
HEAT TRACE EXPANSIONS AND WEYL’S LAW ON THE
ASYMPTOTICS OF EIGENVALUES

NOTES FOR THE SUMMER SCHOOL
‘SPECTRAL GEOMETRY’

GÖTTINGEN, SEPTEMBER 9-12,2014
ELMAR SCHROHE

Abstract. We construct the generalized ‘heat operator’ exp(−tP ) and the
complex powers P s, s ∈ C, associated with certain elliptic pseudodifferential
operators P on a closed n-dimensional manifold X.

We show that P s is a pseudodifferential operator of order µRe s, where µ is
the order of P . The trace Tr(P s) exists whenever Re s is sufficiently negative.
It defines a holomorphic function on a half plane in C which then extends
meromorphically to all of C with at most simple poles. In a similar vein we
prove that exp(−tP ) is a trace class operator and that Tr(exp(−tP )) has an
asymptotic expansion in powers of t and log-terms as t → 0+. From this we
derive Weyl’s law on the asymptotics of the eigenvalues of P .
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Introduction

In his famous article ‘Can one hear the shape of a drum’ [12] Mark Kac introduced
the following problem.

Consider a two-dimensional membrane, represented by a bounded domain in the
plane with sufficiently smooth boundary. If the membrane is fixed at the bound-
ary and set in motion by a drumstick, then its displacement U in the direction
perpendicular to the plane will satisfy the wave equation

∂2
tU − c2∆U = 0, U |∂Ω = 0.

Here c is a constant depending on the material. Without loss of generality let c = 1.
One is particularly interested in time harmonic solutions (‘standing waves’) of the
form

U(t, x) = u(x)eiωt

for some function u on Ω and some ω ∈ R. They represent the pure tones the
membrane is capable of producing.

Substituting U in the wave equation, we find that u satisfies the equation

ω2u+ ∆u = 0, u|∂Ω = 0.

In other words: λ = −ω2 is an eigenvalue of the Dirichlet problem and u an
eigenfunction. We know (or otherwise will see a corresponding statement later in
these talks) that the eigenvalues of the Dirichlet problem form a sequence 0 > λ1 ≥
λ2 ≥ λ3 . . . going to −∞.

The question Mark Kac asked is whether it is possible to determine Ω from the
sequence of eigenvalues (λk) including multiplicities, i.e. to ‘hear the shape of the
drum’.

We know today, that this is not possible, at least if we admit domains bounded
by piecewise smooth curves, see the article by Gordon, Webb and Wolpert [4]. It is,
however, possible, to extract a lot of information about Ω from the sequence (λk).
One of the basic results is that the sequence of eigenvalues of the Dirichlet problem
determines the volume of Ω. This is not limited to two dimensions but works for
domains in Rn.

Mark Kac traces the problem of ‘hearing the shape of a drum’ back to a question
posed by the Dutch physicist H.A. Lorentz on the occasion of a lecture series which
took place here in Göttingen. Let me quote Kac:

Lorentz gave five lectures under the overall title “Alte und neue
Fragen der Physik” – Old and new problems of physics – and at
the end of the fourth lecture he spoke as follows (in free translation
from the original German): “In conclusion, there is a mathematical
problem which perhaps will arouse the interest of mathematicians
who are present. It originates in the radiation theory of Jeans.

“In an enclosure with a perfectly reflecting surface there can form
standing electromagnetic waves analogous to the tones of an organ
pipe; we shall confine our attention to very high overtones. Jeans
asks for the energy in the frequency interval dν. To this end he
calculates the number of overtones which lie between the frequen-
cies ν and ν + dν and multiplies this number by the energy which
belongs to the frequency ν and which, according to a theorem of
statistical mechanics, is the same for all frequencies.

“It is here that arises the mathematical problem to prove that
the number of sufficiently high overtones which lies between ν and
ν + dν is independent of the shape of the enclosure and is sim-
ply proportional to its volume. For many simple shapes for which
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calculations can be carried out, this theorem has been verified in
a Leiden dissertation. There is no doubt that it holds in general
even for multiply connected regions. Similar theorems for other
vibrating structures like membranes, air masses, etc. should also
hold.”

If one expresses this conjecture of Lorentz in terms of our mem-
brane, it emerges in the form1

N(λ) =
∑
λk<λ

1 ∼ vol Ω

2π
λ.

Here N(λ) is the number of eigenvalues less than λ, vol Ω the area
of Ω and ‘∼’ means that

lim
λ→∞

N(λ)

λ
=

vol Ω

2π
.

The function N(λ) is known as the ‘counting function’ for the eigenvalues. Accord-
ing to Kac, Hermann Weyl got interested in the question and solved the problem
[23]. In these notes, we will consider more generally certain elliptic pseudodiffer-
ential operators P of order µ on closed manifolds and show that their counting
functions satisfy a corresponding law.

Using pseudodifferential techniques, will first construct parameter-dependent re-
solvents of these operators. In a second step, we will study the complex powers and
then analyze the behavior of TrP s. A similar analysis can be applied to define the
generalized ‘heat’ operator e−tP and to study its trace. Under suitable assumptions
on P we shall show for the complex powers:

Theorem 0.1. P s is a pseudodifferential operator of order µRe s. It is of trace
class if Re s < −n/µ. For these values of s, the zeta function ζP (s) = TrP s defines
a holomorphic function.

Moreover ζP extends to a meromorphic function on C with at most simple poles
in the points sj = (j−n)/µ. The residue in sj is explicitly computable. The residue
in s = 0 vanishes, hence 0 is a regular point. If P is a differential operator, then
the residues vanish whenever sj is an integer.

For the heat operator we find:

Theorem 0.2. The operator e−tP , t > 0, is a regularizing pseudodifferential op-
erator and therefore of trace class. The trace Tr e−tP has an asymptotic expansion
as t→ 0+ of the form

Tr e−tP ∼
∑

j∈N0,j−n/∈N

cjt
(j−n)/µ +

∑
j∈N0,j−n∈N

c′jt
(j−n)/µ ln t+

∑
k∈N

c′′j t
k.

If P is additionally assumed to be self-adjoint and positive, Weyl’s law then
follows from a Tauberian theorem. We have

Theorem 0.3. N(t) ∼ cpµt
n/µ with a coefficient explicitly computable from the

principal symbol pµ of P .

These results are not new; the crucial techniques were developed by Seeley [20]
and refined in the 80’s. In the text and in the notes at the end of the sections I will
give references to more modern developments.

1Note that Kac works here with 1
2

∆
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1. Pseudodifferential Operators

Pseudodifferential operators are an indispensable tool in modern analysis. Un-
derstanding the basics of this theory is worthwhile in many respects; I therefore
include a short presentation. Pseudodifferential operators originated from the study
of singular integral equations. Probably the first paper, where a complete calculus
was developed, is Kohn and Nirenberg’s [13]. Good sources to read more are the
books by Hörmander [10], Kumano-go [14], Shubin [18], and Taylor [21].

1.1. Symbols. An important notion in connection with pseudodifferential opera-
tors is the function Rn 3 x 7→ 〈x〉 = (1 + |x|2)1/2 ∈ R+.

Definition 1.1. (a) Symbol classes. We let Sµ = Sµ(Rn × Rn) denote the
space of all smooth functions p = p(x, ξ) on Rn×Rn satisfying the estimates

|Dα
ξD

β
xp(x, ξ)| ≤ Cαβ〈ξ〉µ−|α|.

We call these elements symbols of order µ. The estimates furnish a Fréchet
topology for Sµ.

We write S−∞ =
⋂
µ S

µ. Elements in this space are often referred to as
regularizing or smoothing.

(b) Asymptotic expansion. A symbol p ∈ Sµ has the asymptotic expansion
p ∼

∑∞
j=0 pµ−j with symbols pµ−j ∈ Sµ−j if, for each N , we have

p−
N∑
j=0

pµ−j ∈ Sµ−N

(c) Classical symbols. The symbol p is classical, if it has an expansion p ∼∑
pµ−j with pµ−j ∈ Sµ−j being positively homogeneous of degree µ − j in

ξ for all |ξ| ≥ 1, i.e.

pµ−j(x, tξ) = tµ−jp(x, ξ), x ∈ Rn, ξ ∈ Rn, |ξ| ≥ 1, t ≥ 1.

(d) Ellipticity. The symbol p ∈ Sµ is elliptic of order µ, if there exists an R ≥ 0
such that p(x, ξ) is invertible for all (x, ξ) with |ξ| ≥ R, and

|p(x, ξ)−1| ≤ c〈ξ〉−µ.
For a classical symbol, this condition simplifies to the requirement that
pµ(x, ξ) is invertible for x ∈ Rn, |ξ| = 1.

Theorem 1.2. Given a sequence (pj)
∞
j=0 with pj ∈ Sµ−j, there exists a symbol

p ∈ Sµ such that p ∼
∑
pj.

Remark 1.3. The function p in Definition 1.1 need not be scalar, it could take
values in matrices of arbitrary size; this is actually important in order to accom-
modate the case of systems of operators or operators acting on sections of vector
bundles over a manifold. Of course, a symbol can only be elliptic, if it takes values
in square matrices.

1.2. Sobolev spaces. We denote by S = S (Rn) the space of rapidly decreas-
ing functions on Rn and by S ′ = S ′(Rn) its dual space, the space of tempered
distributions.

Definition 1.4. The Fourier transform of u ∈ S is the function Fu or û on Rn
defined by

Fu(ξ) = û(ξ) =

∫
eixξu(x) d̄x

with d̄x = (2π)−n/2dx.
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Definition 1.5. By Hs(Rn) we denote the L2-based Sobolev space on Rn. It is
the space of all tempered distribution u for which the Fourier transform Fu is a
regular function and 〈ξ〉sFu ∈ L2. We endow it with the norm

‖u‖2Hs =

∫
〈ξ〉2s|Fu|2(ξ) d̄ξ.

Example 1.6. For y ∈ Rn the delta distribution δy : S 3 ϕ 7→ ϕ(y) ∈ C is an
element of Hs(Rn) whenever s < −n/2, since its Fourier transform is the constant
function (2π)−n/2e−iyξ.

Theorem 1.7. (Sobolev embedding theorem) Let s > n/2. Then Hs(Rn)
consists of continuous functions.

Recall that we call an operator K acting on functions over a spaceM an integral
operator with kernel k = k(x, y), where k is a function on M ×M , if

Ku(x) =

∫
M

k(x, y)u(y) dy.

Proposition 1.8. Let s > n/2 and A be a bounded linear operator A : H−s → Hs.
Then A is an integral operator with the continuous kernel kA(x, y) = 〈Aδy, δx〉.

If even A : H−s−k → Hs+k is continuous, then the kernel is Ck.

The pairing 〈Aδy, δx〉 makes sense in view of the mapping properties of A. It is
not difficult to check that it furnishes the kernel. For the second statement note
that Dα

xD
β
y kA(x, y) is the kernel of (−1)|β|DαADβ .

It is sometimes useful to consider also weighted Sobolev spaces.

Definition 1.9. For s1, s2 ∈ R let Hs1,s2(Rn) = 〈x〉−s2Hs1(Rn).

Theorem 1.10. (a) It is clear that H0 = H0,0 = L2 and that Hs1,s2 ⊆ Ht1,t2

whenever s1 ≥ t1 and s2 ≥ t2.
(b) The imbedding Hs1,s2 ↪→ Ht1,t2 is compact whenever s1 > t1 and s2 > t2.

This is a special case of Rellich’s theorem.
(c) The imbedding Hs1,s2 ↪→ Ht1,t2 is trace class whenever s1 − t1 > n and

s2 − t2 > n.

1.3. Operators.

Definition 1.11. To a symbol p ∈ Sµ we associate the pseudodifferential operator
op p by

(op p)u(x) =

∫
eixξp(x, ξ)û(ξ) d̄ξ, u ∈ S (Rn), x ∈ Rn.(1.1)

Here, S (Rn) is the Schwartz space of rapidly decreasing functions on Rn, d̄ξ =
(2π)−n/2dξ, and û is the Fourier transform of u:

û(ξ) =

∫
e−ixξu(x) d̄x.

Theorem 1.12. Let p ∈ Sµ.
(a) op p : S (Rn)→ S (Rn) is continuous.
(b) For each s ∈ R,

op p : Hs(Rn)→ Hs−µ(Rn)

is bounded. The operator norm can be estimated by finitely many symbol
semi-norms.

A simple proof for the continuity of zero order operators in Lp-spaces (which
implies (b)) can be found in Hwang’s paper [11]. Simple considerations show that
continuity extends to many weighted Sobolev spaces [17]
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Theorem 1.13. (a) Let p ∈ Sµ and q ∈ Sν . Then there is an element r ∈ Sµ+ν

such that
op p ◦ op q = op r.

The element r has the asymptotic expansion

r(x, ξ) ∼
∑
α

1

α!
∂αξ p(x, ξ)D

α
x q(x, ξ).

One often writes r = p#q and calls r the Leibniz product of p and q. The
corresponding map Sµ × Sν → Sµ+ν , (p, q) 7→ r is continuous.

(b) Let p ∈ Sµ. Then the formal adjoint (op p)∗ of op p is of the form op q for
some q ∈ Sµ. It has the asymptotic expansion

q(x, ξ) ∼
∑ 1

α!
∂αξ D

α
xp(x, ξ).

The corresponding map Sµ → Sµ is continuous.

Theorem 1.14. If p ∈ Sµ is elliptic, then there is a symbol q such that

p#q − 1 = r1 and q#p− 1 =: r2

are elements of S−∞. The symbol q is called a parametrix to p.

Proof. Here is the idea: One starts with a symbol q0 ∈ S−µ, coinciding with
p(x, ξ)−1 for |ξ| ≥ R + 1; it can be taken of the form χ(ξ)p(x, ξ)−1 for a zero
excision function χ. Then p#q0 = 1 − s1 for an element s1 of order −1. Iteration
(q1 = q0#s1, q2 = q0#s1#s1 then gives a sequence of elements qj ∈ Sµ−j such that

p#

N∑
0

qj − 1 ∈ Sµ−N .

Asymptotic summation, cf. Theorem 1.15, below, then gives an element q such that
p#q − 1 is in S−∞. Similarly one can construct a q′ such that q′#p− 1 ∈ S−∞. It
is then easy to see that also q − q′ ∈ S−∞. �

Theorem 1.15. Let µ ∈ R and qj ∈ Sµ−j, j ∈ N0. Then there exists a symbol
q ∈ Sµ with q ∼

∑
qj.

1.4. Pseudodifferential operators on manifolds. Let X be a closed (i.e. com-
pact, without boundary) manifold. By Hs(X) we denote the space of all distribu-
tions on X which, in local coordinates on a patch U ⊂ Rn, belong to Hs(Rn) after
multiplication by a function in C∞c (U).

From Theorem 1.10 we immediately obtain:

Theorem 1.16. (a) It is clear that H0(X) = L2(X), and that Hs(X) ⊆ Ht(X)
whenever s ≥ t.

(b) The imbedding Hs(X) ↪→ Ht(X) is compact whenever s > t.
(c) The imbedding Hs ↪→ Ht is trace class whenever s− t > n.

Definition 1.17. An operator P : C∞(X)→ C∞(X) is called a pseudodifferential
operator of order µ on X, provided that for all smooth functions φ, ψ with support
in a single coordinate neighborhood with coordinate chart κ, the pullback of φPψ
under κ is a pseudodifferential operator on Rn with symbol in Sµ.

We call P classical, if these local symbols are all classical. We write Ψµ(X) for
the space of all pseudodifferential operators of order µ on X. By Ψµ

cl(X) we denote
the subspace of classical operators.

Let φ, ψ be ≡ 1 in a neighborhood of a point x ∈ X. We call P elliptic near x,
if any symbol of the pullback of φPψ under κ satisfies the ellipticity condition in
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1.1(d) near the pre-image of x under κ. We call P elliptic, if it is elliptic near every
x ∈ X.

Remark 1.18. (a) If P is classical, then one can associate to P a homogeneous
principal symbol σψ(P ). It is a function on T ∗X \{0}, the cotangent bundle
with the zero section removed, homogeneous of degree µ. It can be obtained
from the principal symbols of the localized symbols as described in the last
part of Definition 1.17. They are first defined for |ξ| large and can then be
extended by homogeneity to ξ 6= 0.

(b) Pseudodifferential operators acting on sections of vector bundles can be de-
fined in an analogous way. They are locally given by matrices of symbols.
They are called classical, if all entries are classical symbols. The prin-
cipal symbol of a classical pseudodifferential operator P : C∞(X;E1) →
C∞(X,E2) of order µ then is an endomorphism pµ : π∗E1 → π∗E2, where
π∗ denotes the pull-back of vector bundles (see e.g. [2]) under the projection
π : T ∗X \ 0→ X.

Definition 1.19. A pseudodifferential operator P is called regularizing or smooth-
ing, provided it can be written with local symbols in S−∞.

Lemma 1.20. A pseudodifferential operator P is regularizing if and only if it can
be written as an integral operator with a C∞-kernel.

Proof. It follows from Proposition 1.8 that P then has a smooth kernel. In fact,
it follows form (1.1) that, in local coordinates, we can write

kP (x, y) = (2π)−n
∫
ei(x−y)ξp(x, ξ) dξ.(1.2)

Conversely, a corresponding formula shows that every integral operator with smooth
kernel has a symbol in S−∞. �

Lemma 1.21. Let P be a pseudodifferential operator and ϕ,ψ ∈ C∞(X) have
disjoint supports. Then ϕPψ is regularizing.

Proof. If in Equation 1.2 p(x, ξ) is replaced by ϕ(x)p(x, ξ)ψ(y), then the integral
can also be given sense for arbitrary p ∈ Sµ via integration by parts ans then
furnishes the desired kernel. �

This property of pseudodifferential operators is called pseudolocality.

Theorem 1.22. Let P be a classical pseudodifferential operator of order µ on the
closed manifold.
(a) For all s ∈ R, the operator P extends to a bounded operator

P : Hs(X)→ Hs−µ(X).(1.3)

(b) If P in (1.3) is a Fredholm operator for one choice of s, then it is a Fredholm
operator for every choice of s, and there exists a Fredholm inverse which is
a pseudodifferential operator of order −µ. This is the case precisely if the
principal symbol of P is invertible for all (x, ξ) ∈ T ∗X \ {0}, i.e. if P is
elliptic.

(c) If P in (1.3) is invertible for one choice of s, then it is invertible for every
choice of s. The inverse is a pseudodifferential operator of order −µ.

Remark 1.23. The key to proving Theorem 1.22(b) is a local parametrix construc-
tion. The local parametrices can be patched to define a pseudodifferential operator
Q of order −µ such that

PQ− I =: R1 and QP − I =: R2
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are operators of order −∞.
Statement (c) follows from (b) together with the observation that the kernel and

the cokernel of an elliptic pseudodifferential operator consist of smooth functions
and therefore do not depend on s.

Remark 1.24. The pseudodifferential operators of order zero actually form a Fré-
chet subalgebra of L(L2(X)) and more generally of L(Hs) for every s ∈ R. The fact
that this algebra contains its inverses whenever they exist is often called ‘spectral
invariance’ and has many interesting consequences, see Gramsch [5]. It extends to
many classes of weighted spaces on Rn, see [17].

Theorem 1.25. Let P be elliptic, f ∈ Hs(X) and let u ∈ H−N (X) (for some
N ∈ R) be a solution of the equation Pu = f . Then u ∈ Hs+µ(X).

Proof. Apply a parametrix Q to P to the equation Pu = f . Using the notation of
Remark 1.23, (I+R2)u = Qu ∈ Hs+µ. Since R2u ∈ C∞, we obtain the assertion. �

Remark 1.26. The property in Theorem 1.25 is called elliptic regularity.

Theorem 1.27. Let P be a pseudodifferential operator of order < −n = −dimX.
Then P is an integral operator with a continuous kernel function kP given by Equa-
tion (1.2). Moreover, P is a trace class operator and

TrP =

∫
X

kP (x, x) dx.
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2. Complex Powers and ‘Heat’ Operators

Let P be an unbounded operator on a Hilbert space H.

Definition 2.1. We say that the ray Rθ = {reiθ ∈ C : r ≥ 0} is a ray of minimal
growth for P , provided Rθ does not intersect the spectrum of P and there exists a
constant c ≥ 0 with

‖(P − λ)−1‖ ≤ c〈λ〉−1.

2.1. Complex powers. Complex powers of pseudodifferential operators were first
studied in a by now classical paper by Seeley [20]. Let us first recall the definition,
which works in a more general context.

Let Rθ be a ray of minimal growth for the operator P . In particular, zero then
is not in the spectrum of P and hence there is a δ0 > 0 such that B(0, 2δ0) is
contained in the resolvent set. For Re s < 0 define Ps by

Ps =
i

2π

∫
C

λs(P − λ)−1 dλ.(2.4)

Here C is the contour in C from ∞ to δ0eiθ along Rθ, clockwise about the circle
{|z| = δ0} to δ0eiθ and back to ∞ along Rθ. The integral converges, since |λs| ≤
cs|λ|s.

A crucial point is that on the incoming ray the argument of λ is considered to
be θ, while on the outgoing ray, it is θ− 2π. Hence the pieces along the ray do not
cancel unless s is a negative integer.

Remark 2.2. Expressions of the form

f(P ) =
i

2π

∫
C

f(λ)(P − λ)−1 dλ(2.5)

with a contour C which ‘surrounds’ the spectrum of P and a function f which is
holomorphic on the spectrum of P are called Dunford integrals for f(P ).

The underlying idea is Cauchy’s theorem in complex analysis: For a holomorphic
function on a simply connected domain and a contour C which simply surrounds z

f(z) =
1

2πi

∫
C

f(w)

w − z
dw.

Note that the shift in the sign is simply due to the fact that we consider (P −λ)−1

instead of (λ− P )−1.

The notation P s is justified by the following theorem:

Theorem 2.3. Let s, t ∈ C with negative real parts.
(a) s 7→ Ps is an analytic family of bounded operators
(b) PsPt = Ps+t

(c) P−1 = P−1 is the inverse to P .

Proof. (a) follows by differentiating under the integral sign. For (b) let C ′ be
a contour which lies inside C and close to C . By Cauchy’s theorem we can then
replace C by C ′. Then

PsPt = − 1

4π2

∫
C ′

(∫
C

(P − λ)−1(P − µ)−1λsµt dµ

)
dλ

=
1

4π2

∫
C ′

∫
C

λsµt

λ− µ
(
(P − λ)−1 − (P − µ)−1

)
dµdλ

=
i

2π

∫
C ′
λs+t(P − λ)−1 dλ+

1

4π2

∫
C

(P − λ)−1

∫
C ′

λsµt

λ− µ
dλdµ,
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where Fubini’s theorem has been applied. The last integral vanishes, since µ lies
outside of C ′.

(c) For a negative integer, the integration contour reduces to the circle of radius
δ0 surrounded counterclockwise. Denote by C the opposite contour. We can then
write the expression (2.4) for P−1 as

1

2πi

∫
C

λ−1(P − λ)−1 dλ

=
1

2πi

∫
C

λ−1λ−1P−1(P−1 − λ−1)−1dλ

= − 1

2πi

∫
C

(P−1 − µ)−1 dµ P−1

with the inverse P−1 to P . Now we observe that the spectrum of P−1 lies inside
C. Holomorphic functional calculus for the bounded operator P−1 and f ≡ 1 then
shows the assertion. �

We can therefore define the powers P s for all s ∈ C: We let

P s =

{
Ps, Re s < 0

P kPs−k, k integer,−1 ≤ Re s− k < 0.

2.2. Heat operators. Instead of only making the assumption of the existence of
a ray of minimal growth, we assume that P − λ is invertible for all λ in a sector

Λ = Λθ = {reiϕ ∈ C : r ≥ 0 and |ϕ| ≥ θ} for some θ < π/2(2.6)

and that

‖(P − λ)−1‖ ≤ c〈λ〉−1, λ ∈ Λ,(2.7)

for a suitable constant c.
For t > 0 we then define

e−tP =
i

2π

∫
C

e−tλ(P − λ)−1 dλ,(2.8)

where C is the contour from∞ to δ0eiθ along the ray Rθ, clockwise about the origin
on the circle |z| = δ0 to δ0e−iθ and back to ∞ along R−θ.

The integral converges, since e−λt decays exponentially along the rays. Note
that for this to be the case it is important that the rays lie in the right half plane.

Remark 2.4. The name ‘heat’ operator stems from the fact that e−tPu0 solves the
equation ∂tu+ Pu = 0, u(0) = u0, which becomes the heat equation for P = −∆.

Theorem 2.5. (a) t 7→ e−tP is a smooth function on R>0 with values in bounded
operators.

(b) Let s, t > 0. Then e−sP e−tP = e−(s+t)P .

Proof. (a) follows by differentiating under the integral sign. For (b) use a similar
argument as in the proof of Theorem 2.3. �

2.3. Domains. In the above, we are making assumptions on the spectrum of the
operator P as an unbounded operator on a Hilbert space. As a consequence we
have to specify the domain of P . In general, there are many possible choices. We
will focus, however, on the case where P is an elliptic pseudodifferential operator
(in fact, we will make even stronger assumptions on P ) considered as an unbounded
operator on L2(X). In that case, there only is one closed extension.



HEAT TRACE EXPANSIONS AND WEYL’S LAW 11

Definition 2.6. Let A : C∞(X) → C∞(X) be an arbitrary operator. By Dmin,
the minimal domain, we denote the domain of the closure of A, while Dmax is the
set of all u ∈ L2 such that Au ∈ L2.

Clearly, Dmin is the domain of the smallest closed extension and Dmax that of
the largest.

Theorem 2.7. Let P be an elliptic pseudodifferential operator of order µ > 0.
Then Dmin = Dmax = Hµ(X).

Proof. Let u ∈ Hµ(X). Then there exists a sequence um ∈ C∞(X) with
um → u ∈ Hµ(X). Hence Hµ ⊆ Dmin. Conversely, suppose that u ∈ Dmax, i.e.
u ∈ L2 and Pu ∈ L2. Elliptic regularity then implies that u ∈ Hµ(X). Hence
Dmax ⊆ Hµ. This shows the assertion. �

Theorem 2.8. Let P be an elliptic pseudodifferential operator of order µ > 0.
Then either the L2-spectrum of P is all of C, or it consists of a countable number
of eigenvalues with no accumulation point.

Proof. If P − λ is invertible for some λ, then

(P − λ)−1 : L2 → D(P ) = Hµ ↪→ L2

is compact. This implies that the spectrum of (P − λ)−1 is discrete with only
possible accumulation point in zero. This shows the assertion since the spectral
values of P −λ are just the inverses of the elements in the spectrum of (P −λ)−1. �

2.4. Strategy. In a first step, we shall see that the resolvent can be replaced by
a parameter-dependent parametrix with a classical symbol having special homo-
geneity properties. This is the decisive step for the construction of both P s and
e−tP .

We shall see that P s is a pseudodifferential operator of order µRe s, where µ is
the order of P and that e−tP is a smoothing operator. According to Theorem 1.16
it makes sense to take the trace of e−tP and that of As, provided Re s < −n/µ.

From the asymptotic expansion of the parametrix symbol we then derive (under
suitable additional assumptions on P and its symbol), the meromorphic structure
of the trace of P s and the asymptotic expansion of the trace of e−tP .

2.5. Notes. The fundamental paper here is Seeley’s article [20] on complex powers,
where also the strategy of the resolvent analysis was developed. Kumano-go and
Tsutusmi [15] simplified the technique; it is worthwhile having a look at Kumano-
go’s book [14]. In principle, the same information can be extracted from the traces
of the resolvent, the heat kernel, and the complex powers, see [9]. For pseudodif-
ferential boundary value problems, corresponding results on asymptotic expansions
are harder to obtain, see Grubb’s book [6].

In connection with noncommutative residues, for example, it is important to
consider not only the traces of P s or e−tP , but more generally traces of operators
QP s or Qe−t for general pseudodifferential operators Q. In the closed manifold
case, the analysis is mostly parallel. For boundary value problems see e.g. [7].
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3. Construction of a Parameter-dependent Parametrix

3.1. Notation and preliminary results. Let X be a closed manifold. From now
on, we shall fix a classical pseudodifferential operator P : C∞(X,E)→ C∞(X,E)
of order µ, acting on sections of a vector bundle E over X.

In a fixed generic coordinate neighborhood U we shall denote the full symbol of
P by p with the asymptotic expansion p ∼

∑
pµ−j and pµ−j(x, ξ) homogeneous of

degree µ − j for |ξ| ≥ 1. We shall sometimes need the fully homogeneous variant
phµ−j , which is homogeneous for all ξ 6= 0:

phµ(x, ξ) = |ξ|µphµ(x, ξ/|ξ|).(3.9)

Note that the symbol and the components take values in quadratic matrices.
In the sequel we fix a ray Rθ = {reiθ : r ≥ 0} as above. This will be sufficient

for the construction of complex powers, where the existence of the resolvent is only
required on one ray. For the analysis of the ‘heat’ operator, we will let λ vary in a
sector. Technically, this does not make a difference.

We will make the following assumption:

Assumption 3.1. Write λ = ηµ with η = reiθ/µ ∈ Rθ/µ, r ≥ 0. Then there exists
a CR ≥ 0 such that p(x, ξ)− ηµ is invertible whenever |ξ|+ |η| ≥ CR and satisfies

|(p(x, ξ)− ηµ)−1| ≤ 〈ξ, η〉−µ.(3.10)

This property is often referred to as parameter-ellipticity.

It is easy to see (cf. [6, Lemma 1.5.4] for details) the following

Lemma 3.2. Equivalently to (3.10) we could ask that
(i) phµ(x, ξ) has no eigenvalues on Rθ for ξ 6= 0 or that,
(ii) pµ(x, ξ) has no eigenvalues on Rθ for |ξ| = 1.

Remark 3.3. Due to the compactness of X we can actually redefine pµ so that pµ
has no eigenvalues on Rθ for all (x, ξ). In fact, let L = max{|pµ(x, ξ)| : x ∈ U, |ξ| ≤
1} and choose a non-negative function ω with compact support and ω(ξ) = 1 for
|ξ| ≤ 1. Then set

p̃µ(x, ξ) = pµ(x, ξ) + (L+ 1)ω(ξ)eiθI(3.11)

As ω(ξ) is regularizing, we can (and will) replace pµ by p̃µ in the sequel and assume
that:

|(pµ(x, ξ)− ηµ)−1| ≤ c〈ξ, η〉−µ, x ∈ U, ξ ∈ Rn, η ∈ Rθ/µ.(3.12)

3.2. Parametrix. We next define a sequence of symbols q−µ−j = q−µ−j(x, ξ, η)
for x ∈ U, ξ ∈ Rn, η ∈ Rθ/µ, j = 0, 1, . . ., by

q−µ(x, ξ, η) = (pµ(x, ξ)− ηµ)−1(3.13)
q−µ−j(x, ξ, η)(3.14)

= −
∑ 1

α!
∂αξ q−µ−k(x, ξ, η)Dα

xpµ−l(x, ξ)(pµ(x, ξ)− ηµ)−1,

j = 1, 2, . . ., where the sum extends over all α, k and l such that k+ l+ |α| = j and
k < j.

For an arbitrary derivative ∂ with respect to x or ξ we have

∂(pµ − ηµ)−1 = −(pµ − ηµ)−1∂pµ(pµ − ηµ)−1.

We therefore obtain:
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Lemma 3.4. ∂αξ ∂
β
x q−µ−j is a linear combination of terms of the form

(pµ − ηµ)−1∂α1

ξ ∂β1
x pµ−k1(pµ − ηµ)−1 . . . ∂αrξ ∂βrx pµ−kr (pµ − ηµ)−1

with

k1 + . . . kr + |α1|+ . . . |αr| = j + |α|.

Moreover

∂αξ ∂
β
x q−µ−j(x, tξ, tη) = t−µ−j∂αξ ∂

β
x q−µ−|α|−j(x, ξ, η).(3.15)

There are at least two factors (pµ − ηµ)−1 if either j > 0 or |α|+ |β| > 0.

This leads us to the following estimate:

Proposition 3.5.

∂αξ ∂
β
x q−µ−j(x, ξ, η) = O(〈ξ, η〉−µ〈ξ〉−j−|α|) for all x, ξ, η, α, β(3.16)

∂αξ ∂
β
x q−µ−j(x, ξ, η) = O(〈ξ, η〉−2µ〈ξ〉µ−j−|α|) if |α|+ |β|+ j > 0(3.17)

We now choose a symbol q = q(x, ξ, η) with q ∼
∑
q−µ−j . It satisfies

∂αξ ∂
β
x q(x, ξ, η) = O(〈ξ, η〉−µ〈ξ〉−j−|α|)(3.18)

for x ∈ U, ξ ∈ Rn, η ∈ Rθ/µ and arbitrary multi-indices α, β.
Moreover, by construction, we have

∂αξ ∂
β
x (q(x, ξ, η)−

∑
j<K

q−µ−j(x, ξ, η)) = O(〈ξ, η〉−2µ〈ξ〉µ−j−|α|−K)(3.19)

Theorem 3.6. We have

q(x, ξ, η)#(p(x, ξ)− ηµ)− I = r(x, ξ, λ),

where, for arbitrary N , the seminorms of r(x, ξ, η) in S−N are O(η−µ).

Note that |ηµ| = |λ|.
Proof. Fix some K ∈ N and write q =

∑
j<K q−µ−j + rKq and p =

∑
j<K pµ−j +

rKp .
It then follows from the estimates (3.16) and the construction of q that the

seminorms of q−µ−j in S−j and of rKq in S−K are O(η−µ). Theorem 1.13(a) then
implies that the seminorms of t1 := rKq #(p − µ) and t2 =

∑
j<K q−µ−j#r

K
p in

Sµ−K are O(η−µ).
It remains to consider the composition∑

j<K

q−µ−j#
∑
l<K

pµ−l.

We divide it into two parts: Those compositions, where j + l < K, and the rest.
Again, the seminorms of the compositions belonging to the rest are O(η−µ) in
Sµ−K .

As for the remaining compositions, we consider the terms∑
j,l,α

1

α!
∂αξ q−µ−jD

β
xpµ−l

where j + l + |α| < K. By construction, cf. (3.13), the sum furnishes the identity.
By the same argument as above, the terms, where j + l + |α| ≥ K are O(η−µ) in
Sµ−K . �
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Theorem 3.7. These local parametrices can be patched to a parameter-dependent
pseudodifferential operator Q(η) on X such that

Q(η)(P − ηµ)− I = R1(η)

where the symbol seminorms of R(η) in each S−N are O(η−µ).

This tricky patching procedure can be found in Seeley’s original paper, [20].
In a similar way, we find an operator Q̃(η) such that

(P − ηµ)Q̃(η)− I = R2(η),

where the symbol seminorms of R2(η) are O(η−µ) in each S−N .

Remark 3.8. In fact, we can then take Q̃ = Q, since

Q(η) = Q(η)(P − ηµ)Q̃(η)−Q(η)R2(η)

= (I +R1(η))Q̃(η)−Q(η)R2(η) = Q̃(η)−QR2(η) +R1(η)Q̃(η).

so that Q and Q̃ only differ by a regularizing operator with seminorms O(η−2µ).

Corollary 3.9. For |η| sufficiently large, P − ηµ is invertible on L2(X) and

‖(P − ηµ)−1 −Q(η)‖ = O(η−2µ).

Note that the estimate is due to the fact that

(Q(η)(P − ηµ))−1 = (I +R1(η))−1 =

∞∑
j=0

R1(η)j(3.20)

by Neumann’s series, so that

(P − ηµ)−1 −Q(η)−1 = Q(η)((Q(η)P )−1 − I) = Q(η)

∞∑
j=1

R1(η)j = O(η−2µ),

since the norm of Q(η) is O(η−µ).

Remark 3.10. (a) Writing η = λ1/µ, the estimate in Corollary 3.9 says that

(‖(P − λ)−1 −Q(λ1/µ)‖ = O(λ−2).

(b) We can actually write the resolvent as a parameter-dependent pseudodiffer-
ential operator: From

Q(µ)(P − ηµ) = I +R1(η) and (P − ηµ)Q(η) = I +R2(η)(3.21)

we conclude that

(P − ηµ)−1 = Q(η)−R1(η)Q(η) +R1(η)(P − ηµ)R2(η)

differs from Q(η) only by an operator whose symbol seminorms in each S−N
are O(η−2µ). Hence we may as well assume that Q(η) is the resolvent.

In fact, using the estimates in Proposition 3.5 and (3.19) we see:

Proposition 3.11. If QK(η) is the parameter-dependent parametrix taking only
into account the first K terms of the parametrix, then (P − ηµ)−1 − QK(η) is an
operator of order µ−K, with symbol seminorms uniformly O(η−2µ).

Corollary 3.12. We see from the above that the inverse of P − λ is an elliptic
pseudodifferential operator of order −µ. Hence it is a compact operator on L2(X).
In particular, the spectrum of P is discrete with no accumulation point.
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Remark 3.13. If the spectrum of the principal symbol pµ(x, ξ) will not intersect
the ray Rθ for |ξ| = 1 it will neither intersect rays Rθ′ for θ′ close to θ, hence there
is a whole sector of minimal growth.

According to Corollary 3.9, P −λ will then be invertible for large λ in the sector
(the corresponding bounds can be taken uniform in the angle). As the spectrum is
discrete by Corollary 3.12, there will be at most finitely many spectral points of P
in the sector. Assuming only that P is invertible, there will be a ray of minimal
growth.
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4. Complex Powers

4.1. The symbol of P s. We shall next analyze the properties of the complex
powers Ps defined by (2.4) for Re s < 0 and then go over to the general powers P s.

Theorem 4.1. Ps is a pseudodifferential operator of order µRe s and the symbol
σ(Ps) of Ps has an asymptotic expansion σ(Ps) ∼

∑∞
j=0 cj(x, ξ; s), where, for λ =

ηµ

cj(x, ξ; s) =
1

2πi

∫
C

λsq−µ−j(x, ξ, λ
1/µ) dλ(4.22)

=
i

2π

∫
C ′
µηµs+µ−1q−µ−j(x, ξ, η) dη

with cj homogeneous of degree µs − j for |ξ| ≥ 1. Here we have again written
η = λ1/µ to express the relation ηµ = λ, and C ′ is the path given by the change
λ 7→ η.

Proof. In local coordinates we have

Ps =
i

2π

∫
C

λs op(q(x, ξ, λ1/µ)) dλ

= op

(
i

2π

∫
C

λsq(x, ξ, λ1/µ) dλ

)
∼

∞∑
j=0

op

(
i

2π

∫
C

λsq−µ−j(x, ξ, λ
1/µ) dλ

)
.

Substituting λ = tµσ and using the homogeneity relation (3.15) yields

cj(x, tξ; s) =
i

2π

∫
C

λsq−µ−j(x, ξ, λ
1/µ) dλ

= tµs+µ
i

2π

∫
C

σsq−µ−j(x, tξ, (t
µσ)1/µ) dσ

= tµs+µ−µ−j
i

2π

∫
C

σsq−µ−j(x, ξ, σ
1/µ) dσ

= tµs−jcj(x, ξ; s).

A similar argument implies that the integral∫
C

λs op

q(x, ξ, λ1/µ)−
∑
j<K

q−µ−j(x, ξ, λ
1/µ)

 dλ

furnishes an operator of order µRe s − K, so that the asymptotic expansion is
justified. �

Remark 4.2. Note that q−µ(x, ξ, λ1/µ) = (pµ(x, ξ)− λ)−1 and therefore c0 = psµ.

Lemma 4.3. There exist constants c1, c2 > 0 such that pµ(x, ξ) − ηµ lies in the
annulus

Ω|ξ| = {z ∈ C : c1〈ξ〉 ≤ |z| ≤ c2〈ξ〉}.

Proof. For |ξ| ≥ 1 this follows from homogeneity and the fact that pµ(x, ξ) is
invertible (note that 0 lies on Rθ). For small ξ use Remark 3.3. �

Corollary 4.4. The symbols q−µ−j(x, ξ, η), j = 0, 1, . . ., are holomorphic functions
of η outside Ω|ξ|.
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By Cauchy’s theorem we can therefore replace the contour C ′ in Equation (4.22)
by the boundary of Ω|ξ| \Rθ/µ oriented in the mathematically positive sense.

cj(x, ξ, s) =
i

2π

∫
∂Ω|ξ|

µηµs+µ+1q−µ−j(x, ξ, η) dη.(4.23)

For fixed (x, ξ), the function s 7→ cj(x, ξ; s) then is a holomorphic function on
C.

More is true: For Re s < 0, 7→ cj(s) is a holomorphic family of symbols of order
zero.

Theorem 4.5. For all s ∈ C, P s is a pseudodifferential operator of order mRe s.
Its symbol has the asymptotic expansion σ(P s) ∼

∑
cj(s), where cj is given by the

formula (4.23).

Proof. The first assertion is immediate from the fact that P s = P kPs−k for k so
large that Re s− k < 0 together with Theorem 4.1.

The symbol of P s is the Leibniz product of the symbol of P k and that of Ps−k.
Hence the homogeneous components are holomorphic functions on Re s < k, taking
values in symbols of order kµ. As (4.23) provides a holomorphic extension, it must
be the one. �

Proposition 4.6. For Re s < 0, s 7→ Ps is a holomorphic family of bounded
operators on Ht(X) for arbitrary t. More generally, s 7→ P s is holomorphic from
µRe s < c to operators in L(Ht(X), Ht−c(X)).

4.2. Integral kernels. Since P s is a pseudodifferential operator, it has a distribu-
tional kernel ks on X×X by the Schwartz kernel theorem. This kernel is smoother
than one might expect:

Theorem 4.7. In local coordinates, the kernel of P s has the following properties:
(a) For each k ∈ N0, s 7→ ks is a holomorphic function from µRe s < −n − k

into matrices of Ck-functions on X ×X.
(b) If C is any compact set in X × X disjoint from the diagonal, then the re-

striction ks|C is an entire function with values in matrices of C∞-functions.
(c) For each fixed x ∈ X the map s 7→ ks(x, x) extends from Re s < −n to a

meromorphic function on the complex plane with at most simple poles in the
points sj = (j − n)/µ. The residue in sj is given by

1

(2π)n+1iµ

∫
|ξ|=1

∫
C

λ(j−n)/µq−µ−j(x, ξ, λ
1/µ)dλdS(ξ).

(d) The point s = 0 always is a regular point. The value k0(x, x) is given by

1

(2π)nµ

∫
|ξ|=1

∫ ∞
0

q−µ−n(x, ξ, t1/µeiθ/µ)dtdS(ξ).

(e) If P is a differential operator then the residues in the integers vanish.

(a) follows from Proposition 1.8 and Proposition 4.6.
For (b) and (c) we first make the following observation: According to Proposition

(3.11) the parametrix QK constructed from the first K terms in the asymptotic
expansion of the symbol of Q furnishes an O(η−2µ) approximation of (P − ηµ)−1

up to operators of order µ−K. Next recall from Equation 1.2 that the kernel of a
pseudodifferential operator P with symbol p is given by

(2π)−n
∫
ei(x−y)ξp(x, ξ)dξ,(4.24)
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where the formula holds whenever the order of p is < −n. Since
i

2π

∫
C

λs((P − λ)−1 −QK(λ1/µ))dλ

exists and is holomorphic for Re s < 1, taking values in operators or order µ−K,
the singularities of the kernels of P s and those of QK will agree, provided K is so
large that µ−K < −n.

Now QK is locally given by the finite sum of terms
∑
j<K op(q−µ−j). Hence

i

2π

∫
λsQK(x, ξ, λ1/µ)dλ =

∑
op cj(x, ξ; s),

and the associated kernel is

kQK ,s = (2π)−n
∑∫

ei(x−y)ξcj(x, ξ; s)dξ

For (b) these terms can be analyzed easily by integrating by parts, since x 6= y:
kQK ,s is given by

kQK ,s(x, y) = (2π)−n|x− y|−2K
∑
j<K

∫
ei(x−y)ξ∆K

ξ cj(x, ξ; s) dξ.

Since ∆Kcj(s) is a symbol of order µRe s− j − 2K, we can here extend the range
of s to the whole complex plane.

Still we have the restriction Re s < 1 for the coincidence of the singularities of
the kernels. In order to remove it, recall that for k > Re s ≥ k − 1 we write

P s = P kPs−k =
i

2π

∫
C

λs−kP k(P − λ)−1 dλ.

Now we observe that P kQK − P k(P − λ)−1 will be pseudodifferential of order
µ(k+ 1)−K and O(λ−2). Hence the singularities of the kernel of P s coincide with
those of

i

2π

∫
C

λs−kP kQ(λ1/µ) dλ(4.25)

for Re s < k + 1. Next write the asymptotic expansion of the symbol of P kQ as∑
q

(k)
j . Then the definition of cj(s) and the analyticity imply that

i

2π

∫
C

λs−kq
(k)
j (x, ξ, λ1/µ) dλ = cj(x, ξ; s).

Moreover, P kQ−
∑
j<K q

(k)
j is O(λ−2) uniformly in symbols of order µk−K. For

K large, the singularities of (4.25) therefore coincide with those computed from the∑
j<K op cj for Re s < k + 1.
(c) We again consider first the case Re s < 1 and argue that it suffices to study

the terms (note that x = y in (4.24))

(2π)−n
∫
cj(x, ξ; s)dξ.

We divide the integration into the part over |ξ| ≤ 1 and that over |ξ| ≥ 1. The first
produces an entire function and thus does not contribute to the singularities. To
determine the second, we introduce polar coordinates. Using that cj is homogeneous
of degree µs− j we obtain an integral of the form

(2π)−n
∫
S

cj(x, ω; s)dS(ω)

∫ ∞
1

rµs−j+n−1dr.(4.26)

The last integral is − 1
µs−j+n . This furnishes the pole in sj = (j − n)/µ together

with the residue in this point.
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(d) The possible pole in zero arises from the term associated with c−n. But as
P 0 = I, this component of the symbol is zero. According to Equation (4.26) the
residue in zero vanishes.

It is somewhat more involved to determine the value in zero and to show (e).

Corollary 4.8. For Re s < −n/µ the operator P s is trace class, and we can define

ζP (s) = Tr(P s).

This is a holomorphic function on Re s < −n/µ. It extends to a meromorphic
function on C with at most simple poles in the points sj = (j − n)/m. The origin
is not a pole.

Proof. For Re s < −n/µ the operator P s is of order < −n. By Theorem 1.27 it
is trace class and

TrP s =

∫
X

kP s(x, x) dx.

The assertion then follows from Theorem 4.7. �



20 ELMAR SCHROHE

5. Heat Operators

The analysis of the heat operator

e−tP =
i

2π

∫
C

e−tp(P − λ)−1 dλ

proceeds in a similar way.
Fix a sector Λ as in (2.6). We assume that, in local coordinates the principal

symbol pµ of P satisfies the assumption (3.12). We then construct the parameter-
dependent parametrix as before.

Theorem 5.1. (a) For each t > 0, e−tP is an integral operator with smooth
kernel.

(b) For t ≥ 0, t 7→ e−tP is continuous as a family of pseudodifferential operators
of order zero.

(c) In this sense, the symbol v(x, ξ; t) of e−tP has an asymptotic expansion

v ∼
∞∑
j=0

v−j

with

v0 = e−tpµ and(5.27)

v−j =
i

2π

∫
C

e−tλq−µ−j(x, ξ, λ
1/µ) dλ.(5.28)

The continuous extension of v−l to t = 0 is zero.
Moreover, the v−j satisfy the homogeneity relation

v−j(x, sξ; s
−µt) = s−jv−j(x, ξ; t) |ξ| ≥ 1, s ≥ 1.(5.29)

(d) There exists a c > 0 such that

|∂αξ Dβ
xv−j(x, ξ; t)| ≤ C〈ξ〉−j−|α|e−ct〈ξ〉

µ

(t1/µ〈ξ〉)a(5.30)
for any a ≤ min{µ, j + |α|}.

(e) The symbol v can be chosen in such a way that∣∣∣∣∣∣∂αξ Dβ
x

v −∑
j<K

v−l

∣∣∣∣∣∣ ≤ C〈ξ〉−K−|α|e−ct〈ξ〉µ(t1/µ〈ξ〉)a(5.31)

for any a ≤ min{µ,M + |α|}.

Let us look at the proof of some of these facts.
(a) follows from the estimates in (d) and (e).
Now consider (c). By the consideration in 4.4 the contour can actually be closed

for fixed (x, ξ) and then the expression can be considered for all t ∈ R. It follows
from the structure of the terms in the parametrix that the q−µ−j for j > 0 have at
least two factors (pµ−ηµ)−1. Hence there are no simple poles, and integration over
the closed contour produces a Taylor series starting with t1, so that v−j(x, ξ; 0) = 0.

The homogeneity relations follow from a calculation as for the complex powers.
The estimates for the v−j and the difference in (e) are a result of the construction
of the q−µ−j .

Remark 5.2. In order to obtain the trace expansion in Theorem 0.2 one can either
mimic the strategy of the proof of Theorem 4.7 or else use the fact that the resolvent,
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the complex powers and the heat operator are related by transition formulae like

P−s = 1
(s−1)···(s−k)

i
2π

∫
C

λk−s∂kλ(P − λ)−1 dλ = 1
Γ(s)

∫ ∞
0

ts−1e−tP dt,

e−tP = t−k i
2π

∫
C ′
e−tλ∂kλ(P − λ)−1 dλ = 1

2πi

∫
Re s=c

t−sΓ(s)P−s ds

k ∈ N0.
The first formula states that P s is the Mellin transform of e−tP , multiplied by

1/Γ. Now it is well-known that the asymptotic behavior ∼ tsj logk t as t → 0+ is
translated by the Mellin transform into a pole of order k + 1 in the point sj and
vice versa (under suitable conditions, see [9] for details).
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6. Weyl Asymptotics

We now additionally assume that P is self-adjoint and positive. Then P has
an orthonormal basis of eigenfunctions in L2 with associated eigenvalues λj , j =
1, 2 . . ... Since we required P to be invertible, the eigenvalues are positive numbers
with λj →∞, see Theorem 2.8. Recall that

N(λ) =
∑
λj<λ

1.

We will now compute the asymptotics of N(λ) from our knowledge of TrP s.
For this, we first observe that, by functional calculus, the spectrum of P s consists

of the values λsj , and hence the trace of P s is given by

TrP s =
∑
j

λsj .

6.1. A Tauberian theorem. We will use a Wiener-Ikehara Tauberian theorem.
You find a proof of Ikehara’s theorem e.g. in Donoghue’s book [3, Section 47] and
Wiener’s paper is [24]. I am relying here on the version given in Aramaki [1,
Proposition 1] who also provides a useful extension to the case where TrP s has
higher order poles.

Theorem 6.1. Let P be a positive and self-adjoint operator on a Hilbert space.
Assume that TrP s is holomorphic in a half-plane {Re s < a < 0} and that there
exists a constant A such that

TrP s − A

s− a
has a continuous extension to {Re s = a}. Then we have

N(λ) =
A

a
λ−a(1 + o(1)) as λ→∞.

6.2. Application to the counting function of P . For the operator P we can
compute the residue from the formula in Theorem 4.7(c) for j = 0 from the principal
symbol of P , or else from Equation (4.26), with j = 0, noting that

− 1

µs+ n
= − 1

µ

1

(s− (−n/µ))
.

Specifically: Since TrP s =
∫
X
ks(xx) dx we have

N(λ) ∼ λ

n

∫
X

∫
S

c0(x, ω;−n/µ)dS(ω)dx.

6.3. The case of the negative Laplacian. Here, the symbol is |ξ|2. We can take
the ray to be the negative real axis. We then obtain q−µ(x, ξ, η) = |ξ|2 − η2 with
η2 ∈ R− and c0(x, ξ; s) = |ξ|2s. The value on the unit sphere in T ∗X is constant
1. Hence (4.26) computes the residue as (2π)−n volSn−1. The residue of TrP s is
given by integration over X; it therefore has the value

A = −(2π)−n
1

µ
volSn−1 volX.

Finally the fact that a = −n/µ = −n/2 yields Weyl’s law:2

N(λ) ∼ volSn−1 volX

n(2π)n
λ =

volBn volX

(2π)n
λ,

where B is the unit ball in Rn.

2There is no contradiction to the statement of Kac. The additional factor 2 we have in the
denominator originates from the fact that we use ∆ while Kac works with 1

2
∆.
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