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Introduction

The aim of this talk is to give a down-to-earth introduction to pseudo-
differential operators centered on its usage in the spectral theory of elliptic
operators. The focus will be on general ideas and conceptual notions rather
than precise proofs.

This being a tutorial, the time is quite loosely fitted. Questions are en-
couraged. The assumed prerequisites are that you know some basic functional
analysis (topological vector spaces, distributions) and what a (vector) bundle
on a smooth manifold is.

The plan for this talk is:

(1) Quick motivation
(2) Oscillatory integrals
(3) Pseudodifferential operators
(4) Operators on manifolds

The main reference for this tutorial is the notes of Joshi [4]. Everything
can as always be found in the works of Hörmander, in this case [3], to which
we refer some proofs.

1. Quick motivation

1.1. Differential operators and spectral theory. Let A be a differential
operator of order m on a d-dimensional manifold M . This means that in local
coordinates

A=
∑

|α|≤m

aα(x)D
α, where α= (α1, . . . ,αd) ∈Nd , D j = i∂x j

and Dα = Dα1
1 Dαd

d .

For instance, a Bochner-Laplacian A=∇∗∇, for a connection ∇, or the Hodge-
de Rahm Laplacian A= dd∗+ d∗d.

Technical conditions aside (domains, closed extensions to L2, self-adjointness),
spectral theory asks for which complex numbers λ there is a solution to
Au= λu. Rather, it asks for when the operator A−λ is (non-) invertible.

Exercise 1.1. Check that if an object such as (A− λ)−1 exists, it is not a
differential operator unless m= 0.
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More zealously we could ask for a ”full” description of (A− λ)−1. This is
what spectral theory encompasses. Two important spectral properties that
one often studies are

• Qualitative properties1.
• Quantative properties2

1.2. Laplacian on euclidean space. Let us restrict to M =Rd and

A=−∆=−
d
∑

j=1

∂ 2

∂ x2
j

.

We denote the Fourier transform byF , which acts continuously on the Schwartz
space F : S (Rd)→S (Rd) and extends to a unitary on L2(Rd).

For f ∈ S (Rd) it holds that

F (A−λ)F ∗ f (ξ) = (|ξ|2−λ) f (ξ).

Hence, for λ ∈C \R≥0, A−λ is ”invertible” with

(A−λ)−1 f (x) = [F ∗(|ξ|2−λ)−1F f ](x)

=

∫

Rd

∫

Rd

ei(x−y,ξ)(|ξ|2−λ)−1 f (y)dydξ(1)

=

∫

Rd

kλ(x , y) f (y)dy, where kλ(x , y) =

∫

Rd

ei(x−y,ξ)

|ξ|2−λ
dξ.

For d = 3, one can compute that kλ(x , y) = ei
p
λ|x−y||x− y|−1 where the branch

of the square root satisfies Im(
p
λ)> 0.

Exercise 1.2. Find all the missing 2π:s.

1.3. Ambition. We wish for a general machinery where one can:

(1) place the formal computations above in a solid analytic framework;
(2) carry out the same computations for ”general” operators on ”mani-

folds”.

The quotation marks in the last point on our wish list comes from: finding
resolvents often depend on some ellipticity assumption and the procedure
only works well on closed manifolds unless placing quite subtle controlling
assumptions at the boundary or at infinity. We of course also wish to carry
this out in such a way that both qualitative as well as quantative properties
of the spectrum is understood.

2. Oscillatory integrals

We see from the computations of (1) that we need to understand distribu-
tions given by integrals of the form

u(z) “=”

∫

Rd

eiφ(z,θ)a(z,θ)dθ .

1Given λ such that (A−λ)−1 doesn’t exist, why doesn’t it?
2How big is the set of λ such that (A−λ)−1 doesn’t exist?
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To do this, we restrict our attention to φ being a “phase function” and a a
“symbol” as in (1).

We say that a function φ = φ(z,θ) depending on (z,θ) ∈RN ×Rd \ {0} is
homogeneous of degree m in θ if

φ(z,λθ) = λmφ(z,θ) ∀λ > 0.

Definition 2.1 (Phase function, Definition 3.1 of [4]). Let U ⊆RN be open.
A function φ ∈ C∞(U ×Rd \ {0}) is called a phase function if

(1) φ is homogeneous of degree 1 in θ ;
(2) dφ is nowhere vanishing.

The example to keep in mind is N = 2d with z = (x , y) ∈R2d

φ(z,θ) = (x − y,θ).

We use the notation 〈θ 〉= (1+ |θ |2)1/2.

Definition 2.2 (Symbol, Definition 18.1.1 of [3] or Definition 3.2 of [4]). Let
U ⊆ RN be open. A function a = a(z,θ) ∈ C∞(U × Rd) is said to be a
symbol of degree m if for any compact K ⊆ U , α ∈NN and β ∈Nd , there is a
C = C(α,β , K) such that

(2) sup
x∈K
|∂ αz ∂

β
θ

a(z,θ)| ≤ C〈θ 〉m−|β |.

The linear space Sm(U ×Rd) of symbols of order m is a Frechet space in the
topology defined from the semi norms defined from (2).

Exercise 2.1. Check that if a is a rational function in θ , with coefficients in
C∞(U), then a is a symbol of the same order as a has as a rational function.

Exercise 2.2. Check that if a is homogeneous of degree m, a is a symbol of
degree m.

Exercise 2.3. Check that multiplication Sm× Sm′ → Sm+m′ as well as differen-

tiation ∂ αz ∂
β
θ

: Sm→ Sm−|β | are well defined and continuous operations.

Remark 2.3. The definition of symbols is made to allow for partial integration
being used as an order-reducing operation.

Remark 2.4. One can also ask for globally estimated symbol, placing con-
ditions on the behavior at infinity. This is needed for considering operators
on Rd and goes in similar spirit for complete, non-compact manifolds. Such
considerations are not needed on closed manifolds.

Remark 2.5. Sometimes it is needed to consider (ρ,δ)-symbols. We avoid
them.

Theorem 2.6. The distribution u ∈ D′(U) = C∞c (U)
′ can be made well defined

and satisfies that

singsupp(u)⊆ πU
�

{(z,θ) : dθφ(z,θ) = 0}
�

.

In our favorite example φ(z,θ) = (x − y,θ), for U = V × V the singular
support is always contained in the diagonal

∆V = {(x , x) : x ∈ V}.
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Sketch of proof, for details see Section 3 of [4]. We need to make sense of the
expression

u(ψ) =

∫

U

∫

Rd

eiφ(z,θ)a(z,θ)ψ(z)dθdz,

for ψ ∈ C∞c (U). After decomposing a = a0 + a1 where a1 vanishes near θ = 0
and a0 is compactly supported in θ , we can assume a = a1.

We pull the following operator out of the hat:

L =
N
∑

j=1

∂ φ

∂ z j

∂

∂ z j
+

d
∑

l=1

|θ |2
∂ φ

∂ θl

∂

∂ θl
.

It holds that
Leiφ = µ · eiφ ,

where
µ(z,θ) = |dzφ|2+ |θ |2|dθφ|2.

Exercise 2.4. Take a cutoff χ = χ(θ) ∈ C∞c (R
d) such that (1−χ)a = a. Show

that
µ−1 L(1−χ) : Sm→ Sm−1.

We conclude from the exercise that for any r ∈N

u(ψ) =

∫

U

∫

Rd

(µ−1 L(1−χ))reiφ(z,θ)a(z,θ)ψ(z)dθdz

=
∑

|α|≤r

∫

U

∫

Rd

eiφ(z,θ)aα(z,θ)∂ αz ψ(z)dθdz,

where aα ∈ Sm−r . For r > m+ d, this expression converges. �

3. Pseudodifferential operators

For a symbol a ∈ Sm(R2d ×Rd) we define the operator

Op(a) : C∞c (R
d)→ C∞(Rd), Op(a) f (x) :=

∫

Rd

∫

Rd

a(x , y,ξ)ei(x−y,ξ) f (y)dydξ.

We interpret this as an oscillatory integral.

Exercise 3.1. Check that Op(a) is well defined.

Exercise 3.2. Check that if a does not depend on y, the operator Op(a) can
be defined as in (1) without the usage of oscillatory integrals.

Exercise 3.3. Compute Op(a) when a(x ,ξ) =
∑

|α|≤m aαξ
α, where aα are num-

bers.

Proposition 3.1. The operator Op(a) is continuous and extends by duality
to a continuous operator

Op(a) : E ′(Rd)→D′(Rd).

Remark 3.2. If U , V ⊆ Rd are open sets and a ∈ Sm(U × V ×Rd), we obtain
an operator Op(a) : C∞c (V )→ C∞(U).
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3.1. Schwartz kernels. The Schwarz kernel theorem guarantees that associ-
ated with any continuous linear operator A : C∞c (U)→D

′(U) there is a unique
Schwartz kernel KA ∈ D′(U × U) satisfying that

Aψ(ϕ) = KA(ϕ⊗ψ), ϕ,ψ ∈ C∞c (U).

The operators we are interested in factors over the dense inclusion C∞(U) ⊆
D′(U) or in nice cases even over C∞c (U)⊆ D

′(U).

Proposition 3.3. The Schwartz kernel of Op(a) is given by the oscillatory
integral

Ka(x , y) :=

∫

Rd

a(x , y,ξ)ei(x−y,ξ)dξ.

Remark 3.4. By Theorem 2.6, Ka ∈ C∞(U × U \∆U). In fact, the singularity
of Ka at ∆U (being a conormal distribution at ∆U) characterizes the fact that
Ka defines a pseudo-differential operator.

Remark 3.5. It holds that Ka ∈ C∞(U×U) if and only if a ∈ S−∞(U×U×Rd) =
∩m∈RSm(U × U ×Rd). In this case a, and Ka as well as Op(a), are said to be
a smoothing symbol, kernel respectively operator.

Definition 3.6. Let A : C∞c (U)→ C∞(U) be a continuous operator.

• A is said to be a pseudodifferential operator of order m if A= Op(a)+R
where a ∈ Sm(U × U ×Rd) and KR ∈ C∞(U × U).
• A pseudodifferential operator A with a = 0 is said to be smoothing.

The space of pseudo-differential operators on U of order m is denoted by
Ψm(U).

3.2. Asymptotic expansions. A very useful property of pseudodifferential
operators comes from the following lemma.

Lemma 3.7. Assume that (m j) j∈N is a decreasing sequence converging to −∞
and a j ∈ Sm j (U × U ×Rd) a collection of symbols. For m = m0 there is an

a ∈ Sm(U × U ×Rd) with

supp (a)⊆ ∪ jsupp (a j) and a−
N
∑

j=0

a j ∈ SmN+1 ∀N .

The symbol a is uniquely determined in Sm/S−∞.

Proof. By a partition of unity argument, we can assume that everything is
supported inside a compact subset of U . Choose a bump function χ ∈ C∞c (R

d),
i.e. χ = 1 near ξ = 0. Some computations show that 1−χ(ε·)→ 0 in S1. By
continuity of multiplication, there exists a sequence ε j % 0 such that

�

�

�∂ αz ∂
β
ξ

�

(1−χ(ε jξ))a j(x , y,ξ)
�

�

�

�≤ 2− j〈ξ〉m j+1−|β |.

We now set

a(x , y,ξ) :=
∞
∑

j=0

(1−χ(ε jξ))a j(x , y,ξ),

which is a well defined locally finite sum. Since 2− j is summable, the Lemma
follows from a quick and dirty computation. �
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One writes a ∼
∑∞

j=0 a j even though the right hand side is not well defined.

Corollary 3.8. If A0, A1, . . . are pseudo-differential operators of order m j →
−∞ there is a pseudodifferential operator A of order m with A−

∑N
j=0 A j being

of order m̃N+1.

Similarly to the case of symbols, one writes A ∼
∑∞

j=1 A j. We mention

another corollary, whose importance at this stage mainly is conceptual.

Corollary 3.9. There exists aL , aR ∈ Sm(Rd×Rd) such that (mod C∞-kernels)

Op(a) f (x) =

∫

Rd

aL(x ,ξ)F f (ξ)dξ=

∫

Rd

∫

Rd

aR(y,ξ)ei(x−y,ξ) f (y)dydξ.

In particular, the class of pseudo-differential operators is closed under ad-
joints.

Definition 3.10. A symbol a ∈ Sm(U ×Rd) is said to be classical, if there
exists functions a j ∈ C∞(U×Rd) homogenous away from θ = 0 of order m− j
with

a ∼
∞
∑

j=0

a j .

We denote the associated space of operators by Ψm
cl(U).

Remark 3.11. For a symbol a ∈ Sm, its principal symbol is the associated class
in Sm/Sm−1 is often denoted by σm(a). If a is classical, σm(a) is a well defined
element of C∞(U × Sd−1). This in fact fits into a short exact sequence

0→Ψm−1
cl (U)→Ψ

m
cl(U)→ C∞(U × Sd−1)→ 0.

4. Operators on manifolds

4.1. Changing coordinates. To ensure that operators on manifolds behave
well under coordinate changes, we will make use of the following Theorem.

Theorem 4.1. Let U , V ⊆ Rd be open subsets, κ : U → V a diffeomorphism
and A∈Ψm(U). Then the operator

κ∗A : C∞c (V )→ C∞(V ), f 7→ (A( f ◦κ)) ◦κ−1,

is a pseudodifferential operator of order m which is properly supported if and
only if A is.

Sketch of proof. We can assume A= Op(a). It holds that

[κ∗A] f (x) =

∫

V

∫

Rd

ei(κ−1(x)−y,ξ)a(κ−1(x), y,ξ) f (κ(y))dξdy

{z = κ(y)}

=

∫

U

∫

Rd

ei(κ−1(x)−κ−1(z),ξ)a(κ−1(x),κ−1(z),ξ) f (κ(y))
dξdz

|detκ′(κ−1(z))|

{κ−1(x)−κ−1(z) = A(x , z)(x − z), η= At(x , z)ξ}

=

∫

U

∫

Rd

ei(x−z,η) a(κ−1(x),κ−1(z),η)
|detκ′(κ−1(z))||det At(x , z)|

f (κ(y))dηdz.
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The proof follows from the next exercise. �

Exercise 4.1. Show that

aκ(x , z,η) :=
a(κ−1(x),κ−1(z),η)

|detκ′(κ−1(z))||det At(x , z)|
is a symbol.

4.2. Pseudodifferential operators on manifolds. From now on, let M
denote a d-dimensional manifold.

Corollary 4.2. Let U ⊆ M be a coordinate neighborhood, αi : U → Ui ⊆ Rd ,
i = 1,2 two different choices of coordinates charts and A : C∞c (U)→ C∞(U) a
linear operator. Then α∗1A : C∞c (U1)→ C∞(U1) is a pseudo-differential opera-
tor of order m if and only if α∗2A : C∞c (U2)→ C∞(U2) is a pseudo-differential
operator of order m.

If the conditions in the corollary holds, we say that A is a pseudodifferen-
tial operator of order m. The above corollary guarantees that the following
definition makes sense.

Definition 4.3. A linear operator A : C∞c (M)→ C∞(M) is called a pseudodif-
ferential operator of order m if for any coordinate neighborhood U ⊆ M and
χ,χ ′ ∈ C∞c (U) the operator χAχ ′ is a pseudodifferential operator of order m.

Remark 4.4. If E, E′→ M are vector bundles, Ψm(M ; E, E′) is defined similarly,
in local coordinates χPχ ′ = (χPi jχ

′) : C∞c (U ,Cn)→ C∞c (U ,Cm) is a matrix of
pseudo-differential operators.

Remark 4.5. If (Uα)α∈I is a cover of coordinate neighborhoods, A is a pseu-
dodifferential operator of order m if and only if χAχ ′ is a pseudodifferential
operator of order m for any χ,χ ′ ∈ C∞c (Uα) and χAχ ′ is smoothing whenever
χ,χ ′ ∈ C∞c (M) satisfies χ ·χ ′ = 0.

Proposition 4.6. Given a cover (Uα)α∈I and a pseudodifferential operator A
of order m, there exists a refinement (Vβ)β∈J with |J | ≤ |I |2 and pseudodiffer-
ential operators Aβ of order m compactly supported in Vβ such that

A∼
∑

β

Aβ .

Remark 4.7. On a manifold, the principal symbol of a classical operator is a
smooth function on S∗M . The symbol mapping fits into a short exact sequence:

0→Ψm−1
cl (M ; E, E′)→Ψm

cl(M ; E, E′)→ C∞(S∗M ;π∗Hom(E, E′))→ 0.

4.3. Global quantization. We will now turn a procedure of constructing op-
erators from symbols on manifolds. For any coordinate neighborhood U ⊆ M
we can define the Frechet space of symbols Sm(T ∗U) by means of a trivializa-
tion T ∗U ∼= U ×Rd . We define the Frechet space

Sm(M) := {a ∈ C∞(T ∗M) : a·χ ∈ Sm(T ∗U) for any chart U ⊆ M and χ ∈ C∞c (U)}.

We let N ∗M → M denote the normal bundle of the diagonal M ∼= ∆M ⊆
M × M . As a manifold, N ∗M is diffeomorphic to an open neighborhood of



8 MAGNUS GOFFENG

the diagonal ∆M ⊆ M ×M . Such a diffeomorphism can be constructed by for
instance parallel transport along a connection. We also let ΩM → M denote
the R>0-bundle of nonvanishing densities on M . The bundle of non vanishing
densities is trivializable since R>0 is homotopic to the trivial group.

Theorem 4.8. Given a diffeomorphism φ : N ∗M
∼−→ U ⊇ ∆M onto an open

neighborhood of the diagonal and a trivialization ω of ΩM , there is a linear
mapping

Opφ,ω : Sm(M)→Ψm
prop(M),

coinciding with Op in local coordinates, which induces an isomorphism

Sm(M)/S−∞(M)∼=Ψm
prop(M)/Ψ

−∞
prop(M).
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