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Format of this course

Tuesday, 14:30—15:30 — Lecture I: Introduction to
microlocal analysis

Wednesday, 17:00—18:00 — Lecture Il: Global aspects of
Fourier integral operators
Thursday, 16:00-17:00 — Lecture Ill: The wave trace and
periodic bicharacteristics

Friday, 10:30—11:30 — Lecture IV: Computation of higher
wave trace invariants



The setup

* X — € closed manifold, dimX =d.

« Pew'(X;Q'?) elliptic, P= P* > 0.

* P has purely discrete spectrum (as an unbounded operator
in L2(X;Q'/2)).

* 11 <Ax<A3<... —eigenvalues of P, with associated
eigenfunctions ¢; € €°° (X;Q'/2) which are chosen to form
an ONB in L2(X;Q"/2), 1;~¢j'/9 as j—» oo by Weyl’s law.

The wave trace is

w(t) =Y, et teR,

which is (formally) the trace of the wave group {€"} ;. The
latter yields the solving operator of the first-order hyperbolic
equation —id;u = Pu.



The problem

Problem. Study the singularities of ee .’ (R).
Key observation. e, teR, is zeroth-order elliptic FIO.

Proposition

0+ T esingsupp w implies that there is a periodic trajectory of
the Hamilton vector field Hp, of period T, where
p=0c'(P)eSM(T*X\0;R).

Question. How does a non-degenerate periodic trajectory of
Hp contribute to the singularities of the wave trace, e?

Let y be such a periodic trajectory. Its contribution is

ey(t) ~c_1,(t-T+i0)" +Zr>ocry(t T+i0) log(t-T+i0) ast—T.



Wave trace invariants

* The ¢;7 =3, Cry, r -1, where summation is over all
periodic trajectories, vy, of period T, are the wave trace
invariants of the title.
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where
* T, — primitive period of y,
* iy —Maslov index,
* II, — linearized Poincaré map,

+ 02, (P) — subprincipal symbol of P.
* The ¢y, r>-1, determine the Birkhoff normal form of y
completely.



a-densities

Linear algebra part. Let V be a real vector space, dimg V = d. For a € C, an a-density
isamap ¢:7 (V) —C, where # (V) is the set of all linear bases of V, such that

¢(Aey,...,Aey) =|detA|%¢(eq,...,eq)

forall (eq,...,eq) € Z(V), AcGL(V). The space Q*(V) of such a-densities is a
one-dimensional complex vector space.

For X a ¢*° manifold, the a-density bundle
QY(X) =Upex Q%(T5 X) is a complex line bundle over X.

* Transition functions are |det(dy/ox)| * for a coordinate change
y=y(x).

* Sections of Q%(X) are called a-densities and are locally written as
u(x)|dx|*.

We shall encounter the cases a =0, a=1/2,and a =1.



Integration and distributions on manifolds

* There is an invariant integration on X,
€2 (X;Q") >C, w'—>/Xw.

- L?(X;Q'/?) is a Hilbert space with scalar product

(w.m)= [ o
« 2'(X;Q'/?) is the dual space of €°(X;Q'/?).
C

(X;Q'2) > 2'(X;Q'/?) via

for (¢ [ 100000 ).
6L(1:omp(X;Q1/2)

- Then L}

loc



Schwartz kernel theorem

Theorem

There is a 1-to-1 correspondence between linear (sequentially
continuous) operators A: ¢ (Y;Q'?) - 2'(X;Q'/?) and
distributions K € 2'(X x Y;Q/2) such that

(Au,¢) = (K,pou)
forue € (Y;Q'2), pe € (X;Q'/?).

This is often written as Au(x) = [ K(x,y)u(y). Instead of K one also writes
A(x,y).

Now. Describe linear operators A through their kernels K.



Pseudodifferential operators

Example
AP (X;Q'2) if and only if K € I"(X x X,Ax: Q'/?) is conormal
with respect to the diagonal Ax = {(x,x) | x € X}.

« In local coordinates, full symbol of Ac ¥™(X;Q'/?) is

a(x,&) ~am(x,&)+am-1(x,&) +...

* Principal symbol is 6™ (A)(x,¢) = am(x,¢).
+ Subprincipal symbol is

Osub (A)(X ¢)=am1(x,¢)- Z ( €).

i axjafj



The “calculus” of wave front sets

Let A€ (Y;Q'?) > 2'(X;Q'/?) be linear and K be its kernel.
Utilize the identification T*(Xx Y)xT*Xx T*Y.
* WF'(A) = {(x.&;y,m) € (T*XN0) < (T*YN0) [ (x,,6,-n) €
WF(K)} is the wave front relation of A.
* WFx(A)={(x,&) e T*X~0|3y:(x,y,{,0) e WF(K)}.
* WFy(A)={(y,n) e T*Y~0|3x:(x,y,0,-n) e WF(K)}.

Proposition

Letue 2'(Y;Q'?). Suppose that WF(u) n\WF',(A) = @ and the
projection (supp K xsuppu)n (X xAy)— X, (x,y,y)~ X is
proper. Then Aue 2'(X; E) is defined. Moreover,

WF(Au) € WF'(A) o WF (1) UWF x (A).



An example: pull-backs

Let :X— Y be €. Then f:¢*(Y) - %> (X), u~ucf, has
kernel
K(x,y)=d(y-f(x))

and, therefore,
WF(K) ={(x,y,&n) |y =f(x), &+ 'df(x)n=0,n%0}.

Here, {df(x): Y - T; X is the dual map of df(x): TxX — Ty Y-

7—:‘yr(x)
We conclude that
WF(f*) ={(x,"df x)n; f(x),n) | 'df(x)n 0},
WFY () = {(f(x),n) |'df(x)n=0,n+0},

and WFx(f*) =@.



Basic symplectic structure

c q=¢dx= Zj?":1 &jdx/ — canonical 1-form on
T*X~N0={(x,&)|&+0}.
c o=da=dérndx= Z/?":1 déj ndx! — symplectic form on
T*X\0, o is non-degenerate.

of 0 oOf 0

Hi=— — - — — - Hamilton vector field associated with
o0& 0x 0x o¢

fe@®(T*X\0O;R), df =—H; 1o =0(-, Hy).
of ag of dg .
« {f,g}=Hig=——=-—— — Poisson bracket.
9 =H9=5: 5% “ax o¢ ~ 7O
- g is constant along integral curves of Hy iff {f,g} =0.
+ In particular, f is constant along integral curves of Hy.
« (¢=(T*X\0;R),{,}) is Lie algebra.

* Hytgy = [Hr, Hgl, so f+ Hy is Lie algebra homomorphism.



Energy inequalities

Consider the Cauchy problem for the operator —id; — P:

(CP) (—ioiu=Pu+f on (0, T)xX, u(0,-)=¢

for the unknown u = u(t, x).

Proposition

Given ¢ H*(X;Q'/?) and fe L' ((0, T); H* (X;Q'/?)) for some
o €R, Eq. (CP) possesses a unique solution

ue?([0,T];HO (X;Q'/?)),

Indeed, .
u(t):U(t)¢+f U(t-t)(t') ot

where u(t) = u(t,-) and U(t) = ' (defined via the spectral
theorem).



Propagation of singularities

Statement on the propagation of singularities is microlocalized
versions of the energy inequalities: Let p=o'(P) and {x:}ter
be the flow of Hj (= the bicharacteristic flow of P).

Proposition
WFE(U(t)¢) = x: WF () for all p € 2'(X;Q1/?).

Consistent with this result is:

Proposition
Let U: 6 (X;Q'2) > €= (Rx X; Q%= Q'/2) be the solution
operator of the Cauchy problem for —id;— P. Then

WF'(U) = {(t.x, 7. ym) [T =p(x,8), (x,§) = x¢(y,m) }-



Wave front set of w

The kernel of U is

U(tx,y) =X 6™ig;(x)9;(y)-
)

Therefore, w=n.A*U, where

* A:Rx X —>Rx X x X is diagonal map and
A*EP(Rx X x X;Q0m012m012) > ¢ (Rx X;Q%=0Q"),
c 1P (Rx X; Q%= Q") - € (R) is integration along fibers.

Lemma

WF(w) c{(t,7)]|3(x,&) e T* X\ 0:x:(x,¢) =(x,&), 7>0}.



Proof of lemma

We already know that

WF(U) ={(tx,y,7.§,-n) |1 =p(x,{), (x,§) = xt(y,n), § # 0},
WF'(A*) = {(t,x,T,E+m;1, %, X,7,E,n) | (T,E+71) # 0},

and then
WE(AU) c{(t.x, 7,6 -n) |7 =p(x,{), (x,¢) = xt(x,n), £ # 0}
One further computes

WF'(n,)={(t,7;t,x,7,0) | T #0},
WF (. A% U) € {(1,7) | 30x,6): 11 (6, E) = (%, ), £ 0, 7> 0}

which concludes the proof. O
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