The standard model in NCG

Raimar Wulkenhaar

Mathematisches Institut der Westfälischen Wilhelms-Universität
Münster, Germany

Real structure

Definition

A spectral triple $(\mathcal{A}, \mathcal{H}, D)$, with \mathcal{A} not necessarily commutative, satisfies the noncommutative order-one condition if there exists an anti-unitary operator J on \mathcal{H} such that $\left[a, \mathrm{JbJ}^{-1}\right]=0$ and $\left[[D, a], \mathrm{JbJ}^{-1}\right]=0$ for all $a, b \in \mathcal{A}$.
J defines a real structure of KO-dimension $k \in \mathbb{Z} / 8$ if

$$
J^{2}=\epsilon, \quad J \mathcal{D}=\epsilon^{\prime} D J, \quad J \gamma=\epsilon^{\prime \prime} \gamma J \text { for } p \text { even }
$$

where the signs $\epsilon, \epsilon^{\prime}, \epsilon^{\prime \prime}= \pm 1$ are functions of $k \bmod 8$:

k	0	1	2	3	4	5	6	7
ε	1	1	-1	-1	-1	-1	1	1
ε^{\prime}	1	-1	1	1	1	-1	1	1
$\varepsilon^{\prime \prime}$	1		-1		1		-1	

Matrix-valued spectral triples in KO-dimension 6

We look for matrix solutions of the axioms for $(\mathcal{A}, \mathcal{H}, D, J, \gamma)$ with

$$
\begin{aligned}
J^{2} & =1, \quad J D=D J, \quad J \gamma=-\gamma J, \quad[a, J b J]=0, \quad[[D, a], J b J]=0 \\
\gamma & =\gamma^{*}, \quad \gamma^{2}=1, \quad D \gamma=-\gamma D
\end{aligned}
$$

The conditions are implemented step by step and restrict an initial matrix algebra \mathcal{A} eventually to \mathcal{A}_{F}.

Requirements

(1) \mathcal{H} has a separating vector, i.e. there is a $\xi \in \mathcal{H}$ such that $\mathcal{A} \ni a \mapsto a \xi \in \mathcal{H}$ is injective.
(2) $(\mathcal{A}, \mathcal{H}, J)$ is irreducible, i.e. there is no non-trivial $(e \neq 0,1)$ projector $e \in \mathcal{B}(\mathcal{H})$ which commutes with \mathcal{A} and J.

Lemma

(1) Let $e \neq 1$ be a projector in the centre $Z(\mathcal{A})$. Then eJeJ ${ }^{-1}=0$.
(2) Let $e_{1}, e_{2} \in Z(\mathcal{A})$ be projectors with $e_{1} e_{2}=0$. Then $e_{1} J e_{2} J^{-1}+e_{2} J e_{1} J^{-1} \in\{0,1\}$

Proposition

Let $\mathcal{A}_{\mathbb{C}}$ be the complexification of \mathcal{A}. Then one of the following cases is realised:
(1) $Z\left(\mathcal{A}_{\mathbb{C}}\right)=\mathbb{C} 1$.
(2) $Z\left(\mathcal{A}_{\mathbb{C}}\right)=\mathbb{C} e_{1} \oplus \mathbb{C} e_{2}$ and $e_{1}=J e_{2} J^{-1}$ for the minimal projectors e_{1}, e_{2}.

Proposition

Let $Z\left(\mathcal{A}_{\mathbb{C}}\right)=\mathbb{C} 1$ and γ a \mathbb{Z}_{2}-grading with $\gamma \mathcal{A} \gamma^{-1}=\mathcal{A}$. Then $\gamma J=J \gamma$.
In particular, $Z\left(\mathcal{A}_{\mathbb{C}}\right)=\mathbb{C} e_{1} \oplus \mathbb{C} e_{2}$ in KO-dimension 6 .
First steps in the proof:

- $A_{\mathbb{C}}=M_{k}(\mathbb{C})$ for some $k \in \mathbb{N}^{\times}$
- Existence of separating vector implies that \mathcal{H} contains subspace isomorphic to $A_{\mathbb{C}} \otimes J A_{\mathbb{C}} J^{-1}=M_{k^{2}}(\mathbb{C})$
- Irreducibility implies $\mathcal{H}=M_{k^{2}}(\mathbb{C}) \ni x$ with $J x=x^{*}$
$Z\left(\mathcal{A}_{\mathbb{C}}\right)=\mathbb{C} e_{1} \oplus \mathbb{C} e_{2}$
- $\mathcal{A}_{\mathbb{C}}=M_{k_{1}}(\mathbb{C}) \oplus M_{k_{2}}(\mathbb{C})$ for $k_{1}, k_{2} \in \mathbb{N}^{\times}$
- $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ with $\mathcal{H}_{i}=e_{i} \mathcal{H}$
- $e_{2}=J e_{1} J^{-1} \quad \Rightarrow \quad J \mathcal{H}_{1}=\mathcal{H}_{2}$ and $J \mathcal{H}_{2}=\mathcal{H}_{1}$
- separating vector and irreducibility:
$\mathcal{H}_{1} \simeq M\left(k_{1} \times k_{2}, \mathbb{C}\right) \ni x$ and $\mathcal{H}_{2} \simeq M\left(k_{2} \times k_{1}, \mathbb{C}\right) \ni y$ with $J(x, y)=\left(y^{*}, x^{*}\right)$
- $\operatorname{dim}\left(\mathcal{A}_{\mathbb{C}}\right)=k_{1}^{2}+k_{2}^{2}$ and $\operatorname{dim}(\mathcal{H})=2 k_{1} k_{2}$
separating vector $\Rightarrow k_{1}=k_{2}=k$.
Conclusion: $\mathcal{A}_{\mathbb{C}}=M_{k}(\mathbb{C}) \oplus M_{k}(\mathbb{C})$ and $\mathcal{H}=M_{k^{2}}(\mathbb{C}) \oplus M_{k^{2}}(\mathbb{C})$

Requirements from particle physics

(1) One block of the real algebra \mathcal{A} is quaternionic

$$
\mathcal{A}=M_{k}(\mathbb{H}) \oplus M_{2 k}(\mathbb{C})
$$

(2) The quaternionic block has a non-trivial \mathbb{Z}_{2}-grading γ_{1}

The minimal solution of these requirements is

$$
\mathcal{A}=M_{2}(\mathbb{H}) \oplus M_{4}(\mathbb{C})
$$

Up to isomorphisms, we have

$$
\begin{gathered}
J\binom{x}{y}=\binom{y^{*}}{x^{*}}, \\
\gamma=\left(\gamma_{1}, 0\right)-J\left(\gamma_{1}, 0\right) J^{-1} \in \mathcal{A} \mathcal{A}^{o p}, \quad \gamma\binom{x}{y}=\binom{\gamma_{1} x}{-y \gamma_{1}}
\end{gathered}
$$

with $\gamma_{1}=\operatorname{diag}\left(1_{2},-1_{2}\right) \in M_{2}(\mathbb{H})$.
The even part $\mathcal{A}^{e v}$ of \mathcal{A} is

$$
\mathcal{A}^{e v}=(\mathbb{H} \oplus \mathbb{H}) \oplus M_{4}(\mathbb{C})
$$

Order-one condition

We look for a D which

- satisfies the order-one condition
- connects the two blocks of the algebra, $e_{1} D e_{2} \neq 0$

We show that this is only possible if $\mathcal{A}^{e v}$ is further restricted to \mathcal{A}_{F}.

- Let $\pi_{i}(a)=e_{i} a$. The representations π_{i} are disjoint if there are no common subrepresentations.
- Let $T \in \operatorname{End}(\mathcal{H})$ with $[T, a]=0$. Then $e_{1} T e_{2} \pi_{2}(a)=\pi_{1}(a) e_{1} T e_{2}$.
- If π_{i} are disjoint, then $e_{1} T e_{2}=0=e_{2} T e_{1}$.
- Same arguments for $\left[T, \mathrm{JbJ}^{-1}\right]=0$. Disjoint π_{i} imply $e_{1} T e_{2}=0=e_{2} T e_{1}$.

Conclusion: The π_{i} are not disjoint.

Proposition

Up to isomorphisms of $\mathcal{A}^{e v}$ there is a unique involutive subalgebra $\mathcal{A}_{F} \subset \mathcal{A}^{e v}$ of maximal dimension which under the order-one condition permits a connecting D. This solution is the matrix algebra of the standard model

$$
\begin{aligned}
\mathcal{A}_{F} & =\mathbb{H} \oplus \mathbb{C} \oplus M_{3}(\mathbb{C}) \subset M_{2}(\mathbb{H}) \oplus M_{4}(\mathbb{C}) \\
& \ni\left(\begin{array}{cccc}
\lambda & 0 & 0 & 0 \\
0 & \bar{\lambda} & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -\bar{\beta} & \bar{\alpha}
\end{array}\right) \oplus\left(\begin{array}{cccc}
\lambda & 0 & 0 & 0 \\
0 & m_{11} & m_{12} & m_{13} \\
0 & m_{21} & m_{22} & m_{23} \\
0 & m_{31} & m_{32} & m_{33}
\end{array}\right)
\end{aligned}
$$

The Hilbert space is $M_{4}(\mathbb{C}) \oplus M_{4}(\mathbb{C}) \in\binom{x}{y}$. We have

$$
J\binom{x}{y}=\binom{y^{*}}{x^{*}}, \quad \gamma\binom{x}{y}=\binom{\gamma_{1} x}{-y \gamma_{1}}
$$

The Hilbert space is $M_{4}(\mathbb{C}) \oplus M_{4}(\mathbb{C})$. Its elements are parametrised by elementary fermions:

$$
\mathcal{H} \ni\left(\begin{array}{c|ccc}
\nu_{R} & u_{R r} & u_{R b} & u_{R g} \\
e_{R} & d_{R r} & d_{R b} & d_{R g} \\
\hline \nu_{L} & u_{L r} & u_{L b} & u_{L g} \\
e_{L} & d_{L r} & d_{L b} & d_{L g} \\
\hline \hline \frac{\nu_{R}^{C}}{} & e_{R}^{c} & \nu_{L}^{C} & e_{L}^{C} \\
\hline u_{R r}^{C} & d_{R r}^{C} & \frac{u_{L r}^{C}}{c} & d_{L r}^{C} \\
u_{R b}^{c} & d_{R b}^{c} & u_{L b}^{c} & d_{L b}^{c} \\
u_{R g}^{c} & d_{R g}^{c} & u_{L g}^{c} & d_{L g}^{c}
\end{array}\right)
$$

We now look for the complete D (not only $e_{1} D e_{2}$) which is even and satisfies order-one.

Lepton/quark decomposition

We want to represent D as a matrix acting on \mathcal{H}_{F} :
$\mathcal{H}_{F}=\mathcal{H}_{1} \oplus \mathcal{H}_{3}, \quad \mathcal{H}_{1} \simeq \mathbb{C}^{8} \ni\left(\begin{array}{c}\ell_{R} \\ \ell_{L} \\ \ell_{R}^{c} \\ \ell_{L}^{c}\end{array}\right), \quad \mathcal{H}_{3} \simeq \mathbb{C}^{24} \ni\left(\begin{array}{c}\boldsymbol{q}_{R} \\ \boldsymbol{q}_{L} \\ \boldsymbol{q}_{R}^{c} \\ \boldsymbol{q}_{L}^{c}\end{array}\right)$
with leptons $\nu, \boldsymbol{e} \in \mathbb{C}$

$$
\ell_{R}=\binom{\nu_{R}}{e_{R}}, \ell_{L}=\binom{\nu_{L}}{e_{L}}, \ell_{R}^{c}=\left(\begin{array}{c}
\nu_{R}^{c} \\
e_{R}^{c} \\
e^{c}
\end{array}\right), \ell_{L}^{c}=\binom{\nu_{L}^{c}}{e_{L}^{c}}
$$

and quarks $\boldsymbol{u}, \boldsymbol{d} \in \mathbb{C}^{3}$

$$
\boldsymbol{q}_{R}=\binom{\boldsymbol{u}_{R}}{\boldsymbol{d}_{R}}, \boldsymbol{q}_{L}=\binom{\boldsymbol{u}_{L}}{\boldsymbol{d}_{L}}, \boldsymbol{q}_{R}^{c}=\binom{\boldsymbol{u}_{R}^{c}}{\boldsymbol{d}_{R}^{c}}, \boldsymbol{q}_{L}^{c}=\binom{\boldsymbol{u}_{L}^{c}}{\boldsymbol{d}_{L}^{c}} .
$$

Write operators on \mathcal{H}_{F} as $T_{F}=\left(\begin{array}{ll}T_{11} & T_{13} \\ T_{31} & T_{33}\end{array}\right)$ with $T_{11} \in M_{8}(\mathbb{C})$ and $T_{33} \in M_{24}(\mathbb{C})$.

- $\mathcal{A}_{F}, J_{F}, \gamma_{F}$ diagonal (no 13,31-blocks)
- $D_{13}=0$ and $D_{31}=0$ from order-one and $D_{F} \gamma_{F}=-\gamma_{F} D_{F}$
diagonal parts of \mathcal{A}_{F} :

$$
\begin{aligned}
& (q, \lambda, m)_{11}=\left(\begin{array}{cccc}
q_{\lambda} & 0 & 0 & 0 \\
0 & q & 0 & 0 \\
0 & 0 & \lambda 1_{2} & 0 \\
0 & 0 & 0 & \lambda 1_{2}
\end{array}\right), \quad q_{\lambda}=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \bar{\lambda}
\end{array}\right) \\
& (q, \lambda, m)_{33}=\left(\begin{array}{cccc}
q_{\lambda} \otimes 1_{3} & 0 & 0 & 0 \\
0 & q \otimes 1_{3} & 0 & 0 \\
0 & 0 & 1_{2} \otimes m & 0 \\
0 & 0 & 0 & 1_{2} \otimes m
\end{array}\right),
\end{aligned}
$$

with $q \in \mathbb{H}, \lambda \in \mathbb{C}, m \in M_{3}(\mathbb{C})$
diagonal part of J_{F} :

$$
\begin{aligned}
J_{11} & =\left(\begin{array}{cccc}
0 & 0 & 1_{2} & 0 \\
0 & 0 & 0 & 1_{2} \\
1_{2} & 0 & 0 & 0 \\
0 & 1_{2} & 0 & 0
\end{array}\right) \circ C C \\
J_{33} & =\left(\begin{array}{cccc}
0 & 0 & 1_{2} \otimes 1_{3} & 0 \\
0 & 0 & 0 & 1_{2} \otimes 1_{3} \\
12 \otimes 1_{3} & 0 & 0 & 0 \\
0 & 1_{2} \otimes 1_{3} & 0 & 0
\end{array}\right) \circ C C
\end{aligned}
$$

where $C C$ means complex conjugation
diagonal part of γ_{F} :

$$
\begin{aligned}
\gamma_{11} & =\left(\begin{array}{cccc}
1_{2} & 0 & 0 & 0 \\
0 & -1_{2} & 0 & 0 \\
0 & 0 & -1_{2} & 0 \\
0 & 0 & 0 & 1_{2}
\end{array}\right), \\
\gamma_{33} & =\left(\begin{array}{cccc}
1_{2} \otimes 1_{3} & 0 & 0 & 0 \\
0 & -1_{2} \otimes 1_{3} & 0 & 0 \\
0 & 0 & -1_{2} \otimes 1_{3} & 0 \\
0 & 0 & 0 & 1_{2} \otimes 1_{3}
\end{array}\right) .
\end{aligned}
$$

$\gamma_{F}^{2}=1, \gamma_{F}=\gamma_{F}^{*}, J_{F}^{2}=1$ and $\gamma_{F} J_{F}=-J_{F} \gamma_{F}$ satisfied

Diagonal part of D_{F}; from $\left\{D_{F}, \gamma_{F}\right\}=0,\left[D_{F}, J_{F}\right]=0$ and connecting part:
$D_{11}=\left(\begin{array}{cc|cc}0 & Y_{1} & T & 0 \\ Y_{1}^{*} & 0 & 0 & 0 \\ \hline T^{*} & 0 & 0 & \overline{Y_{1}} \\ 0 & 0 & Y_{1}^{t} & 0\end{array}\right), \quad D_{33}=\left(\begin{array}{cc|cc}0 & \boldsymbol{Y}_{3} & 0 & 0 \\ \boldsymbol{Y}_{3}^{*} & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & \overline{\boldsymbol{Y}_{3}} \\ 0 & 0 & \boldsymbol{Y}_{3}^{t} & 0\end{array}\right)$,
with $Y_{1} \in M_{2}(\mathbb{C}), \boldsymbol{Y}_{3} \in M_{2}(\mathbb{C}) \otimes M_{3}(\mathbb{C})$ and
$T=T^{t}=\left(\begin{array}{cc}Y_{R} & 0 \\ 0 & 0\end{array}\right)$ with $Y_{R} \in \mathbb{C}$

- order-one: $\boldsymbol{Y}_{3}=Y_{3} \otimes 1_{3}$ with $Y_{3} \in M_{2}(\mathbb{C})$
- Physical condition: D_{F} commutes with representation of \mathbb{C} in \mathcal{A}_{F}, i.e. with $\left(q_{\lambda}, \lambda, 0\right)$
- leads to $Y_{1}=\left(\begin{array}{cc}Y_{\nu} & 0 \\ 0 & Y_{e}\end{array}\right), \quad Y_{3}=\left(\begin{array}{cc}Y_{u} & 0 \\ 0 & Y_{d}\end{array}\right)$

Cabibbo-Kobayashi-Maskawa matrices

- Standard model needs 3 copies of \mathcal{H}_{F}.
- leptons $\nu, e \in \mathbb{C}^{3}$, quarks $\boldsymbol{u}, \boldsymbol{d} \in \mathbb{C}^{3} \otimes \mathbb{C}^{3}$
- $Y_{\nu, e, u, d, R} \in M_{3}(\mathbb{C})$ in D

We say that D_{F}, D_{F}^{\prime} are equivalent if $D_{F}^{\prime}=U D_{F} U^{*}$ for a unitary matrix U which commutes with $\mathcal{A}_{F}, J_{F}, \gamma_{F}$.

$$
\begin{aligned}
& U_{11}=\left(\begin{array}{cccc}
\operatorname{diag}\left(V_{1}, V_{2}\right) & 0 & 0 & 0 \\
0 & \operatorname{diag}\left(V_{3}, V_{3}\right) & 0 & 0 \\
0 & 0 & \operatorname{diag}\left(\overline{V_{1}}, \overline{V_{2}}\right) & 0 \\
0 & 0 & 0 & \operatorname{diag}\left(\overline{V_{3}}, \overline{V_{3}}\right)
\end{array}\right) \\
& U_{33}=\left(\begin{array}{cccc}
\operatorname{diag}\left(W_{1}, W_{2}\right) \otimes 1_{3} & 0 & 0 & 0 \\
0 & \operatorname{diag}\left(W_{3}, W_{3}\right) \otimes 1_{3} & 0 & 0 \\
0 & 0 & \operatorname{diag}\left(\overline{W_{1}}, \overline{W_{2}}\right) \otimes 1_{3} & 0 \\
0 & 0 & 0 & \operatorname{diag}\left(\overline{W_{3}}, \overline{W_{3}}\right) \otimes 1_{3}
\end{array}\right)
\end{aligned}
$$

with $V_{i}, W_{i} \in U(3)$

Product of spectral triples

$$
\begin{array}{rlrl}
\mathcal{A} & =\mathcal{A}_{M} \otimes \mathcal{A}_{F}, & \mathcal{H}=\mathcal{H}_{M} \otimes \mathcal{H}_{F}, \quad D=D_{M} \otimes 1_{F}+\gamma_{M} \otimes D_{F}, \\
J & =J_{M} \otimes J_{F}, & \gamma=\gamma_{M} \otimes \gamma_{F} &
\end{array}
$$

with

- $\mathcal{A}_{M}=C^{\infty}(M), \mathcal{H}_{M}=L^{2}(M, \mathcal{S}), \gamma_{M}=\gamma^{5}, J_{M}=\gamma^{2} \circ C C$ and

$$
D_{M}=\mathrm{i} e_{a}^{\mu} \gamma^{a} \nabla_{\mu}^{s}, \quad \nabla_{\mu}^{S}=\partial_{\mu}+\frac{1}{8} \omega_{\mu}^{a b}\left[\gamma_{a}, \gamma_{b}\right]
$$

- e_{μ}^{a} vierbein, $\omega_{\mu}^{a b}$ spin connection form:

$$
\delta_{a b} e_{\mu}^{a} e_{\nu}^{b}=g_{\mu \nu}, \quad \partial_{\mu} e_{a}^{\nu}-\Gamma_{\mu \rho}^{\nu} e_{a}^{\rho}+\omega_{\mu}^{a b} e_{b}^{\nu}=0
$$

- Lichnerowicz formula

$$
D_{M}^{2}=\Delta^{L C}+\frac{1}{4} R, \quad \Delta^{L C}=-g^{\mu \nu}\left(\partial_{\mu} \partial_{\nu}-\Gamma_{\mu \nu}^{\rho} \partial_{\rho}\right), \quad R=g^{\mu \nu} R_{\mu \nu}
$$

Fluctuations

- replace D by fluctuated operator $D_{A}=D+A+J A J^{-1}$, where $A=A^{*}=\sum_{\alpha} a_{\alpha}\left[D, b_{\alpha}\right]$
- D_{A} satisfies the same axioms as D
- $D_{M} \otimes 1$ generates 1 -forms $G=e_{a}^{\mu} \gamma^{a} G_{\mu}$ with

$$
G_{\mu}=\sum_{\alpha} a_{\alpha} \partial_{\mu}\left(b_{\alpha}\right) \in \mathcal{A}
$$

- $\gamma_{M} \otimes D_{F}$ generates 1-forms $\gamma^{5} \Phi=\gamma^{5} \sum_{\alpha} a_{\alpha}\left[D_{F}, b_{\alpha}\right]$
$\Phi_{11}=\left(\begin{array}{cc|cc}0 & \Phi_{\ell} & 0 & 0 \\ \Phi_{\ell}^{*} & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right), \quad \quad \Phi_{\ell}=\left(\begin{array}{cc}M_{\nu} C_{\ell} \phi_{1} & M_{\nu} C_{\ell} \phi_{2} \\ -M_{e} \frac{\phi_{2}}{} & M_{e} \frac{\phi_{1}}{}\end{array}\right)$
$\Phi_{33}=\left(\begin{array}{cc|cc}0 & \Phi_{q} \otimes 1_{3} & 0 & 0 \\ \Phi_{q} \otimes 1_{3} & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \quad, \quad \Phi_{q}=\left(\begin{array}{cc}M_{u} C_{q} \phi_{1} & M_{u} C_{q} \phi_{2} \\ -M_{d} \frac{\phi_{2}}{\phi_{2}} & M_{d} \frac{\phi_{1}}{}\end{array}\right)$
lepton part of D_{A} is:
$D_{A, 11}=\left(\begin{array}{cc|cc}\mathrm{i} \gamma^{a} e_{a}^{\mu} \nabla_{\mu}^{S, B} & \gamma_{5} \Phi_{\ell} & T & 0 \\ \gamma_{5} \Phi_{\ell}^{*} & \mathrm{i} \gamma^{a} e_{a}^{\mu} \nabla_{\mu}^{S, B, W} & 0 & 0 \\ \hline T^{*} & 0 & \mathrm{i} \gamma^{2} e_{a}^{\mu} \nabla_{\mu, B}^{S, B} & \gamma_{5} \overline{\Phi_{\ell}} \\ 0 & 0 & \gamma_{5} \Phi_{\ell}^{t} & \mathrm{i} \gamma^{a} e_{a}^{\mu} \nabla_{\mu}^{S, B, W}\end{array}\right)$
with

$$
\begin{aligned}
\nabla_{\mu}^{S, B} & =\left(\begin{array}{cc}
\nabla_{\mu}^{S} & 0 \\
0 & \nabla_{\mu}^{S}-2 \mathrm{i} B_{\mu}
\end{array}\right) 1_{Y}, \\
\nabla_{\mu}^{S, B, W} & =\left(\begin{array}{cc}
\nabla_{\mu}^{S}+\mathrm{i}\left(-B_{\mu}-W_{\mu}^{3}\right) & -\mathrm{i}\left(W_{\mu}^{1}-\mathrm{i} W_{\mu}^{2}\right) \\
-\mathrm{i}\left(W_{\mu}^{1}+\mathrm{i} W_{\mu}^{2}\right) & \nabla_{\mu}^{S}+\mathrm{i}\left(-B_{\mu}+W_{\mu}^{3}\right)
\end{array}\right) 1_{3}
\end{aligned}
$$

$B_{\mu}, W_{\mu}^{a} \in C^{\infty}(X)$ real-valued
quark part of D_{A} is
$D_{A, 33}=\left(\begin{array}{cc|cc}\mathrm{i} \gamma^{a} e_{a}^{\mu} \nabla^{S, B, G} & \gamma_{5} \Phi_{q} & 0 & 0 \\ \gamma_{5} \Phi_{G}^{*} & \mathrm{i} \gamma^{a} e_{a}^{\mu} \nabla_{\mu}^{S, W, G} & 0 & 0 \\ \hline 0 & 0 & \mathrm{i} \gamma^{2} e_{a}^{\mu} \nabla_{\mu}^{S, B, G} & \gamma_{5} \overline{\Phi_{q}} \\ 0 & 0 & \gamma_{5} \Phi_{G}^{t} & \mathrm{i} \gamma^{a} e_{a}^{\mu} \nabla_{\mu}^{S, W, G}\end{array}\right)$
with
$\nabla_{\mu}^{S, B, G}=\left(\begin{array}{cc}\nabla_{\mu}^{S} 1_{3}+\mathrm{i}\left(\left(-G_{\mu}^{0}+B_{\mu}\right) 1_{3}-G_{\mu}\right) & 0 \\ 0 & \nabla_{\mu}^{S} 1_{3}+\mathrm{i}\left(-\left(G_{\mu}^{0}+B_{\mu}\right) 1_{3}-G_{\mu}\right)\end{array}\right) 1_{3}$
$\nabla_{\mu}^{S, W, G}=\left(\begin{array}{lr}\nabla_{\mu}^{S} 1_{3}+\mathrm{i}\left(\left(-G_{\mu}^{0}-W_{\mu}^{3}\right) 1_{3}+G_{\mu}\right) & -\mathrm{i}\left(W_{\mu}^{1}-\mathrm{i} W_{\mu}^{2}\right) 1_{3} \\ -\mathrm{i}\left(W_{\mu}^{1}+\mathrm{i} W_{\mu}^{2}\right) 1_{3} & \nabla_{\mu}^{S_{1} 1_{3}+\mathrm{i}\left(\left(-G_{\mu}^{0}+W_{\mu}^{3}\right)+G_{\mu}\right)}\end{array}\right) 1_{3}$
$G_{\mu}^{0} \in C^{\infty}(X)$ real $G_{\mu} \in M_{3}\left(C^{\infty}(X)\right)$ hermitian and traceless
Unimodularity condition $\operatorname{tr}(A)=0 \quad \Rightarrow \quad G_{\mu}^{0}=-\frac{1}{3} B_{\mu}$

The action functional

Fermionic action functional

$$
S_{F}=\left\langle J \psi, D_{A} \psi\right\rangle
$$

where $\psi=\gamma \psi \in \mathcal{H}^{+}$are Grassmann-valued

Spectral action principle [Chanseddine-Connes]

The bosonic action is a functional only of the spectrum of D_{A}^{2}.
functional calculus and Laplace transformation

$$
S_{A}=\operatorname{Tr}\left(\chi\left(D_{A}^{2}\right)\right)=\int_{0}^{\infty} d t \hat{\chi}(t) \operatorname{Tr}\left(e^{-t D_{A}^{2}}\right),
$$

with $\chi(s)=\int_{0}^{\infty} d t e^{-s t} \hat{\chi}(t)$

Proposition (heat kernel expansion)

Let F be a vector bundle over (M, g). A second-order differential operator $P=-\left(g^{\mu \nu} \partial_{\mu} \partial_{\nu}+A^{\rho} \partial_{\rho}+B\right)$ (locally), where $A^{\mu}, B \in \operatorname{End}(\mathcal{F})$, has an asymptotic expansion

$$
\operatorname{Tr}\left(e^{-t P}\right) \sim \sum_{k=0}^{\infty} t^{\frac{k-p}{2}} \int_{M} d x a_{k}(x, P)
$$

where $a_{k}(x, P)$ are the Seeley-de Witt coefficients.
inversion of Laplace transformation

$$
\begin{aligned}
S_{A} & \sim \sum_{k=0}^{\infty} \chi_{\frac{k-p}{2}} \int_{M} d x a_{k}\left(x, D_{A}^{2}\right), \\
\chi_{z} & =\int_{0}^{\infty} d t t^{z} \hat{\chi}(t)=\left\{\begin{array}{cl}
\frac{1}{\Gamma(-z)} \int_{0}^{\infty} d s s^{-z-1} \chi(s) & \text { für } z \notin \mathbb{N} \\
(-1)^{k} \chi^{(k)}(0) & \text { für } z=k \in \mathbb{N}
\end{array}\right.
\end{aligned}
$$

The Seeley-de Witt coefficients are given in the book of Gilkey, but expressed in terms of $P=\Delta^{F}-\mathcal{E}$, where Δ^{F} is the connection Laplacian for $\nabla f=d x^{\mu} \otimes\left(\partial_{\mu} f+\omega_{\mu} f\right)$. One finds

$$
\begin{aligned}
P=\Delta^{F}-\mathcal{E} \quad \Leftrightarrow \quad \omega_{\mu} & =\frac{1}{2} g_{\mu \nu}\left(A^{\nu}+g^{\rho \sigma} \Gamma_{\rho \sigma}^{\nu}\right) \\
\mathcal{E} & =B-g^{\mu \nu}\left(\omega_{\mu} \omega_{\nu}+\partial_{\mu} \omega_{\nu}-\Gamma_{\mu \nu}^{\rho} \omega_{\rho}\right)
\end{aligned}
$$

The first coefficients are

$$
\begin{aligned}
& a_{0}(x, P)=(4 \pi)^{-\frac{p}{2}} \operatorname{tr}(\mathrm{id}), \\
& a_{2}(x, P)=\frac{1}{6}(4 \pi)^{-\frac{p}{2}} \operatorname{tr}(-R \mathrm{Rid}+6 \mathcal{E}), \\
& a_{4}(x, P)=\frac{(4 \pi)^{-\frac{p}{2}}}{360} \operatorname{tr}\left(\left(5 R^{2}-2 R_{\mu \nu} R^{\mu \nu}+2 R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-12 \Delta^{L C}(R)\right) \mathrm{id}\right. \\
&\left.+60 \Delta^{F}(\mathcal{E})-60 R \mathcal{E}+180 \mathcal{E}^{2}+30 \Omega_{\mu \nu} \Omega^{\mu \nu}\right)
\end{aligned}
$$

where $\Omega_{\mu \nu}=\partial_{\mu} \omega_{\nu}-\partial_{\nu} \omega_{\mu}+\omega_{\mu} \omega_{\nu}-\omega_{\nu} \omega_{\mu}$

Spectral action

$$
\begin{aligned}
S_{A} & =\frac{1}{\pi^{2}}\left(48 \chi_{-2}-c \chi_{-1}+d \chi_{0}\right) \int d^{4} x \sqrt{\operatorname{det} g} \\
& +\frac{1}{24 \pi^{2}}\left(96 \chi_{-1}-c \chi_{0}\right) \int d^{4} x \sqrt{\operatorname{det} g} R \\
& +\frac{\chi_{0}}{10 \pi^{2}} \int d^{4} x \sqrt{\operatorname{det} g}\left(\frac{11}{6} R^{*} R^{*}-3 C_{\mu \nu \rho \sigma} C^{\mu \nu \rho \sigma}\right) \\
& +\frac{1}{\pi^{2}}\left(-2 a \chi_{-1}+e \chi_{0}\right) \int d^{4} x \sqrt{\operatorname{det} g}|\phi|^{2} \\
& +\frac{\chi_{0}}{2 \pi^{2}} \int d^{4} x \sqrt{\operatorname{det} g} a\left(\left|D_{\mu} \phi\right|^{2}-\frac{1}{6} R|\phi|^{2}\right) \\
& +\frac{2 \chi_{0}}{\pi^{2}} \int d^{4} x \sqrt{\operatorname{det} g}\left(\frac{1}{2} \operatorname{tr}_{3}\left(G_{\mu \nu} G^{\mu \nu}\right)+\frac{1}{2} \operatorname{tr}_{2}\left(W_{\mu \nu} W^{\mu \nu}\right)+\frac{5}{3} B_{\mu \nu} B^{\mu \nu}\right) \\
& +\frac{\chi_{0}}{2 \pi^{2}} \int d^{4} x \sqrt{\operatorname{det} g}|\phi|^{4}
\end{aligned}
$$

with

$$
\begin{aligned}
& \qquad G_{\mu \nu}=\partial_{\mu} G_{\nu}-\partial_{\nu} G_{\mu}-\mathrm{i}\left(G_{\mu} G_{\nu}-G_{\nu} G_{\mu}\right) \in M_{3}\left(C^{\infty}(M)\right) \\
& \quad W_{\mu \nu}=\partial_{\mu} W_{\nu}-\partial_{\nu} W_{\mu}-\mathrm{i}\left(W_{\mu} W_{\nu}-W_{\nu} W_{\mu}\right) \in M_{2}\left(C^{\infty}(M)\right), \\
& \quad B_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu} \in C^{\infty}(M) \\
& |\phi|^{2}:=\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}, \\
& \binom{D_{\mu} \phi_{1}}{D_{\mu} \phi_{2}}=\binom{\partial_{\mu} \phi_{1}}{\partial_{\mu} \phi_{2}}+\mathrm{i}\left(\begin{array}{cc}
W_{\mu}^{3}-B_{\mu} & W_{\mu}^{1}-\mathrm{i} W_{\mu}^{2} \\
W_{\mu}^{1}-\mathrm{i} W_{\mu}^{2} & -W_{\mu}^{3}-B_{\mu}
\end{array}\right)\binom{\phi_{1}}{\phi_{2}} \\
& \text { and } \\
& a=\operatorname{tr}\left(Y_{\nu}^{*} Y_{\nu}+Y_{e}^{*} Y_{e}+3 Y_{u}^{*} Y_{u}+Y_{d}^{*} Y_{d}\right), \\
& b=\operatorname{tr}\left(\left(Y_{\nu}^{*} Y_{\nu}\right)^{2}+\left(Y_{e}^{*} Y_{e}\right)^{2}+3\left(Y_{u}^{*} Y_{u}\right)^{2}+\left(Y_{d}^{*} Y_{d}\right)^{2}\right), \\
& c=\operatorname{tr}\left(Y_{R}^{*} Y_{R}\right), \quad d=4 \operatorname{tr}\left(\left(Y_{R}^{*} Y_{R}\right)^{2}\right), \quad e=\operatorname{tr}\left(\left(Y_{R}^{*} Y_{R}\right)\left(Y_{\nu}^{*} Y_{\nu}\right)\right) .
\end{aligned}
$$

