Ergänzung: Tensorprodukte von g-Moduln

Definition 1 [Tensorprodukt von Vektorräumen] Seien V, U Vektorräume. Ein Tensorprodukt von V und U ist ein Vektorraum W_0 und eine bilineare Abbildung $\varphi_0: V \times U \to W_0$ mit folgender universeller Eigenschaft: Zu jeder bilinearen Abbildung $\varphi: V \times U \to W$ in einen Vektorraum W gibt es eine eindeutige lineare Abbildung $\phi: W_0 \to W$ mit $\phi \circ \varphi_0 = \varphi$.

Lemma 2 [Eindeutigkeit des Tensorprodukts] Sind (W_0, φ_0) und (W'_0, φ'_0) Tensorprodukte zweier Vektorräume V und U, dann sind sie kanonisch isomorph zueinander, das heißt es gibt einen eindeutigen Isomorphismus $\phi: W_0 \to W'_0$ mit $\varphi'_0 = \phi \circ \varphi_0$.

Beweis: Wie üblich über die universelle Eigenschaft: Wegen der universellen Eigenschaft von W_0 gibt es eine eindeutige Abbildung $\phi: W_0 \to W_0'$ mit $\phi \circ \varphi_0 = \varphi_0'$. Ebenso gibt es eine eindeutige Abbildung $\psi: W_0' \to W_0$ mit $\psi \circ \varphi_0' = \varphi_0$ (univ. Eigenschaft von W_0'). Es ist nun $\varphi_0' = \varphi \circ \psi \circ \varphi_0'$ und $\varphi_0 = \psi \circ \varphi \circ \varphi_0$ und wegen der univ. Eigenschaft von W_0' bzw. W_0 folgt $\psi \circ \varphi = \mathrm{id}_{W_0}$ und $\varphi \circ \psi = \mathrm{id}_{W_0'}$ also die Behauptung.

Satz 3 [Existenz des Tensorprodukts] Für je zwei Vektorräume V und U gibt es ein Tensorprodukt von V und U.

Beweis: Betrachte den Vektorraum

 $F(V \times U) := \{ f : V \times U \to K \text{ Abbildung } | f(v, u) \neq 0 \text{ nur für endlich viele } (v, u) \in V \times U \}$

wobei die Vektorraumstruktur auf $F(V \times U)$ wie üblich für Abbildungen gegeben ist durch (f+g)(v,u) = f(v,u) + g(v,u) und $(\lambda f)(v,u) = \lambda f(v,u)$ für $\lambda \in K$. Falls Sie dies kennen: vgl. mit der Definition des freien Vektorraums über $V \times U$.

Betrachte zu $(v, u) \in V \times U$ die Abbildung $\delta_{(v,u)} \in F(V \times U)$ mit $\delta_{(v,u)}(v,u) = 1$ und 0 sonst. Man sieht sofort, dass diese Abbildungen ein Erzeugendensystem von $F(V \times U)$ bilden, wobei für alle $f \in F(V \times U)$ gilt $f = \sum_{i=1}^{n} \lambda_i \delta_{(v_i,u_i)}$ mit $\{(v_i,u_i) \mid 1 \leq i \leq n\} = \{(v,u) \in V \times U \mid f(v,u) \neq 0\}$ und $\lambda_i = f(v_i,u_i)$.

Betrachte nun den Unterraum $G \subset F(V \times U)$, der von allen $\delta_{(\lambda v + \mu w, u)} - \lambda \delta_{(v, u)} - \mu \delta_{(w, u)}$ und $\delta_{(v, \lambda u + \mu y)} - \lambda \delta_{(v, u)} - \mu \delta_{(v, y)}$ mit $\lambda, \mu \in K$, $v, w \in V$, $u, y \in U$ erzeugt wird. Dann ist die Abbildung

$$\varphi_0: V \times U \to F(V \times U)/G \qquad \varphi_0(v, u) := \delta_{(v, u)} + G$$

automatisch bilinear.

Man zeigt nun: $F(V \times U)/G$ mit φ_0 ist ein Tensorprodukt von V und U.

Sei also W ein Vektorraum und $\varphi: V \times U \to W$ eine bilineare Abbildung. Definiere nun eine lineare Abbildung $\tilde{\phi}: F(V \times U) \to W, \ \tilde{\phi}(f) := \sum_{(v,u) \in V \times U} f(v,u) \varphi(v,u)$. Beachte hierzu: nur endlich viele Summanden sind ungleich 0, da $f \in F(V \times U)$.

Es gilt offensichtlich $\phi(\delta_{(v,u)}) = \varphi(v,u)$ und da φ nach Voraussetzung bilinear ist, folgt hieraus, dass $\phi(G) = 0$ ist. Also induziert $\tilde{\phi}$ eine Abbildung $\phi : F(V \times U)/G \to W$ mit $\phi(f+G) = \tilde{\phi}(f)$ für alle $f \in F(V \times U)$. Es folgt insbesondere $\phi(\delta_{(v,u)} + G) = \tilde{\phi}(\delta_{(v,u)}) = \varphi(v,u)$. Also gilt: $\phi \circ \varphi_0 = \varphi$ und wir haben nur noch die Eindeutigkeit von ϕ zu zeigen.

Diese ergibt sich jedoch direkt aus der Tatsache, dass $\{\delta_{(v,u)} + G \mid (v,u) \in V \times U\}$ ein Erzeugendensystem von $F(V \times U)/G$ ist und ϕ als lineare Abbildung durch seine Werte auf dem Erzeugendensystem eindeutig festgelegt wird.

Notation Für ein Tensorprodukt (W_0, φ_0) zweier Vektorräume V und U schreiben wir $W_0 = V \otimes U$ und $\varphi_0(v, u) = v \otimes u$. Da das Tensorprodukt bis auf kanonische Isomorphie eindeutig bestimmt ist, spricht man auch von "dem" Tensorprodukt.

Lemma 4 [Basis] Ist $\{v_i \mid i \in I\}$ eine Basis von V, $\{u_j \mid j \in J\}$ eine Basis von U, so ist $\{v_i \otimes u_j \mid i \in I \ j \in J\}$ eine Basis von $V \otimes U$.

Beweis: Wende die Konstruktion aus dem Beweis von Satz 3 auf Tupel (v_i, u_j) von Basisvektoren an.

Bemerkung Hieraus folgt für endlich-dimensionale Vektorräume sofort: $\dim V \otimes U = \dim V \cdot \dim U$.

Definition 5 Sind V_1, \ldots, V_n Vektorräume, $n \geq 3$, so definiert man rekursiv $V_1 \otimes \cdots \otimes V_n := (V_1 \otimes \cdots \otimes V_{n-1}) \otimes V_n$.

Satz 6 Seien V_1, \ldots, V_n Modul
n der Lie-Algebra \mathfrak{g} . Dann ist $V_1 \otimes \cdots \otimes V_n$ ein \mathfrak{g} -Modul vermöge

$$x.(v_1 \otimes \cdots \otimes v_n) = (x.v_1) \otimes \cdots \otimes v_n + v_1 \otimes (x.v_2) \otimes \cdots \otimes v_n + \cdots + v_1 \otimes \cdots \otimes (x.v_n)$$

für $x \in \mathfrak{g}$.

Beweis: Man muss vor allem zeigen, dass durch diese Abbildung ein Endomorphismus von $V_1 \otimes \cdots \otimes V_n$ definiert wird. Dazu genügt es, sich zu überlegen, dass die Abbildung $(v_1, \ldots, v_n) \mapsto (x.v_1) \otimes \cdots \otimes v_n + v_1 \otimes (x.v_2) \otimes \cdots \otimes v_n + \cdots + v_1 \otimes \cdots \otimes (x.v_n)$ n-linear (also in jedem Argument linear) ist. Denn aufgrund der Konstruktion des Tensorprodukts gehört zu jeder n-linearen Abbildung $\varphi: V_1 \times \cdots \times V_n \to V_1 \otimes \cdots \otimes V_n$ eine eindeutig bestimmte lineare Abbildung $\tilde{\varphi}: V_1 \otimes \cdots \otimes V_n \to V_1 \otimes \cdots \otimes V_n$, so dass $\tilde{\varphi} \circ \varphi_0 = \varphi$ mit $\varphi_0(v_1, \ldots, v_n) = v_1 \otimes \cdots \otimes v_n$ (das zeigt man per Induktion über n). Alles weitere zeigt man durch Nachrechnen.

Bemerkung Durch (mehrfache) Tensorproduktbildung kann man also aus bereits bekannten Darstellungen einer Lie-Algebra neue Darstellungen konstruieren.

Bemerkung Seien speziell (V, ρ_V) , (U, ρ_U) zwei endlich-dimensionale einfache Darstellungen einer halbeinfachen Lie-Algebra. Bildet man das Tensorprodukt $U \otimes V$ und versieht es mit der \mathfrak{g} -Modul-Struktur aus Satz 6, so kann man die entstehende Darstellung nach dem Satz von Weyl in eine direkte Summe einfacher Darstellungen zerlegen.

Aus Physik-Vorlesungen kennen Sie eine solche Konstruktion zum Beispiel bei der Kopplung von Drehimpulsen in der Quantenmechanik. Hier betrachtet man zwei einfache endlich-dimensionale Darstellungen (über \mathbb{C}) der Drehimpulsalgebra $\mathfrak{su}(2)$, bildet ihr Tensorprodukt (dessen Elemente "ungekoppelte Zustände" heißen) und zerlegt dieses in eine direkte Summe einfacher Darstellungen. Konkret ist diese Zerlegung durch die sogenannte Clebsch-Gordan-Reihe

$$V_a \otimes V_b = \bigoplus_{k=0}^{\min(a,b)} V_{a+b-2k}$$

gegeben, wobei für V_j jeweils gilt dim $V_j = 2j + 1$. In physikalischer Notation ist das Subskript die **Drehimpulsquantenzahl**. Die Tatsache, dass die Summe auf der rechten Seite nur über Darstellungen V mit Drehimpulsquantenzahlen zwischen |a - b| und a + b läuft, bezeichnet man in der physikalischen Literatur als Dreiecksungleichung (Kopplung von Drehimpulsen).

Für einen Beweis der Clebsch-Gordan-Zerlegung siehe zum Beispiel T. Bröker und T. tom Dieck, Representations of Compact Lie Groups, Grad. Texts in Math. No. 98, Spring-Verlag, New York (1985) [für die zugehörige Lie-Gruppe].

Wählt man die in der Physik übliche Basis für eine Darstellung V_j (Notation mithilfe der magnetischen Quantenzahl m), so heißen die Koeffizienten vor den Basisvektoren auf der rechten Seite Clebsch-Gordan-Koeffizienten. Zu ihrer Berechnung (ohne Zuhilfenahme von Gruppentheorie) siehe zum Beispiel W. Nolting, Grundkurs Theoretische Physik, Band 5, Teil 2, Quantenmechanik: Methoden und Anwendungen, Springer 2003.