◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Wave trace invariants Lecture I: Introduction to microlocal analysis

Ingo Witt University of Göttingen

Summer School on Spectral Geometry Göttingen, September 9-12, 2014

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Format of this course

- Tuesday, 14:30–15:30 Lecture I: Introduction to microlocal analysis
- Wednesday, 17:00–18:00 Lecture II: Global aspects of Fourier integral operators
- Thursday, 16:00–17:00 Lecture III: The wave trace and periodic bicharacteristics
- Friday, 10:30–11:30 Lecture IV: Computation of higher wave trace invariants

The setup

- $X \mathscr{C}^{\infty}$ closed manifold, dim X = d.
- $P \in \Psi^1(X; \Omega^{1/2})$ elliptic, $P = P^* > 0$.
- *P* has purely discrete spectrum (as an unbounded operator in L²(X;Ω^{1/2})).
- $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \ldots$ eigenvalues of *P*, with associated eigenfunctions $\phi_j \in \mathscr{C}^{\infty}(X; \Omega^{1/2})$ which are chosen to form an ONB in $L^2(X; \Omega^{1/2}), \lambda_j \sim c j^{1/d}$ as $j \to \infty$ by Weyl's law.

The wave trace is

$$\boldsymbol{w}(t) = \sum_{j=1}^{\infty} \boldsymbol{e}^{i\lambda_j t}, \quad t \in \mathbb{R},$$

which is (formally) the trace of the wave group $\{e^{itP}\}_{t\in\mathbb{R}}$. The latter yields the solving operator of the first-order hyperbolic equation $-i\partial_t u = Pu$.

The problem

Problem. Study the singularities of $e \in \mathscr{S}'(\mathbb{R})$. Key observation. e^{itP} , $t \in \mathbb{R}$, is zeroth-order elliptic FIO.

Proposition

 $0 \neq T \in \text{singsupp } w$ implies that there is a periodic trajectory of the Hamilton vector field H_p , of period T, where $p = \sigma^1(P) \in S^{(1)}(T^*X \setminus 0; \mathbb{R}).$

Question. How does a non-degenerate periodic trajectory of H_p contribute to the singularities of the wave trace, *e*?

Let γ be such a periodic trajectory. Its contribution is

 $e_{\gamma}(t) \sim c_{-1\gamma}(t-T+i0)^{-1} + \sum_{r \geq 0} c_{r\gamma}(t-T+i0)^r \log(t-T+i0)$ as $t \to T$.

・ロト・西ト・ヨト・日下 ひゃぐ

Wave trace invariants

• The $c_{rT} = \sum_{\gamma} c_{r\gamma}$, $r \ge -1$, where summation is over all periodic trajectories, γ , of period T, are the wave trace invariants of the title.

$$c_{-1\gamma} = \frac{T_{\gamma}}{2\pi} \frac{i^{\mu_{\gamma}}}{\sqrt{\det(I - \Pi_{\gamma})}} e^{i \int_{\gamma} \sigma_{\text{sub}}^0(P)},$$

where

- T_{γ} primitive period of γ ,
- μ_{γ} Maslov index,
- Π_{γ} linearized Poincaré map,
- $\sigma_{sub}^{0}(P)$ subprincipal symbol of *P*.
- The c_{rγ}, r ≥ −1, determine the Birkhoff normal form of γ completely.

α -densities

Linear algebra part. Let *V* be a real vector space, dim_{\mathbb{R}} V = d. For $\alpha \in \mathbb{C}$, an α -density is a map $\ell : \mathscr{F}(V) \to \mathbb{C}$, where $\mathscr{F}(V)$ is the set of all linear bases of *V*, such that

$$\ell(Ae_1,\ldots,Ae_d) = |\det A|^{\alpha} \ell(e_1,\ldots,e_d)$$

for all $(e_1,...,e_d) \in \mathscr{F}(V)$, $A \in GL(V)$. The space $\Omega^{\alpha}(V)$ of such α -densities is a one-dimensional complex vector space.

For *X* a \mathscr{C}^{∞} manifold, the *a*-density bundle $\Omega^{\alpha}(X) = \bigsqcup_{p \in X} \Omega^{\alpha}(T_{p}^{*}X)$ is a complex line bundle over *X*.

- Transition functions are $|\det(\partial y/\partial x)|^{-\alpha}$ for a coordinate change y = y(x).
- Sections of $\Omega^{\alpha}(X)$ are called α -densities and are locally written as $u(x)|dx|^{\alpha}$.

We shall encounter the cases $\alpha = 0$, $\alpha = 1/2$, and $\alpha = 1$.

◆□ → ◆□ → ∢ ≡ → ∢ ≡ → ○ へ ⊙

Overview Preliminaries Symplectic geometry First-order hyperbolic equation The wave t Integration and distributions on manifolds

• There is an invariant integration on X,

$$\mathscr{C}^{\infty}_{c}(X;\Omega^{1}) \to \mathbb{C}, \quad \omega \mapsto \int_{X} \omega.$$

• $L^2(X; \Omega^{1/2})$ is a Hilbert space with scalar product

$$(\omega,\eta) = \int_X \omega \overline{\eta}$$

- $\mathscr{D}'(X;\Omega^{1/2})$ is the dual space of $\mathscr{C}^{\infty}_{c}(X;\Omega^{1/2})$.
 - Then $L^1_{\text{loc}}(X;\Omega^{1/2}) \hookrightarrow \mathscr{D}'(X;\Omega^{1/2})$ via

$$f \mapsto \left(\phi \mapsto \int_{X} \underbrace{f(x)\phi(x)}_{\in L^{1}_{\operatorname{comp}}(X;\Omega^{1/2})}\right).$$

(日) (日) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Schwartz kernel theorem

Theorem

There is a 1-to-1 correspondence between linear (sequentially continuous) operators $A: \mathscr{C}^{\infty}_{c}(Y; \Omega^{1/2}) \to \mathscr{D}'(X; \Omega^{1/2})$ and distributions $K \in \mathscr{D}'(X \times Y; \Omega^{1/2})$ such that

 $\langle Au, \phi \rangle = \langle K, \phi \otimes u \rangle$

for $u \in \mathscr{C}^{\infty}_{c}(Y; \Omega^{1/2}), \phi \in \mathscr{C}^{\infty}_{c}(X; \Omega^{1/2}).$

This is often written as $Au(x) = \int_Y K(x, y)u(y)$. Instead of K one also writes A(x, y).

Now. Describe linear operators *A* through their kernels *K*.

Example

 $A \in \Psi^m(X; \Omega^{1/2})$ if and only if $K \in I^m(X \times X, \Delta_X; \Omega^{1/2})$ is conormal with respect to the diagonal $\Delta_X = \{(x, x) | x \in X\}$.

• In local coordinates, full symbol of $A \in \Psi^m(X; \Omega^{1/2})$ is

$$a(x,\xi) \sim a_m(x,\xi) + a_{m-1}(x,\xi) + \dots$$

- Principal symbol is $\sigma^m(A)(x,\xi) = a_m(x,\xi)$.
- Subprincipal symbol is

$$\sigma_{\rm sub}^{m-1}(A)(x,\xi) = a_{m-1}(x,\xi) - \frac{1}{2i}\sum_{j}\frac{\partial^2 a_m}{\partial x_j \partial \xi_j}(x,\xi).$$

The "calculus" of wave front sets

Let $A: \mathscr{C}^{\infty}_{c}(Y; \Omega^{1/2}) \to \mathscr{D}'(X; \Omega^{1/2})$ be linear and K be its kernel. Utilize the identification $T^{*}(X \times Y) \cong T^{*}X \times T^{*}Y$.

- WF'(A) = { $(x,\xi;y,\eta) \in (T^*X \setminus 0) \times (T^*Y \setminus 0) | (x,y,\xi,-\eta) \in WF(K)$ } is the wave front relation of A.
- $\mathsf{WF}_X(A) = \{(x,\xi) \in T^*X \setminus 0 \mid \exists y: (x,y,\xi,0) \in \mathsf{WF}(K)\}.$
- $WF'_{Y}(A) = \{(y,\eta) \in T^* Y \setminus 0 \mid \exists x : (x, y, 0, -\eta) \in WF(K)\}.$

Proposition

Let $u \in \mathscr{D}'(Y; \Omega^{1/2})$. Suppose that $WF(u) \cap WF'_Y(A) = \emptyset$ and the projection $(\operatorname{supp} K \times \operatorname{supp} u) \cap (X \times \Delta_Y) \to X$, $(x, y, y) \mapsto x$ is proper. Then $Au \in \mathscr{D}'(X; E)$ is defined. Moreover,

 $WF(Au) \subseteq WF'(A) \circ WF(u) \cup WF_X(A).$

An example: pull-backs

Let $f: X \to Y$ be \mathscr{C}^{∞} . Then $f^*: \mathscr{C}^{\infty}(Y) \to \mathscr{C}^{\infty}(X)$, $u \mapsto u \circ f$, has kernel

$$K(x,y) = \delta(y - f(x))$$

and, therefore,

WF(K) = {(x, y, \xi, \eta) | y = f(x), \xi + ^tdf(x)\eta = 0, \eta \neq 0}.

Here, ${}^{t}df(x): T_{f(x)}^{*} Y \to T_{X}^{*} X$ is the dual map of $df(x): T_{X} X \to T_{f(x)} Y$. We conclude that

 $WF(f^*) = \{(x, {}^{t}df(x)\eta; f(x), \eta) | {}^{t}df(x)\eta \neq 0\},\$ $WF'_{Y}(f^*) = \{(f(x), \eta) | {}^{t}df(x)\eta = 0, \eta \neq 0\},\$

and $WF_X(f^*) = \emptyset$.

Basic symplectic structure

- α = ξ dx = Σ_{j=1}^d ξ_j dx^j canonical 1-form on T*X \ 0 = {(x,ξ) | ξ ≠ 0}.
 σ = dα = dξ ∧ dx = Σ_{j=1}^d dξ_j ∧ dx^j - symplectic form on T*X \ 0, σ is non-degenerate.
 H_f = ∂f/∂ξ ∂/∂x - ∂f/∂x ∂/∂ξ - Hamilton vector field associated with f ∈ C[∞](T*X \ 0; ℝ), df = -H_f ⊥ σ = σ(·, H_f).
 {f,g} = H_fg = ∂f/∂ξ ∂g/∂x - ∂f/∂x ∂g/∂ξ - Poisson bracket.
 - g is constant along integral curves of H_f iff $\{f, g\} = 0$.
 - In particular, f is constant along integral curves of H_f .
- $(\mathscr{C}^{\infty}(T^*X \setminus 0; \mathbb{R}), \{,\})$ is Lie algebra.
- $H_{\{f,g\}} = [H_f, H_g]$, so $f \mapsto H_f$ is Lie algebra homomorphism.

Energy inequalities

Consider the Cauchy problem for the operator $-i\partial_t - P$:

(CP)
$$\boxed{-i\partial_t u = Pu + f \quad \text{on } (0,T) \times X, \quad u(0,\cdot) = \phi}$$

for the unknown u = u(t, x).

Proposition

Given $\phi \in H^{\sigma}(X; \Omega^{1/2})$ and $f \in L^{1}((0, T); H^{\sigma}(X; \Omega^{1/2}))$ for some $\sigma \in \mathbb{R}$, Eq. (CP) possesses a unique solution $u \in \mathscr{C}([0, T]; H^{\sigma}(X; \Omega^{1/2})).$

Indeed,

$$u(t)=U(t)\phi+\int_0^t U(t-t')f(t')\,dt',$$

where $u(t) = u(t, \cdot)$ and $U(t) = e^{itP}$ (defined via the spectral theorem).

Propagation of singularities

Statement on the propagation of singularities is microlocalized versions of the energy inequalities: Let $p = \sigma^1(P)$ and $\{\chi_t\}_{t \in \mathbb{R}}$ be the flow of H_p (= the bicharacteristic flow of P).

Proposition WF $(U(t)\phi) = \chi_t$ WF (ϕ) for all $\phi \in \mathscr{D}'(X; \Omega^{1/2})$.

Consistent with this result is:

Proposition Let $U: \mathscr{C}^{\infty}(X; \Omega^{1/2}) \to \mathscr{C}^{\infty}(\mathbb{R} \times X; \Omega^0 \boxtimes \Omega^{1/2})$ be the solution operator of the Cauchy problem for $-i\partial_t - P$. Then

 $\mathsf{WF}'(U) = \{(t, x, \tau, \xi; y, \eta) | \tau = p(x, \xi), (x, \xi) = \chi_t(y, \eta) \}.$

Wave front set of w

The kernel of U is

$$U(t,x,y) = \sum_{j} e^{jt\lambda_{j}} \phi_{j}(x) \overline{\phi_{j}(y)}.$$

Therefore, $w = \pi_* \Delta^* U$, where

- $\Delta: \mathbb{R} \times X \to \mathbb{R} \times X \times X$ is diagonal map and $\Delta^*: \mathscr{C}^{\infty}(\mathbb{R} \times X \times X; \Omega^0 \boxtimes \Omega^{1/2} \boxtimes \Omega^{1/2}) \to \mathscr{C}^{\infty}(\mathbb{R} \times X; \Omega^0 \boxtimes \Omega^1),$
- $\pi_*: \mathscr{C}^{\infty}(\mathbb{R} \times X; \Omega^0 \boxtimes \Omega^1) \to \mathscr{C}^{\infty}(\mathbb{R})$ is integration along fibers.

Lemma

 $\mathsf{WF}(w) \subseteq \{(t,\tau) \mid \exists (x,\xi) \in T^*X \setminus 0: \chi_t(x,\xi) = (x,\xi), \tau > 0\}.$

・ロ・・母・・ヨ・・ヨ・ シック

Proof of lemma

We already know that

$$WF(U) = \{(t, x, y, \tau, \xi, -\eta) | \tau = p(x, \xi), (x, \xi) = \chi_t(y, \eta), \xi \neq 0\}, \\WF'(\Delta^*) = \{(t, x, \tau, \xi + \eta; t, x, x, \tau, \xi, \eta) | (\tau, \xi + \eta) \neq 0\},$$

and then

$$\mathsf{WF}(\Delta^* U) \subseteq \{(t, x, \tau, \xi - \eta) \mid \tau = p(x, \xi), (x, \xi) = \chi_t(x, \eta), \xi \neq 0\}.$$

One further computes

 $WF'(\pi_{*}) = \{(t,\tau;t,x,\tau,0) \mid \tau \neq 0\}, \\WF(\pi_{*}\Delta^{*}U) \subseteq \{(t,\tau) \mid \exists (x,\xi): \chi_{t}(x,\xi) = (x,\xi), \xi \neq 0, \tau > 0\}$

which concludes the proof. \Box