective then the inequality (1.3) implies that [|y|| > z||(z] — A)~1y||
for all y € X, whence the second claim. O

Remark 1.48. In fact, being dissipative is equivalent to the condition (1.3), but this is
harder to prove. See [2, Proposition 3.1.14].

Exercise 1.49. Let A be dissipative. Prove that zI — A is surjective for some z > 0 if
and only if zI — A is surjective for all z > 0. [Hint: for a suitable choice of z and zo,
consider the series R, := > o0 (2 — 20)"(20] — A)~("*D ]

Proof. Suppose that zy > 0 is such that 2ol — A is surjective. It follows from Lemma 1.47
that ||(20 — A)7Y|| < 25" The series

Z 20 —Z Z()[ A) (n+1)

n=0

is norm convergent for all z € (0,22); if we can show that R, = (21 — A)~! then the
result follows.

If B € B(X) is such that ||B|| < 1 then I — B is invertible, with (I — B)™!' = "> ' B".
Hence if B = (29 — 2)(20] — A)~! then

R. = (2] — A)"Y(I = B)™ = (I — B) (2] — A)~

13



1. OPERATOR SEMIGROUPS

so ran R, C dom(zpl — A) = dom(zI — A),
(2] — A)R. = ((z — 20)] + (20 — A))R. = ((z — 20)(z] — A)"'+1)(I — B) ' = Ix
and

R.(2I—-A) =R, ((z—2) I+ (20l —A)) = (I-=B) ' ((z—20) (20l —A) " +1) = Ijom 4. O

Theorem 1.50. (Lumer—Phillips) A closed, densely defined operator A generates a
strongly continuous contraction semigroup if and only if A is dissipative and zI — A is
surjective for some z > 0.

Proof. One implication follows from Exercise 1.49, Lemma 1.47 and Theorem 1.39. The
other implication follows from Theorem 1.39 and Exercise 1.46. O

Example 1.51. Let X = L?[0,1], and let Af := g, where
t
dom A := {f € X : there exists g € X such that f(t) = / g(x)dx for all t € [0, 1]}
0

Thus f € dom A if and only if f(0) = 0 and f is absolutely continuous on |0, 1],
with Af = f” almost everywhere. For such f, note that

p— L[t 1
Re(f, Af) =Re [ T@F®dt =3 [ G ®dt =370
0 0
so —A is a dissipative operator (but A is not).
Let g € X and z > 0; we wish to find f € dom A such that
(2I+A)f=9g < 2f+[ =9 <= [=[(9—2=2f)

We proceed by iterating thls relatlon given h € {f, g}, let hg := h and, for all n € Z,,
let hy,y1 € X be such hy, (1) fo s)ds for all t € [0,1]. Then

[y

n—

=01 — fo =01 — fo —zf) = (_z)jgj+1 +(=2)"fu

<.
I
o

for all n € N. The series > > ((—2)7g;41 is uniformly convergent on [0, 1], so defines a
function F' € dom A, whereas (—2)"fn — 0 as n — oo. Thus

(I + A)F Z i+ Z(_Z)jgj =90 =9,
=0 i=0

so zI + A is surjective. By the Lumer—Phillips theorem, —A generates a contraction
semigroup.
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Exercise 1.52. Fill in the details at the end of Example 1.51. [Hint: with the notation
of the example, show that if h € {f, g} then |h,(t)]* < t"]|h]|3/n! for all n € N

Remark 1.53. We can explain informally why the operator A defined in Example 1.51
does not generate a semigroup, and why —A does. Recall that each element of a semi-
group leaves the domain of the generator invariant, by Lemma 1.31, and A would generate
a left-translation semigroup, which does not preserve the boundary condition f(0) = 0.
Moreover, —A generates the right-translation semigroup, and this does preserve the
boundary condition.

If we let Ay be the restriction of A to the domain
dom Ay :={f € dom A : f(1) =0},

so adding a further boundary condition, then both Ay and —Ay are dissipative, but
neither generates a semigroup. We cannot solve the equation (21 4+ Ag)f = ¢ for all g
when subject to the constraint that f € dom Ay. [Take g € L?[0,1] such that g(t) = ¢
for all t € [0, 1], construct F' as in Example 1.51 and note that F'(1) # 0.]

Example 1.54. Recall the definition of the Sobolev spaces H*(R?) given in Example 1.8.
The Laplacian
d_ o2 d
A= — = D%

where 2e; € Zi is the multi-index with 2 in the jth coordinate and 0 elsewhere. It may
be shown that

SN )

(Af, g>L2(Rd) = —(V/, V9>L2(Rd) for all f,g € H2(Rd)> (1.4)
where o7 o7
VI(D ,,D )f|—><a—xl,,a—xd)

It follows that A is dissipative when regarded as an operator in L?(R?) with domain
dom A := H?(R?). Note that C>(R?) C H?(R?), so A is densely defined.

One way to show that (1.4) holds is to use the Fourier transform. Fourier-theoretic
results can also be used to prove that zI — A is surjective for all z > 0, essentially
because the map x — 1/(z + |z|?) is bounded on R". Thus the Laplacian generates a
contraction semigroup.
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