Three

Quantum Feller semigroups

3.1 C^* algebras

Definition 3.1. A *Banach algebra* is a Banach space which is also a complex associative algebra, so has a multiplication compatible with the vector-space operators and the norm, which is submultiplicative. If the Banach algebra is *unital*, so that it has a multiplicative identity 1, called its *unit*, then we require the norm ||1|| to be 1.

An *involution* on a Banach algebra is an isometric conjugate-linear map which reverses products and is self inverse.

A Banach algebra with involution A is a C^* algebra if and only if the C^* identity holds:

 $||a^*a|| = ||a||^2 \quad \text{for all } a \in \mathsf{A}.$

Remark 3.2. The C^* identity connects the algebraic and analytic structure of the algebra in a very rigid way. For example, there exists at most one norm for which an associative algebra is a C^* algebra.

Theorem 3.3. (Gelfand) Every commutative C^* algebra is isometrically isomorphic to $C_0(S)$, where S is a locally compact Hausdorff space.

Theorem 3.4. (Gelfand–Naimark) Any C^* algebra is isometrically *-isomorphic to a norm-closed *-subalgebra of B(H) for some Hilbert space H (a *concrete* C^* *algebra*).

Remark 3.5. Let A be a C^* algebra and, for all $n \in \mathbb{N}$, let $M_n(A)$ be the complex associative algebra of $n \times n$ matrices with entries in A, equipped with algebraic operations in the usual manner. By the Gelfand–Naimark theorem, we may assume that $A \subseteq B(H)$ for some Hilbert space H, and so $M_n(A) \subseteq B(H^n)$. We equip $M_n(A)$ with the restriction of the operator norm on $B(H^n)$, and then $M_n(A)$ becomes a C^* algebra.

[This observation is the root of the theory of operator spaces.]

Definition 3.6. A concrete C^* algebra $A \subseteq B(H)$ is a *von Neumann algebra* if and only if any of the following equivalent conditions hold.

- (i) Closure in the strong operator topology: if the net $(a_i) \subseteq A$ and $a \in B(H)$ are such that $a_i x \to ax$ for all $x \in H$, then $a \in A$.
- (ii) Closure in the weak operator topology: if $(a_i) \subseteq A$ and $a \in B(H)$ are such that $\langle x, a_i x \rangle \to \langle x, ax \rangle$ for all $x \in H$, then $a \in A$.
- (iii) Equality with its commutant: letting

$$S' := \{a \in \mathsf{A} : [a, b] = 0 \text{ for all } b \in S\}$$

denote the commutant of $S \subseteq A$, then A'' := (A')' = A [von Neumann].

(iv) Existence of a predual: there exists a Banach space A_* such that $(A_*)^* = A$ [Sakai].

3.2 Positivity

Definition 3.7. In a C^* algebra A we have the notion of *positivity*: we write $a \ge 0$ if there exists $b \in A$ such that $a = b^*b$. The set of positive elements in A is denoted by A_+ , is closed in the norm topology and is a *cone*: it is closed under addition and multiplication by non-negative scalars. Note that a positive element is self adjoint.

Exercise 3.8. Let $A = C_0(S)$ and prove that $f \in A_+$ if and only if $f(x) \ge 0$ for all $x \in S$. Prove also that if the C^* algebra $A \subseteq B(H)$, where H is a Hilbert space, then $a \in A_+$ if and only if $\langle x, ax \rangle \ge 0$ for all $x \in H$. [The existence of square roots is crucial in both cases.]

Definition 3.9. A linear map $\Phi : A \to B$ is *positive* if and only if $\Phi(A_+) \subseteq B_+$. A positive map is automatically bounded.

Exercise 3.10. Prove that a positive linear map commutes with the involution. [Hint: an arbitrary element in a C^* algebra A may be written in the form $(a_1 - a_2) + i(a_3 - a_4)$, where $a_1, \ldots, a_4 \in A_+$.]

Definition 3.11. A linear map $\Phi : A \to B$ between C^* algebras is *n*-positive, for some $n \in \mathbb{N}$, if and only if the ampliation

$$\Phi^{(n)}: M_n(\mathsf{A}) \to M_n(\mathsf{B}); \ (a_{ij}) \mapsto (\Phi(a_{ij}))$$

is positive. [Identifying $M_n(\mathsf{A})$ with $M_n(\mathbb{C}) \otimes \mathsf{A}$, and similarly for $M_n(\mathsf{B})$, it follows immediately that $\Phi^{(n)} = \mathrm{id}_{M(\mathbb{C}^n)} \otimes \Phi$.]

If Φ is *n*-positive for all $n \in \mathbb{N}$ then Φ is completely positive.

Exercise 3.12. Prove that any *-homomorphism between C^* algebras is completely positive. Prove also that if $V \in B(\mathsf{H};\mathsf{K})$ then

$$B(\mathsf{K}) \to B(\mathsf{H}); \ a \mapsto V^* a V$$

is completely positive.

Exercise 3.13. (Paschke) A linear map $\Phi : A \to B$ between C^* algebras is completely positive if and only if

$$\sum_{i,j=1}^n b_i^* \Phi(a_i^* a_j) b_j \ge 0$$

for all $n \ge 1, a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_n \in B$. [Hint: there is a faithful representation of B as a concrete C^* algebra which is a direct sum of cyclic representations.]

Theorem 3.14. A positive linear map $\Phi : A \to B$ between C^* algebras is completely positive if A is commutative [Stinespring] or B is commutative [Arveson].

Theorem 3.15. (Kadison) A 2-positive unital linear map $\Phi : A \to B$ between unital C^* algebras is such that

$$\Phi(a)^* \Phi(a) \leqslant \Phi(a^* a) \qquad \text{for all } a \in \mathsf{A}.$$
(3.1)

Proof. Note first that if $a \in A$ then

$$A := \begin{bmatrix} 1 & a \\ a^* & a^*a \end{bmatrix} = \begin{bmatrix} 1 & a \\ 0 & 0 \end{bmatrix}^* \begin{bmatrix} 1 & a \\ 0 & 0 \end{bmatrix} \ge 0,$$

SO

$$0 \leqslant \Phi^{(2)}(A) = \begin{bmatrix} 1 & \Phi(a) \\ \Phi(a)^* & \Phi(a^*a) \end{bmatrix}.$$

Suppose without loss of generality that $B \subseteq B(H)$ for some Hilbert space H, and note that, by Exercise 3.8, if $x \in H$ and

$$\xi := \begin{bmatrix} -\Phi(a)x\\ x \end{bmatrix} \in \mathsf{H}^2 \quad \text{then} \quad 0 \leqslant \langle \xi, \Phi^{(2)}(A)\xi \rangle = \langle x, \left(\Phi(a^*a) - \Phi(a)^*\Phi(a)\right)x \rangle.$$

As x is arbitrary, the claim follows.

Remark 3.16. The inequality (3.1) is known as the *Kadison–Schwarz* inequality.

Exercise 3.17. Show that the inequality (3.1) holds if Φ is required only to be positive as long as *a* is *normal*, so that $a^*a = aa^*$. [Hint: use Theorem 3.14.]

3.3 Stinespring's dilation theorem

Theorem 3.18. (Stinespring) Let $\Phi : A \to B(H)$ be a linear map, where A is a unital C^* algebra and H is a Hilbert space. Then Φ is completely positive if and only if there exists a Hilbert space K, a unital *-homomorphism $\pi : A \to B(K)$ and a bounded operator $V : H \to K$ such that

$$\Phi(a) = V^* \pi(a) V \qquad (a \in \mathsf{A}).$$

Furthermore, $\|\Phi(1)\| = \|V\|^2$.

Proof. One direction is immediate. For the converse, let $K_0 := A \otimes H$ be the algebraic tensor product of A with H, considered as complex vector spaces. Define a sesquilinear form on K_0 such that

$$\langle a \otimes x, b \otimes y \rangle = \langle x, \Phi(a^*b)y \rangle_{\mathsf{H}}$$
 for all $a, b \in \mathsf{A}$ and $x, y \in H$.

It is an exercise to check that this form is positive semidefinite; this follows from the assumption that Φ is completely positive. Furthermore, the kernel

$$\mathsf{K}_{00} := \{\xi \in \mathsf{K}_0 : \langle \xi, \xi \rangle = 0\}$$

is a vector subspace of K_0 . Let K be the completion of $K_0/K_{00} = \{[\xi] : \xi \in K_0\}$. If

$$\pi(a)[b \otimes x] := [ab \otimes x] \quad \text{for all } a, b \in \mathsf{A} \text{ and } x \in \mathsf{H},$$

then $\pi(a)$ extends by linearity and continuity to an element of $B(\mathsf{K})$, denoted in the same manner. Furthermore, the map $a \mapsto \pi(a)$ is a unital *-homomorphism from A to $B(\mathsf{K})$.

Finally, let $V \in B(\mathsf{H};\mathsf{K})$ be defined by setting $Vx = [1 \otimes x]$ for all $x \in \mathsf{H}$. It is a final exercise to verify that $\Phi(a) = V^*\pi(a)V$, as required.

Corollary 3.19. If $\Phi : A \to B(H)$ is as in Theorem 3.18, with $\Phi(1) = I$, then

$$\sum_{i,j=1}^{n} \langle v_i, \left(\Phi(a_i^* a_j) - \Phi(a_i)^* \Phi(a_j) \right) v_j \rangle \ge 0$$

for all $n \ge 1, a_1, \ldots, a_n \in \mathsf{A}$ and $v_1, \ldots, v_n \in \mathsf{H}$.

Proof. Note first that $||V^*|| = ||V|| = ||\Phi(1)||^{1/2} = 1$. Hence

$$\sum_{i,j=1}^{n} \langle v_i, \Phi(a_i^* a_j) v_j \rangle = \sum_{i,j=1}^{n} \langle V v_i, \pi(a_i^* a_j) V v_j \rangle = \left\| \sum_{i=1}^{n} \pi(a_i) V v_i \right\|^2$$
$$\geq \left\| V^* \sum_{i=1}^{n} \pi(a_i) V v_i \right\|^2$$
$$= \left\| \sum_{i=1}^{n} \Phi(a_i) v_i \right\|^2$$
$$= \sum_{i,j=1}^{n} \langle v_i, \Phi(a_i)^* \Phi(a_j) v_j \rangle.$$

Definition 3.20. A pair (π, V) as in Theorem 3.18 is a *Stinespring dilation* of Φ . Such a dilation is *minimal* if

$$\mathsf{K} = \overline{\mathrm{lin}} \{ \pi(a) V x : a \in \mathsf{A}, \ x \in \mathsf{H} \}.$$

Proposition 3.21. A completely positive map $\Phi : \mathsf{A} \to B(\mathsf{H})$ has a minimal Stinespring dilation.

Proof. One may take (π, V) as in Theorem 3.18 and restrict to the closed subspace of K containing $\{\pi(a)Vx : a \in A, x \in H\}$.

Exercise 3.22. Prove that the minimal Stinespring dilation is unique in an appropriate sense.

Definition 3.23. Let $(a_i) \subseteq A$ be a net in the von Neumann algebra $A \subseteq B(H)$. We write $a_i \searrow 0$ if $a_i - a_j \in A_+$ whenever $i \ge j$ and $\langle x, a_i x \rangle \to 0$ for all $x \in H$.

A map $\Phi : \mathsf{A} \to B(\mathsf{K})$ is normal if $\Phi(a_i) \searrow 0$ whenever $a_i \searrow 0$.

Corollary 3.24. If A is a von Neumann algebra and Φ is normal then π in Theorem 3.18 be may chosen to be normal also.

Proof. Let (π, V) be a minimal Stinespring dilation for Φ . If $x \in H$, $a \in A$ and $(a_i) \subseteq A_+$ is such that $a_i \searrow 0$ then

$$\langle \pi(a)Vx, \pi(a_i)\pi(a)Vx \rangle = \langle x, V^*\pi(a^*a_ia)Vx \rangle = \langle x, \Phi(a^*a_ia)x \rangle \to 0,$$

since $a^*a_i a \searrow 0$. It follows by polarisation and minimality that $\pi(a_i) \searrow 0$, as claimed.

3.4 The Gorini–Kossakowski–Sudershan–Lindblad theorem

Definition 3.25. A quantum Feller semigroup $T = (T_t)_{t \in \mathbb{R}_+}$ on a C^* algebra A is a strongly continuous contraction semigroup with T_t completely positive for all $t \in \mathbb{R}_+$.

If A is unital, with unit 1, and $T_t 1 = 1$ for all $t \in \mathbb{R}_+$ then T is conservative.

Theorem 3.26. Let T be a uniformly continuous quantum Feller semigroup on the unital C^* algebra $A \subseteq B(H)$. Its generator \mathcal{L} is bounded, *-preserving and *conditionally completely positive*: if $n \ge 1, a_1, \ldots, a_n \in A$ and $v_1, \ldots, v_n \in H$ then

$$\sum_{i,j=1}^{n} \langle v_i, \mathcal{L}(a_i^* a_j) v_j \rangle \ge 0 \quad \text{whenever} \quad \sum_{i=1}^{n} a_i v_i = 0$$

Proof. The boundedness of \mathcal{L} follows immediately from Theorem 1.21, and if $a \in A$ then

$$\mathcal{L}(a)^* = \lim_{t \to 0+} t^{-1} (T_t(a) - a)^* = \lim_{t \to 0+} t^{-1} (T_t(a^*) - a^*) = \mathcal{L}(a^*)$$

by continuity of the involution and the fact that positive maps are *-preserving.

To see that conditional complete positivity holds, let $a_1, \ldots, a_n \in A$ and $v_1, \ldots, v_n \in H$. By Corollary 3.19, if t > 0 then

$$t^{-1} \sum_{i,j=1}^{n} \langle v_i, \left(T_t(a_i^* a_j) - T_t(a_i)^* T_t(a_j) \right) v_j \rangle \ge 0.$$

Letting $t \to 0+$ gives that

$$\sum_{i,j=1}^{n} \langle v_i, \left(\mathcal{L}(a_i^* a_j) - \mathcal{L}(a_i)^* a_j - a_i^* \mathcal{L}(a_j) \right) v_j \rangle \ge 0,$$

and if $\sum_{i=1}^{n} a_i v_i = 0$ then the second and third terms vanish.

Theorem 3.27. (Lindblad, Evans) Let \mathcal{L} be a *-preserving bounded linear map on the unital C^* algebra $A \subseteq B(H)$. The following are equivalent.

- (i) \mathcal{L} is conditionally completely positive.
- (ii) $(zI \mathcal{L})^{-1}$ is completely positive for all sufficiently large z > 0.
- (iii) $T_t = \exp(t\mathcal{L})$ is completely positive for all $t \in \mathbb{R}_+$.

The semigroup T which arises is conservative if and only if $\mathcal{L}(1) = 0$.

Proof. The equivalence of (ii) and (iii) is a consequence of Theorem 1.37 and (2.4), and Theorem 3.26 gives that (iii) implies (i). That (i) implies (iii) is an exercise, as is the final remark. \Box

Remark 3.28. Since completely positive unital linear maps between unital C^* algebras are automatically contractive, this characterises the generators of uniformly continuous conservative quantum Feller semigroups on unital C^* algebras.

Theorem 3.29. (Lindblad, Christensen) If $A \subseteq B(H)$ is a von Neumann algebra then \mathcal{L} is conditionally completely positive and normal if and only if there exists a normal completely positive map $\Psi : A \to A$ and an element $G \in A$ such that

$$\mathcal{L}(a) = \Psi(a) + G^*a + aG$$
 for all $a \in A$.

Remark 3.30. If A is just a C^* algebra then Christensen and Evans have showed that Theorem 3.29 remains true with \mathcal{L} and Ψ no longer required to be normal, but G and the range of Ψ must be taken to lie in the ultraweak closure of A.

Theorem 3.31. (Kraus) Suppose $A \subseteq B(H)$ is a von Neumann algebra. A linear map $\Psi : A \to B(K)$ is normal and completely positive if and only if there exists a family of operators $(L_i)_{i \in \mathbb{I}} \subseteq B(K; H)$ such that

$$\Psi(a) = \sum_{i \in \mathbb{I}} L_i^* a L_i \quad \text{for all } a \in \mathsf{A},$$

with convergence in the strong operator topology. The cardinality of the index set \mathbb{I} may be taken to be no larger than dim K.

Remark 3.32. With Ψ and $(L_i)_{i \in \mathbb{I}}$ as in Theorem 3.31, we may write

$$\Psi(a) = L^*(a \otimes I_{\mathsf{K}_1})L$$

for some $L \in B(\mathsf{K}; \mathsf{H} \otimes \mathsf{K}_1)$; suppose K_1 has orthonormal basis $(e_i)_{i \in \mathbb{I}}$ and let

$$L: \mathsf{K} \to \mathsf{H} \otimes \mathsf{K}_1; \ x \mapsto \sum_{i \in \mathbb{I}} x \otimes e_i.$$

Lemma 3.33. Let T be a uniformly continuous semigroup on a von Neumann algebra with generator \mathcal{L} . Then \mathcal{L} is normal if and only if T_t is normal for all $t \in \mathbb{R}_+$.

Theorem 3.34. (Gorini–Kossakowski–Sudarshan, Lindblad) A bounded linear map \mathcal{L} on a von Neumann algebra $A \subseteq B(H)$ is the generator of a uniformly continuous conservative quantum Feller semigroup composed of normal maps if and only if

$$\mathcal{L}(a) = -\mathrm{i}[H, a] - \frac{1}{2} \left(L^* L a - 2L^* (a \otimes I)L + aL^*L \right) \qquad \text{for all } a \in B(\mathsf{H}),$$

where $H = H^* \in B(H)$ and $L \in B(H; H \otimes K)$ for some Hilbert space K.

Proof. If \mathcal{L} has this form then it is straightforward to verify that the semigroup it generates is as claimed.

Conversely, suppose \mathcal{L} is the generator of a semigroup as in the statement of the theorem. Then Theorem 3.27 gives that \mathcal{L} is conditionally completely positive and $\mathcal{L}(1) = 0$. Moreover, \mathcal{L} is normal, by the preceding lemma, and so Theorem 3.29 gives that

$$\mathcal{L}(a) = \Psi(a) + G^*a + aG$$
 for all $a \in A$,

where Ψ is completely positive and normal, and $G \in A$. Taking a = 1 in this equation shows that $G^* + G = -\Psi(1)$, so $G = -\frac{1}{2}\Psi(1) + iH$ for some self adjoint $H \in A$. The result now follows by Theorem 3.31.

3.5 Quantum Markov processes

Remark 3.35. Let S be a compact Hausdorff space. If X is an S-valued random variable on the probability space $(\Omega, \mathcal{A}, \mathbb{P})$ then

$$j_X : \mathsf{A} \to \mathsf{B}; \ f \mapsto f \circ X$$

is a unital *-homomorphism, where $\mathsf{A} = C(S)$ and $\mathsf{B} = L^{\infty}(\Omega, \mathcal{A}, \mathbb{P})$.

Definition 3.36. A non-commutative random variable is a unital *-homomorphism j between unital C^* algebras.

A family $(j_t : A \to B)_{t \in \mathbb{R}_+}$ of non-commutative random variables is a *dilation* of the quantum Feller semigroup T on A if there exists a conditional expectation \mathbb{E} from B onto A such that $T_t = \mathbb{E} \circ j_t$ for all $t \in \mathbb{R}_+$.

Many authors have tackled this problem of constructing such dilations: Evans and Lewis; Davies; Accardi, Frigerio and Lewis; Vincent-Smith; Kümmerer; Sauvageot; Bhat and Parthasarathy;

Essentially, one attempts to mimic the functional-analytic proof of Theorem 2.18. Given an initial 'measure' μ , which is a state on the C^* algebra A, the sesquilinear form

$$\mathsf{A}^{\underline{\otimes}n} \times \mathsf{A}^{\underline{\otimes}n} \to \mathbb{C}; \ (a_1 \otimes \cdots \otimes a_n, b_1 \otimes \cdots \otimes b_n) \mapsto \mu \big(T_{t_1}(a_1^* \dots (T_{t_n - t_{n-1}}(a_n^* b_n)) \dots b_1) \big)$$

must be shown to be positive semidefinite, and the key to this is the complete positivity of the semigroup maps. There are many technical details to be addressed.