
1.2. Beyond uniform continuity

and ‖(zI − A)−1‖ 6 M(Re z − a)−1.

Proof. Fix z ∈ C with Re z > a and note first that

R : X 7→ X ; x 7→

∫

∞

0

e−ztTtx dt

is a bounded linear operator, with ‖R‖ 6 M(Re z − a)−1.

If x ∈ X and y = Rx then

Tty =

∫

∞

0

e−zsTs+tx ds =

∫

∞

t

e−z(u−t)Tux du = ezt
∫

∞

t

e−zuTux du,

and therefore, if t > 0,

t−1(Tt − I)y = t−1ezt
∫

∞

t

e−zsTsx ds− t−1

∫

∞

0

e−zsTsx ds

= −t−1ezt
∫ t

0

e−zsTsx ds + t−1(ezt − 1)

∫

∞

0

e−zsTsx ds

→ −x+ zy as t → 0+.

Thus y ∈ domA and (zI−A)y = x. It follows that ranR ⊆ domA and (zI−A)R = IX .

However, since (Tt − I)R = R(Tt − I) and R is bounded, the same working shows that

RAx = −x+ zRx ⇐⇒ R(zI − A)x = x for all x ∈ domA.

Thus R(zI − A) = IdomA and R = (zI − A)−1, as claimed.

Theorem 1.38. (Feller–Miyadera–Phillips) A closed, densely defined operator A in
the Banach space X is the generator of a strongly continuous semigroup of type (M, a)
if and only if

σ(A) ⊆ {z ∈ C : Re z 6 a}

and
‖(zI −A)−m‖ 6 M(z − a)−m for all z > a and m ∈ N.

Proof. Suppose A is the generator of a strongly continuous semigroup T of type (M, a).
The spectral condition is a consequence of Theorem 1.37, and applying (1.2) repeatedly
shows that

(zI − A)−mx =

∫

∞

0

· · ·

∫

∞

0

e−z(t1+···+tm)Tt1+···+tmx dtn . . . dt1

for all z > a, m > 1 and x ∈ X . Thus

‖(zI − A)−m‖ 6 M
(

∫

∞

0

e−(z−a)t dt
)m

= M(z − a)−m.
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For the converse, see [3, Theorem 8.3.1]. The idea is to approximate the generator A by
bounded operators Az = zA(zI −A)−1, where z ∈ (a,∞), then show that the uniformly
continuous semigroup with generator Az converges to a strongly continuous semigroup
with generator A as z → ∞. In particular, it suffices to assume that σ(A) ∩ (a,∞) is
empty.

Theorem 1.39. (Hille–Yosida) Let A be a closed, densely defined operator in the
Banach space X . The following are equivalent.

(i) A is the generator of a strongly continuous contraction semigroup.

(ii) σ(A) ⊆ {z ∈ C : Re z 6 0} and

‖(zI − A)−1‖ 6 (Re z)−1 whenever Re z > 0.

(iii) σ(A) ∩ (0,∞) is empty and

‖(zI − A)−1‖ 6 z−1 whenever z > 0.

Proof. Note that (i) implies (ii), by Theorem 1.37, and (ii) implies (iii) trivially. That
(iii) implies (i) follows from the extension of Theorem 1.38 noted in its proof.

1.3 The Lumer–Phillips theorem

Throughout this section, X denotes a Banach space and X∗ its topological dual.

Definition 1.40. For all x ∈ X , let

T (x) := {φ ∈ X∗ : φ(x) = ‖x‖2 = ‖φ‖2}

is the set of normalised tangent functionals to x. The Hahn–Banach theorem implies
that T (x) is non-empty for all x ∈ X .

Exercise 1.41. Prove that if H is a Hilbert space then T (x) = {〈x|} for all x ∈ H ,
where the Dirac functional 〈x| is such that 〈x|y := 〈x, y〉 for all y ∈ H . [Recall the
Riesz–Fréchet theorem, that H∗ = {〈x| : x ∈ H}.]

Exercise 1.42. Prove that if f ∈ X = C(K) and x0 ∈ K is such that |f(x0)| = ‖f‖
then setting φ(g) := f(x0)g(x0) for all g ∈ X defines a normalised tangent functional
for f . Deduce that T (f) may contain more than one element.

Definition 1.43. An unbounded operator A on X is dissipative if and only if, for
all x ∈ domA, there exists φ ∈ T (x) such that Reφ(Ax) 6 0.

Exercise 1.44. Prove that an operator A on a Hilbert space H is dissipative if and only
if Re〈x,Ax〉 6 0 for all x ∈ domA.
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Exercise 1.45. Prove that an operator A on a Hilbert space H is dissipative if and only
if ‖(I + A)x‖ 6 ‖(I − A)x‖ for all x ∈ domA.

Exercise 1.46. Suppose T is a contraction semigroup with generator A. Prove that A
is dissipative.

Proof. If x ∈ domA and φ ∈ T (x) then

Reφ(Ax) = lim
t→0+

t−1Reφ(Ttx− x) 6 lim
t→0+

t−1‖φ‖ ‖x‖ − ‖x‖2 = 0,

so A is dissipative.

Lemma 1.47. If A is dissipative then

‖(zI −A)x‖ > z‖x‖ for all z > 0 and x ∈ domA. (1.3)

If, further, zI −A is surjective for some z > 0 then z 6∈ σ(A) and ‖(zI − A)−1‖ 6 z−1.

Proof. If z > 0, x ∈ domA and φ ∈ T (x) is such that Reφ(Ax) 6 0 then

‖x‖ ‖(zI − A)x‖ > |φ((zI − A)x)| = |z‖x‖2 − φ(Ax)| > z‖x‖2.

In particular, zI −A is injective.

If zI − A is also surjective then the inequality (1.3) implies that ‖y‖ > z‖(zI − A)−1y‖
for all y ∈ X , whence the second claim.

Remark 1.48. In fact, being dissipative is equivalent to the condition (1.3), but this is
harder to prove. See [2, Proposition 3.1.14].

Exercise 1.49. Let A be dissipative. Prove that zI − A is surjective for some z > 0 if
and only if zI − A is surjective for all z > 0. [Hint: for a suitable choice of z and z0,
consider the series Rz :=

∑

∞

n=0(z − z0)
n(z0I −A)−(n+1).]

Proof. Suppose that z0 > 0 is such that z0I−A is surjective. It follows from Lemma 1.47
that ‖(z0I − A)−1‖ 6 z−1

0 . The series

Rz =
∞
∑

n=0

(z0 − z)n(z0I − A)−(n+1)

is norm convergent for all z ∈ (0, 2z0); if we can show that Rz = (zI − A)−1 then the
result follows.

If B ∈ B(X) is such that ‖B‖ < 1 then I −B is invertible, with (I −B)−1 =
∑

∞

n=0B
n.

Hence if B = (z0 − z)(z0I −A)−1 then

Rz = (z0I −A)−1(I −B)−1 = (I −B)−1(z0I − A)−1,

13
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so ranRz ⊆ dom(z0I − A) = dom(zI − A),

(zI −A)Rz = ((z − z0)I + (z0I − A))Rz = ((z − z0)(z0I − A)−1 + I)(I −B)−1 = IX

and

Rz(zI−A) = Rz((z−z0)I+(z0I−A)) = (I−B)−1((z−z0)(z0I−A)−1+I) = IdomA.

Theorem 1.50. (Lumer–Phillips) A closed, densely defined operator A generates a
strongly continuous contraction semigroup if and only if A is dissipative and zI − A is
surjective for some z > 0.

Proof. One implication follows from Exercise 1.49, Lemma 1.47 and Theorem 1.39. The
other implication follows from Theorem 1.39 and Exercise 1.46.

Example 1.51. Let X = L2[0, 1], and let Af := g, where

domA :=
{

f ∈ X : there exists g ∈ X such that f(t) =

∫ t

0

g(x) dx for all t ∈ [0, 1]
}

.

Thus f ∈ domA if and only if f(0) = 0 and f is absolutely continuous on [0, 1],
with Af = f ′ almost everywhere. For such f , note that

Re〈f, Af〉 = Re

∫ 1

0

f(t)f ′(t) dt =
1

2

∫ t

0

(

ff
)

′

(t) dt =
1

2
|f(1)|2 > 0,

so −A is a dissipative operator (but A is not).

Let g ∈ X and z > 0; we wish to find f ∈ domA such that

(zI + A)f = g ⇐⇒ zf + f ′ = g ⇐⇒ f =
∫

(g − zf).

We proceed by iterating this relation: given h ∈ {f, g}, let h0 := h and, for all n ∈ Z+,
let hn+1 ∈ X be such hn+1(t) =

∫ t

0
hn(s) ds for all t ∈ [0, 1]. Then

f = g1 − z
∫

f = g1 − z
∫ ∫

(g − zf) = · · · =

n−1
∑

j=0

(−z)jgj+1 + (−z)nfn

for all n ∈ N. The series
∑

∞

j=0(−z)jgj+1 is uniformly convergent on [0, 1], so defines a
function F ∈ domA, whereas (−z)nfn → 0 as n → ∞. Thus

(zI + A)F = −
∞
∑

j=0

(−z)j+1gj+1 +
∞
∑

j=0

(−z)jgj = g0 = g,

so zI + A is surjective. By the Lumer–Phillips theorem, −A generates a contraction
semigroup.
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Exercise 1.52. Fill in the details at the end of Example 1.51. [Hint: with the notation
of the example, show that if h ∈ {f, g} then |hn(t)|

2 6 tn‖h‖22/n! for all n ∈ N.]

Remark 1.53. We can explain informally why the operator A defined in Example 1.51
does not generate a semigroup, and why −A does. Recall that each element of a semi-
group leaves the domain of the generator invariant, by Lemma 1.31, andA would generate
a left-translation semigroup, which does not preserve the boundary condition f(0) = 0.
Moreover, −A generates the right-translation semigroup, and this does preserve the
boundary condition.

If we let A0 be the restriction of A to the domain

domA0 := {f ∈ domA : f(1) = 0},

so adding a further boundary condition, then both A0 and −A0 are dissipative, but
neither generates a semigroup. We cannot solve the equation (zI ± A0)f = g for all g
when subject to the constraint that f ∈ domA0. [Take g ∈ L2[0, 1] such that g(t) = t
for all t ∈ [0, 1], construct F as in Example 1.51 and note that F (1) 6= 0.]

Example 1.54. Recall the definition of the Sobolev spaces Hk(Rd) given in Example 1.8.
The Laplacian

∆ :=
d

∑

j=1

∂2

∂x2
j

=
d

∑

j=1

D2ej ,

where 2ej ∈ Zd
+ is the multi-index with 2 in the jth coordinate and 0 elsewhere. It may

be shown that

〈∆f, g〉L2(Rd) = −〈∇f,∇g〉L2(Rd) for all f, g ∈ H2(Rd), (1.4)

where

∇ := (De1, . . . , Ded) : f 7→
( ∂f

∂x1

, . . . ,
∂f

∂xd

)

.

It follows that ∆ is dissipative when regarded as an operator in L2(Rd) with domain
dom∆ := H2(Rd). Note that C∞

c (Rd) ⊆ H2(Rd), so ∆ is densely defined.

One way to show that (1.4) holds is to use the Fourier transform. Fourier-theoretic
results can also be used to prove that zI − ∆ is surjective for all z > 0, essentially
because the map x 7→ 1/(z + |x|2) is bounded on Rn. Thus the Laplacian generates a
contraction semigroup.
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