|   | FIO algebras<br>000000000 | $\zeta$ -reg. | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification | m gKV and res trace 00000000 | Stationary phase approx. |
|---|---------------------------|---------------|---------------------------|------------------------------|---------------|------------------------------|--------------------------|
| 0 | 000000000                 | 000000        | 00000000                  | 000000000000                 | 000000000     | 0000000                      | 00000000                 |

# $\zeta\mbox{-functions}$ of Fourier Integral Operators: gauged poly-log-homogeneous distributions

**Tobias Hartung** 

King's College London

2018 / Aug / 27-30

 $\zeta$ -functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions

T. Hartung





• Why do people care about traces?



- Why do people care about traces?
- ▶ traces on an algebra  $\Rightarrow$  invariants of the algebra



- Why do people care about traces?
- ▶ traces on an algebra  $\Rightarrow$  invariants of the algebra
- Atiyah-Singer index theorem:  $\operatorname{tr}(e^{-tD^*D}) \operatorname{tr}(e^{-tDD^*}) = \operatorname{ch}(V)\operatorname{Td}(X)[X]$



- Why do people care about traces?
- ▶ traces on an algebra  $\Rightarrow$  invariants of the algebra
- Atiyah-Singer index theorem:  $\operatorname{tr}(e^{-tD^*D}) \operatorname{tr}(e^{-tDD^*}) = \operatorname{ch}(V)\operatorname{Td}(X)[X]$
- ► Heat trace:  $\operatorname{tr} e^{-t|\Delta|} = (4\pi t)^{-\frac{\dim X}{2}} \sum_{k \in \mathbb{N}_0} A_k t^{\frac{k}{2}}$  where the  $A_k$  are called heat invariants  $(A_0 = \operatorname{vol} X, A_2 = \operatorname{total curvature}(X), \ldots)$



- Why do people care about traces?
- ▶ traces on an algebra  $\Rightarrow$  invariants of the algebra
- Atiyah-Singer index theorem:  $\operatorname{tr}(e^{-tD^*D}) \operatorname{tr}(e^{-tDD^*}) = \operatorname{ch}(V)\operatorname{Td}(X)[X]$
- Heat trace:  $\operatorname{tr} e^{-t|\Delta|} = (4\pi t)^{-\frac{\dim X}{2}} \sum_{k \in \mathbb{N}_0} A_k t^{\frac{k}{2}}$  where the  $A_k$  are called heat invariants  $(A_0 = \operatorname{vol} X, A_2 = \operatorname{total curvature}(X), \ldots)$
- Operator  $\zeta$ -functions allow us to construct traces!



- Why do people care about traces?
- $\blacktriangleright$  traces on an algebra  $\Rightarrow$  invariants of the algebra
- Atiyah-Singer index theorem:  $\operatorname{tr}(e^{-tD^*D}) \operatorname{tr}(e^{-tDD^*}) = \operatorname{ch}(V)\operatorname{Td}(X)[X]$
- ► Heat trace:  $\operatorname{tr} e^{-t|\Delta|} = (4\pi t)^{-\frac{\dim X}{2}} \sum_{k \in \mathbb{N}_0} A_k t^{\frac{k}{2}}$  where the  $A_k$  are called heat invariants  $(A_0 = \operatorname{vol} X, A_2 = \operatorname{total curvature}(X), \ldots)$
- Operator  $\zeta$ -functions allow us to construct traces!
- ▶ ⇒ wave traces:  $tre^{it\sqrt{|\Delta|}}$  (t-values of poles are lengths of closed geodesics)



- Why do people care about traces?
- $\blacktriangleright$  traces on an algebra  $\Rightarrow$  invariants of the algebra
- Atiyah-Singer index theorem:  $\operatorname{tr}(e^{-tD^*D}) \operatorname{tr}(e^{-tDD^*}) = \operatorname{ch}(V)\operatorname{Td}(X)[X]$
- Heat trace:  $\operatorname{tr} e^{-t|\Delta|} = (4\pi t)^{-\frac{\dim X}{2}} \sum_{k \in \mathbb{N}_0} A_k t^{\frac{k}{2}}$  where the  $A_k$  are called heat invariants  $(A_0 = \operatorname{vol} X, A_2 = \operatorname{total curvature}(X), \ldots)$
- Operator  $\zeta$ -functions allow us to construct traces!
- ▶ ⇒ wave traces:  $tre^{it\sqrt{|\Delta|}}$  (t-values of poles are lengths of closed geodesics)
- ▶ physics: wave propagators are (closely related to) Fourier Integral Operators
   ⇒ traces allow reconstruction of the QFT



### Definition (Phase Function)

Let  $N \in \mathbb{N}$ . A function

$$\vartheta \in C\left(X \times X \times \mathbb{R}^N\right) \cap C^{\infty}\left(X \times X \times \left(\mathbb{R}^N \smallsetminus \{0\}\right)\right)$$

is called a phase function if and only if it is positively homogeneous of degree 1 in the third argument, i.e.,

$$\forall x, y \in X \ \forall \xi \in \mathbb{R}^N \ \forall \lambda \in \mathbb{R}_{>0} : \ \vartheta(x, y, \lambda\xi) = \lambda \vartheta(x, y, \xi).$$

#### Example

Pseudo-differential phase function:  $\vartheta(x, y, \xi) = \langle x - y, \xi \rangle_{\ell_2(N)}$  with  $N = \dim X$ .

 $\zeta$ -functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions

Let  $U \subseteq \mathbb{R}^n$  be open,  $N \in \mathbb{N}$ , and  $m \in \mathbb{R}$ . The Hörmander class  $S^m(U \times U \times \mathbb{R}^N)$  is defined as the set of all  $a \in C^{\infty}(U \times U \times \mathbb{R}^N)$  such that for every  $K \subseteq_{\text{compact}} U^2$  and all multi-indices  $\alpha, \beta, \gamma$  there exists a constant  $c \in \mathbb{R}_{>0}$  such that

$$\forall (x,y) \in K \ \forall \xi \in \mathbb{R}^N \smallsetminus B_{\mathbb{R}^N}(0,1) : \ \left| \partial_1^\alpha \partial_2^\beta \partial_3^\gamma a(x,y,\xi) \right| \le c \left( 1 + \|\xi\|_{\ell_2(N)} \right)^{m - \|\gamma\|_{\ell_1(N)}}$$

holds.

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

A Fourier Integral Operator  $A: C_c^{\infty}(X) \to C_c^{\infty}(X)'$  on X is a linear operator whose Schwartz kernel  $k \in C_c^{\infty}(X \times X)'$  is a locally finite sum of local representations of the form

$$k(x,y) = \int_{\mathbb{R}^N} e^{i\vartheta(x,y,\xi)} a(x,y,\xi) d\xi,$$

i.e.,

$$\forall \varphi, \psi \in C_c^{\infty}(X) : A(\varphi)\psi = \sum_{i=1}^n \int_{X^2} k_i(x,y)\varphi(y)\psi(x)d\mathrm{vol}_{X^2}(x,y),$$

where, for each localization  $U \subseteq X$ ,  $\vartheta$  is a phase function and a is an element of some Hörmander class  $S^m(U \times U \times \mathbb{R}^N)$ . a is also called an amplitude or symbol.

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 00000000     | 000000        | 0000000       | 000000000000 | 000000000     | 0000000           | 000000000                |

Let  $\vartheta$  be a phase function. Then, we call

$$C(\vartheta) \coloneqq \left\{ (x, y, \xi) \in X \times X \times \left( \mathbb{R}^N \smallsetminus \{0\} \right); \ \partial_3 \vartheta(x, y, \xi) = 0 \right\}$$

the critical set of  $\vartheta$ .

 $\vartheta$  is called non-degenerate if and only of the family of differentials

 $(d\partial_{3,j}\vartheta(x,y,\xi))_{j\in\mathbb{N}_{\leq N}}$ 

is linearly independent for every  $(x, y, \xi) \in C(\vartheta)$  where  $\partial_{3,j}$  denotes the derivative with respect to the  $j^{\text{th}}$  component of the third argument.

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

Let  $\Lambda \subseteq T^*(X^2) \setminus 0$  be a Lagrangian manifold and A a Fourier Integral Operator of the form  $A = \sum_{j=1}^n A_j$  where each  $A_j$  has a non-degenerate phase function  $\vartheta_j$ defined on an open, conic subset  $U_j \subseteq_{\text{open}} X \times X \times (\mathbb{R}^{N_j} \setminus \{0\})$  such that

### $U_j \cap C(\vartheta_j) \ni (x, y, \xi) \mapsto (x, y, \partial_1 \vartheta_j(x, y, \xi), \partial_2 \vartheta_j(x, y, \xi))$

is a diffeomorphism onto an open subset  $U_j^{\Lambda} \subseteq_{\text{open}} \Lambda$ , and amplitude  $a_j \in S^{m+\frac{\dim X-N_j}{2}}(X \times X \times \mathbb{R}^{N_j})$  with

$$\operatorname{spt} a_j \subseteq \{ (x, y, t\xi) \in X \times X \times \mathbb{R}^{N_j}; (x, y, \xi) \in K \land t \in \mathbb{R}_{>0} \}$$

for some  $K \subseteq_{\text{compact}} U_j$ . Then, we say A is an element of  $I^m(X \times X, \Lambda)$  (or more precisely, A has a kernel in  $I^m(X \times X, \Lambda)$ ).

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

### Definition (Canonical Relation)

Let  $\Gamma \subseteq T_0^* X \times T_0^* X$  be a relation satisfying

- (i)  $\Gamma$  is symmetric, i.e.,  $\forall (p,q) \in \Gamma : (q,p) \in \Gamma$ ,
- (ii)  $\Gamma$  is transitive, i.e.,  $\forall (p,q), (q,r) \in \Gamma : (p,r) \in \Gamma$ ,

We will call any such  $\Gamma$  a canonical relation. Furthermore, we will assume that all canonical relations satisfy

(iii) the composition Γ ∘ Γ is clean, i.e., Γ × Γ intersects T\*X × diag(T\*X × T\*X) × T\*X in a manifold whose tangent plane is precisely the intersection of the tangent planes of Γ × Γ and T\*X × diag(T\*X × T\*X) × T\*X where diag(T\*X × T\*X) := {(x, y) ∈ T\*X × T\*X; x = y},
(iv) the projection pr<sub>1</sub> : Γ → T\*X; (p,q) ↦ p is proper, i.e., pre-sets of compacta

are compact.

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 0000000000   | 000000        | 00000000      | 000000000000 | 000000000     | 00000000          | 000000000                |

### Definition (Twisted Canonical Relation)

We will call the set

$$\Gamma' \coloneqq \{ ((x,\xi), (y,\eta)) \in T_0^* X \times T_0^* X; \ ((x,\xi), (y,-\eta)) \in \Gamma \}$$

a twisted canonical relation.

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

Let  $\Gamma \subseteq T_0^* X \times T_0^* X$  be a canonical relation.  $\Gamma$  is called a homogeneous canonical relation if and only if  $\Gamma'$  is a Lagrangian manifold.

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 0000000       | 000000000000 | 000000000     | 0000000           | 000000000                |

Let  $\Gamma \subseteq T_0^* X \times T_0^* X$  be a canonical relation.  $\Gamma$  is called a homogeneous canonical relation if and only if  $\Gamma'$  is a Lagrangian manifold.

### Definition

Let  $\Gamma \subseteq T_0^* X \times T_0^* X$  be a homogeneous canonical relation with  $\Gamma \circ \Gamma = \Gamma$ . Then, we call

$$\mathcal{A}_{\Gamma} \coloneqq \bigcup_{m \in \mathbb{R}} I^m(X \times X, \Gamma')$$

the algebra of Fourier Integral Operators associated with  $\Gamma.$ 

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 00000000     | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

#### Lemma

Let A be a Fourier Integral Operator with kernel  $k \in I^m(X \times X, \Lambda)$ . If  $m < -\dim X$ , then A is of trace-class.

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 00000000     | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

#### Lemma

Let A be a Fourier Integral Operator with kernel  $k \in I^m(X \times X, \Lambda)$ . If  $m < -\dim X$ , then A is of trace-class.

#### Lemma

Let  $k(x,y) = \int_{\mathbb{R}^N} e^{i\vartheta(x,y,\xi)} a(x,y,\xi) d\xi$  be a localization of the Schwartz kernel of an  $A \in \mathcal{A}_{\Lambda'}$  with  $a \in S^m(U \times \mathbb{R}^N)$  for some m < -N and  $U \subseteq_{\text{open}} X^2$ . Then,  $k \in C(U)$ .

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 00000000     | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

#### Lemma

Let A be a Fourier Integral Operator with kernel  $k \in I^m(X \times X, \Lambda)$ . If  $m < -\dim X$ , then A is of trace-class.

#### Lemma

Let  $k(x, y) = \int_{\mathbb{R}^N} e^{i\vartheta(x, y, \xi)} a(x, y, \xi) d\xi$  be a localization of the Schwartz kernel of an  $A \in \mathcal{A}_{\Lambda'}$  with  $a \in S^m(U \times \mathbb{R}^N)$  for some m < -N and  $U \subseteq_{\text{open}} X^2$ . Then,  $k \in C(U)$ .

### Corollary

There exists a subalgebra  $\mathcal{A}_{\Lambda',0} \subseteq \mathcal{A}_{\Lambda'}$  which consists of trace-class operators with continuous kernels. In particular, if k is the kernel of  $A \in \mathcal{A}_{\Lambda',0}$ , then

$$\operatorname{tr} A = \int_X k(x, x) d\operatorname{vol}_X(x) = \langle k, \delta_{\operatorname{diag}} \rangle.$$

- Let  $\mathcal{A}$  be an operator algebra.
- Let  $\mathcal{A}_0 \subseteq \mathcal{A}$  be a subalgebra.
- Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be a trace, i.e., linear functional such that  $\forall x, y \in \mathcal{A}_0 : \tau(xy) = \tau(yx).$

- Let  $\mathcal{A}$  be an operator algebra.
- Let  $\mathcal{A}_0 \subseteq \mathcal{A}$  be a subalgebra.
- Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be a trace, i.e., linear functional such that  $\forall x, y \in \mathcal{A}_0 : \tau(xy) = \tau(yx).$
- ▶ Instead of  $A \in \mathcal{A}$ , consider  $\varphi : \mathbb{C} \to \mathcal{A}$  holomorphic such that  $\varphi(0) = A$  and

$$\exists \Omega_0 \subseteq_{\text{open,connected}} \mathbb{C} : \varphi[\Omega_0] \subseteq \mathcal{A}_0.$$

- Let  $\mathcal{A}$  be an operator algebra.
- Let  $\mathcal{A}_0 \subseteq \mathcal{A}$  be a subalgebra.
- Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be a trace, i.e., linear functional such that  $\forall x, y \in \mathcal{A}_0 : \tau(xy) = \tau(yx).$
- ▶ Instead of  $A \in \mathcal{A}$ , consider  $\varphi : \mathbb{C} \to \mathcal{A}$  holomorphic such that  $\varphi(0) = A$  and

$$\exists \Omega_0 \subseteq_{\text{open,connected}} \mathbb{C} : \varphi[\Omega_0] \subseteq \mathcal{A}_0.$$

• Let  $\Omega \subseteq_{\text{open,connected}} \mathbb{C}$  be maximal satisfying  $\Omega_0 \subseteq \Omega$  such that  $\tau \circ \varphi \colon \Omega_0 \to \mathbb{C}$  has a holomorphic extension  $\zeta(\varphi) \colon \Omega \to \mathbb{C}$ .

- Let  $\mathcal{A}$  be an operator algebra.
- Let  $\mathcal{A}_0 \subseteq \mathcal{A}$  be a subalgebra.
- Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be a trace, i.e., linear functional such that  $\forall x, y \in \mathcal{A}_0 : \tau(xy) = \tau(yx).$
- ▶ Instead of  $A \in \mathcal{A}$ , consider  $\varphi : \mathbb{C} \to \mathcal{A}$  holomorphic such that  $\varphi(0) = A$  and

$$\exists \Omega_0 \subseteq_{\text{open,connected}} \mathbb{C} : \varphi[\Omega_0] \subseteq \mathcal{A}_0.$$

- ► Let  $\Omega \subseteq_{\text{open,connected}} \mathbb{C}$  be maximal satisfying  $\Omega_0 \subseteq \Omega$  such that  $\tau \circ \varphi : \Omega_0 \to \mathbb{C}$  has a holomorphic extension  $\zeta(\varphi) : \Omega \to \mathbb{C}$ .
- Is  $\zeta(\varphi)$  holomorphic in a neighborhood of 0? (Want tr $A \coloneqq \zeta(\varphi)(0)$ .)
- Does  $\varphi(0) = \psi(0)$  imply  $\zeta(\varphi)(0) = \zeta(\psi)(0)$ ?



# $\zeta\text{-}\mathrm{regularization}$ for pseudo-differential operators

- Let  $\mathcal{A} = \Psi^{cl}$  be the algebra of classical pseudo-differential operators on a compact manifold X without boundary.
- Let  $\mathcal{A}_0 = \Psi^{\mathrm{cl}} \cap \mathcal{S}_1(L_2(X)).$
- Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be the trace tr in  $\mathcal{S}_1(L_2(X))$ .



## $\zeta\text{-}\mathrm{regularization}$ for pseudo-differential operators

- Let  $\mathcal{A} = \Psi^{cl}$  be the algebra of classical pseudo-differential operators on a compact manifold X without boundary.
- Let  $\mathcal{A}_0 = \Psi^{\mathrm{cl}} \cap \mathcal{S}_1(L_2(X)).$
- Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be the trace tr in  $\mathcal{S}_1(L_2(X))$ .
- ▶ Instead of  $A \in \mathcal{A}$ , consider  $\varphi : \mathbb{C} \to \mathcal{A}$  holomorphic such that  $\varphi(0) = A$  and

$$\forall z \in \mathbb{C} : \varphi(z) \sim \sum_{j \in \mathbb{N}_0} a_{m-j+z}(z).$$

# $\zeta\text{-regularization}$ for pseudo-differential operators

- Let  $\mathcal{A} = \Psi^{cl}$  be the algebra of classical pseudo-differential operators on a compact manifold X without boundary.
- Let  $\mathcal{A}_0 = \Psi^{\mathrm{cl}} \cap \mathcal{S}_1(L_2(X)).$
- Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be the trace tr in  $\mathcal{S}_1(L_2(X))$ .
- ▶ Instead of  $A \in \mathcal{A}$ , consider  $\varphi : \mathbb{C} \to \mathcal{A}$  holomorphic such that  $\varphi(0) = A$  and

$$\forall z \in \mathbb{C} : \varphi(z) \sim \sum_{j \in \mathbb{N}_0} a_{m-j+z}(z).$$

Then,  $\Omega_0 = \mathbb{C}_{\mathfrak{R}(\cdot) < -\dim X - \mathfrak{R}(m)}$ .

• tr <br/>o $\varphi$  has meromorphic extension to  $\mathbb C$  with isolated simple poles.



# $\zeta\text{-}\mathrm{regularization}$ for pseudo-differential operators

- Let  $\mathcal{A} = \Psi^{cl}$  be the algebra of classical pseudo-differential operators on a compact manifold X without boundary.
- Let  $\mathcal{A}_0 = \Psi^{\mathrm{cl}} \cap \mathcal{S}_1(L_2(X)).$
- Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be the trace tr in  $\mathcal{S}_1(L_2(X))$ .
- ▶ Instead of  $A \in \mathcal{A}$ , consider  $\varphi : \mathbb{C} \to \mathcal{A}$  holomorphic such that  $\varphi(0) = A$  and

$$\forall z \in \mathbb{C} : \varphi(z) \sim \sum_{j \in \mathbb{N}_0} a_{m-j+z}(z).$$

- tr  $\circ \varphi$  has meromorphic extension to  $\mathbb{C}$  with isolated simple poles.
- Is  $\zeta(\varphi)$  holomorphic in a neighborhood of 0?
- Does  $\varphi(0) = \psi(0)$  imply  $\zeta(\varphi)(0) = \zeta(\psi)(0)$ ?



## $\zeta\text{-regularization}$ for pseudo-differential operators

- Let  $\mathcal{A} = \Psi^{cl}$  be the algebra of classical pseudo-differential operators on a compact manifold X without boundary.
- Let  $\mathcal{A}_0 = \Psi^{\mathrm{cl}} \cap \mathcal{S}_1(L_2(X)).$
- Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be the trace tr in  $\mathcal{S}_1(L_2(X))$ .
- ▶ Instead of  $A \in \mathcal{A}$ , consider  $\varphi : \mathbb{C} \to \mathcal{A}$  holomorphic such that  $\varphi(0) = A$  and

$$\forall z \in \mathbb{C} : \varphi(z) \sim \sum_{j \in \mathbb{N}_0} a_{m-j+z}(z).$$

- tr <br/>o $\varphi$  has meromorphic extension to  $\mathbb C$  with isolated simple poles.
- $m \notin \mathbb{Z}_{\geq -\dim X} \Rightarrow \zeta(\varphi)$  holomorphic near 0
- Does  $\varphi(0) = \psi(0)$  imply  $\zeta(\varphi)(0) = \zeta(\psi)(0)$ ?

# $\zeta\text{-regularization}$ for pseudo-differential operators

- Let  $\mathcal{A} = \Psi^{cl}$  be the algebra of classical pseudo-differential operators on a compact manifold X without boundary.
- Let  $\mathcal{A}_0 = \Psi^{\mathrm{cl}} \cap \mathcal{S}_1(L_2(X)).$
- Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be the trace tr in  $\mathcal{S}_1(L_2(X))$ .
- ▶ Instead of  $A \in \mathcal{A}$ , consider  $\varphi : \mathbb{C} \to \mathcal{A}$  holomorphic such that  $\varphi(0) = A$  and

$$\forall z \in \mathbb{C} : \varphi(z) \sim \sum_{j \in \mathbb{N}_0} a_{m-j+z}(z).$$

- tr  $\circ \varphi$  has meromorphic extension to  $\mathbb{C}$  with isolated simple poles.
- $m \notin \mathbb{Z}_{\geq -\dim X} \Rightarrow \zeta(\varphi)$  holomorphic near 0

$$\mathfrak{m} \notin \mathbb{Z}_{\geq -\dim X} \land N \in \mathbb{N}_{\geq \dim X + \mathfrak{R}(m)}$$
  
 
$$\Rightarrow \zeta(\varphi)(0) = \int_M \left( k(0) - \sum_{j=0}^N k_{m-j}(0) \right)(x, x) d\mathrm{vol}_X(x)$$

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |
|            |              |               |               |              |               |                   |                          |

- Let  $\mathcal{A} = \mathcal{A}_{\Gamma}$  be an algebra of FIOs.
- Let  $\mathcal{A}_0 = \mathcal{A}_{\Gamma} \cap \mathcal{S}_1(L_2(X)).$

• Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be the trace tr in  $\mathcal{S}_1(L_2(M))$ .

|  |  | FIO algebras<br>000000000 | ζ-reg.<br>00●000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification<br>000000000 | gKV and res trace | Stationary phase approx. |
|--|--|---------------------------|------------------|---------------------------|------------------------------|----------------------------|-------------------|--------------------------|
|--|--|---------------------------|------------------|---------------------------|------------------------------|----------------------------|-------------------|--------------------------|

- Let  $\mathcal{A} = \mathcal{A}_{\Gamma}$  be an algebra of FIOs.
- Let  $\mathcal{A}_0 = \mathcal{A}_{\Gamma} \cap \mathcal{S}_1(L_2(X)).$
- Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be the trace tr in  $\mathcal{S}_1(L_2(M))$ .
- ▶ Instead of  $A \in \mathcal{A}$ , consider  $\varphi : \mathbb{C} \to \mathcal{A}$  holomorphic such that  $\varphi(0) = A$  and

$$\forall z \in \mathbb{C} : \varphi(z) \sim \sum_{j \in \mathbb{N}_0} a_{m-j+z}(z) \in S^{m+\Re(z)}(X^2 \times \mathbb{R}^N).$$

|   | FIO algebras<br>000000000 | ζ-reg.<br>00●000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000            | Mollification<br>000000000 | gKV and res trace | Stationary phase approx. |
|---|---------------------------|------------------|---------------------------|-----------------------------------------|----------------------------|-------------------|--------------------------|
| 0 | 00000000                  | 0000000          | 00000000                  | 000000000000000000000000000000000000000 | 000000000                  | 00000000          | 000000000                |

- Let  $\mathcal{A} = \mathcal{A}_{\Gamma}$  be an algebra of FIOs.
- Let  $\mathcal{A}_0 = \mathcal{A}_{\Gamma} \cap \mathcal{S}_1(L_2(X)).$
- Let  $\tau : \mathcal{A}_0 \to \mathbb{C}$  be the trace tr in  $\mathcal{S}_1(L_2(M))$ .
- ▶ Instead of  $A \in \mathcal{A}$ , consider  $\varphi : \mathbb{C} \to \mathcal{A}$  holomorphic such that  $\varphi(0) = A$  and

$$\forall z \in \mathbb{C} : \varphi(z) \sim \sum_{j \in \mathbb{N}_0} a_{m-j+z}(z) \in S^{m+\Re(z)}(X^2 \times \mathbb{R}^N).$$

Then, 
$$\Omega_0 = \mathbb{C}_{\mathfrak{R}(\cdot) < -\max\{\dim X, N\} - \mathfrak{R}(m)}$$
.

Let k(z) be the kernel of  $\varphi(z)$ . Then, we want to show that

$$\Omega_0 \ni z \mapsto \langle k(z), \delta_{\text{diag}} \rangle \in \mathbb{C}$$

has a meromorphic extension to  $\mathbb{C}$ .

 $\zeta\text{-functions}$  of Fourier Integral Operators: gauged poly-log-homogeneous distributions

T. Hartung

# The Black Box Magic Theorem

### Theorem (Hörmander Thm 21.2.10)

Let S be a conic symplectic manifold of dimension 2n and  $V_1$  and  $V_2$  conic Lagrangian submanifolds intersecting cleanly at  $\gamma \in S$ . Then, there are homogeneous symplectic coordinates  $(x,\xi)$  at  $\gamma$  such that  $\gamma = (0, e_1), e_1 = (1, 0, \dots, 0)$ , and near  $\gamma$ 

> $V_1 = \{(0,\xi)\}$  $V_2 = \{(0,x'',\xi',0)\}$

where  $\xi' = (\xi_1, \ldots, \xi_k)$ ,  $x'' = (x_{k+1}, \ldots, x_n)$ , and  $k = \dim V_1 \cap V_2$ .



# The Black Box Magic happening

▶ It is possible to write

$$k(z) = \int_{\mathbb{R}^k} e^{i\langle x',\xi'\rangle} a(z)(x'',\xi')d\xi'.$$


▶ It is possible to write

$$k(z) = \int_{\mathbb{R}^k} e^{i\langle x',\xi'\rangle} a(z)(x'',\xi')d\xi'.$$

• There exists a pseudo-differential operator P such that  $\delta_{\text{diag}} = P \delta_0$ .

▶ It is possible to write

$$k(z) = \int_{\mathbb{R}^k} e^{i\langle x',\xi'\rangle} a(z)(x'',\xi')d\xi'.$$

- There exists a pseudo-differential operator P such that  $\delta_{\text{diag}} = P \delta_0$ .
- Hence, there exists a polyhomogeneous  $\alpha(z)$  such that

$$\langle k(z), \delta_{\text{diag}} \rangle = \langle P^T k(z), \delta_0 \rangle = \int_{\mathbb{R}^k} \alpha(z)(\xi) d\xi$$

▶ It is possible to write

$$k(z) = \int_{\mathbb{R}^k} e^{i\langle x',\xi'\rangle} a(z)(x'',\xi')d\xi'.$$

- There exists a pseudo-differential operator P such that  $\delta_{\text{diag}} = P \delta_0$ .
- Hence, there exists a polyhomogeneous  $\alpha(z)$  such that

$$\langle k(z), \delta_{\text{diag}} \rangle = \langle P^T k(z), \delta_0 \rangle = \int_{\mathbb{R}^k} \alpha(z)(\xi) d\xi$$

**Remark.** This approach appears in various different forms in many publications by Duistermaat, Greenleaf, Guillemin, Hörmander, Melrose, Uhlmann, ...

▶ It is possible to write

$$k(z) = \int_{\mathbb{R}^k} e^{i\langle x',\xi'\rangle} a(z)(x'',\xi')d\xi'.$$

- There exists a pseudo-differential operator P such that  $\delta_{\text{diag}} = P \delta_0$ .
- Hence, there exists a polyhomogeneous  $\alpha(z)$  such that

$$\langle k(z), \delta_{\text{diag}} \rangle = \langle P^T k(z), \delta_0 \rangle = \int_{\mathbb{R}^k} \alpha(z)(\xi) d\xi$$

**Remark.** This approach appears in various different forms in many publications by Duistermaat, Greenleaf, Guillemin, Hörmander, Melrose, Uhlmann, ... **Remark (Zworski).** For trace-class  $A \in \mathcal{A}_{\Gamma}$  there exists a FIO F such that  $\operatorname{tr} A = \operatorname{tr}(F^{-1}AF) = \int \alpha$ .



## Black Box Magic for pseudo-differential operators

Consider a trace-class pseudo-differential operator A with symbol  $\sigma$ . Then, we have

$$\operatorname{tr} A = \left( (x, y) \mapsto \int_{\mathbb{R}^{\dim X}} e^{i \langle x - y, \xi \rangle} \sigma(x, y, \xi) d\xi, \delta_{\operatorname{diag}} \right)$$



## Black Box Magic for pseudo-differential operators

Consider a trace-class pseudo-differential operator A with symbol  $\sigma$ . Then, we have

$$\operatorname{tr} A = \left\{ (x, y) \mapsto \int_{\mathbb{R}^{\dim X}} e^{i \langle x - y, \xi \rangle} \sigma(x, y, \xi) d\xi, \delta_{\operatorname{diag}} \right\}$$
$$= \int_X \int_{\mathbb{R}^{\dim X}} \sigma(x, x, \xi) d\xi d\operatorname{vol}_X(x)$$

## Black Box Magic for pseudo-differential operators

Consider a trace-class pseudo-differential operator A with symbol  $\sigma$ . Then, we have

$$\operatorname{tr} A = \left( (x, y) \mapsto \int_{\mathbb{R}^{\dim X}} e^{i\langle x - y, \xi \rangle} \sigma(x, y, \xi) d\xi, \delta_{\operatorname{diag}} \right.$$
$$= \int_X \int_{\mathbb{R}^{\dim X}} \sigma(x, x, \xi) d\xi d\operatorname{vol}_X(x)$$
$$= \int_{\mathbb{R}^{\dim X}} \underbrace{\int_X \sigma(x, x, \xi) d\operatorname{vol}_X(x)}_{=:\alpha(\xi)} d\xi$$



A gauged poly-log-homogeneous distribution  $\alpha$  is a holomorphic family  $(\alpha(z))_{z \in \mathbb{C}}$ with an expansion

$$\alpha = \alpha_0 + \sum_{\iota \in I} \alpha_\iota$$

where

- $I \subseteq \mathbb{N}$
- $\alpha_0(z) \in L_1(\mathbb{R}_{\geq 1} \times M)$  for all z in an open neighborhood of  $\mathbb{C}_{\mathfrak{R} \leq 0}$  where M is a compact, orientable, finite dimensional manifold without boundary
- $\forall \iota \in I \; \exists d_{\iota} \in \mathbb{C} \; \exists l_{\iota} \in \mathbb{N}_0 \; \exists \tilde{\alpha}_{\iota} \in C^{\omega}(\mathbb{C}, L_1(M)) \; \forall (r, \nu) \in \mathbb{R}_{\geq 1} \times M :$

$$\alpha_{\iota}(z)(r,\nu) = r^{d_{\iota}+z}(\ln r)^{l_{\iota}}\tilde{\alpha}_{\iota}(z)(\nu)$$

| FIO algebras<br>000000000 | $\zeta$ -reg. | gplh distribs<br>o●oooooo | Laurent exp.<br>0000000000000 | Mollification<br>000000000 | m gKV and res trace 00000000 | Stationary phase approx. |
|---------------------------|---------------|---------------------------|-------------------------------|----------------------------|------------------------------|--------------------------|
|                           |               |                           |                               |                            |                              |                          |

Furthermore (primarily if I is infinite)

- The family  $(\mathfrak{R}(d_{\iota}))_{\iota \in I}$  is bounded from above.<sup>1</sup>
- The map  $I \ni \iota \mapsto (d_{\iota}, l_{\iota})$  is injective.
- There are only finitely many  $\iota$  satisfying  $d_{\iota} = d$  for any given  $d \in \mathbb{C}$ .
- The family  $((d_{\iota} \delta)^{-1})_{\iota \in I}$  is in  $\ell_2(I)$  for any  $\delta \in \mathbb{C} \setminus \{d_{\iota}; \iota \in I\}$ .
- Each  $\sum_{\iota \in I} \tilde{\alpha}_{\iota}(z)$  converges unconditionally in  $L_1(M)$ .<sup>2</sup>

<sup>1</sup>Note, we do not require  $\mathfrak{R}(d_{\iota}) \to -\infty$ .  $\forall \iota \in I : \mathfrak{R}(d_{\iota}) = 42$  is entirely possible.

<sup>2</sup>Unconditional convergence of  $\sum_{\iota \in I} \tilde{\alpha}_{\iota}(z)$  in  $L_1(M)$  may also be replaced by the slightly weaker, though more artificial, condition  $\sum_{\iota \in I} \|\tilde{\alpha}_{\iota}(z)\|_{L_1(M)}^2 < \infty$ .

 $\zeta\text{-functions}$  of Fourier Integral Operators: gauged poly-log-homogeneous distributions

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

## Example (Classical pseudo-differential operator)

• Let  $\sigma \sim \sum_{j \in \mathbb{N}_0} a_{m-j}$  be a classical symbol.

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 0000000       | 000000000000 | 000000000     | 0000000           | 000000000                |

## Example (Classical pseudo-differential operator)

- Let  $\sigma \sim \sum_{j \in \mathbb{N}_0} a_{m-j}$  be a classical symbol.
- gauging  $\sigma \rightsquigarrow \sigma(z) \sim \sum_{j \in \mathbb{N}_0} a_{m-j+z}(z)$

## Example (Classical pseudo-differential operator)

- Let  $\sigma \sim \sum_{j \in \mathbb{N}_0} a_{m-j}$  be a classical symbol.
- gauging  $\sigma \rightsquigarrow \sigma(z) \sim \sum_{j \in \mathbb{N}_0} a_{m-j+z}(z)$
- ▶ splitting into trace-class and non-trace-class:  $I = \{j \in \mathbb{N}_0; \Re(m) j \ge -\dim X\}$
- $\blacktriangleright \ M = \partial B_{\mathbb{R}^{\dim X}}$
- $\forall z \in \mathbb{C} \ \forall \iota \in I \ \forall (r, \nu) \in \mathbb{R}_{\geq 1} \times M : \ \alpha_{\iota}(z)(r, \nu) \coloneqq \int_{X} a_{m-\iota+z}(z)(x, x, r\nu) d\mathrm{vol}_{X}(x)$
- $\alpha_0(z)(r,\nu) \coloneqq \int_X \sigma(z)(x,x,r\nu) \sum_{\iota \in I} a_{m-\iota+z}(z)(x,x,r\nu) d\operatorname{vol}_X(x)$



## $\zeta\text{-functions}$ of gauged poly-log-homogeneous distributions

### Formal computation:

$$\int_{\mathbb{R}_{\geq 1} \times M} \alpha(z) d\mathrm{vol}_{\mathbb{R}_{\geq 1} \times M}$$



## $\zeta\text{-functions}$ of gauged poly-log-homogeneous distributions

### Formal computation:

$$\int_{\mathbb{R}_{\geq 1} \times M} \alpha(z) d\mathrm{vol}_{\mathbb{R}_{\geq 1} \times M} = \int_{\mathbb{R}_{\geq 1} \times M} \alpha_0(z) d\mathrm{vol}_{\mathbb{R}_{\geq 1} \times M} + \sum_{\iota \in I} \int_{\mathbb{R}_{\geq 1} \times M} \alpha_\iota(z) d\mathrm{vol}_{\mathbb{R}_{\geq 1} \times M}$$



$$\int_{\mathbb{R}_{\geq 1} \times M} \alpha(z) d\mathrm{vol}_{\mathbb{R}_{\geq 1} \times M} = \underbrace{\int_{\mathbb{R}_{\geq 1} \times M} \alpha_0(z) d\mathrm{vol}_{\mathbb{R}_{\geq 1} \times M}}_{=:\tau_0(z) \in \mathbb{C}} + \sum_{\iota \in I} \int_{\mathbb{R}_{\geq 1} \times M} \alpha_\iota(z) d\mathrm{vol}_{\mathbb{R}_{\geq 1} \times M}$$



$$\int_{\mathbb{R}_{\geq 1} \times M} \alpha(z) d\mathrm{vol}_{\mathbb{R}_{\geq 1} \times M} = \underbrace{\int_{\mathbb{R}_{\geq 1} \times M} \alpha_0(z) d\mathrm{vol}_{\mathbb{R}_{\geq 1} \times M}}_{=:\tau_0(z) \in \mathbb{C}} + \sum_{\iota \in I} \int_{\mathbb{R}_{\geq 1}} \int_M \alpha_\iota(z) (r, \nu) r^{\dim M} d\mathrm{vol}_M(\nu) dr$$



$$\int_{\mathbb{R}_{\geq 1} \times M} \alpha(z) d\operatorname{vol}_{\mathbb{R}_{\geq 1} \times M} = \underbrace{\int_{\mathbb{R}_{\geq 1} \times M} \alpha_0(z) d\operatorname{vol}_{\mathbb{R}_{\geq 1} \times M}}_{=:\tau_0(z) \in \mathbb{C}} + \sum_{\iota \in I} \int_{\mathbb{R}_{\geq 1}} \int_M \alpha_\iota(z) (r, \nu) r^{\dim M} d\operatorname{vol}_M(\nu) dr$$
$$= \tau_0(z) + \sum_{\iota \in I} \underbrace{\int_{\mathbb{R}_{\geq 1}} r^{\dim M + d_\iota + z} (\ln r)^{l_\iota} dr}_{=:c_\iota(z)} \underbrace{\int_M \tilde{\alpha}_\iota(z) d\operatorname{vol}_M}_{=:res\alpha_\iota(z) \in \mathbb{C}}$$

 $\zeta$ -functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions



$$\int_{\mathbb{R}_{\geq 1} \times M} \alpha(z) d\operatorname{vol}_{\mathbb{R}_{\geq 1} \times M} = \underbrace{\int_{\mathbb{R}_{\geq 1} \times M} \alpha_{0}(z) d\operatorname{vol}_{\mathbb{R}_{\geq 1} \times M}}_{=:\tau_{0}(z) \in \mathbb{C}} + \sum_{\iota \in I} \int_{\mathbb{R}_{\geq 1}} \int_{M} \alpha_{\iota}(z) (r, \nu) r^{\dim M} d\operatorname{vol}_{M}(\nu) dr$$
$$= \tau_{0}(z) + \sum_{\iota \in I} \underbrace{\int_{\mathbb{R}_{\geq 1}} r^{\dim M + d_{\iota} + z} (\ln r)^{l_{\iota}} dr}_{=:c_{\iota}(z)} \underbrace{\int_{M} \tilde{\alpha}_{\iota}(z) d\operatorname{vol}_{M}}_{=:res\alpha_{\iota}(z) \in \mathbb{C}}$$
$$= \tau_{0}(z) + \sum_{\iota \in I} c_{\iota}(z) \operatorname{res} \alpha_{\iota}(z)$$

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

## $\zeta\text{-functions}$ of gauged poly-log-homogeneous distributions

### Lemma

For 
$$\Re(z) \ll 0$$
:  $c_{\iota}(z) = (-1)^{l_{\iota}+1} l_{\iota}! (\dim M + d_{\iota} + z + 1)^{-(l_{\iota}+1)} =: \tilde{c}_{\iota}(z)$ 

#### Proof.

Use upper incomplete  $\Gamma$ -function  $\Gamma_{ui}$  to show

$$\left(\mathbb{R}_{>0} \ni y \mapsto \frac{-\Gamma_{ui}(l+1, -(d+1)\ln y)}{(-(d+1))^{l+1}} \in \mathbb{C}\right)'(x) = x^d (\ln x)^l$$

and then integrate

$$\int_{\mathbb{R}_{\geq 1}} r^{\dim M + d_{\iota} + z} \left( \ln r \right)^{l_{\iota}} dr.$$

T. Hartung

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

#### Lemma

For every 
$$z \in \mathbb{C} \setminus \{-\dim M - d_{\iota} - 1; \iota \in I\}, \sum_{\iota \in I} \tilde{c}_{\iota}(z) \operatorname{res} \alpha_{\iota}(z) \text{ converges absolutely.}$$

#### Proof.

By assumption,  $(\tilde{c}_{\iota}(z))_{\iota \in I} \in \ell_2(I)$  and  $\sum_{\iota \in I} \tilde{\alpha}_{\iota}(z)$  uncond. conv. in  $L_1(M)$ . By

## Theorem (Orlicz)

Let 
$$p \in \mathbb{R}_{\geq 1}$$
,  $q = \begin{cases} 2 & , p \in [1,2] \\ p & , p \in \mathbb{R}_{>2} \end{cases}$ , and  $\sum_{j \in \mathbb{N}} x_j$  converges unconditionally in  $L_p$ .  
Then,  $\sum_{j \in \mathbb{N}} \|x_j\|_{L_p}^q$  converges.

we have 
$$(\operatorname{res}\alpha_{\iota}(z))_{\iota\in I} \in \ell_2(I)$$
, i.e.,  $(\tilde{c}_{\iota}(z)\operatorname{res}\alpha_{\iota}(z))_{\iota\in I} \in \ell_1(I)$ .

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

## $\zeta\text{-functions}$ of gauged poly-log-homogeneous distributions

### Definition

Let  $\alpha$  be a gauged poly-log-homogeneous distribution. Then, we define the  $\zeta$ -function  $\zeta(\alpha)$  of  $\alpha$  to be the meromorphic extension of

$$\zeta(\alpha)(z) \coloneqq \int_{\mathbb{R}_{\geq 1} \times M} \alpha(z) d\mathrm{vol}_{\mathbb{R}_{\geq 1} \times M},$$

i.e., in an open neighborhood of  $\mathbb{C}_{\mathfrak{R}(\cdot)\leq 0}$ 

$$\zeta(\alpha)(z) = \int_{\mathbb{R}_{\geq 1} \times M} \alpha_0(z) d\operatorname{vol}_{\mathbb{R}_{\geq 1} \times M} + \sum_{\iota \in I} \frac{(-1)^{l_\iota + 1} l_\iota \operatorname{!res} \alpha_\iota(z)}{(\dim M + d_\iota + z + 1)^{l_\iota + 1}}.$$

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 0000000       | 000000000000 | 000000000     | 0000000           | 000000000                |

### Theorem

 $\zeta(\alpha)$  is a well-defined meromorphic function on an open neighborhood of  $\mathbb{C}_{\Re(\cdot)\leq 0}$ and has at most isolated poles of finite order in the set

 $\{-d_{\iota} - \dim M - 1; \ \iota \in I\}.$ 

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 0000000       | 000000000000 | 000000000     | 0000000           | 000000000                |

#### Theorem

 $\zeta(\alpha)$  is a well-defined meromorphic function on an open neighborhood of  $\mathbb{C}_{\Re(\cdot)\leq 0}$ and has at most isolated poles of finite order in the set

 $\{-d_{\iota} - \dim M - 1; \ \iota \in I\}.$ 

### Example

For classical pseudo-differential operators: dim  $M = \dim X - 1$  and all  $l_i$  vanish. Hence,  $\zeta$ -functions of psudo-differential operators exist and have at most isolated simple poles in the set

$$\{-d_{\iota} - \dim X; \ \iota \in I\}.$$

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | ●00000000000 | 000000000     | 0000000           | 000000000                |

#### Definition

Let  $f(z) := \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n$  be without essential singularity at  $z_0$ . Then we define:

- order of the initial Laurent coefficient:  $\operatorname{oilc}_{z_0}(f) \coloneqq \min\{n \in \mathbb{Z}; a_n \neq 0\}$
- initial Laurent coefficient:  $ilc_{z_0}(f) \coloneqq a_{oilc_{z_0}(f)}$

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | ●00000000000 | 000000000     | 0000000           | 000000000                |

#### Definition

Let  $f(z) := \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n$  be without essential singularity at  $z_0$ . Then we define:

- order of the initial Laurent coefficient:  $\operatorname{oilc}_{z_0}(f) \coloneqq \min\{n \in \mathbb{Z}; a_n \neq 0\}$
- initial Laurent coefficient:  $ilc_{z_0}(f) \coloneqq a_{oilc_{z_0}(f)}$

#### Lemma

Let  $\alpha = \alpha_0 + \sum_{\iota \in I} \alpha_\iota$  and  $\beta = \beta_0 + \sum_{\iota \in I'} \beta_\iota$  be two gauged poly-log-homogeneous distributions with  $\alpha(0) = \beta(0)$  and  $\operatorname{res}\alpha_j(0) \neq 0$  if  $l_j$  is the maximal logarithmic order with  $d_j = -\dim M - 1$ . Then,  $\operatorname{oilc}_0(\zeta(\alpha)) = \operatorname{oilc}_0(\zeta(\beta)) = -l_j - 1$  and  $\operatorname{ilc}_0(\zeta(\alpha)) = \operatorname{ilc}_0(\zeta(\beta))$ .

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp.                            | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|-----------------------------------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000000000000000000000000000000 | 000000000     | 0000000           | 000000000                |

Since  $\alpha(0) = \beta(0)$ , we obtain that  $z \mapsto \gamma(z) \coloneqq \frac{\alpha(z) - \beta(z)}{z}$  is a gauged poly-log-homogeneous distribution again.

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 00000000000  | 000000000     | 0000000           | 000000000                |

Since  $\alpha(0) = \beta(0)$ , we obtain that  $z \mapsto \gamma(z) \coloneqq \frac{\alpha(z) - \beta(z)}{z}$  is a gauged poly-log-homogeneous distribution again. Furthermore,

 $\operatorname{oilc}_0(\zeta(\gamma)) \ge \min\{\operatorname{oilc}_0(\zeta(\alpha)), \operatorname{oilc}_0(\zeta(\beta))\} =: -l = -l_j - 1$ 

holds because each pair  $(d_{\iota}, l_{\iota})$  in the expansion of  $\gamma$  appears in at least one of the expansions of  $\alpha$  or  $\beta$ .

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 00000000000  | 000000000     | 0000000           | 000000000                |

Since  $\alpha(0) = \beta(0)$ , we obtain that  $z \mapsto \gamma(z) \coloneqq \frac{\alpha(z) - \beta(z)}{z}$  is a gauged poly-log-homogeneous distribution again. Furthermore,

 $\operatorname{oilc}_0(\zeta(\gamma)) \ge \min\{\operatorname{oilc}_0(\zeta(\alpha)), \operatorname{oilc}_0(\zeta(\beta))\} =: -l = -l_j - 1$ 

holds because each pair  $(d_i, l_i)$  in the expansion of  $\gamma$  appears in at least one of the expansions of  $\alpha$  or  $\beta$ . This implies that  $z \mapsto z^l \zeta(\gamma)(z) = z^{l-1} (\zeta(\alpha)(z) - \zeta(\beta)(z))$  is holomorphic at zero (equality holds for  $\Re(z)$  sufficiently small and, thence, in general by meromorphic extension).

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 00000000000  | 000000000     | 00000000          | 000000000                |

Since  $\alpha(0) = \beta(0)$ , we obtain that  $z \mapsto \gamma(z) \coloneqq \frac{\alpha(z) - \beta(z)}{z}$  is a gauged poly-log-homogeneous distribution again. Furthermore,

 $\operatorname{oilc}_0(\zeta(\gamma)) \ge \min\{\operatorname{oilc}_0(\zeta(\alpha)), \operatorname{oilc}_0(\zeta(\beta))\} =: -l = -l_j - 1$ 

holds because each pair  $(d_{\iota}, l_{\iota})$  in the expansion of  $\gamma$  appears in at least one of the expansions of  $\alpha$  or  $\beta$ .

This implies that  $z \mapsto z^l \zeta(\gamma)(z) = z^{l-1} (\zeta(\alpha)(z) - \zeta(\beta)(z))$  is holomorphic at zero (equality holds for  $\Re(z)$  sufficiently small and, thence, in general by meromorphic extension).

Hence, the highest order poles of  $\zeta(\alpha)$  and  $\zeta(\beta)$  at zero must cancel out which directly implies  $\operatorname{oilc}_0(\zeta(\alpha)) = \operatorname{oilc}_0(\zeta(\beta))$  and  $\operatorname{ilc}_0(\zeta(\alpha)) = \operatorname{ilc}_0(\zeta(\beta))$ .

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp.                            | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|-----------------------------------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000000000000000000000000000000 | 000000000     | 0000000           | 000000000                |

#### Lemma

Let  $\alpha = \alpha_0 + \sum_{\iota \in I} \alpha_\iota$  and  $\beta = \beta_0 + \sum_{\iota \in I'} \beta_\iota$  be two gauged poly-log-homogeneous distributions with  $\alpha(0) = \beta(0)$  and  $\forall \iota \in I \cup I' : d_\iota \neq -\dim M - 1$ . Then,  $\zeta(\alpha)(0) = \zeta(\beta)(0)$ .

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp.                            | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|-----------------------------------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000000000000000000000000000000 | 000000000     | 0000000           | 000000000                |

#### Lemma

Let  $\alpha = \alpha_0 + \sum_{\iota \in I} \alpha_\iota$  and  $\beta = \beta_0 + \sum_{\iota \in I'} \beta_\iota$  be two gauged poly-log-homogeneous distributions with  $\alpha(0) = \beta(0)$  and  $\forall \iota \in I \cup I' : d_\iota \neq -\dim M - 1$ . Then,  $\zeta(\alpha)(0) = \zeta(\beta)(0)$ .

### Proof.

Again, since  $\alpha(0) = \beta(0)$ , we obtain that  $z \mapsto \gamma(z) \coloneqq \frac{\alpha(z) - \beta(z)}{z}$  is a gauged poly-log-homogeneous distribution and  $\operatorname{oilc}_0(\zeta(\gamma)) \ge 0$ . Hence

$$\zeta(\alpha)(0) - \zeta(\beta)(0) = \operatorname{res}_0\left(z \mapsto \frac{\zeta(\alpha)(z) - \zeta(\beta)(z)}{z}\right) = \operatorname{res}_0\zeta(\gamma) = 0$$

where  $res_0$  denotes the residue of a meromorphic function at zero.

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp.                            | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|-----------------------------------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000000000000000000000000000000 | 000000000     | 0000000           | 000000000                |

### Definition

Let  $\alpha = \alpha_0 + \sum_{\iota \in I} \alpha_\iota$  be a gauged poly-log-homogeneous distribution and  $I_{z_0} := \{\iota \in I; \ d_\iota = -\dim M - 1 - z_0\}$ . Then, we define

$$\mathfrak{fp}_{z_0}(\alpha) \coloneqq \alpha - \sum_{\iota \in I_{z_0}} \alpha_\iota = \alpha_0 + \sum_{\iota \in I \smallsetminus I_{z_0}} \alpha_\iota.$$

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp.                            | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|-----------------------------------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000000000000000000000000000000 | 000000000     | 0000000           | 000000000                |

### Definition

Let  $\alpha = \alpha_0 + \sum_{\iota \in I} \alpha_\iota$  be a gauged poly-log-homogeneous distribution and  $I_{z_0} := \{\iota \in I; \ d_\iota = -\dim M - 1 - z_0\}$ . Then, we define

$$\mathfrak{fp}_{z_0}(\alpha) \coloneqq \alpha - \sum_{\iota \in I_{z_0}} \alpha_\iota = \alpha_0 + \sum_{\iota \in I \smallsetminus I_{z_0}} \alpha_\iota.$$

### Corollary

 $\zeta(\mathfrak{fp}_0\alpha)(0)$  is independent of the chosen gauge.

 $\zeta\text{-functions}$  of Fourier Integral Operators: gauged poly-log-homogeneous distributions

|  | Motivation<br>0 | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>0000•0000000 | Mollification<br>000000000 | gKV and res trace | Stationary phase approx. |
|--|-----------------|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|--------------------------|
|--|-----------------|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|--------------------------|

Theorem (Laurent expansion of  $\zeta(\mathfrak{fp}_0\alpha)$ )

Let  $\alpha = \alpha_0 + \sum_{\iota \in I} \alpha_\iota$  be a gauged poly-log-homogeneous distribution with  $I_0 = \emptyset$ . Then,

$$\zeta(\alpha)(z) = \sum_{n \in \mathbb{N}_0} \frac{\zeta(\partial^n \alpha)(0)}{n!} z^n$$

holds in a sufficiently small neighborhood of zero.

|  | Motivation<br>0 | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>0000•0000000 | Mollification<br>000000000 | gKV and res trace | Stationary phase approx. |
|--|-----------------|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|--------------------------|
|--|-----------------|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|--------------------------|

Theorem (Laurent expansion of  $\zeta(\mathfrak{fp}_0\alpha)$ )

Let  $\alpha = \alpha_0 + \sum_{\iota \in I} \alpha_\iota$  be a gauged poly-log-homogeneous distribution with  $I_0 = \emptyset$ . Then,

$$\zeta(\alpha)(z) = \sum_{n \in \mathbb{N}_0} \frac{\zeta(\partial^n \alpha)(0)}{n!} z^n$$

holds in a sufficiently small neighborhood of zero.

The assertion is a direct consequence of the facts that the  $n^{\text{th}}$  Laurent coefficient of a holomorphic function f is given by  $\frac{\partial^n f(0)}{n!}$  and

$$\partial^n \zeta(\alpha) = \partial^n \int_{\mathbb{R}_{\geq 1} \times M} \alpha \, d\mathrm{vol}_{\mathbb{R}_{\geq 1} \times M} = \int_{\mathbb{R}_{\geq 1} \times M} \partial^n \alpha \, d\mathrm{vol}_{\mathbb{R}_{\geq 1} \times M} = \zeta(\partial^n \alpha).$$

| 0 00000000 000000 0000000 <b>00000000</b> 00000000 | Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|----------------------------------------------------|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
|                                                    | 0          | 000000000    | 000000        | 0000000       | 000000000000 | 000000000     | 0000000           | 000000000                |

## Theorem (Laurent expansion of $\zeta(\alpha)$ )

Let  $\alpha = \alpha_0 + \sum_{\iota \in I} \alpha_\iota$  be a gauged poly-log-homogeneous distribution. Then, (in a sufficiently small neighborhood of zero)

$$\begin{split} \zeta(\alpha)(z) &= \sum_{n \in \mathbb{N}_0} \sum_{\iota \in I_0} \frac{(-1)^{l_\iota + 1} l_\iota! \int_M \partial^n \tilde{\alpha}_\iota(0) d\mathrm{vol}_M}{n!} z^{n - l_\iota - 1} \\ &+ \sum_{n \in \mathbb{N}_0} \frac{\int_{\mathbb{R}_{\ge 1} \times M} \partial^n \alpha_0(0) d\mathrm{vol}_{\mathbb{R}_{\ge 1} \times M}}{n!} z^n \\ &+ \sum_{n \in \mathbb{N}_0} \sum_{\iota \in I \smallsetminus I_0} \sum_{j = 0}^n \frac{(-1)^{l_\iota + j + 1} (l_\iota + j)! \int_M \partial^{n - j} \tilde{\alpha}_\iota(0) d\mathrm{vol}_M}{n! (\dim M + d_\iota + 1)^{l_\iota + j + 1}} z^n. \end{split}$$

 $\zeta$ -functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions
| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |
|            |              |               |               |              |               |                   |                          |

$$\begin{aligned} \zeta(\mathfrak{A})(z) &= \sum_{n \in \mathbb{N}_0} \frac{\int_X \int_{B_{\mathbb{R}^N}(0,1)} e^{i\vartheta(x,x,\xi)} \partial^n a(0)(x,x,\xi) \ d\xi \ d\mathrm{vol}_X(x)}{n!} z^n \\ &+ \sum_{n \in \mathbb{N}_0} \sum_{\iota \in I_0} \frac{(-1)^{l_\iota + 1} l_\iota! \int_{\Delta(X) \times \partial B_{\mathbb{R}^N}} e^{i\vartheta} \partial^n \tilde{a}_\iota(0) \ d\mathrm{vol}_{\Delta(X) \times \partial B_{\mathbb{R}^N}}}{n!} z^{n-l_\iota - 1} \\ &+ \sum_{n \in \mathbb{N}_0} \frac{\int_{\mathbb{R}_{\ge 1} \times \partial B_{\mathbb{R}^N}} \int_X e^{i\vartheta(x,x,\xi)} \partial^n a_0(0)(x,x,\xi) \ d\mathrm{vol}_X(x) \ d\mathrm{vol}_{\mathbb{R}_{\ge 1} \times \partial B_{\mathbb{R}^N}}(\xi)}{n!} z^n \\ &+ \sum_{n \in \mathbb{N}_0} \sum_{\iota \in I \setminus I_0} \sum_{j=0}^n \frac{(-1)^{l_\iota + j + 1} (l_\iota + j)! \int_{\Delta(X) \times \partial B_{\mathbb{R}^N}} e^{i\vartheta} \partial^{n-j} \tilde{a}_\iota(0) \ d\mathrm{vol}_{\Delta(X) \times \partial B_{\mathbb{R}^N}}}{n! (N + d_\iota)^{l_\iota + j + 1}} z^n \end{aligned}$$

where  $\Delta(X) \coloneqq \{(x, x) \in X^2; x \in X\}.$ 

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp.  | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|---------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 0000000000000 | 000000000     | 0000000           | 000000000                |

#### Definition

If  $a = a_0 + \sum_{\iota \in I} a_\iota$  is the amplitude of a gauged poly-log-homogeneous Fourier Integral Operator  $\mathfrak{A}$  with phase function  $\vartheta$  and  $\mathfrak{A}_\iota$  the gauged Fourier Integral Operator with phase function  $\vartheta$  and amplitude  $a_\iota$ , then

$$\operatorname{res}\mathfrak{A}_{\iota}(z) \coloneqq \int_{\partial B_{\mathbb{R}^N}} \int_X e^{i\vartheta(x,x,\xi)} \tilde{a}_{\iota}(z)(x,x,\xi) \, d\operatorname{vol}_X(x) \, d\operatorname{vol}_{\partial B_{\mathbb{R}^N}}(\xi).$$



# The Residue Trace ( $\psi$ do: Wodzicki 1984, Guillemin 1985; FIO: Guillemin 1993)

#### Theorem

Let A and B be polyhomogeneous Fourier Integral Operators. Let  $\mathfrak{G}_1$  and  $\mathfrak{G}_2$  be gauged Fourier Integral Operators with  $\mathfrak{G}_1(0) = AB$  and  $\mathfrak{G}_2(0) = BA$ . Then,

 $\operatorname{res}_0\zeta(\mathfrak{G}_1) = \operatorname{res}_0\zeta(\mathfrak{G}_2),$ 

*i.e.*, the residue of the  $\zeta$ -function is tracial and  $A \mapsto \operatorname{res}_0 \zeta(\mathfrak{A})$  is a well-defined trace where  $\mathfrak{A}$  is any choice of gauge for A.



# The Residue Trace ( $\psi$ do: Wodzicki 1984, Guillemin 1985; FIO: Guillemin 1993)

#### Proof.

This is a direct consequence of the following two facts.

(i)  $\operatorname{res}_0\zeta(\mathfrak{G}_j) = -\sum_{\iota \in I_0} \operatorname{res}(\mathfrak{G}_j)_{\iota}(0)$  is independent of the gauge  $(j \in \{1, 2\})$ .

(ii)  $\zeta(\mathfrak{A}B) = \zeta(B\mathfrak{A})$  holds for any gauge  $\mathfrak{A}$  of A because it is true for  $\mathfrak{R}(z)$  sufficiently small.

Hence, 
$$\operatorname{res}_0\zeta(\mathfrak{G}_1) = \operatorname{res}_0\zeta(\mathfrak{A}B) = \operatorname{res}_0\zeta(B\mathfrak{A}) = \operatorname{res}_0\zeta(\mathfrak{G}_2).$$

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 00000000000  | 000000000     | 0000000           | 000000000                |

The (generalized) Kontsevich-Vishik Trace (Kontsevich, Vishik 1994)

#### Theorem

Let A and B be Fourier Integral Operators. Let  $\mathfrak{G}_1$  and  $\mathfrak{G}_2$  be gauged Fourier Integral Operators with  $\mathfrak{G}_1(0) = AB$ ,  $\mathfrak{G}_2(0) = BA$ , and  $I_0 = \emptyset$ . Then,

 $\zeta(\mathfrak{G}_1)(0) = \zeta(\mathfrak{G}_2)(0),$ 

i.e., the constant Laurent coefficient of the  $\zeta$ -function is tracial and  $A \mapsto \zeta(\mathfrak{A})(0)$  is a well-defined trace where  $\mathfrak{A}$  is any choice of gauge for A with  $I_0 = \emptyset$ .



## The generalized Kontsevich-Vishik Trace

#### Definition

The generalized Kontsevich-Vishik trace is defined as

$$\operatorname{tr}_{\mathrm{KV}} : \{A \in \mathcal{A}_{\Gamma}; I_0 = \emptyset\} \subseteq \mathcal{A}_{\Gamma} \to \mathbb{C}; A \mapsto \zeta(\mathfrak{A})(0)$$

where  $\mathfrak{A}$  is any choice of gauge for A.

| Mc<br>o | tivation | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>0000000000000 | $ \substack{ \text{Mollification} \\ \bullet 00000000 } $ | gKV and res trace | Stationary phase approx. |   |
|---------|----------|---------------------------|-------------------------|---------------------------|-------------------------------|-----------------------------------------------------------|-------------------|--------------------------|---|
|         |          |                           |                         |                           |                               |                                                           |                   |                          | - |

• So far, we assumed amplitudes to be integrable on  $X \times B_{\mathbb{R}^N}(0,1)$ .

|  | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>0000000000000 | $ \substack{ \text{Mollification} \\ \bullet 00000000 } $ | m gKV and res trace 00000000 | Stationary phase approx. |  |
|--|---------------------------|-------------------------|---------------------------|-------------------------------|-----------------------------------------------------------|------------------------------|--------------------------|--|
|  |                           |                         |                           |                               |                                                           |                              |                          |  |

- So far, we assumed amplitudes to be integrable on  $X \times B_{\mathbb{R}^N}(0,1)$ .
- Many classical symbols are not.

| FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>0000000000000 | m gKV and res trace 00000000 | Stationary phase approx. |
|---------------------------|-------------------------|---------------------------|-------------------------------|------------------------------|--------------------------|
|                           |                         |                           |                               |                              |                          |

- So far, we assumed amplitudes to be integrable on  $X \times B_{\mathbb{R}^N}(0,1)$ .
- Many classical symbols are not.
- ► How to get  $\zeta$ -functions and Laurent expansion for gauged poly-log-homogeneous distributions on  $\mathbb{R}_{>0} \times M$  instead of only  $\mathbb{R}_{\geq 1} \times M$ ?

| ationary phase approx.<br>000000000 |
|-------------------------------------|
|                                     |

- So far, we assumed amplitudes to be integrable on  $X \times B_{\mathbb{R}^N}(0,1)$ .
- Many classical symbols are not.
- ► How to get  $\zeta$ -functions and Laurent expansion for gauged poly-log-homogeneous distributions on  $\mathbb{R}_{>0} \times M$  instead of only  $\mathbb{R}_{\geq 1} \times M$ ?
- ▶ Idea: Approximation with distributions we can handle.

| FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>0000000000000 | m gKV and res trace 00000000 | Stationary phase approx. |
|---------------------------|-------------------------|---------------------------|-------------------------------|------------------------------|--------------------------|
|                           |                         |                           |                               |                              |                          |

- So far, we assumed amplitudes to be integrable on  $X \times B_{\mathbb{R}^N}(0,1)$ .
- Many classical symbols are not.
- ► How to get  $\zeta$ -functions and Laurent expansion for gauged poly-log-homogeneous distributions on  $\mathbb{R}_{>0} \times M$  instead of only  $\mathbb{R}_{\geq 1} \times M$ ?
- ▶ Idea: Approximation with distributions we can handle.
- ▶ We need convergence type such that
  - (i) sequence of meromorphic germs converges to a meromorphic germ
  - (ii) local properties are preserved taking limits

| FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>0000000000000 | m gKV and res trace 00000000 | Stationary phase approx. |
|---------------------------|-------------------------|---------------------------|-------------------------------|------------------------------|--------------------------|
|                           |                         |                           |                               |                              |                          |

- So far, we assumed amplitudes to be integrable on  $X \times B_{\mathbb{R}^N}(0,1)$ .
- Many classical symbols are not.
- ► How to get  $\zeta$ -functions and Laurent expansion for gauged poly-log-homogeneous distributions on  $\mathbb{R}_{>0} \times M$  instead of only  $\mathbb{R}_{\geq 1} \times M$ ?
- ▶ Idea: Approximation with distributions we can handle.
- ▶ We need convergence type such that
  - (i) sequence of meromorphic germs converges to a meromorphic germ
  - (ii) local properties are preserved taking limits
- Compact convergence on a punctured ball  $B_{\mathbb{C}}(0,\varepsilon) \setminus \{0\}$  will do!

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 00000000     | 000000        | 0000000       | 000000000000 | 00000000      | 0000000           | 000000000                |

Suppose  $\alpha = \alpha_{\iota}$ , i.e.,  $\alpha_0 = 0$  and #I = 1. We need to make sense of

$$\int_{(0,1)} r^{\dim M + d_{\iota} + z} (\ln r)^{l_{\iota}} dr.$$

Introducing a shift  $h \in \mathbb{R}_{>0}$  gives

$$A_h \coloneqq \int_{(0,1)} (r+h)^{\dim M + d_{\iota} + z} (\ln(r+h))^{l_{\iota}} dr$$
$$= \int_{(0,1)} \partial^{l_{\iota}} \left( s \mapsto (r+h)^{\dim M + d_{\iota} + s} \right) (z) dr$$
$$= \partial^{l_{\iota}} \left( s \mapsto \int_{(0,1)} (r+h)^{\dim M + d_{\iota} + s} dr \right) (z)$$

|  |  | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>0000000000000 | Mollification<br>00●000000 | gKV and res trace | Stationary phase approx. |
|--|--|---------------------------|-------------------------|---------------------------|-------------------------------|----------------------------|-------------------|--------------------------|
|--|--|---------------------------|-------------------------|---------------------------|-------------------------------|----------------------------|-------------------|--------------------------|

$$\begin{aligned} A_{h} = \partial^{l_{\iota}} \left( s \mapsto \frac{(1+h)^{\dim M + d_{\iota} + s + 1} - h^{\dim M + d_{\iota} + s + 1}}{\dim M + d_{\iota} + s + 1} \right) (z) \\ = \sum_{j=0}^{l_{\iota}} \frac{(-1)^{j} j!}{(\dim M + d_{\iota} + z + 1)^{j+1}} (1+h)^{\dim M + d_{\iota} + z + 1} (\ln(1+h))^{l_{\iota} - j} \\ - \sum_{j=0}^{l_{\iota}} \frac{(-1)^{j} j!}{(\dim M + d_{\iota} + z + 1)^{j+1}} h^{\dim M + d_{\iota} + z + 1} (\ln h)^{l_{\iota} - j}. \end{aligned}$$

|  |  | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>0000000000000 | Mollification<br>00●000000 | gKV and res trace | Stationary phase approx. |
|--|--|---------------------------|-------------------------|---------------------------|-------------------------------|----------------------------|-------------------|--------------------------|
|--|--|---------------------------|-------------------------|---------------------------|-------------------------------|----------------------------|-------------------|--------------------------|

$$A_{h} = \partial^{l_{\iota}} \left( s \mapsto \frac{(1+h)^{\dim M + d_{\iota} + s + 1} - h^{\dim M + d_{\iota} + s + 1}}{\dim M + d_{\iota} + s + 1} \right) (z)$$
  
=  $\sum_{j=0}^{l_{\iota}} \frac{(-1)^{j} j!}{(\dim M + d_{\iota} + z + 1)^{j+1}} (1+h)^{\dim M + d_{\iota} + z + 1} (\ln(1+h))^{l_{\iota} - j}$   
-  $\sum_{j=0}^{l_{\iota}} \frac{(-1)^{j} j!}{(\dim M + d_{\iota} + z + 1)^{j+1}} h^{\dim M + d_{\iota} + z + 1} (\ln h)^{l_{\iota} - j}.$ 

▶  $(1+h)^{\dim M+d_{\iota}+z+1}(\ln(1+h))^{l_{\iota}-j} \rightarrow \delta_{j,l_{\iota}}$  locally bounded

|  |  | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>0000000000000 | Mollification<br>00●000000 | gKV and res trace | Stationary phase approx. |
|--|--|---------------------------|-------------------------|---------------------------|-------------------------------|----------------------------|-------------------|--------------------------|
|--|--|---------------------------|-------------------------|---------------------------|-------------------------------|----------------------------|-------------------|--------------------------|

$$A_{h} = \partial^{l_{\iota}} \left( s \mapsto \frac{(1+h)^{\dim M + d_{\iota} + s + 1} - h^{\dim M + d_{\iota} + s + 1}}{\dim M + d_{\iota} + s + 1} \right) (z)$$
  
=  $\sum_{j=0}^{l_{\iota}} \frac{(-1)^{j} j!}{(\dim M + d_{\iota} + z + 1)^{j+1}} (1+h)^{\dim M + d_{\iota} + z + 1} (\ln(1+h))^{l_{\iota} - j}$   
-  $\sum_{j=0}^{l_{\iota}} \frac{(-1)^{j} j!}{(\dim M + d_{\iota} + z + 1)^{j+1}} h^{\dim M + d_{\iota} + z + 1} (\ln h)^{l_{\iota} - j}.$ 

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp.  | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|---------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 0000000000000 | 000000000     | 00000000          | 000000000                |
|            |              |               |               |               |               |                   |                          |

$$A_{h} = \partial^{l_{\iota}} \left( s \mapsto \frac{(1+h)^{\dim M + d_{\iota} + s + 1} - h^{\dim M + d_{\iota} + s + 1}}{\dim M + d_{\iota} + s + 1} \right) (z)$$
  
=  $\sum_{j=0}^{l_{\iota}} \frac{(-1)^{j} j!}{(\dim M + d_{\iota} + z + 1)^{j+1}} (1+h)^{\dim M + d_{\iota} + z + 1} (\ln(1+h))^{l_{\iota} - j}$   
-  $\sum_{j=0}^{l_{\iota}} \frac{(-1)^{j} j!}{(\dim M + d_{\iota} + z + 1)^{j+1}} h^{\dim M + d_{\iota} + z + 1} (\ln h)^{l_{\iota} - j}.$ 

T. Hartung

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

## Theorem (Vitali)

Let  $\Omega \subseteq_{\text{open,connected}} \mathbb{C}$ ,  $f \in C^{\omega}(\Omega)^{\mathbb{N}}$  locally bounded, and let

 $\{z \in \Omega; (f_n(z))_{n \in \mathbb{N}} \text{ converges}\}$ 

#### have an accumulation point in $\Omega$ . Then, f is compactly convergent.

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

### Theorem (Vitali)

Let  $\Omega \subseteq_{\text{open,connected}} \mathbb{C}$ ,  $f \in C^{\omega}(\Omega)^{\mathbb{N}}$  locally bounded, and let

 $\{z \in \Omega; (f_n(z))_{n \in \mathbb{N}} \text{ converges}\}$ 

have an accumulation point in  $\Omega$ . Then, f is compactly convergent.

### Corollary

$$A_h$$
 converges compactly to  $z \mapsto \frac{(-1)^{l_\iota} l_\iota!}{(\dim M + d_\iota + z + 1)^{l_\iota + 1}}$ .

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

#### Theorem

$$\sum_{\iota \in I} \int_{(0,1)} (h_{\iota} + r)^{\dim M + d_{\iota} + z} (\ln(h_{\iota} + r))^{l_{\iota}} dr$$

is compactly convergent for  $h := (h_{\iota})_{\iota \in I} \in \ell_{\infty}(I; \mathbb{R}_{>0})$  and  $h \searrow 0$  in  $\ell_{\infty}(I)$  such that

$$Z_{\iota}(z) \coloneqq l_{\iota} \sum_{j=0}^{l_{\iota}} |\zeta_{H}(l_{\iota} - j - d_{\iota} - z; h_{\iota}) - \zeta_{H}(l_{\iota} - j - d_{\iota} - z; 1 + h_{\iota})|$$

is uniformly bounded on an exhausting family of compacta as  $h \searrow 0$ .

| FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification | gKV and res trace | Stationary phase approx. |
|---------------------------|-------------------------|---------------------------|------------------------------|---------------|-------------------|--------------------------|
|                           |                         |                           |                              |               |                   |                          |

$$\begin{aligned} \zeta(\mathfrak{A})(z) &= \sum_{n \in \mathbb{N}_0} \frac{\int_X \int_{B_{\mathbb{R}^N}(0,1)} e^{i\vartheta(x,x,\xi)} \partial^n a(0)(x,x,\xi) \ d\xi \ d\mathrm{vol}_X(x)}{n!} z^n \\ &+ \sum_{n \in \mathbb{N}_0} \sum_{\iota \in I_0} \frac{(-1)^{l_\iota + 1} l_\iota! \int_{\Delta(X) \times \partial B_{\mathbb{R}^N}} e^{i\vartheta} \partial^n \tilde{a}_\iota(0) \ d\mathrm{vol}_{\Delta(X) \times \partial B_{\mathbb{R}^N}}}{n!} z^{n-l_\iota - 1} \\ &+ \sum_{n \in \mathbb{N}_0} \frac{\int_{\mathbb{R}_{\ge 1} \times \partial B_{\mathbb{R}^N}} \int_X e^{i\vartheta(x,x,\xi)} \partial^n a_0(0)(x,x,\xi) \ d\mathrm{vol}_X(x) \ d\mathrm{vol}_{\mathbb{R}_{\ge 1} \times \partial B_{\mathbb{R}^N}}(\xi)}{n!} z^n \\ &+ \sum_{n \in \mathbb{N}_0} \sum_{\iota \in I \setminus I_0} \sum_{j=0}^n \frac{(-1)^{l_\iota + j + 1} (l_\iota + j)! \int_{\Delta(X) \times \partial B_{\mathbb{R}^N}} e^{i\vartheta} \partial^{n-j} \tilde{a}_\iota(0) \ d\mathrm{vol}_{\Delta(X) \times \partial B_{\mathbb{R}^N}}}{n! (N + d_\iota)^{l_\iota + j + 1}} z^n \end{aligned}$$

| FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification | gKV and res trace | Stationary phase approx. |
|---------------------------|-------------------------|---------------------------|------------------------------|---------------|-------------------|--------------------------|
|                           |                         |                           |                              |               |                   |                          |

$$\begin{aligned} \zeta(\mathfrak{A})(z) &= \sum_{n \in \mathbb{N}_0} \frac{\int_X \operatorname{pv} \int_{B_{\mathbb{R}^N}(0,1)} e^{i\vartheta(x,x,\xi)} \partial^n a(0)(x,x,\xi) \ d\xi \ d\operatorname{vol}_X(x)}{n!} z^n \\ &+ \sum_{n \in \mathbb{N}_0} \sum_{\iota \in I_0} \frac{(-1)^{l_\iota + 1} l_\iota! \int_{\Delta(X) \times \partial B_{\mathbb{R}^N}} e^{i\vartheta} \partial^n \tilde{a}_\iota(0) \ d\operatorname{vol}_{\Delta(X) \times \partial B_{\mathbb{R}^N}} z^{n-l_\iota - 1}}{n!} \\ &+ \sum_{n \in \mathbb{N}_0} \frac{\int_{\mathbb{R}_{\ge 1} \times \partial B_{\mathbb{R}^N}} \int_X e^{i\vartheta(x,x,\xi)} \partial^n a_0(0)(x,x,\xi) \ d\operatorname{vol}_X(x) \ d\operatorname{vol}_{\mathbb{R}_{\ge 1} \times \partial B_{\mathbb{R}^N}}(\xi)}{n!} z^n \\ &+ \sum_{n \in \mathbb{N}_0} \sum_{\iota \in I \smallsetminus I_0} \sum_{j=0}^n \frac{(-1)^{l_\iota + j + 1} (l_\iota + j)! \int_{\Delta(X) \times \partial B_{\mathbb{R}^N}} e^{i\vartheta} \partial^{n-j} \tilde{a}_\iota(0) \ d\operatorname{vol}_{\Delta(X) \times \partial B_{\mathbb{R}^N}} z^n}{n! (N + d_\iota)^{l_\iota + j + 1}} \end{aligned}$$

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 0000000       | 000000000000 | 0000000000    | 0000000           | 000000000                |

# Example: $|\partial|^z$ on $\mathbb{R}/2\pi\mathbb{Z}$

The operator  $|\partial|^z$  has kernel

$$k(z)(x,y) = \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} e^{i(x-y-2\pi n)\xi} \frac{|\xi|^{z}}{2\pi} d\xi$$

and spectrum  $\sigma(|\partial|^z) = \{|n|^z; n \in \mathbb{Z}\}$  counting multiplicities.

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 0000000       | 000000000000 | 0000000000    | 0000000           | 000000000                |

# Example: $|\partial|^z$ on $\mathbb{R}/2\pi\mathbb{Z}$

The operator  $|\partial|^z$  has kernel

$$k(z)(x,y) = \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} e^{i(x-y-2\pi n)\xi} \frac{|\xi|^{z}}{2\pi} d\xi$$

and spectrum  $\sigma(|\partial|^z) = \{|n|^z; n \in \mathbb{Z}\}$  counting multiplicities. Hence, for  $\Re(z) < -1$ 

$$\operatorname{tr}|\partial|^z = \sum_{n \in \mathbb{Z}} |n|^z$$

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 0000000000    | 0000000           | 000000000                |

# Example: $|\partial|^z$ on $\mathbb{R}/2\pi\mathbb{Z}$

The operator  $|\partial|^z$  has kernel

$$k(z)(x,y) = \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} e^{i(x-y-2\pi n)\xi} \frac{|\xi|^{z}}{2\pi} d\xi$$

and spectrum  $\sigma(|\partial|^z) = \{|n|^z; n \in \mathbb{Z}\}$  counting multiplicities. Hence, for  $\Re(z) < -1$ 

$$\operatorname{tr} |\partial|^{z} = \sum_{n \in \mathbb{Z}} |n|^{z} \quad \Rightarrow \quad \zeta(s \mapsto |\partial|^{s})(z) = 2\zeta_{R}(-z)$$

where  $\zeta_R$  denotes the Riemann  $\zeta$ -function.

|            | ST08.  | gpin distribs | Laurent exp. | Monneation | grv and res trace | Stationary phase approx. |
|------------|--------|---------------|--------------|------------|-------------------|--------------------------|
| 0 00000000 | 000000 | 0000000       | 000000000000 | 000000000  | 0000000           | 000000000                |

# Example: Mollifying $|\partial|^z$ on $\mathbb{R}/2\pi\mathbb{Z}$

Let  $h \in (0, 1)$ . Then,  $(h + |\partial|)^z$  has kernel

$$k_h(z)(x,y) = \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} e^{i(x-y-2\pi n)\xi} \frac{(h+|\xi|)^z}{2\pi} d\xi$$

and spectrum  $\sigma((h + |\partial|)^z) = \{(h + |n|)^z; n \in \mathbb{Z}\}$  counting multiplicities.



# Example: Mollifying $|\partial|^z$ on $\mathbb{R}/2\pi\mathbb{Z}$

Let  $h \in (0, 1)$ . Then,  $(h + |\partial|)^z$  has kernel

$$k_h(z)(x,y) = \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} e^{i(x-y-2\pi n)\xi} \frac{(h+|\xi|)^z}{2\pi} d\xi$$

and spectrum  $\sigma((h+|\partial|)^z) = \{(h+|n|)^z; n \in \mathbb{Z}\}$  counting multiplicities. Hence, for  $\Re(z) < -1$ 

$$\operatorname{tr}(h+|\partial|)^{z} = \sum_{n \in \mathbb{Z}} (h+|n|)^{z}$$

|  |  | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 |  | gKV and res trace | Stationary phase approx. 0000000000 |
|--|--|---------------------------|-------------------------|---------------------------|------------------------------|--|-------------------|-------------------------------------|
|--|--|---------------------------|-------------------------|---------------------------|------------------------------|--|-------------------|-------------------------------------|

# Example: Mollifying $|\partial|^z$ on $\mathbb{R}/2\pi\mathbb{Z}$

Let  $h \in (0, 1)$ . Then,  $(h + |\partial|)^z$  has kernel

$$k_h(z)(x,y) = \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} e^{i(x-y-2\pi n)\xi} \frac{(h+|\xi|)^z}{2\pi} d\xi$$

and spectrum  $\sigma((h+|\partial|)^z) = \{(h+|n|)^z; n \in \mathbb{Z}\}$  counting multiplicities. Hence, for  $\Re(z) < -1$ 

$$\operatorname{tr}(h+|\partial|)^{z} = \sum_{n \in \mathbb{Z}} (h+|n|)^{z} \quad \Rightarrow \quad \zeta(s \mapsto (h+|\partial|)^{s})(z) = \zeta_{H}(-z;h) + \zeta_{H}(-z;1+h)$$

where  $\zeta_H$  denotes the Hurwitz  $\zeta$ -function.



# Example: Mollifying $|\partial|^z$ on $\mathbb{R}/2\pi\mathbb{Z}$ - convergence

Theorem

Both  $\zeta_H(\cdot; h)$  and  $\zeta_H(\cdot; 1+h)$  converge compactly on  $\mathbb{C} \setminus \{1\}$  to  $\zeta_R$  for  $h \searrow 0$ .



# Example: Mollifying $|\partial|^z$ on $\mathbb{R}/2\pi\mathbb{Z}$ - convergence

#### Theorem

Both  $\zeta_H(\cdot; h)$  and  $\zeta_H(\cdot; 1+h)$  converge compactly on  $\mathbb{C} \setminus \{1\}$  to  $\zeta_R$  for  $h \searrow 0$ .

#### Theorem

 $\zeta(s \mapsto (h + |\partial|)^s)$  converges compactly to  $\zeta(s \mapsto |\partial|^s)$  on  $\mathbb{C} \setminus \{-1\}$  for  $h \searrow 0$ .



Let  $A \in \mathcal{A}_{\Gamma}$  and  $\mathfrak{A}$  a gauged Fourier Integral Operator with  $\mathfrak{A}(0) = A$ . Then, we define the generalized Kontsevich-Vishik trace  $\operatorname{tr}_{\mathrm{KV}}A$  of A to be the constant Laurent coefficient  $c_0(\zeta(\mathfrak{A}), 0)$  of  $\zeta(\mathfrak{A})$  in zero, i.e.,

$$\begin{aligned} \operatorname{tr}_{\mathrm{KV}} A &= \int_{X} \operatorname{pv} \int_{B_{\mathbb{R}^{N}}(0,1)} e^{i\vartheta(x,x,\xi)} a(x,x,\xi) \ d\xi \ d\operatorname{vol}_{X}(x) \\ &+ \sum_{\iota \in I_{0}} \frac{(-1)^{l_{\iota}+1} l_{\iota}! \int_{\Delta(X) \times \partial B_{\mathbb{R}^{N}}} e^{i\vartheta} \partial^{l_{\iota}+1} \tilde{a}_{\iota}(0) \ d\operatorname{vol}_{\Delta(X) \times \partial B_{\mathbb{R}^{N}}}}{(l_{\iota}+1)!} \\ &+ \int_{\mathbb{R}_{\geq 1} \times \partial B_{\mathbb{R}^{N}}} \int_{X} e^{i\vartheta(x,x,\xi)} a_{0}(x,x,\xi) \ d\operatorname{vol}_{X}(x) \ d\operatorname{vol}_{\mathbb{R}_{\geq 1} \times \partial B_{\mathbb{R}^{N}}}(\xi) \\ &+ \sum_{\iota \in I \smallsetminus I_{0}} \frac{(-1)^{l_{\iota}+1} l_{\iota}! \int_{X \times \partial B_{\mathbb{R}^{N}}} e^{i\vartheta(x,x,\xi)} \tilde{a}_{\iota}(x,x,\xi) \ d\operatorname{vol}_{X \times \partial B_{\mathbb{R}^{N}}}(x,\xi)}{(N+d_{\iota})^{l_{\iota}+1}}. \end{aligned}$$

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 0000000       | 000000000000 | 000000000     | 0000000           | 000000000                |

### Example

For a classical pseudo-differential operators  ${\cal A}$  without critical degree of homogeneity, we observe

$$\int_{X} \operatorname{pv} \int_{B_{\mathbb{R}^{N}}(0,1)} a_{\iota}(x,x,\xi) \, d\xi \, d\operatorname{vol}_{X}(x) + \frac{-\int_{X \times \partial B_{\mathbb{R}^{N}}} \tilde{a}_{\iota}(x,x,\xi) \, d\operatorname{vol}_{X \times \partial B_{\mathbb{R}^{N}}}(x,\xi)}{N + d_{\iota}}$$

$$= \int_{X \times \partial B_{\mathbb{R}^{N}}} \tilde{a}_{\iota}(x,x,\xi) \, d\operatorname{vol}_{X \times \partial B_{\mathbb{R}^{N}}}(x,\xi) \lim_{h \searrow 0} \int_{h}^{1+h} r^{N+d_{\iota}-1} dt$$

$$- \frac{\int_{X \times \partial B_{\mathbb{R}^{N}}} \tilde{a}_{\iota}(x,x,\xi) \, d\operatorname{vol}_{X \times \partial B_{\mathbb{R}^{N}}}(x,\xi)}{N + d_{\iota}}$$

$$= 0$$

### Example (continued)

For a classical pseudo-differential operators A without critical degree of homogeneity, we hence obtain

$$\operatorname{tr}_{\mathrm{KV}} A = \int_X \int_{\mathbb{R}^N} e^{i\vartheta(x,x,\xi)} a_0(x,x,\xi) \ d\xi \ d\mathrm{vol}_X(x)$$
$$= \int_X \left( k - \sum_{j=1}^J k_{m-j} \right) (x,x) d\mathrm{vol}_X(x)$$

for any  $J \in \mathbb{N}_{>\mathfrak{R}(m)+\dim X}$ .

## This can fail spectacularly for FIOs

This does not happen for general Fourier Integral Operators. Consider phase  $\langle \Theta(x,y),\xi \rangle$  such that  $x \mapsto \Theta(x,x) \in C(X)$  has no zeros. Then,

$$\int_X \int_{\mathbb{R}^N} e^{i\langle \Theta(x,x),\xi\rangle} a(x,x,\xi) d\xi d\operatorname{vol}_X(x) = \int_X \mathcal{F}(a(x,x,\cdot))(-\Theta(x,x)) d\operatorname{vol}_X(x)$$

is well-defined. Choose  $\Theta$  and a such that  $x \mapsto \mathcal{F}(a(x, x, \cdot))(-\Theta(x, x))$  is pointwise positive to construct a counterexample.

|  |  | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification<br>000000000 | gKV and res trace $000000000$ | Stationary phase approx. |
|--|--|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------------------|--------------------------|
|--|--|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------------------|--------------------------|

## The critical case - explicitly

• Consider polyhomogeneous multiplicative gauge  $\mathfrak{A}(z) = BQ^z$ .

| Motivation         FIO algebras         ζ-reg.         gplh distribs         Laurent exp.         Mollification         gKV and res trace         Stationary phase appr           0         000000000         000000000         000000000         000000000         000000000         000000000 | ion FIO algebras $\zeta$ -reg.<br>000000000 00000 | $\zeta$ -reg. gplh distribs Laurent es 000000 00000000 00000000 | ap.         Mollification         gKV and res trace           0000         00000000         00000000 | Stationary phase approx.<br>0000000000 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------|

## The critical case - explicitly

- Consider polyhomogeneous multiplicative gauge  $\mathfrak{A}(z) = BQ^{z}$ .
- Then  $Q^0 = 1 1_{\{0\}}(Q)$  where  $1_{\{0\}}(Q) = \frac{1}{2\pi i} \int_{\partial B_{\mathbb{C}}(0,\varepsilon)} (\lambda Q)^{-1} d\lambda$  and  $B_{\mathbb{C}}[0,\varepsilon] \cap \sigma(Q) = \{0\}.$
| Modivation rio algebras $\zeta$ -reg. gpin distribs Laurent exp. Modification gRV and res trace stationary phase approx 0 00000000 00000000 00000000 00000000 | Motivation<br>0 | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification<br>000000000 | gKV and res trace $000000000$ | Stationary phase approx |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------------------|-------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------------------|-------------------------|

# The critical case - explicitly

- Consider polyhomogeneous multiplicative gauge  $\mathfrak{A}(z) = BQ^{z}$ .
- Then  $Q^0 = 1 1_{\{0\}}(Q)$  where  $1_{\{0\}}(Q) = \frac{1}{2\pi i} \int_{\partial B_{\mathbb{C}}(0,\varepsilon)} (\lambda Q)^{-1} d\lambda$  and  $B_{\mathbb{C}}[0,\varepsilon] \cap \sigma(Q) = \{0\}.$
- ▶ For  $I_0 = \emptyset$

$$\forall k \in \mathbb{N}_0: \ \partial^k \zeta(\mathfrak{A})(0) = \zeta(\partial^k \mathfrak{A})(0) = \operatorname{tr}_{\mathrm{KV}}(B(\ln Q)^k Q^0)$$
  
=  $\operatorname{tr}_{\mathrm{KV}}(B(\ln Q)^k) - \operatorname{tr}_{\mathrm{KV}}(B(\ln Q)^k 1_{\{0\}}(Q))$ 

| Modivation rio algebras $\zeta$ -reg. gpin distribs Laurent exp. Modification gRV and res trace stationary phase approx 0 00000000 00000000 00000000 00000000 | Motivation<br>0 | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification<br>000000000 | gKV and res trace $000000000$ | Stationary phase approx |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------------------|-------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------------------|-------------------------|

# The critical case - explicitly

- Consider polyhomogeneous multiplicative gauge  $\mathfrak{A}(z) = BQ^{z}$ .
- Then  $Q^0 = 1 1_{\{0\}}(Q)$  where  $1_{\{0\}}(Q) = \frac{1}{2\pi i} \int_{\partial B_{\mathbb{C}}(0,\varepsilon)} (\lambda Q)^{-1} d\lambda$  and  $B_{\mathbb{C}}[0,\varepsilon] \cap \sigma(Q) = \{0\}.$
- ▶ For  $I_0 = \emptyset$

$$\forall k \in \mathbb{N}_0: \ \partial^k \zeta(\mathfrak{A})(0) = \zeta(\partial^k \mathfrak{A})(0) = \operatorname{tr}_{\mathrm{KV}}(B(\ln Q)^k Q^0)$$
  
=  $\operatorname{tr}_{\mathrm{KV}}(B(\ln Q)^k) - \operatorname{tr}_{\mathrm{KV}}(B(\ln Q)^k 1_{\{0\}}(Q))$ 

• For 
$$I_0 \neq \emptyset$$
:  $\mathfrak{fp}\mathfrak{A} \coloneqq \mathfrak{A} - \sum_{\iota \in I_0} \mathfrak{A}_{\iota}$ ,  $\mathfrak{fp}\zeta(\mathfrak{A}) \coloneqq \zeta(\mathfrak{fp}\mathfrak{A}) + \sum_{\iota \in I_0} \int_X \int_{B(0,1)} e^{i\vartheta} a_{\iota}$ , and  $\operatorname{tr}_{\mathfrak{fp}}(\cdot) = \mathfrak{fp}\zeta(\cdot)(0)$ 

| 0 00000000 0000000 0000000 00000000 0000 | ebras $\zeta$ -reg. gplh distribs Laurent exp. Mollification <b>gKV and res trace</b> Stationary phono 0000000 000000000 000000000 00000000 | nase approx. |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|

• Let  $c_k(Q)$  be the coefficient of the  $\frac{z^k}{k!}$  term in the Laurent expansion of  $\zeta(\mathfrak{A})$ .

|  | tivation F |
|--|------------|
|--|------------|

Let c<sub>k</sub>(Q) be the coefficient of the <sup>z<sup>k</sup></sup>/<sub>k!</sub> term in the Laurent expansion of ζ(𝔅).
Then

$$c_{k}(Q) = \mathfrak{fp}\zeta\left(\partial^{k}\mathfrak{A}\right)(0) - \frac{1}{k+1}\operatorname{res}\left(\partial^{k+1}\mathfrak{A}\right)(0)$$
  
$$= \operatorname{tr}_{\mathfrak{fp}}\left(B(\ln Q)^{k}Q^{0}\right) - \frac{1}{k+1}\operatorname{res}\left(B(\ln Q)^{k+1}Q^{0}\right)$$
  
$$= \operatorname{tr}_{\mathfrak{fp}}\left(B(\ln Q)^{k}\right) - \operatorname{tr}_{\mathfrak{fp}}\left(B(\ln Q)^{k}\mathbf{1}_{\{0\}}(Q)\right) - \frac{1}{k+1}\operatorname{res}\left(B(\ln Q)^{k+1}\right).$$

| $ \begin{array}{c} \text{Motivation} & \text{FIO} \mbox{ algoritas } \zeta - reg, \mbox{ gpm distributions } \mbox{ Latterit exp}, \mbox{ Motimization } \mbox{ gK v and restrace } \mbox{ Stationary phase appr} \\ 0 & 00000000 & 0000000 & 000000000 & 000000$ |  | FIO algebras<br>000000000 | ζ-reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification<br>000000000 | gKV and res trace $000000000$ | Stationary phase appro |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------|------------------|---------------------------|------------------------------|----------------------------|-------------------------------|------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------|------------------|---------------------------|------------------------------|----------------------------|-------------------------------|------------------------|

Let c<sub>k</sub>(Q) be the coefficient of the <sup>z<sup>k</sup></sup>/<sub>k!</sub> term in the Laurent expansion of ζ(𝔅).
Then

$$c_{k}(Q) = \mathfrak{fp}\zeta\left(\partial^{k}\mathfrak{A}\right)(0) - \frac{1}{k+1}\operatorname{res}\left(\partial^{k+1}\mathfrak{A}\right)(0)$$
  
$$= \operatorname{tr}_{\mathfrak{fp}}\left(B(\ln Q)^{k}Q^{0}\right) - \frac{1}{k+1}\operatorname{res}\left(B(\ln Q)^{k+1}Q^{0}\right)$$
  
$$= \operatorname{tr}_{\mathfrak{fp}}\left(B(\ln Q)^{k}\right) - \operatorname{tr}_{\mathfrak{fp}}\left(B(\ln Q)^{k}\mathbf{1}_{\{0\}}(Q)\right) - \frac{1}{k+1}\operatorname{res}\left(B(\ln Q)^{k+1}\right).$$

• If Q is invertible and Q' is another invertible and admissible, then  $c_0(Q) - c_0(Q') = -\operatorname{res} (B(\ln Q - \ln Q'))$ and since  $\zeta(\mathfrak{A})(0) = 0$  $\operatorname{tr}_{\mathfrak{fp}}([B, CQ^z])|_{z=0} = \operatorname{res}([B, C\ln Q]).$ 

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

## Theorem (Guillemin)

Let  $\mathcal{A}_{\Gamma}$  be an algebra of classical Fourier Integral Operators. Then, the residue-trace of  $A \in \mathcal{A}_{\Gamma}$  vanishes if and only if A is a smoothing operator plus a sum of commutators  $[P_i, A_i]$  where the  $P_i$  are pseudo-differential operators and the  $A_i \in \mathcal{A}_{\Gamma}$ .

## Theorem (Guillemin)

Let  $\Gamma$  be connected. Then, the commutator of  $\mathcal{A}_{\Gamma}$  is of co-dimension one in  $\mathcal{A}_{\Gamma}$  modulo smoothing operators.

| FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification<br>000000000 | gKV and res trace 00000000 | Stationary phase approx. |
|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|----------------------------|--------------------------|
|                           |                         |                           |                              |                            |                            |                          |

These theorems (and the corresponding theorems for smoothing operators) yield the following table assuming that the residue trace  $\operatorname{res}_0 \circ \zeta$  is non-trivial and unique, and  $\mathcal{A}_{\Gamma} = \langle \mathfrak{A} \rangle + \langle [\mathcal{A}_{\Gamma}, \mathcal{A}_{\Gamma}] \rangle + \{ \text{smoothing operators} \}$  for some  $\mathfrak{A} \in \mathcal{A}_{\Gamma}$  with  $\operatorname{res}_0 \zeta(\mathfrak{A}) \neq 0.$ 

| $I_0 \neq \emptyset$                                                                                                                                                                                                     |                                                                |                                                             | $I_0 = \emptyset$                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|
| $\operatorname{res}_0\zeta(A) \neq 0$                                                                                                                                                                                    | $\operatorname{res}_0\zeta(A)=0$                               | $\zeta(A)(0) \neq 0$                                        | $\zeta(A)(0) = 0$                                     |
| $A = \alpha \mathfrak{A} + S + \sum_{i=1}^{k} C_i$<br>$C_i \in [\mathcal{A}_{\Gamma}, \mathcal{A}_{\Gamma}]$<br>$\alpha = (\operatorname{res}_0 \zeta(\mathfrak{A}))^{-1} \operatorname{res}_0 \zeta(A)$<br>S  smoothing | $A = S + C_i \in [\mathcal{A}_{\mathrm{I}} \\ S \text{ smoot}$ | $\sum_{i=1}^{k} C_i$<br>, $\mathcal{A}_{\Gamma}$ ]<br>thing | $A = \sum_{i=1}^{k} C_i$<br>$C_i \text{ commutators}$ |

|  |  | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification<br>000000000 | gKV and res trace | Stationary phase approx.<br>•000000000 |
|--|--|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|----------------------------------------|
|--|--|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|----------------------------------------|

• Want to compute 
$$I(x, y, r) \coloneqq \int_{\partial B_{\mathbb{R}^N}} e^{ir\vartheta(x, y, \xi)} \tilde{a}(x, y, \xi) d\mathrm{vol}_{\partial B_{\mathbb{R}^N}}(\xi)$$

|  |  | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification<br>000000000 | gKV and res trace | Stationary phase approx.<br>•000000000 |
|--|--|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|----------------------------------------|
|--|--|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|----------------------------------------|

- Want to compute  $I(x, y, r) \coloneqq \int_{\partial B_{\mathbb{R}^N}} e^{ir\vartheta(x, y, \xi)} \tilde{a}(x, y, \xi) d\mathrm{vol}_{\partial B_{\mathbb{R}^N}}(\xi)$
- (x, y) off critical manifold  $\iff \forall \xi \in \partial B_{\mathbb{R}^N} : \partial_3 \vartheta(x, y, \xi) \neq 0$

| ••••••••••••••••••••••••••••••••••••••• | Motivation<br>0 | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification<br>000000000 | gKV and res trace | Stationary phase approx.<br>•000000000 |
|-----------------------------------------|-----------------|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|----------------------------------------|
|-----------------------------------------|-----------------|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|----------------------------------------|

- Want to compute I(x, y, r) := ∫<sub>∂B<sub>RN</sub></sub> e<sup>irϑ(x,y,ξ)</sup>ã(x, y, ξ)dvol<sub>∂B<sub>RN</sub></sub>(ξ)
  (x, y) off critical manifold ⇔ ∀ξ ∈ ∂B<sub>RN</sub> : ∂<sub>3</sub>ϑ(x, y, ξ) ≠ 0

$$\bullet \ \partial_3 e^{ir\vartheta(x,y,\xi)} = ire^{ir\vartheta(x,y,\xi)}\partial_3\vartheta(x,y,\xi) \Rightarrow e^{ir\vartheta}\tilde{a} = \frac{\langle\partial_3 e^{ir\vartheta},\tilde{a}\partial_3\vartheta\rangle_{\ell_2(N)}}{ir\|\partial_3\vartheta\|_{\ell_2(N)}^2}$$

| ••••••••••••••••••••••••••••••••••••••• | Motivation<br>0 | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification<br>000000000 | gKV and res trace | Stationary phase approx.<br>•000000000 |
|-----------------------------------------|-----------------|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|----------------------------------------|
|-----------------------------------------|-----------------|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|----------------------------------------|

• Want to compute 
$$I(x, y, r) \coloneqq \int_{\partial B_{\mathbb{R}^N}} e^{ir\vartheta(x, y, \xi)} \tilde{a}(x, y, \xi) d\mathrm{vol}_{\partial B_{\mathbb{R}^N}}(\xi)$$

• (x,y) off critical manifold  $\iff \forall \xi \in \partial B_{\mathbb{R}^N} : \partial_3 \vartheta(x,y,\xi) \neq 0$ 

• Let 
$$\mathcal{D}\tilde{a}(x,y,\xi) \coloneqq \partial_3^* \frac{\tilde{a}(x,y,\xi)\partial_3\vartheta(x,y,\xi)}{\|\partial_3\vartheta(x,y,\xi)\|_{\ell_2(N)}^2}$$
. Then

$$\forall n \in \mathbb{N} : \ I(x, y, r) = \frac{1}{(ir)^n} \int_{\partial B_{\mathbb{R}^N}} e^{ir\vartheta(x, y, \xi)} \mathcal{D}^n \tilde{a}(x, y, \xi) d\mathrm{vol}_{\partial B_{\mathbb{R}^N}}(\xi)$$

$$\Rightarrow \ |I(x, y, r)| \leq \frac{\|\mathcal{D}^n a\|_{L_{\infty}(X \times X \times \partial B_{\mathbb{R}^N})}}{r^n}$$

▶ Hence, kernel off critical manifold:  $k = \int_{\mathbb{R}_{>0}} r^{N+d-1} I(\cdot, \cdot, r) dr \in C^{\infty}$ 

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 0000000       | 000000000000 | 000000000     | 0000000           | 000000000                |

#### Lemma (Morse' Lemma)

Let  $(x_0, y_0, \xi_0) \in X \times X \times \partial B_{\mathbb{R}^N}$  be stationary  $(\partial_{\partial B} \vartheta(x_0, y_0, \xi_0) = 0)$  and

$$\partial_{\partial B}^{2}\vartheta(x_{0},y_{0},\xi_{0}) = \partial_{3}^{2}\left(\vartheta|_{X \times X \times \partial B_{\mathbb{R}^{N}}}\right)(x_{0},y_{0},\xi_{0}) \in GL\left(\mathbb{R}^{N-1}\right).$$

Then, there are neighborhoods  $U \subseteq_{\text{open}} X \times X$  of  $(x_0, y_0)$  and  $V \subseteq_{\text{open}} \partial B_{\mathbb{R}^N}$  of  $\xi_0$  and a function  $\hat{\xi} \in C^{\infty}(U, V)$  such that

$$\forall (x, y, \xi) \in U \times V : \ \partial_{\partial B} \vartheta(x, y, \xi) = 0 \iff \xi = \hat{\xi}(x, y).$$

Furthermore, there is a function  $\eta \in C^{\infty}(U \times V, \mathbb{R}^N)$  such that

$$\forall (x,y,\xi) \in U \times V : \eta(x,y,\xi) - \left(\xi - \hat{\xi}(x,y)\right) \in O\left(\left\|\xi - \hat{\xi}(x,y)\right\|_{\ell_2(N)}^2\right)$$

and  $\partial_3\eta(x, y, \hat{\xi}(x, y)) = 1 = \mathrm{id}_{\mathbb{R}^N}.$ 

 $\zeta$ -functions of Fourier Integral Operators: gauged poly-log-homogeneous distributions

T. Hartung

| Motivation<br>0 | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|-----------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| -               |              |               |               |              |               |                   |                          |

### Corollary

Let  $\vartheta$  be as in Morse' Lemma. Then, stationary points of  $\vartheta(x, y, \cdot)$  are isolated in  $\partial B_{\mathbb{R}^N}$ . In particular, there are only finitely many.

#### Corollary

Let  $\vartheta$  be as in Morse' Lemma. Then, stationary points of  $\vartheta(x, y, \cdot)$  are isolated in  $\partial B_{\mathbb{R}^N}$ . In particular, there are only finitely many.

Hence, we may assume that

$$k(x,y) = \sum_{s=0}^{S} \int_{\mathbb{R}^{N}} e^{i\vartheta(x,y,\xi)} a^{s}(x,y,\xi) d\xi$$

where  $a^0$  has no stationary points in its support and each of the  $a^s$  has exactly one branch  $(x, y, \hat{\xi}^s(x, y))$  in its support. As we have already treated the  $a^0$  case, we will assume, without loss of generality, that a is of the form of one of the  $a^s$ .

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 0000000       | 000000000000 | 000000000     | 0000000           | 000000000                |

• Define  $\hat{\vartheta} \coloneqq \vartheta(x, y, \hat{\xi}(x, y))$ ,  $\Theta(x, y) \coloneqq \partial_{\partial B}^2 \vartheta(x, y, \hat{\xi}(x, y))$  and  $\eta_{\partial B}$  the spherical part of  $\eta$  (polar coordinates). Then, (Corollary of Morse' Lemma Proof)

$$\begin{split} I(x,y,r) &= \int_{\partial B_{\mathbb{R}^N}} e^{ir\vartheta(x,y,\xi)} a(x,y,\xi) d\mathrm{vol}_{\partial B_{\mathbb{R}^N}}(\xi) \\ &= e^{ir\vartheta} \int_{\partial B_{\mathbb{R}^N}} e^{i\frac{r}{2} \langle \Theta(x,y)\eta_{\partial B}(x,y,\xi), \eta_{\partial B}(x,y,\xi) \rangle_{\mathbb{R}^{N-1}}} a(x,y,\xi) d\mathrm{vol}_{\partial B_{\mathbb{R}^N}}(\xi). \end{split}$$

- MotivationFIO algebras $\zeta$ -reg.gplh distribsLaurent exp.MollificationgKV and res traceStationary phase approx.00000000000000000000000000000000000000000000000000000000000
  - Define  $\hat{\vartheta} \coloneqq \vartheta(x, y, \hat{\xi}(x, y))$ ,  $\Theta(x, y) \coloneqq \partial^2_{\partial B} \vartheta(x, y, \hat{\xi}(x, y))$  and  $\eta_{\partial B}$  the spherical part of  $\eta$  (polar coordinates). Then, (Corollary of Morse' Lemma Proof)

$$\begin{split} I(x,y,r) &= \int_{\partial B_{\mathbb{R}^N}} e^{ir\vartheta(x,y,\xi)} a(x,y,\xi) d\mathrm{vol}_{\partial B_{\mathbb{R}^N}}(\xi) \\ &= e^{ir\vartheta} \int_{\partial B_{\mathbb{R}^N}} e^{i\frac{r}{2} \langle \Theta(x,y)\eta_{\partial B}(x,y,\xi), \eta_{\partial B}(x,y,\xi) \rangle_{\mathbb{R}^{N-1}}} a(x,y,\xi) d\mathrm{vol}_{\partial B_{\mathbb{R}^N}}(\xi). \end{split}$$

• Let  $\sigma : \mathbb{R}^{N-1} \to \partial B_{\mathbb{R}^N}$  be a stereographic projection with pole  $-\hat{\xi}(x, y)$ ,  $\eta_{\sigma}(x, y, \xi) \coloneqq \eta_{\partial B}(x, y, \sigma(\xi))$ , and  $a_{\sigma}(x, y, \xi) \coloneqq a(x, y, \sigma(\xi)) \sqrt{\det(\sigma'(\xi)^* \sigma'(\xi))}$ . Then,

$$\begin{split} I(x,y,r) = & e^{ir\hat{\vartheta}} \int_{\partial B_{\mathbb{R}^N}} e^{i\frac{r}{2} \langle \Theta(x,y)\eta_{\partial B}(x,y,\xi),\eta_{\partial B}(x,y,\xi) \rangle_{\ell_2(N-1)}} a(x,y,\xi) d\mathrm{vol}_{\partial B_{\mathbb{R}^N}}(\xi) \\ = & e^{ir\hat{\vartheta}} \int_{\mathbb{R}^{N-1}} e^{i\frac{r}{2} \langle \Theta(x,y)\eta_{\sigma}(x,y,\xi),\eta_{\sigma}(x,y,\xi) \rangle_{\ell_2(N-1)}} a_{\sigma}(x,y,\xi) d\xi \end{split}$$

|  |  | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification<br>000000000 | gKV and res trace | Stationary phase approx. |
|--|--|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|--------------------------|
|--|--|---------------------------|-------------------------|---------------------------|------------------------------|----------------------------|-------------------|--------------------------|

►  $\partial_3 \eta_\sigma(x, y, \xi) = \partial_3 \eta_{\partial B}(x, y, \sigma(\xi)) \sigma'(\xi)$  and  $\partial_3 \eta \left(x, y, \hat{\xi}(x, y)\right) = 1 = \mathrm{id}_{\mathbb{R}^N} \Rightarrow \eta_\sigma(x, y, \cdot)$  invertible in neighborhood of  $\sigma^{-1}\left(\hat{\xi}(x, y)\right) = 0$ 

|  | prox. |
|--|-------|
|--|-------|

- ►  $\partial_3 \eta_\sigma(x, y, \xi) = \partial_3 \eta_{\partial B}(x, y, \sigma(\xi)) \sigma'(\xi)$  and  $\partial_3 \eta \left(x, y, \hat{\xi}(x, y)\right) = 1 = \mathrm{id}_{\mathbb{R}^N} \Rightarrow \eta_\sigma(x, y, \cdot)$  invertible in neighborhood of  $\sigma^{-1}(\hat{\xi}(x, y)) = 0$
- Assume  $a_{\sigma}$  has support in such a neighborhood and define

$$\tilde{a}(x,y,\xi) \coloneqq a_{\sigma}(x,y,\eta_{\sigma}(x,y)^{-1}(\xi)) \sqrt{\det\left(\left(\eta_{\sigma}(x,y)^{-1}\right)'(\xi)^{*}\left(\eta_{\sigma}(x,y)^{-1}\right)'(\xi)\right)}.$$

Then

$$I(x,y,r) = e^{ir\hat{\vartheta}} \int_{\mathbb{R}^{N-1}} e^{i\frac{r}{2}\langle\Theta(x,y)\xi,\xi\rangle_{\ell_2(N-1)}} \tilde{a}(x,y,\xi) d\xi$$

|  |  | FIO algebras<br>000000000 | $\zeta$ -reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>0000000000000 | Mollification<br>000000000 | m gKV and res trace 00000000 | Stationary phase approx. |
|--|--|---------------------------|-------------------------|---------------------------|-------------------------------|----------------------------|------------------------------|--------------------------|
|--|--|---------------------------|-------------------------|---------------------------|-------------------------------|----------------------------|------------------------------|--------------------------|

- ►  $\partial_3 \eta_\sigma(x, y, \xi) = \partial_3 \eta_{\partial B}(x, y, \sigma(\xi)) \sigma'(\xi)$  and  $\partial_3 \eta \left(x, y, \hat{\xi}(x, y)\right) = 1 = \mathrm{id}_{\mathbb{R}^N} \Rightarrow \eta_\sigma(x, y, \cdot)$  invertible in neighborhood of  $\sigma^{-1}\left(\hat{\xi}(x, y)\right) = 0$
- Assume  $a_{\sigma}$  has support in such a neighborhood and define

$$\tilde{a}(x,y,\xi) \coloneqq a_{\sigma}(x,y,\eta_{\sigma}(x,y)^{-1}(\xi)) \sqrt{\det\left((\eta_{\sigma}(x,y)^{-1})'(\xi)^{*}(\eta_{\sigma}(x,y)^{-1})'(\xi)\right)}.$$

Then

$$I(x,y,r) = e^{ir\hat{\vartheta}} \int_{\mathbb{R}^{N-1}} e^{i\frac{r}{2}\langle\Theta(x,y)\xi,\xi\rangle_{\ell_2(N-1)}} \tilde{a}(x,y,\xi) d\xi.$$

•  $\mathcal{F}\left(\xi \mapsto e^{i\frac{1}{2}\langle r\Theta(x,y)\xi,\xi\rangle}\right)(\xi) = r^{\frac{1-N}{2}} \left|\det\Theta(x,y)\right|^{-\frac{1}{2}} e^{\frac{i\pi}{4}\operatorname{sgn}(\Theta(x,y))} e^{-i\frac{1}{2}\langle (r\Theta(x,y))^{-1}\xi,\xi\rangle}$ where  $\operatorname{sgn}(\Theta(x,y))$  is the number of positive eigenvalues minus the number of negative eigenvalues of  $\Theta(x,y)$ .

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 000000000                |

$$\int_{\mathbb{R}^{N-1}} e^{i\frac{r}{2}\langle\Theta\xi,\xi\rangle} \tilde{a}(\xi)d\xi = \text{const.} \int_{\mathbb{R}^{N-1}} e^{-\frac{i}{2}\langle(r\Theta)^{-1}\xi,\xi\rangle} \mathcal{F}_{3}\tilde{a}(\xi)d\xi$$
$$= \text{const.} \sum_{j\in\mathbb{N}_{0}} \frac{r^{-j}}{j!} \int_{\mathbb{R}^{N-1}} \left(-\frac{i}{2}\left\langle\Theta^{-1}\xi,\xi\right\rangle\right)^{j} \mathcal{F}_{3}\tilde{a}(\xi)d\xi$$
$$= \text{const.} \sum_{j\in\mathbb{N}_{0}} \frac{r^{-j}}{j!} \int_{\mathbb{R}^{N-1}} \mathcal{F}_{3}\left(\left(-\frac{i}{2}\left\langle\Theta^{-1}\partial_{3},\partial_{3}\right\rangle\right)^{j}\tilde{a}\right)(\xi)d\xi$$

and with

$$\int_{\mathbb{R}^n} \mathcal{F}f(\xi) d\xi = \int_{\mathbb{R}^n} e^{i\langle 0,\xi \rangle} \mathcal{F}f(\xi) d\xi = (2\pi)^{\frac{n}{2}} \mathcal{F}^{-1}\left(\mathcal{F}f\right)(0) = (2\pi)^{\frac{n}{2}} f(0)$$

we obtain

$$\int_{\mathbb{R}^{N-1}} e^{i\frac{1}{2}(r\Theta\xi,\xi)} \tilde{a}(\xi) d\xi = \left(\frac{2\pi}{r}\right)^{\frac{N-1}{2}} \left|\det\Theta\right|^{-\frac{1}{2}} e^{\frac{i\pi}{4}\operatorname{sgn}\Theta} \sum_{j\in\mathbb{N}_0} \frac{(-i)^j r^{-j}}{j! 2^j} \left\langle\Theta^{-1}\partial_3,\partial_3\right\rangle^j \tilde{a}(0).$$

 $\zeta\text{-functions}$  of Fourier Integral Operators: gauged poly-log-homogeneous distributions

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 0000000000               |

Hence, defining

$$h_j(x,y) \coloneqq \frac{(2\pi)^{\frac{N-1}{2}} |\det\Theta(x,y)|^{-\frac{1}{2}} e^{\frac{i\pi}{4} \operatorname{sgn}\Theta(x,y)}}{j!(2i)^j} \left\langle \Theta(x,y)^{-1} \partial_3, \partial_3 \right\rangle^j \tilde{a}(x,y,0)$$

we obtain

$$\begin{split} k(x,y) &= \int_{\mathbb{R}_{>0}} r^{N+d-1} (\ln r)^l \int_{\partial B_{\mathbb{R}^N}} e^{ir\vartheta(x,y,\xi)} a^0(x,y,\xi) d\mathrm{vol}_{\partial B_{\mathbb{R}^N}}(\xi) \ dr \\ &+ \sum_{s=1}^S \sum_{j \in \mathbb{N}_0} h_j^s(x,y) \int_{\mathbb{R}_{>0}} r^{d+\frac{N-1}{2}-j} (\ln r)^l e^{ir\hat\vartheta^s(x,y)} \ dr. \end{split}$$

**Remark.** The evaluation of  $\langle \Theta(x,y)^{-1}\partial_3,\partial_3 \rangle^j \tilde{a}(x,y,\cdot)$  at zero yields an evaluation at  $\hat{\xi}(x,y)$  undoing all the changes of variables (stereographic proj. with pole  $-\hat{\xi}$ ).



For l = 0:

$$\forall q \in \mathbb{C}_{\mathfrak{R}(\cdot) > -1} \ \forall s \in \mathbb{C}_{\mathfrak{R}(\cdot) > 0} : \ \int_{\mathbb{R}_{>0}} t^q e^{-st} dt = \Gamma(q+1) s^{-q-1}$$

and meromorphic extension

$$\int_{\mathbb{R}_{>0}} r^{d+\frac{N-1}{2}-j} e^{ir\hat{\vartheta}^s(x,y)} dr = \Gamma\left(d+\frac{N+1}{2}-j\right) i^{d+\frac{N+1}{2}-j} \left(\hat{\vartheta}^s(x,y)+i0\right)^{-d-\frac{N+1}{2}+j}$$

whenever  $d + \frac{N+1}{2} - j \in \mathbb{C} \setminus (-\mathbb{N}_0)$  and, for  $l \in \mathbb{N}_0$ ,

$$\int_{\mathbb{R}_{>0}} r^q \left(\ln r\right)^l e^{ir\hat{\vartheta}^s(x,y)} dr = \partial^l \left( z \mapsto \int_{\mathbb{R}_{>0}} r^{q+z} e^{ir\hat{\vartheta}^s(x,y)} dr \right) (0)$$
$$= \partial^l \left( z \mapsto \Gamma \left( q+1+z \right) i^{q+1+z} \left( \hat{\vartheta}^s(x,y) + i0 \right)^{-q-1-z} \right) (0).$$

| •••••••••••••••••••••••••••••••••••••• |  | FIO algebras<br>000000000 | ζ-reg.<br>000000 | gplh distribs<br>00000000 | Laurent exp.<br>000000000000 | Mollification | gKV and res trace | Stationary phase approx. $000000000000000000000000000000000000$ |
|----------------------------------------|--|---------------------------|------------------|---------------------------|------------------------------|---------------|-------------------|-----------------------------------------------------------------|
|----------------------------------------|--|---------------------------|------------------|---------------------------|------------------------------|---------------|-------------------|-----------------------------------------------------------------|

For  $c \in \mathbb{R}_{>0}$ ,  $q \in -\mathbb{N}$ , and  $l \in \mathbb{N}_0$ , we obtain (lots and lots of fun with the Laplace transform later)

$$\begin{split} & \int_{\mathbb{R}_{>0}} r^{q} \left(\ln r\right)^{l} e^{-sr} dr \bigg|_{s=-i\hat{\vartheta}^{s}(x,y)+0} \\ &= \partial^{l} \left( z \mapsto \frac{-\Gamma(z+1)}{2\pi i(-q-1)!} \int_{c+i\mathbb{R}} \left(-\sigma\right)^{-q-1} \left(c_{\ln}+\ln \sigma\right) \left(s-\sigma\right)^{-z-1} d\sigma \right) (0) \bigg|_{s=-i\hat{\vartheta}^{s}(x,y)+0} . \end{split}$$

| Motivation | FIO algebras | $\zeta$ -reg. | gplh distribs | Laurent exp. | Mollification | gKV and res trace | Stationary phase approx. |
|------------|--------------|---------------|---------------|--------------|---------------|-------------------|--------------------------|
| 0          | 000000000    | 000000        | 00000000      | 000000000000 | 000000000     | 0000000           | 00000000                 |

#### Theorem

Let all assumptions above be satisfied and

$$g_{j,\iota}^{s}(x,y) \coloneqq \begin{cases} \partial^{l_{\iota}} \left( z \mapsto \Gamma \left( q+1+z \right) i^{q+1+z} \left( \hat{\vartheta}^{s}(x,y)+i0 \right)^{-q-1-z} \right) (0) &, \ q \in \mathbb{C} \smallsetminus (-\mathbb{N}_{0}) \\ \partial^{l_{\iota}} \left( z \mapsto \frac{-\Gamma(z+1)}{2\pi i \ (-q)!} \int_{c+i\mathbb{R}} \frac{(-\sigma)^{-q}(c_{\ln}+\ln\sigma)}{\left(-i\hat{\vartheta}^{s}(x,y)+0-\sigma\right)^{z+1}} d\sigma \right) (0) &, \ q \in -\mathbb{N}_{0} \end{cases}$$

with  $q := d_{\iota} + \frac{N+1}{2} - j$ ,  $c \in \mathbb{R}_{>0}$ , and some constant  $c_{\ln} \in \mathbb{C}$ . Then,

$$k(x,y) = \int_{\mathbb{R}^N} e^{i\vartheta(x,y,\xi)} a^0(x,y,\xi) d\xi + \sum_{\iota \in \widetilde{I}} \sum_{s=1}^S \sum_{j \in \mathbb{N}_0} h^s_{j,\iota}(x,y) g^s_{j,\iota}(x,y).$$

 $\zeta\text{-functions}$  of Fourier Integral Operators: gauged poly-log-homogeneous distributions