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Why do people care about operator ζ-functions?

▸ Why do people care about traces?
▸ traces on an algebra ⇒ invariants of the algebra
▸ Atiyah-Singer index theorem: tr(e−tD∗D) − tr(e−tDD∗) = ch(V )Td(X)[X]
▸ Heat trace: tre−t∣∆∣ = (4πt)−

dimX
2 ∑k∈N0

Akt
k
2 where the Ak are called heat

invariants (A0 = volX, A2 = total curvature(X), . . .)
▸ Operator ζ-functions allow us to construct traces!
▸ ⇒ wave traces: treit

√
∣∆∣ (t-values of poles are lengths of closed geodesics)

▸ physics: wave propagators are (closely related to) Fourier Integral Operators
⇒ traces allow reconstruction of the QFT
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Definition (Phase Function)

Let N ∈ N. A function

ϑ ∈ C (X ×X ×RN) ∩C∞ (X ×X × (RN ∖ {0}))

is called a phase function if and only if it is positively homogeneous of degree 1 in
the third argument, i.e.,

∀x, y ∈X ∀ξ ∈ RN ∀λ ∈ R>0 ∶ ϑ(x, y, λξ) = λϑ(x, y, ξ).

Example

Pseudo-differential phase function: ϑ(x, y, ξ) = ⟨x − y, ξ⟩`2(N) with N = dimX.
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Definition
Let U⊆Rn be open, N ∈ N, and m ∈ R. The Hörmander class Sm(U ×U ×RN) is
defined as the set of all a ∈ C∞(U ×U ×RN) such that for every K⊆compactU

2 and
all multi-indices α,β, γ there exists a constant c ∈ R>0 such that

∀(x, y) ∈K ∀ξ ∈ RN ∖BRN (0,1) ∶ ∣∂α1 ∂
β
2 ∂

γ
3a(x, y, ξ)∣ ≤ c (1 + ∥ξ∥`2(N))

m−∥γ∥`1(N)

holds.
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Definition
A Fourier Integral Operator A ∶ C∞

c (X) → C∞
c (X)′ on X is a linear operator

whose Schwartz kernel k ∈ C∞
c (X ×X)′ is a locally finite sum of local

representations of the form

k(x, y) = ∫
RN

eiϑ(x,y,ξ)a(x, y, ξ)dξ,

i.e.,

∀ϕ,ψ ∈ C∞
c (X) ∶ A(ϕ)ψ =

n

∑
i=1
∫
X2
ki(x, y)ϕ(y)ψ(x)dvolX2(x, y),

where, for each localization U⊆X, ϑ is a phase function and a is an element of some
Hörmander class Sm(U ×U ×RN). a is also called an amplitude or symbol.
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Definition
Let ϑ be a phase function. Then, we call

C(ϑ) ∶= {(x, y, ξ) ∈X ×X × (RN ∖ {0}) ; ∂3ϑ(x, y, ξ) = 0}

the critical set of ϑ.
ϑ is called non-degenerate if and only of the family of differentials

(d∂3,jϑ(x, y, ξ))j∈N≤N

is linearly independent for every (x, y, ξ) ∈ C(ϑ) where ∂3,j denotes the derivative
with respect to the jth component of the third argument.
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Definition
Let Λ⊆T ∗(X2) ∖ 0 be a Lagrangian manifold and A a Fourier Integral Operator of
the form A = ∑nj=1Aj where each Aj has a non-degenerate phase function ϑj
defined on an open, conic subset Uj⊆openX ×X × (RNj ∖ {0}) such that

Uj ∩C(ϑj) ∋ (x, y, ξ) ↦ (x, y, ∂1ϑj(x, y, ξ), ∂2ϑj(x, y, ξ))

is a diffeomorphism onto an open subset UΛ
j ⊆openΛ, and amplitude

aj ∈ Sm+
dimX−Nj

2 (X ×X ×RNj) with

sptaj⊆{(x, y, tξ) ∈X ×X ×RNj ; (x, y, ξ) ∈K ∧ t ∈ R>0}

for some K⊆compactUj . Then, we say A is an element of Im(X ×X,Λ) (or more
precisely, A has a kernel in Im(X ×X,Λ)).
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Definition (Canonical Relation)

Let Γ⊆T ∗0 X × T ∗0 X be a relation satisfying
(i) Γ is symmetric, i.e., ∀(p, q) ∈ Γ ∶ (q, p) ∈ Γ,
(ii) Γ is transitive, i.e., ∀(p, q), (q, r) ∈ Γ ∶ (p, r) ∈ Γ,
We will call any such Γ a canonical relation. Furthermore, we will assume that all
canonical relations satisfy
(iii) the composition Γ ○ Γ is clean, i.e., Γ × Γ intersects

T ∗X × diag(T ∗X × T ∗X) × T ∗X in a manifold whose tangent plane is precisely
the intersection of the tangent planes of Γ × Γ and
T ∗X × diag(T ∗X × T ∗X) × T ∗X where
diag(T ∗X × T ∗X) ∶= {(x, y) ∈ T ∗X × T ∗X; x = y},

(iv) the projection pr1 ∶ Γ→ T ∗X; (p, q) ↦ p is proper, i.e., pre-sets of compacta
are compact.
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Definition (Twisted Canonical Relation)

We will call the set

Γ′ ∶= {((x, ξ), (y, η)) ∈ T ∗0 X × T ∗0 X; ((x, ξ), (y,−η)) ∈ Γ}

a twisted canonical relation.
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Definition
Let Γ⊆T ∗0 X × T ∗0 X be a canonical relation. Γ is called a homogeneous canonical
relation if and only if Γ′ is a Lagrangian manifold.

Definition
Let Γ⊆T ∗0 X × T ∗0 X be a homogeneous canonical relation with Γ ○ Γ = Γ. Then, we
call

AΓ ∶= ⋃
m∈R

Im(X ×X,Γ′)

the algebra of Fourier Integral Operators associated with Γ.
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Lemma
Let A be a Fourier Integral Operator with kernel k ∈ Im(X ×X,Λ). If m < −dimX,
then A is of trace-class.

Lemma
Let k(x, y) = ∫RN e

iϑ(x,y,ξ)a(x, y, ξ)dξ be a localization of the Schwartz kernel of an
A ∈ AΛ′ with a ∈ Sm(U ×RN) for some m < −N and U⊆openX

2. Then, k ∈ C(U).

Corollary

There exists a subalgebra AΛ′,0⊆AΛ′ which consists of trace-class operators with
continuous kernels. In particular, if k is the kernel of A ∈ AΛ′,0, then

trA = ∫X k(x,x)dvolX(x) = ⟨k, δdiag⟩.
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ζ-regularization
▸ Let A be an operator algebra.
▸ Let A0⊆A be a subalgebra.
▸ Let τ ∶ A0 → C be a trace, i.e., linear functional such that
∀x, y ∈ A0 ∶ τ(xy) = τ(yx).

▸ Instead of A ∈ A, consider ϕ ∶ C→ A holomorphic such that ϕ(0) = A and

∃Ω0⊆open,connectedC ∶ ϕ[Ω0]⊆A0.

▸ Let Ω⊆open,connectedC be maximal satisfying Ω0⊆Ω such that τ ○ϕ ∶ Ω0 → C has
a holomorphic extension ζ(ϕ) ∶ Ω→ C.

▸ Is ζ(ϕ) holomorphic in a neighborhood of 0? (Want trA ∶= ζ(ϕ)(0).)
▸ Does ϕ(0) = ψ(0) imply ζ(ϕ)(0) = ζ(ψ)(0)?
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ζ-regularization for pseudo-differential operators
▸ Let A = Ψcl be the algebra of classical pseudo-differential operators on a

compact manifold X without boundary.
▸ Let A0 = Ψcl ∩ S1(L2(X)).
▸ Let τ ∶ A0 → C be the trace tr in S1(L2(X)).

▸ Instead of A ∈ A, consider ϕ ∶ C→ A holomorphic such that ϕ(0) = A and

∀z ∈ C ∶ ϕ(z) ∼ ∑
j∈N0

am−j+z(z).

Then, Ω0 = CR(⋅)<−dimX−R(m).
▸ tr ○ ϕ has meromorphic extension to C with isolated simple poles.
▸

▸ m ∉ Z≥−dimX ∧ N ∈ N>dimX+R(m)

⇒ ζ(ϕ)(0) = ∫M (k(0) −∑Nj=0 km−j(0)) (x,x)dvolX(x)
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▸ Let A = AΓ be an algebra of FIOs.
▸ Let A0 = AΓ ∩ S1(L2(X)).
▸ Let τ ∶ A0 → C be the trace tr in S1(L2(M)).

▸ Instead of A ∈ A, consider ϕ ∶ C→ A holomorphic such that ϕ(0) = A and

∀z ∈ C ∶ ϕ(z) ∼ ∑
j∈N0

am−j+z(z) ∈ Sm+R(z)(X2 ×RN).

Then, Ω0 = CR(⋅)<−max{dimX,N}−R(m).

Let k(z) be the kernel of ϕ(z). Then, we want to show that

Ω0 ∋ z ↦ ⟨k(z), δdiag⟩ ∈ C

has a meromorphic extension to C.
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The Black Box Magic Theorem

Theorem (Hörmander Thm 21.2.10)

Let S be a conic symplectic manifold of dimension 2n and V1 and V2 conic
Lagrangian submanifolds intersecting cleanly at γ ∈ S.
Then, there are homogeneous symplectic coordinates (x, ξ) at γ such that
γ = (0, e1), e1 = (1,0, . . . ,0), and near γ

V1 ={(0, ξ)}
V2 ={(0, x′′, ξ′,0)}

where ξ′ = (ξ1, . . . , ξk), x′′ = (xk+1, . . . , xn), and k = dimV1 ∩ V2.

ζ-functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions T. Hartung



Motivation FIO algebras ζ-reg. gplh distribs Laurent exp. Mollification gKV and res trace Stationary phase approx.

The Black Box Magic happening
▸ It is possible to write

k(z) = ∫
Rk
ei⟨x

′,ξ′⟩a(z)(x′′, ξ′)dξ′.

▸ There exists a pseudo-differential operator P such that δdiag = Pδ0.
▸ Hence, there exists a polyhomogeneous α(z) such that

⟨k(z), δdiag⟩ = ⟨P Tk(z), δ0⟩ = ∫
Rk
α(z)(ξ)dξ

Remark. This approach appears in various different forms in many publications
by Duistermaat, Greenleaf, Guillemin, Hörmander, Melrose, Uhlmann, ...
Remark (Zworski). For trace-class A ∈ AΓ there exists a FIO F such that
trA = tr(F−1AF ) = ∫ α.

ζ-functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions T. Hartung



Motivation FIO algebras ζ-reg. gplh distribs Laurent exp. Mollification gKV and res trace Stationary phase approx.

The Black Box Magic happening
▸ It is possible to write

k(z) = ∫
Rk
ei⟨x

′,ξ′⟩a(z)(x′′, ξ′)dξ′.

▸ There exists a pseudo-differential operator P such that δdiag = Pδ0.

▸ Hence, there exists a polyhomogeneous α(z) such that

⟨k(z), δdiag⟩ = ⟨P Tk(z), δ0⟩ = ∫
Rk
α(z)(ξ)dξ

Remark. This approach appears in various different forms in many publications
by Duistermaat, Greenleaf, Guillemin, Hörmander, Melrose, Uhlmann, ...
Remark (Zworski). For trace-class A ∈ AΓ there exists a FIO F such that
trA = tr(F−1AF ) = ∫ α.

ζ-functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions T. Hartung



Motivation FIO algebras ζ-reg. gplh distribs Laurent exp. Mollification gKV and res trace Stationary phase approx.

The Black Box Magic happening
▸ It is possible to write

k(z) = ∫
Rk
ei⟨x

′,ξ′⟩a(z)(x′′, ξ′)dξ′.

▸ There exists a pseudo-differential operator P such that δdiag = Pδ0.
▸ Hence, there exists a polyhomogeneous α(z) such that

⟨k(z), δdiag⟩ = ⟨P Tk(z), δ0⟩ = ∫
Rk
α(z)(ξ)dξ

Remark. This approach appears in various different forms in many publications
by Duistermaat, Greenleaf, Guillemin, Hörmander, Melrose, Uhlmann, ...
Remark (Zworski). For trace-class A ∈ AΓ there exists a FIO F such that
trA = tr(F−1AF ) = ∫ α.

ζ-functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions T. Hartung



Motivation FIO algebras ζ-reg. gplh distribs Laurent exp. Mollification gKV and res trace Stationary phase approx.

The Black Box Magic happening
▸ It is possible to write

k(z) = ∫
Rk
ei⟨x

′,ξ′⟩a(z)(x′′, ξ′)dξ′.

▸ There exists a pseudo-differential operator P such that δdiag = Pδ0.
▸ Hence, there exists a polyhomogeneous α(z) such that

⟨k(z), δdiag⟩ = ⟨P Tk(z), δ0⟩ = ∫
Rk
α(z)(ξ)dξ

Remark. This approach appears in various different forms in many publications
by Duistermaat, Greenleaf, Guillemin, Hörmander, Melrose, Uhlmann, ...

Remark (Zworski). For trace-class A ∈ AΓ there exists a FIO F such that
trA = tr(F−1AF ) = ∫ α.

ζ-functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions T. Hartung



Motivation FIO algebras ζ-reg. gplh distribs Laurent exp. Mollification gKV and res trace Stationary phase approx.

The Black Box Magic happening
▸ It is possible to write

k(z) = ∫
Rk
ei⟨x

′,ξ′⟩a(z)(x′′, ξ′)dξ′.

▸ There exists a pseudo-differential operator P such that δdiag = Pδ0.
▸ Hence, there exists a polyhomogeneous α(z) such that

⟨k(z), δdiag⟩ = ⟨P Tk(z), δ0⟩ = ∫
Rk
α(z)(ξ)dξ

Remark. This approach appears in various different forms in many publications
by Duistermaat, Greenleaf, Guillemin, Hörmander, Melrose, Uhlmann, ...
Remark (Zworski). For trace-class A ∈ AΓ there exists a FIO F such that
trA = tr(F−1AF ) = ∫ α.

ζ-functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions T. Hartung



Motivation FIO algebras ζ-reg. gplh distribs Laurent exp. Mollification gKV and res trace Stationary phase approx.

Black Box Magic for pseudo-differential operators

Consider a trace-class pseudo-differential operator A with symbol σ. Then, we have

trA =⟨(x, y) ↦ ∫
RdimX

ei⟨x−y,ξ⟩σ(x, y, ξ)dξ, δdiag⟩

=∫
X
∫
RdimX

σ(x,x, ξ)dξdvolX(x)

=∫
RdimX

∫
X
σ(x,x, ξ)dvolX(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶α(ξ)

dξ
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A gauged poly-log-homogeneous distribution α is a holomorphic family (α(z))z∈C
with an expansion

α = α0 +∑
ι∈I

αι

where
▸ I⊆N
▸ α0(z) ∈ L1(R≥1 ×M) for all z in an open neighborhood of CR⋅≤0 where M is a

compact, orientable, finite dimensional manifold without boundary
▸ ∀ι ∈ I ∃dι ∈ C ∃lι ∈ N0 ∃α̃ι ∈ Cω(C, L1(M)) ∀(r, ν) ∈ R≥1 ×M ∶

αι(z)(r, ν) = rdι+z(ln r)lια̃ι(z)(ν)
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Furthermore (primarily if I is infinite)
▸ The family (R(dι))ι∈I is bounded from above.1

▸ The map I ∋ ι↦ (dι, lι) is injective.
▸ There are only finitely many ι satisfying dι = d for any given d ∈ C.
▸ The family ((dι − δ)−1)ι∈I is in `2(I) for any δ ∈ C ∖ {dι; ι ∈ I}.
▸ Each ∑ι∈I α̃ι(z) converges unconditionally in L1(M).2

1Note, we do not require R(dι) → −∞. ∀ι ∈ I ∶ R(dι) = 42 is entirely possible.
2Unconditional convergence of ∑ι∈I α̃ι(z) in L1(M) may also be replaced by the slightly

weaker, though more artificial, condition ∑ι∈I ∥α̃ι(z)∥2L1(M)
< ∞.
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Example (Classical pseudo-differential operator)

▸ Let σ ∼ ∑j∈N0
am−j be a classical symbol.

▸ gauging σ ↝ σ(z) ∼ ∑j∈N0
am−j+z(z)

▸ splitting into trace-class and non-trace-class: I = {j ∈ N0; R(m) − j ≥ −dimX}
▸ M = ∂BRdimX

▸ ∀z ∈ C ∀ι ∈ I ∀(r, ν) ∈ R≥1 ×M ∶ αι(z)(r, ν) ∶= ∫X am−ι+z(z)(x,x, rν)dvolX(x)
▸ α0(z)(r, ν) ∶= ∫X σ(z)(x,x, rν) −∑ι∈I am−ι+z(z)(x,x, rν)dvolX(x)
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ζ-functions of gauged poly-log-homogeneous distributions
Formal computation:

∫
R≥1×M

α(z)dvolR≥1×M

= +∑
ι∈I
∫
R≥1×M

αι(z)dvolR≥1×M

=τ0(z) +∑
ι∈I
∫
R≥1
∫
M
αι(z)(r, ν)rdimMdvolM(ν)dr

=τ0(z) +∑
ι∈I
∫
R≥1

rdimM+dι+z (ln r)lι dr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶cι(z)

∫
M
α̃ι(z)dvolM

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶resαι(z)∈C

=τ0(z) +∑
ι∈I

cι(z)resαι(z)
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∫
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ζ-functions of gauged poly-log-homogeneous distributions
Lemma
For R(z) ≪ 0 ∶ cι(z) = (−1)lι+1lι! (dimM + dι + z + 1)−(lι+1) =∶ c̃ι(z)

Proof.
Use upper incomplete Γ-function Γui to show

(R>0 ∋ y ↦ −Γui(l+1,−(d+1) lny)
(−(d+1))l+1

∈ C)
′

(x) = xd(lnx)l

and then integrate

∫R≥1 r
dimM+dι+z (ln r)lι dr.
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Lemma
For every z ∈ C ∖ {−dimM − dι − 1; ι ∈ I}, ∑ι∈I c̃ι(z)resαι(z) converges absolutely.

Proof.
By assumption, (c̃ι(z))ι∈I ∈ `2(I) and ∑ι∈I α̃ι(z) uncond. conv. in L1(M). By

Theorem (Orlicz)

Let p ∈ R≥1, q =
⎧⎪⎪⎨⎪⎪⎩

2 , p ∈ [1,2]
p , p ∈ R>2

, and ∑j∈N xj converges unconditionally in Lp.

Then, ∑j∈N ∥xj∥qLp converges.

we have (resαι(z))ι∈I ∈ `2(I), i.e., (c̃ι(z)resαι(z))ι∈I ∈ `1(I).
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ζ-functions of gauged poly-log-homogeneous distributions

Definition
Let α be a gauged poly-log-homogeneous distribution. Then, we define the
ζ-function ζ(α) of α to be the meromorphic extension of

ζ(α)(z) ∶= ∫
R≥1×M

α(z)dvolR≥1×M ,

i.e., in an open neighborhood of CR(⋅)≤0

ζ(α)(z) = ∫
R≥1×M

α0(z)dvolR≥1×M +∑
ι∈I

(−1)lι+1lι!resαι(z)
(dimM + dι + z + 1)lι+1

.
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Theorem
ζ(α) is a well-defined meromorphic function on an open neighborhood of CR(⋅)≤0

and has at most isolated poles of finite order in the set

{−dι − dimM − 1; ι ∈ I}.

Example

For classical pseudo-differential operators: dimM = dimX − 1 and all lι vanish.
Hence, ζ-functions of psudo-differential operators exist and have at most isolated
simple poles in the set

{−dι − dimX; ι ∈ I}.
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Definition
Let f(z) ∶= ∑n∈Z an(z − z0)n be without essential singularity at z0. Then we define:
▸ order of the initial Laurent coefficient: oilcz0(f) ∶= min{n ∈ Z; an ≠ 0}
▸ initial Laurent coefficient: ilcz0(f) ∶= aoilcz0(f)

Lemma
Let α = α0 +∑ι∈I αι and β = β0 +∑ι∈I′ βι be two gauged poly-log-homogeneous
distributions with α(0) = β(0) and resαj(0) ≠ 0 if lj is the maximal logarithmic
order with dj = −dimM − 1.
Then, oilc0(ζ(α)) = oilc0(ζ(β)) = −lj − 1 and ilc0(ζ(α)) = ilc0(ζ(β)).
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Proof.
Since α(0) = β(0), we obtain that z ↦ γ(z) ∶= α(z)−β(z)

z is a gauged
poly-log-homogeneous distribution again.

Furthermore,

oilc0(ζ(γ)) ≥ min{oilc0(ζ(α)),oilc0(ζ(β))} =∶ −l = −lj − 1

holds because each pair (dι, lι) in the expansion of γ appears in at least one of the
expansions of α or β.
This implies that z ↦ zlζ(γ)(z) = zl−1 (ζ(α)(z) − ζ(β)(z)) is holomorphic at zero
(equality holds for R(z) sufficiently small and, thence, in general by meromorphic
extension).
Hence, the highest order poles of ζ(α) and ζ(β) at zero must cancel out which
directly implies oilc0(ζ(α)) = oilc0(ζ(β)) and ilc0(ζ(α)) = ilc0(ζ(β)).
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Lemma
Let α = α0 +∑ι∈I αι and β = β0 +∑ι∈I′ βι be two gauged poly-log-homogeneous
distributions with α(0) = β(0) and ∀ι ∈ I ∪ I ′ ∶ dι ≠ −dimM − 1. Then,
ζ(α)(0) = ζ(β)(0).

Proof.
Again, since α(0) = β(0), we obtain that z ↦ γ(z) ∶= α(z)−β(z)

z is a gauged
poly-log-homogeneous distribution and oilc0(ζ(γ)) ≥ 0. Hence

ζ(α)(0) − ζ(β)(0) =res0 (z ↦
ζ(α)(z) − ζ(β)(z)

z
) = res0ζ(γ) = 0

where res0 denotes the residue of a meromorphic function at zero.
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Definition
Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous distribution and
Iz0 ∶= {ι ∈ I; dι = −dimM − 1 − z0}. Then, we define

fpz0(α) ∶= α − ∑
ι∈Iz0

αι = α0 + ∑
ι∈I∖Iz0

αι.

Corollary

ζ(fp0α)(0) is independent of the chosen gauge.
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Theorem (Laurent expansion of ζ(fp0α))
Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous distribution with I0 = ∅.
Then,

ζ(α)(z) = ∑
n∈N0

ζ(∂nα)(0)
n!

zn

holds in a sufficiently small neighborhood of zero.

The assertion is a direct consequence of the facts that the nth Laurent coefficient of
a holomorphic function f is given by ∂nf(0)

n! and

∂nζ(α) = ∂n ∫R≥1×M α dvolR≥1×M = ∫R≥1×M ∂nα dvolR≥1×M = ζ(∂nα).
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Theorem (Laurent expansion of ζ(α))
Let α = α0 +∑ι∈I αι be a gauged poly-log-homogeneous distribution. Then, (in a
sufficiently small neighborhood of zero)

ζ(α)(z) = ∑
n∈N0

∑
ι∈I0

(−1)lι+1lι! ∫M ∂nα̃ι(0)dvolM

n!
zn−lι−1

+ ∑
n∈N0

∫R≥1×M ∂nα0(0)dvolR≥1×M

n!
zn

+ ∑
n∈N0

∑
ι∈I∖I0

n

∑
j=0

(−1)lι+j+1(lι + j)! ∫M ∂n−jα̃ι(0)dvolM

n!(dimM + dι + 1)lι+j+1
zn.
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ζ(A)(z) = ∑
n∈N0

∫X ∫BRN (0,1)
eiϑ(x,x,ξ)∂na(0)(x,x, ξ) dξ dvolX(x)

n!
zn

+ ∑
n∈N0

∑
ι∈I0

(−1)lι+1lι! ∫∆(X)×∂BRN
eiϑ∂nãι(0) dvol∆(X)×∂BRN

n!
zn−lι−1

+ ∑
n∈N0

∫R≥1×∂BRN
∫X e

iϑ(x,x,ξ)∂na0(0)(x,x, ξ) dvolX(x) dvolR≥1×∂BRN
(ξ)

n!
zn

+ ∑
n∈N0

∑
ι∈I∖I0

n

∑
j=0

(−1)lι+j+1(lι + j)! ∫∆(X)×∂BRN
eiϑ∂n−j ãι(0) dvol∆(X)×∂BRN

n!(N + dι)lι+j+1
zn

where ∆(X) ∶= {(x,x) ∈X2; x ∈X}.
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Definition
If a = a0 +∑ι∈I aι is the amplitude of a gauged poly-log-homogeneous Fourier
Integral Operator A with phase function ϑ and Aι the gauged Fourier Integral
Operator with phase function ϑ and amplitude aι, then

resAι(z) ∶= ∫
∂BRN

∫
X
eiϑ(x,x,ξ)ãι(z)(x,x, ξ) dvolX(x) dvol∂BRN

(ξ).
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The Residue Trace (ψdo: Wodzicki 1984, Guillemin 1985;
FIO: Guillemin 1993)

Theorem
Let A and B be polyhomogeneous Fourier Integral Operators. Let G1 and G2 be
gauged Fourier Integral Operators with G1(0) = AB and G2(0) = BA. Then,

res0ζ(G1) = res0ζ(G2),

i.e., the residue of the ζ-function is tracial and A↦ res0ζ (A) is a well-defined trace
where A is any choice of gauge for A.
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The Residue Trace (ψdo: Wodzicki 1984, Guillemin 1985;
FIO: Guillemin 1993)

Proof.
This is a direct consequence of the following two facts.
(i) res0ζ(Gj) = −∑ι∈I0 res(Gj)ι(0) is independent of the gauge (j ∈ {1,2}).
(ii) ζ (AB) = ζ (BA) holds for any gauge A of A because it is true for R(z)

sufficiently small.
Hence, res0ζ(G1) = res0ζ(AB) = res0ζ(BA) = res0ζ(G2).
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The (generalized) Kontsevich-Vishik Trace (Kontsevich, Vishik 1994)

Theorem
Let A and B be Fourier Integral Operators. Let G1 and G2 be gauged Fourier
Integral Operators with G1(0) = AB, G2(0) = BA, and I0 = ∅. Then,

ζ(G1)(0) = ζ(G2)(0),

i.e., the constant Laurent coefficient of the ζ-function is tracial and A↦ ζ (A) (0) is
a well-defined trace where A is any choice of gauge for A with I0 = ∅.
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The generalized Kontsevich-Vishik Trace

Definition
The generalized Kontsevich-Vishik trace is defined as

trKV ∶ {A ∈ AΓ; I0 = ∅}⊆AΓ → C; A↦ ζ(A)(0)

where A is any choice of gauge for A.
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▸ So far, we assumed amplitudes to be integrable on X ×BRN (0,1).

▸ Many classical symbols are not.
▸ How to get ζ-functions and Laurent expansion for gauged

poly-log-homogeneous distributions on R>0 ×M instead of only R≥1 ×M?
▸ Idea: Approximation with distributions we can handle.
▸ We need convergence type such that

(i) sequence of meromorphic germs converges to a meromorphic germ
(ii) local properties are preserved taking limits

▸ Compact convergence on a punctured ball BC(0, ε) ∖ {0} will do!
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Suppose α = αι, i.e., α0 = 0 and #I = 1. We need to make sense of

∫
(0,1)

rdimM+dι+z(ln r)lιdr.

Introducing a shift h ∈ R>0 gives

Ah ∶=∫
(0,1)

(r + h)dimM+dι+z(ln(r + h))lιdr

=∫
(0,1)

∂lι (s↦ (r + h)dimM+dι+s) (z)dr

=∂lι (s↦ ∫
(0,1)

(r + h)dimM+dι+sdr) (z)
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Ah =∂lι (s↦
(1 + h)dimM+dι+s+1 − hdimM+dι+s+1

dimM + dι + s + 1
)(z)

=
lι

∑
j=0

(−1)jj!
(dimM + dι + z + 1)j+1

(1 + h)dimM+dι+z+1(ln(1 + h))lι−j

−
lι

∑
j=0

(−1)jj!
(dimM + dι + z + 1)j+1

hdimM+dι+z+1(lnh)lι−j .

▸ (1 + h)dimM+dι+z+1(ln(1 + h))lι−j → δj,lι locally bounded
▸ hdimM+dι+z+1(lnh)lι−j → 0 locally bounded

Ah →
(−1)lι lι!

(dimM + dι + z + 1)lι+1
pointwise and locally bounded

ζ-functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions T. Hartung



Motivation FIO algebras ζ-reg. gplh distribs Laurent exp. Mollification gKV and res trace Stationary phase approx.

Ah =∂lι (s↦
(1 + h)dimM+dι+s+1 − hdimM+dι+s+1

dimM + dι + s + 1
)(z)

=
lι

∑
j=0

(−1)jj!
(dimM + dι + z + 1)j+1

(1 + h)dimM+dι+z+1(ln(1 + h))lι−j

−
lι

∑
j=0

(−1)jj!
(dimM + dι + z + 1)j+1

hdimM+dι+z+1(lnh)lι−j .

▸ (1 + h)dimM+dι+z+1(ln(1 + h))lι−j → δj,lι locally bounded

▸ hdimM+dι+z+1(lnh)lι−j → 0 locally bounded

Ah →
(−1)lι lι!

(dimM + dι + z + 1)lι+1
pointwise and locally bounded

ζ-functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions T. Hartung



Motivation FIO algebras ζ-reg. gplh distribs Laurent exp. Mollification gKV and res trace Stationary phase approx.

Ah =∂lι (s↦
(1 + h)dimM+dι+s+1 − hdimM+dι+s+1

dimM + dι + s + 1
)(z)

=
lι

∑
j=0

(−1)jj!
(dimM + dι + z + 1)j+1

(1 + h)dimM+dι+z+1(ln(1 + h))lι−j

−
lι

∑
j=0

(−1)jj!
(dimM + dι + z + 1)j+1

hdimM+dι+z+1(lnh)lι−j .

▸ (1 + h)dimM+dι+z+1(ln(1 + h))lι−j → δj,lι locally bounded
▸ hdimM+dι+z+1(lnh)lι−j → 0 locally bounded

Ah →
(−1)lι lι!

(dimM + dι + z + 1)lι+1
pointwise and locally bounded

ζ-functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions T. Hartung



Motivation FIO algebras ζ-reg. gplh distribs Laurent exp. Mollification gKV and res trace Stationary phase approx.

Ah =∂lι (s↦
(1 + h)dimM+dι+s+1 − hdimM+dι+s+1

dimM + dι + s + 1
)(z)

=
lι

∑
j=0

(−1)jj!
(dimM + dι + z + 1)j+1

(1 + h)dimM+dι+z+1(ln(1 + h))lι−j

−
lι

∑
j=0

(−1)jj!
(dimM + dι + z + 1)j+1

hdimM+dι+z+1(lnh)lι−j .

▸ (1 + h)dimM+dι+z+1(ln(1 + h))lι−j → δj,lι locally bounded
▸ hdimM+dι+z+1(lnh)lι−j → 0 locally bounded

Ah →
(−1)lι lι!

(dimM + dι + z + 1)lι+1
pointwise and locally bounded

ζ-functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions T. Hartung



Motivation FIO algebras ζ-reg. gplh distribs Laurent exp. Mollification gKV and res trace Stationary phase approx.

Theorem (Vitali)

Let Ω⊆open,connectedC, f ∈ Cω(Ω)N locally bounded, and let

{z ∈ Ω; (fn(z))n∈N converges}

have an accumulation point in Ω. Then, f is compactly convergent.

Corollary

Ah converges compactly to z ↦ (−1)lι lι!
(dimM+dι+z+1)lι+1

.
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Theorem

∑
ι∈I
∫
(0,1)

(hι + r)dimM+dι+z(ln(hι + r))lιdr

is compactly convergent for h ∶= (hι)ι∈I ∈ `∞(I;R>0) and h↘ 0 in `∞(I) such that

Zι(z) ∶= lι
lι

∑
j=0

∣ζH(lι − j − dι − z;hι) − ζH(lι − j − dι − z; 1 + hι)∣

is uniformly bounded on an exhausting family of compacta as h↘ 0.
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ζ(A)(z) = ∑
n∈N0

∫X ∫BRN (0,1)
eiϑ(x,x,ξ)∂na(0)(x,x, ξ) dξ dvolX(x)

n!
zn

+ ∑
n∈N0

∑
ι∈I0

(−1)lι+1lι! ∫∆(X)×∂BRN
eiϑ∂nãι(0) dvol∆(X)×∂BRN

n!
zn−lι−1

+ ∑
n∈N0

∫R≥1×∂BRN
∫X e

iϑ(x,x,ξ)∂na0(0)(x,x, ξ) dvolX(x) dvolR≥1×∂BRN
(ξ)

n!
zn

+ ∑
n∈N0

∑
ι∈I∖I0

n

∑
j=0

(−1)lι+j+1(lι + j)! ∫∆(X)×∂BRN
eiϑ∂n−j ãι(0) dvol∆(X)×∂BRN

n!(N + dι)lι+j+1
zn
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n!
zn
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n∈N0

∑
ι∈I∖I0

n

∑
j=0

(−1)lι+j+1(lι + j)! ∫∆(X)×∂BRN
eiϑ∂n−j ãι(0) dvol∆(X)×∂BRN
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Example: ∣∂∣z on R/2πZ

The operator ∣∂∣z has kernel

k(z)(x, y) = ∑
n∈Z
∫
R
ei(x−y−2πn)ξ ∣ξ∣

z

2π
dξ

and spectrum σ(∣∂∣z) = {∣n∣z ; n ∈ Z} counting multiplicities.

Hence, for R(z) < −1

tr ∣∂∣z = ∑
n∈Z

∣n∣z

⇒ ζ(s↦ ∣∂∣s)(z) = 2ζR(−z)

where ζR denotes the Riemann ζ-function.
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Example: Mollifying ∣∂∣z on R/2πZ
Let h ∈ (0,1). Then, (h + ∣∂∣)z has kernel

kh(z)(x, y) = ∑
n∈Z
∫
R
ei(x−y−2πn)ξ (h + ∣ξ∣)z

2π
dξ

and spectrum σ((h + ∣∂∣)z) = {(h + ∣n∣)z; n ∈ Z} counting multiplicities.

Hence, for
R(z) < −1

tr(h + ∣∂∣)z = ∑
n∈Z

(h + ∣n∣)z

⇒ ζ(s↦ (h + ∣∂∣)s)(z) = ζH(−z;h) + ζH(−z; 1 + h)

where ζH denotes the Hurwitz ζ-function.
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Example: Mollifying ∣∂∣z on R/2πZ - convergence

Theorem
Both ζH(⋅;h) and ζH(⋅; 1 + h) converge compactly on C ∖ {1} to ζR for h↘ 0.

Theorem
ζ(s↦ (h + ∣∂∣)s) converges compactly to ζ(s↦ ∣∂∣s) on C ∖ {−1} for h↘ 0.
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Let A ∈ AΓ and A a gauged Fourier Integral Operator with A(0) = A. Then, we
define the generalized Kontsevich-Vishik trace trKVA of A to be the constant
Laurent coefficient c0(ζ(A),0) of ζ(A) in zero, i.e.,

trKVA =∫
X

pv∫
BRN (0,1)

eiϑ(x,x,ξ)a(x,x, ξ) dξ dvolX(x)

+ ∑
ι∈I0

(−1)lι+1lι! ∫∆(X)×∂BRN
eiϑ∂lι+1ãι(0) dvol∆(X)×∂BRN

(lι + 1)!

+ ∫
R≥1×∂BRN

∫
X
eiϑ(x,x,ξ)a0(x,x, ξ) dvolX(x) dvolR≥1×∂BRN

(ξ)

+ ∑
ι∈I∖I0

(−1)lι+1lι! ∫X×∂BRN
eiϑ(x,x,ξ)ãι(x,x, ξ) dvolX×∂BRN

(x, ξ)

(N + dι)lι+1
.
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Example

For a classical pseudo-differential operators A without critical degree of
homogeneity, we observe

∫
X

pv∫
BRN (0,1)

aι(x,x, ξ) dξ dvolX(x) +
−∫X×∂BRN

ãι(x,x, ξ) dvolX×∂BRN
(x, ξ)

N + dι

=∫
X×∂BRN

ãι(x,x, ξ) dvolX×∂BRN
(x, ξ) lim

h↘0
∫

1+h

h
rN+dι−1dt

−
∫X×∂BRN

ãι(x,x, ξ) dvolX×∂BRN
(x, ξ)

N + dι
= 0
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Example (continued)

For a classical pseudo-differential operators A without critical degree of
homogeneity, we hence obtain

trKVA =∫
X
∫
RN

eiϑ(x,x,ξ)a0(x,x, ξ) dξ dvolX(x)

=∫
X

⎛
⎝
k −

J

∑
j=1

km−j
⎞
⎠
(x,x)dvolX(x)

for any J ∈ N>R(m)+dimX .
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This can fail spectacularly for FIOs

This does not happen for general Fourier Integral Operators. Consider phase
⟨Θ(x, y), ξ⟩ such that x↦ Θ(x,x) ∈ C(X) has no zeros. Then,

∫
X
∫
RN

ei⟨Θ(x,x),ξ⟩a(x,x, ξ)dξdvolX(x) = ∫
X
F(a(x,x, ⋅))(−Θ(x,x))dvolX(x)

is well-defined. Choose Θ and a such that x↦ F(a(x,x, ⋅))(−Θ(x,x)) is pointwise
positive to construct a counterexample.
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The critical case - explicitly

▸ Consider polyhomogeneous multiplicative gauge A(z) = BQz.

▸ Then Q0 = 1 − 1{0}(Q) where 1{0}(Q) = 1
2πi ∫∂BC(0,ε)

(λ −Q)−1dλ and
BC[0, ε] ∩ σ(Q) = {0}.

▸ For I0 = ∅

∀k ∈ N0 ∶ ∂kζ(A)(0) =ζ(∂kA)(0) = trKV(B(lnQ)kQ0)
=trKV(B(lnQ)k) − trKV(B(lnQ)k1{0}(Q))

▸ For I0 ≠ ∅: fpA ∶= A −∑ι∈I0 Aι, fpζ(A) ∶= ζ(fpA) +∑ι∈I0 ∫X ∫B(0,1) e
iϑaι, and

trfp(⋅) = fpζ(⋅)(0)
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The critical case - explicitly
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▸ Let ck(Q) be the coefficient of the zk

k! term in the Laurent expansion of ζ(A).

▸ Then

ck(Q) =fpζ (∂kA) (0) − 1

k + 1
res (∂k+1A) (0)

=trfp (B(lnQ)kQ0) − 1

k + 1
res (B(lnQ)k+1Q0)

=trfp (B(lnQ)k) − trfp (B(lnQ)k1{0}(Q)) − 1

k + 1
res (B(lnQ)k+1) .

▸ If Q is invertible and Q′ is another invertible and admissible, then
c0(Q) − c0(Q′) = −res (B (lnQ − lnQ′))

and since ζ(A)(0) = 0

trfp([B,CQz])∣z=0
= res ([B,C lnQ]).
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Theorem (Guillemin)

Let AΓ be an algebra of classical Fourier Integral Operators. Then, the residue-trace
of A ∈ AΓ vanishes if and only if A is a smoothing operator plus a sum of
commutators [Pi,Ai] where the Pi are pseudo-differential operators and the Ai ∈ AΓ.

Theorem (Guillemin)

Let Γ be connected. Then, the commutator of AΓ is of co-dimension one in AΓ

modulo smoothing operators.
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These theorems (and the corresponding theorems for smoothing operators) yield
the following table assuming that the residue trace res0 ○ ζ is non-trivial and
unique, and AΓ = ⟨A⟩ + ⟨[AΓ,AΓ]⟩ + {smoothing operators} for some A ∈ AΓ with
res0ζ(A) ≠ 0.

I0 ≠ ∅ I0 = ∅
res0ζ(A) ≠ 0 res0ζ(A) = 0 ζ(A)(0) ≠ 0 ζ(A)(0) = 0

A = αA + S +∑ki=1Ci
Ci ∈ [AΓ,AΓ]
α = (res0ζ(A))−1 res0ζ(A)
S smoothing

A = S +∑ki=1Ci
Ci ∈ [AΓ,AΓ]
S smoothing

A = ∑ki=1Ci
Ci commutators
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▸ Want to compute I(x, y, r) ∶= ∫∂BRN
eirϑ(x,y,ξ)ã(x, y, ξ)dvol∂BRN

(ξ)

▸ (x, y) off critical manifold ⇐⇒ ∀ξ ∈ ∂BRN ∶ ∂3ϑ(x, y, ξ) ≠ 0

▸ ∂3e
irϑ(x,y,ξ) = ireirϑ(x,y,ξ)∂3ϑ(x, y, ξ) ⇒ eirϑã =

⟨∂3e
irϑ,ã∂3ϑ⟩`2(N)

ir∥∂3ϑ∥
2
`2(N)

▸ Let Dã(x, y, ξ) ∶= ∂∗3
ã(x,y,ξ)∂3ϑ(x,y,ξ)

∥∂3ϑ(x,y,ξ)∥
2
`2(N)

. Then

∀n ∈ N ∶ I(x, y, r) = 1

(ir)n ∫∂BRN
eirϑ(x,y,ξ)Dnã(x, y, ξ)dvol∂BRN

(ξ)

⇒ ∣I(x, y, r)∣ ≤
∥Dna∥L∞(X×X×∂BRN )

rn

▸ Hence, kernel off critical manifold: k = ∫R>0 r
N+d−1I(⋅, ⋅, r)dr ∈ C∞
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Lemma (Morse’ Lemma)

Let (x0, y0, ξ0) ∈X ×X × ∂BRN be stationary (∂∂Bϑ(x0, y0, ξ0) = 0) and

∂2
∂Bϑ(x0, y0, ξ0) = ∂2

3 (ϑ∣X×X×∂BRN
) (x0, y0, ξ0) ∈ GL (RN−1).

Then, there are neighborhoods U⊆openX ×X of (x0, y0) and V ⊆open∂BRN of ξ0 and
a function ξ̂ ∈ C∞(U,V ) such that

∀(x, y, ξ) ∈ U × V ∶ ∂∂Bϑ(x, y, ξ) = 0 ⇐⇒ ξ = ξ̂(x, y).

Furthermore, there is a function η ∈ C∞ (U × V,RN) such that

∀(x, y, ξ) ∈ U × V ∶ η(x, y, ξ) − (ξ − ξ̂(x, y)) ∈ O (∥ξ − ξ̂(x, y)∥
2

`2(N)
)

and ∂3η (x, y, ξ̂(x, y)) = 1 = idRN .
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Corollary

Let ϑ be as in Morse’ Lemma. Then, stationary points of ϑ(x, y, ⋅) are isolated in
∂BRN . In particular, there are only finitely many.

Hence, we may assume that

k(x, y) =
S

∑
s=0
∫
RN

eiϑ(x,y,ξ)as(x, y, ξ)dξ

where a0 has no stationary points in its support and each of the as has exactly one
branch (x, y, ξ̂s(x, y)) in its support. As we have already treated the a0 case, we
will assume, without loss of generality, that a is of the form of one of the as.
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▸ Define ϑ̂ ∶= ϑ (x, y, ξ̂(x, y)), Θ(x, y) ∶= ∂2
∂Bϑ (x, y, ξ̂(x, y)) and η∂B the spherical

part of η (polar coordinates). Then, (Corollary of Morse’ Lemma Proof)

I(x, y, r) =∫
∂BRN

eirϑ(x,y,ξ)a(x, y, ξ)dvol∂BRN
(ξ)

=eirϑ̂∫
∂BRN

ei
r
2
⟨Θ(x,y)η∂B(x,y,ξ),η∂B(x,y,ξ)⟩RN−1a(x, y, ξ)dvol∂BRN

(ξ).

▸ Let σ ∶ RN−1 → ∂BRN be a stereographic projection with pole −ξ̂(x, y),
ησ(x, y, ξ) ∶= η∂B(x, y, σ(ξ)), and aσ(x, y, ξ) ∶= a(x, y, σ(ξ))

√
det (σ′(ξ)∗σ′(ξ)).

Then,

I(x, y, r) =eirϑ̂∫
∂BRN

ei
r
2
⟨Θ(x,y)η∂B(x,y,ξ),η∂B(x,y,ξ)⟩`2(N−1)a(x, y, ξ)dvol∂BRN

(ξ)

=eirϑ̂∫
RN−1

ei
r
2
⟨Θ(x,y)ησ(x,y,ξ),ησ(x,y,ξ)⟩`2(N−1)aσ(x, y, ξ)dξ
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▸ ∂3ησ(x, y, ξ) = ∂3η∂B(x, y, σ(ξ))σ′(ξ) and ∂3η (x, y, ξ̂(x, y)) = 1 = idRN ⇒
ησ(x, y, ⋅) invertible in neighborhood of σ−1 (ξ̂(x, y)) = 0

▸ Assume aσ has support in such a neighborhood and define

ã(x, y, ξ) ∶= aσ(x, y, ησ(x, y)−1(ξ))
√

det ((ησ(x, y)−1)′ (ξ)∗ (ησ(x, y)−1)′ (ξ)).

Then

I(x, y, r) =eirϑ̂∫
RN−1

ei
r
2
⟨Θ(x,y)ξ,ξ⟩`2(N−1) ã(x, y, ξ)dξ.

▸ F (ξ ↦ ei
1
2
⟨rΘ(x,y)ξ,ξ⟩) (ξ) = r

1−N
2 ∣detΘ(x, y)∣−

1
2 e

iπ
4

sgn(Θ(x,y))e−i
1
2
⟨(rΘ(x,y))−1ξ,ξ⟩

where sgn(Θ(x, y)) is the number of positive eigenvalues minus the number of
negative eigenvalues of Θ(x, y).
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ã(x, y, ξ) ∶= aσ(x, y, ησ(x, y)−1(ξ))
√

det ((ησ(x, y)−1)′ (ξ)∗ (ησ(x, y)−1)′ (ξ)).

Then

I(x, y, r) =eirϑ̂∫
RN−1

ei
r
2
⟨Θ(x,y)ξ,ξ⟩`2(N−1) ã(x, y, ξ)dξ.
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∫
RN−1

ei
r
2
⟨Θξ,ξ⟩ã(ξ)dξ =const.∫

RN−1
e−

i
2
⟨(rΘ)−1ξ,ξ⟩F3ã(ξ)dξ

=const. ∑
j∈N0

r−j

j!
∫
RN−1

(− i
2
⟨Θ−1ξ, ξ⟩)

j

F3ã(ξ)dξ

=const. ∑
j∈N0

r−j

j!
∫
RN−1

F3 ((−
i

2
⟨Θ−1∂3, ∂3⟩)

j

ã)(ξ)dξ

and with

∫
Rn
Ff(ξ)dξ =∫

Rn
ei⟨0,ξ⟩Ff(ξ)dξ = (2π)

n
2F−1 (Ff) (0) = (2π)

n
2 f(0)

we obtain

∫
RN−1

ei
1
2
⟨rΘξ,ξ⟩ã(ξ)dξ =(2π

r
)
N−1
2

∣detΘ∣−
1
2 e

iπ
4

sgnΘ ∑
j∈N0

(−i)jr−j

j!2j
⟨Θ−1∂3, ∂3⟩

j
ã(0).
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Hence, defining

hj(x, y) ∶=
(2π)

N−1
2 ∣detΘ(x, y)∣−

1
2 e

iπ
4

sgnΘ(x,y)

j!(2i)j
⟨Θ(x, y)−1∂3, ∂3⟩

j
ã(x, y,0)

we obtain

k(x, y) =∫
R>0

rN+d−1(ln r)l ∫
∂BRN

eirϑ(x,y,ξ)a0(x, y, ξ)dvol∂BRN
(ξ) dr

+
S

∑
s=1

∑
j∈N0

hsj(x, y)∫R>0
rd+

N−1
2

−j(ln r)leirϑ̂
s(x,y) dr.

Remark. The evaluation of ⟨Θ(x, y)−1∂3, ∂3⟩
j
ã(x, y, ⋅) at zero yields an evaluation

at ξ̂(x, y) undoing all the changes of variables (stereographic proj. with pole −ξ̂).
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For l = 0:

∀q ∈ CR(⋅)>−1 ∀s ∈ CR(⋅)>0 ∶ ∫
R>0

tqe−stdt = Γ(q + 1)s−q−1

and meromorphic extension

∫
R>0

rd+
N−1
2

−jeirϑ̂
s(x,y)dr =Γ(d + N + 1

2
− j) id+

N+1
2

−j (ϑ̂s(x, y) + i0)
−d−N+1

2
+j

whenever d + N+1
2 − j ∈ C ∖ (−N0) and, for l ∈ N0,

∫
R>0

rq (ln r)l eirϑ̂
s(x,y)dr =∂l (z ↦ ∫

R>0
rq+zeirϑ̂

s(x,y)dr) (0)

=∂l (z ↦ Γ (q + 1 + z) iq+1+z (ϑ̂s(x, y) + i0)
−q−1−z

) (0).
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For c ∈ R>0, q ∈ −N, and l ∈ N0, we obtain (lots and lots of fun with the Laplace
transform later)

∫
R>0

rq (ln r)l e−srdr∣
s=−iϑ̂s(x,y)+0

= ∂l (z ↦ −Γ(z + 1)
2πi(−q − 1)! ∫c+iR

(−σ)−q−1 (cln + lnσ) (s − σ)−z−1 dσ)(0)∣
s=−iϑ̂s(x,y)+0

.
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Theorem
Let all assumptions above be satisfied and

gsj,ι(x, y) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂lι (z ↦ Γ (q + 1 + z) iq+1+z (ϑ̂s(x, y) + i0)
−q−1−z

) (0) , q ∈ C ∖ (−N0)

∂lι (z ↦ −Γ(z+1)
2πi (−q)! ∫c+iR

(−σ)−q(cln+lnσ)

(−iϑ̂s(x,y)+0−σ)
z+1dσ)(0) , q ∈ −N0

with q ∶= dι + N+1
2 − j, c ∈ R>0, and some constant cln ∈ C. Then,

k(x, y) =∫
RN

eiϑ(x,y,ξ)a0(x, y, ξ)dξ +∑
ι∈Ĩ

S

∑
s=1

∑
j∈N0

hsj,ι(x, y)gsj,ι(x, y).
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