and $||(zI - A)^{-1}|| \leq M(\operatorname{Re} z - a)^{-1}.$

Proof. Fix $z \in \mathbb{C}$ with $\operatorname{Re} z > a$ and note first that

$$R: X \mapsto X; \ x \mapsto \int_0^\infty e^{-zt} T_t x \, \mathrm{d}t$$

is a bounded linear operator, with $||R|| \leq M(\operatorname{Re} z - a)^{-1}$. If $x \in X$ and y = Rx then

$$T_t y = \int_0^\infty e^{-zs} T_{s+t} x \, \mathrm{d}s = \int_t^\infty e^{-z(u-t)} T_u x \, \mathrm{d}u = e^{zt} \int_t^\infty e^{-zu} T_u x \, \mathrm{d}u,$$

and therefore, if t > 0,

$$t^{-1}(T_t - I)y = t^{-1}e^{zt} \int_t^\infty e^{-zs} T_s x \, \mathrm{d}s - t^{-1} \int_0^\infty e^{-zs} T_s x \, \mathrm{d}s$$

= $-t^{-1}e^{zt} \int_0^t e^{-zs} T_s x \, \mathrm{d}s + t^{-1}(e^{zt} - 1) \int_0^\infty e^{-zs} T_s x \, \mathrm{d}s$
 $\to -x + zy$ as $t \to 0+$.

Thus $y \in \text{dom } A$ and (zI - A)y = x. It follows that ran $R \subseteq \text{dom } A$ and $(zI - A)R = I_X$. However, since $(T_t - I)R = R(T_t - I)$ and R is bounded, the same working shows that

$$RAx = -x + zRx \iff R(zI - A)x = x$$
 for all $x \in \text{dom } A$.

Thus $R(zI - A) = I_{\text{dom }A}$ and $R = (zI - A)^{-1}$, as claimed.

Theorem 1.38. (Feller–Miyadera–Phillips) A closed, densely defined operator A in the Banach space X is the generator of a strongly continuous semigroup of type (M, a) if and only if

$$\sigma(A) \subseteq \{ z \in \mathbb{C} : \operatorname{Re} z \leqslant a \}$$

and

$$||(zI - A)^{-m}|| \leq M(z - a)^{-m}$$
 for all $z > a$ and $m \in \mathbb{N}$.

Proof. Suppose A is the generator of a strongly continuous semigroup T of type (M, a). The spectral condition is a consequence of Theorem 1.37, and applying (1.2) repeatedly shows that

$$(zI-A)^{-m}x = \int_0^\infty \cdots \int_0^\infty e^{-z(t_1+\cdots+t_m)}T_{t_1+\cdots+t_m}x\,\mathrm{d}t_n\dots\,\mathrm{d}t_1$$

for all $z > a, m \ge 1$ and $x \in X$. Thus

$$||(zI - A)^{-m}|| \leq M \left(\int_0^\infty e^{-(z-a)t} \, \mathrm{d}t\right)^m = M(z-a)^{-m}.$$

For the converse, see [3, Theorem 8.3.1]. The idea is to approximate the generator A by bounded operators $A_z = zA(zI - A)^{-1}$, where $z \in (a, \infty)$, then show that the uniformly continuous semigroup with generator A_z converges to a strongly continuous semigroup with generator A as $z \to \infty$. In particular, it suffices to assume that $\sigma(A) \cap (a, \infty)$ is empty.

Theorem 1.39. (Hille–Yosida) Let A be a closed, densely defined operator in the Banach space X. The following are equivalent.

- (i) A is the generator of a strongly continuous contraction semigroup.
- (ii) $\sigma(A) \subseteq \{z \in \mathbb{C} : \operatorname{Re} z \leq 0\}$ and

 $||(zI - A)^{-1}|| \leq (\operatorname{Re} z)^{-1} \quad \text{whenever } \operatorname{Re} z > 0.$

(iii) $\sigma(A) \cap (0, \infty)$ is empty and

$$||(zI - A)^{-1}|| \leq z^{-1}$$
 whenever $z > 0$.

Proof. Note that (i) implies (ii), by Theorem 1.37, and (ii) implies (iii) trivially. That (iii) implies (i) follows from the extension of Theorem 1.38 noted in its proof. \Box

1.3 The Lumer–Phillips theorem

Throughout this section, X denotes a Banach space and X^* its topological dual.

Definition 1.40. For all $x \in X$, let

$$T(x) := \{ \phi \in X^* : \phi(x) = \|x\|^2 = \|\phi\|^2 \}$$

is the set of normalised tangent functionals to x. The Hahn–Banach theorem implies that T(x) is non-empty for all $x \in X$.

Exercise 1.41. Prove that if H is a Hilbert space then $T(x) = \{\langle x | \}$ for all $x \in H$, where the Dirac functional $\langle x |$ is such that $\langle x | y := \langle x, y \rangle$ for all $y \in H$. [Recall the Riesz–Fréchet theorem, that $H^* = \{\langle x | : x \in H\}$.]

Exercise 1.42. Prove that if $f \in X = C(K)$ and $x_0 \in K$ is such that $|f(x_0)| = ||f||$ then setting $\phi(g) := \overline{f(x_0)}g(x_0)$ for all $g \in X$ defines a normalised tangent functional for f. Deduce that T(f) may contain more than one element.

Definition 1.43. An unbounded operator A on X is *dissipative* if and only if, for all $x \in \text{dom } A$, there exists $\phi \in T(x)$ such that $\text{Re } \phi(Ax) \leq 0$.

Exercise 1.44. Prove that an operator A on a Hilbert space H is dissipative if and only if $\operatorname{Re}\langle x, Ax \rangle \leq 0$ for all $x \in \operatorname{dom} A$.

Exercise 1.45. Prove that an operator A on a Hilbert space H is dissipative if and only if $||(I + A)x|| \leq ||(I - A)x||$ for all $x \in \text{dom } A$.

Exercise 1.46. Suppose T is a contraction semigroup with generator A. Prove that A is dissipative.

Proof. If $x \in \text{dom } A$ and $\phi \in T(x)$ then

$$\operatorname{Re}\phi(Ax) = \lim_{t \to 0+} t^{-1} \operatorname{Re}\phi(T_t x - x) \leq \lim_{t \to 0+} t^{-1} \|\phi\| \|x\| - \|x\|^2 = 0,$$

so A is dissipative.

Lemma 1.47. If A is dissipative then

$$\|(zI - A)x\| \ge z\|x\| \quad \text{for all } z > 0 \text{ and } x \in \text{dom } A.$$
(1.3)

If, further, zI - A is surjective for some z > 0 then $z \notin \sigma(A)$ and $||(zI - A)^{-1}|| \leq z^{-1}$.

Proof. If z > 0, $x \in \text{dom } A$ and $\phi \in T(x)$ is such that $\text{Re } \phi(Ax) \leq 0$ then

$$||x|| ||(zI - A)x|| \ge |\phi((zI - A)x)| = |z||x||^2 - \phi(Ax)| \ge z||x||^2.$$

In particular, zI - A is injective.

If zI - A is also surjective then the inequality (1.3) implies that $||y|| \ge z||(zI - A)^{-1}y||$ for all $y \in X$, whence the second claim.

Remark 1.48. In fact, being dissipative is equivalent to the condition (1.3), but this is harder to prove. See [2, Proposition 3.1.14].

Exercise 1.49. Let A be dissipative. Prove that zI - A is surjective for some z > 0 if and only if zI - A is surjective for all z > 0. [Hint: for a suitable choice of z and z_0 , consider the series $R_z := \sum_{n=0}^{\infty} (z - z_0)^n (z_0I - A)^{-(n+1)}$.]

Proof. Suppose that $z_0 > 0$ is such that $z_0I - A$ is surjective. It follows from Lemma 1.47 that $||(z_0I - A)^{-1}|| \leq z_0^{-1}$. The series

$$R_z = \sum_{n=0}^{\infty} (z_0 - z)^n (z_0 I - A)^{-(n+1)}$$

is norm convergent for all $z \in (0, 2z_0)$; if we can show that $R_z = (zI - A)^{-1}$ then the result follows.

If $B \in B(X)$ is such that ||B|| < 1 then I - B is invertible, with $(I - B)^{-1} = \sum_{n=0}^{\infty} B^n$. Hence if $B = (z_0 - z)(z_0I - A)^{-1}$ then

$$R_z = (z_0 I - A)^{-1} (I - B)^{-1} = (I - B)^{-1} (z_0 I - A)^{-1},$$

so ran $R_z \subseteq \operatorname{dom}(z_0 I - A) = \operatorname{dom}(z I - A),$

$$(zI - A)R_z = ((z - z_0)I + (z_0I - A))R_z = ((z - z_0)(z_0I - A)^{-1} + I)(I - B)^{-1} = I_X$$

and

$$R_z(zI-A) = R_z((z-z_0)I + (z_0I-A)) = (I-B)^{-1}((z-z_0)(z_0I-A)^{-1} + I) = I_{\text{dom }A}.$$

Theorem 1.50. (Lumer–Phillips) A closed, densely defined operator A generates a strongly continuous contraction semigroup if and only if A is dissipative and zI - A is surjective for some z > 0.

Proof. One implication follows from Exercise 1.49, Lemma 1.47 and Theorem 1.39. The other implication follows from Theorem 1.39 and Exercise 1.46. \Box

Example 1.51. Let $X = L^{2}[0, 1]$, and let Af := g, where

dom
$$A := \left\{ f \in X : \text{there exists } g \in X \text{ such that } f(t) = \int_0^t g(x) \, \mathrm{d}x \text{ for all } t \in [0,1] \right\}.$$

Thus $f \in \text{dom } A$ if and only if f(0) = 0 and f is absolutely continuous on [0, 1], with Af = f' almost everywhere. For such f, note that

$$\operatorname{Re}\langle f, Af \rangle = \operatorname{Re} \int_0^1 \overline{f(t)} f'(t) \, \mathrm{d}t = \frac{1}{2} \int_0^t \left(\overline{f}f\right)'(t) \, \mathrm{d}t = \frac{1}{2} |f(1)|^2 \ge 0,$$

so -A is a dissipative operator (but A is not).

Let $g \in X$ and z > 0; we wish to find $f \in \text{dom } A$ such that

$$(zI+A)f = g \iff zf + f' = g \iff f = \int (g - zf).$$

We proceed by iterating this relation: given $h \in \{f, g\}$, let $h_0 := h$ and, for all $n \in \mathbb{Z}_+$, let $h_{n+1} \in X$ be such $h_{n+1}(t) = \int_0^t h_n(s) \, \mathrm{d}s$ for all $t \in [0, 1]$. Then

$$f = g_1 - z \int f = g_1 - z \int \int (g - zf) = \dots = \sum_{j=0}^{n-1} (-z)^j g_{j+1} + (-z)^n f_n$$

for all $n \in \mathbb{N}$. The series $\sum_{j=0}^{\infty} (-z)^j g_{j+1}$ is uniformly convergent on [0, 1], so defines a function $F \in \text{dom } A$, whereas $(-z)^n f_n \to 0$ as $n \to \infty$. Thus

$$(zI+A)F = -\sum_{j=0}^{\infty} (-z)^{j+1}g_{j+1} + \sum_{j=0}^{\infty} (-z)^j g_j = g_0 = g,$$

so zI + A is surjective. By the Lumer–Phillips theorem, -A generates a contraction semigroup.

Exercise 1.52. Fill in the details at the end of Example 1.51. [Hint: with the notation of the example, show that if $h \in \{f, g\}$ then $|h_n(t)|^2 \leq t^n ||h||_2^2/n!$ for all $n \in \mathbb{N}$.]

Remark 1.53. We can explain informally why the operator A defined in Example 1.51 does not generate a semigroup, and why -A does. Recall that each element of a semigroup leaves the domain of the generator invariant, by Lemma 1.31, and A would generate a left-translation semigroup, which does not preserve the boundary condition f(0) = 0. Moreover, -A generates the right-translation semigroup, and this does preserve the boundary condition.

If we let A_0 be the restriction of A to the domain

$$\operatorname{dom} A_0 := \{ f \in \operatorname{dom} A : f(1) = 0 \},\$$

so adding a further boundary condition, then both A_0 and $-A_0$ are dissipative, but neither generates a semigroup. We cannot solve the equation $(zI \pm A_0)f = g$ for all gwhen subject to the constraint that $f \in \text{dom } A_0$. [Take $g \in L^2[0, 1]$ such that g(t) = tfor all $t \in [0, 1]$, construct F as in Example 1.51 and note that $F(1) \neq 0$.]

Example 1.54. Recall the definition of the Sobolev spaces $H^k(\mathbb{R}^d)$ given in Example 1.8. The Laplacian

$$\Delta := \sum_{j=1}^d \frac{\partial^2}{\partial x_j^2} = \sum_{j=1}^d D^{2e_j},$$

where $2e_j \in \mathbb{Z}^d_+$ is the multi-index with 2 in the *j*th coordinate and 0 elsewhere. It may be shown that

$$\langle \Delta f, g \rangle_{L^2(\mathbb{R}^d)} = -\langle \nabla f, \nabla g \rangle_{L^2(\mathbb{R}^d)}$$
 for all $f, g \in H^2(\mathbb{R}^d)$, (1.4)

where

$$\nabla := (D^{e_1}, \dots, D^{e_d}) : f \mapsto \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d}\right).$$

It follows that Δ is dissipative when regarded as an operator in $L^2(\mathbb{R}^d)$ with domain dom $\Delta := H^2(\mathbb{R}^d)$. Note that $C_c^{\infty}(\mathbb{R}^d) \subseteq H^2(\mathbb{R}^d)$, so Δ is densely defined.

One way to show that (1.4) holds is to use the Fourier transform. Fourier-theoretic results can also be used to prove that $zI - \Delta$ is surjective for all z > 0, essentially because the map $x \mapsto 1/(z + |x|^2)$ is bounded on \mathbb{R}^n . Thus the Laplacian generates a contraction semigroup.