Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000000000000000000000000	00000000

$\zeta\mbox{-functions}$ of Fourier Integral Operators: Integration Theory

Tobias Hartung

King's College London

2018 / Aug / 27-30

 $\zeta\text{-functions}$ of Fourier Integral Operators: Integration Theory

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
•0000000000	000	000000000000000000000000000000000000	00000000

Bochner Integral

Definition

Let (Ω, Σ, μ) be a measure space and E a topological vector space.

• $f \in E^{\Omega}$ is called simple $(f \in \mathcal{S}(\mu; E))$ if and only if $f[\Omega] \subseteq_{\text{finite}} E$ and

$$\forall e \in f[\Omega] \smallsetminus \{0\} : \ [\{e\}]f \in \Sigma \land \ \mu([\{e\}]f) < \infty.$$

▶ Let $f = \sum_{e \in f[\Omega] \setminus \{0\}} e \mathbb{1}_{[\{e\}]f} \in \mathcal{S}(\mu; E)$. Then, we define the Bochner integral

$$\int_{\Omega} f d\mu \coloneqq \sum_{e \in f[\Omega] \setminus \{0\}} \mu([\{e\}]f) \ e.$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000	0000000

Measurability

Definition (continued)

• $f \in E^{\Omega}$ is called measurable $(f \in \mathcal{M}(\mu; E))$ if and only if

 $\forall S \subseteq_{\text{open}} E : [S] f \in \Sigma.$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
000000000	000	000000000000000	00000000

Measurability

Definition (continued)

• $f \in E^{\Omega}$ is called measurable $(f \in \mathcal{M}(\mu; E))$ if and only if

 $\forall S \subseteq_{\text{open}} E : \ [S]f \in \Sigma.$

• $f \in E^{\Omega}$ is called strongly measurable $(f \in \mathcal{SM}(\mu; E))$ if and only if

 $\exists s \in \mathcal{S}(\mu; E)^{\mathbb{N}} : s_n \to f \ (n \to \infty) \ \mu\text{-almost everywhere.}$ Note $\mathcal{SM}(\mu; E) \subseteq \mathcal{M}(\mu; E)$.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
	000	000000000000000	00000000

Pettis Integral

Definition (continued)

• Let $f \in \mathcal{M}(\mu; E)$, $\forall x' \in E'$: $x' \circ f \in L_1(\mu)$, and $I \in (E')^*$ such that

$$\forall x' \in E' : I(x') = \int_{\Omega} x' \circ f \ d\mu.$$

f is called μ -Dunford-Pettis-integrable if and only if I is unique. Then, we will use the notation $\int_{\Omega} f d\mu \coloneqq I$.

	Integration in Topological Vector Spaces $000000000000000000000000000000000000$	FIOs 000	ζ -functions 000000000000000000000000000000000000	Index Bundle 00000000
--	---	-------------	--	--------------------------

Pettis Integral

Definition (continued)

• Let $f \in \mathcal{M}(\mu; E)$, $\forall x' \in E'$: $x' \circ f \in L_1(\mu)$, and $I \in (E')^*$ such that

$$\forall x' \in E' : I(x') = \int_{\Omega} x' \circ f \ d\mu.$$

f is called μ -Dunford-Pettis-integrable if and only if I is unique. Then, we will use the notation $\int_{\Omega} f d\mu \coloneqq I$.

• $f \in \mathcal{M}(\mu; E)$ is called μ -Pettis-integrable if and only if f is μ -Dunford-Pettis-integrable and $I \in E$.

	Integration in Topological Vector Spaces 000•00000000	FIOs 000	$\zeta ext{-functions}$	Index Bundle 00000000
--	--	-------------	-------------------------	--------------------------

 $L_p(\mu; E)$

Definition (continued)

Let E be locally convex with semi-norms $(p_{\iota})_{\iota \in I}$. Then, we define

$$\begin{aligned} (\mathcal{S})\mathcal{L}_p(\mu; E) &\coloneqq \{ f \in (\mathcal{S})\mathcal{M}(\mu; E); \ \forall \iota \in I: \ p_\iota \circ f \in L_p(\mu) \}, \\ (\mathcal{S})\mathcal{N}_p(\mu; E) &\coloneqq \{ f \in (\mathcal{S})\mathcal{L}_p(\mu; E); \ \forall \iota \in I: \ \| p_\iota \circ f \|_{L_p(\mu)} = 0 \} \end{aligned}$$

and

$$(\mathcal{S})L_p(\mu; E) \coloneqq (\mathcal{S})\mathcal{L}_p(\mu; E)/_{(\mathcal{S})\mathcal{N}_p(\mu; E)}.$$

	Integration in Topological Vector Spaces	FIOs 000	ζ -functions 000000000000000000000000000000000000	Index Bundle 00000000
--	--	-------------	--	--------------------------

Bochner Integral

From now on: E locally convex and Hausdorff.

Theorem

 $L_p(\mu; E)$ is locally convex and Hausdorff.

Theorem

The Bochner integral

 $\int : \mathcal{S}(\mu; E) \subseteq L_1(\mu; E) \to E$

is a continuous linear operator and extends uniquely to

$$\int : \ \bar{\mathcal{S}}L_1(\mu; E) \coloneqq \overline{\mathcal{S}L_1(\mu; E)} \to \tilde{E}.$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
000000000	000	000000000000000	0000000

convex compactness

Definition

 ${\cal E}$ has the convex compactness property if and only if

$$\forall C \subseteq_{\text{compact}} E : \ \overline{\text{conv}C} \subseteq_{\text{compact}} E.$$

 ${\cal E}$ has the metric convex compactness property if and only if

 $\forall C \subseteq_{\text{compact,metrizable}} E : \ \overline{\text{conv}C} \subseteq_{\text{compact}} E.$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000	0000000

Pettis integral

Theorem (Pfister; 1981)

Let E be a locally convex topological vector space and a Hausdorff space. Then, the following are equivalent.

- (i) E has the (metric) convex compactness property.
- (ii) Let Ω be a compact (metric) space, μ a (positive) Borel measure on Ω , and $f \in C(\Omega, E)$. Then, f is μ -Pettis integrable.

Integration in Topological Vector Spaces	FIOs 000	ζ -functions	Index Bundle 00000000

- A filter \mathcal{F} on A is a family of subsets of A such that
 - $\emptyset \notin \mathcal{F}$
 - $\bullet \ X \in \mathcal{F} \ \land \ X \subseteq Y \subseteq A \Rightarrow Y \in \mathcal{F}$
 - $\bullet \ X,Y\in \mathcal{F} \Rightarrow X\cap Y\in \mathcal{F}$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
	000	000000000000000000000000000000000000	00000000

- A filter \mathcal{F} on A is a family of subsets of A such that
 - $\emptyset \notin \mathcal{F}$
 - $\bullet \ X \in \mathcal{F} \ \land \ X \subseteq Y \subseteq A \Rightarrow Y \in \mathcal{F}$
 - $\blacktriangleright X,Y\in \mathcal{F} \Rightarrow X\cap Y\in \mathcal{F}$
- ▶ A filter \mathcal{F} on A is called a Cauchy filter if and only if for every neighborhood U of zero: $\exists B \in \mathcal{F} : B B \subseteq U$.

	Integration in Topological Vector Spaces	FIOs 000	ζ -functions 000000000000000000000000000000000000	Index Bundle 00000000
--	--	-------------	--	--------------------------

- A filter \mathcal{F} on A is a family of subsets of A such that
 - $\emptyset \notin \mathcal{F}$
 - $\bullet \ X \in \mathcal{F} \ \land \ X \subseteq Y \subseteq A \Rightarrow Y \in \mathcal{F}$
 - $\blacktriangleright X, Y \in \mathcal{F} \Rightarrow X \cap Y \in \mathcal{F}$
- ▶ A filter \mathcal{F} on A is called a Cauchy filter if and only if for every neighborhood U of zero: $\exists B \in \mathcal{F} : B B \subseteq U$.
- A filter \mathcal{F} is convergent to $x \in E$ if and only if \mathcal{F} contains the neighborhood filter \mathcal{U}_x of x;

$$\mathcal{U}_x \coloneqq \{ U \subseteq E; \exists V \subseteq E \text{ open} \colon x \in V \subseteq U \}.$$

	Integration in Topological Vector Spaces $000000000000000000000000000000000000$	FIOs 000	ζ -functions 000000000000000000000000000000000000	Index Bundle 00000000
--	---	-------------	--	--------------------------

- A filter \mathcal{F} on A is a family of subsets of A such that
 - $\emptyset \notin \mathcal{F}$
 - $\bullet \ X \in \mathcal{F} \ \land \ X \subseteq Y \subseteq A \Rightarrow Y \in \mathcal{F}$
 - $\bullet \ X, Y \in \mathcal{F} \Rightarrow X \cap Y \in \mathcal{F}$
- ▶ A filter \mathcal{F} on A is called a Cauchy filter if and only if for every neighborhood U of zero: $\exists B \in \mathcal{F} : B B \subseteq U$.
- A filter \mathcal{F} is convergent to $x \in E$ if and only if \mathcal{F} contains the neighborhood filter \mathcal{U}_x of x;

$$\mathcal{U}_x \coloneqq \{ U \subseteq E; \exists V \subseteq E \text{ open} \colon x \in V \subseteq U \}.$$

• A is complete if and only if every Cauchy filter on A is convergent in A.

	Integration in Topological Vector Spaces	FIOs 000	ζ -functions 000000000000000000000000000000000000	Index Bundle 00000000
--	--	-------------	--	--------------------------

- A filter \mathcal{F} on A is a family of subsets of A such that
 - $\emptyset \notin \mathcal{F}$
 - $\bullet \ X \in \mathcal{F} \ \land \ X \subseteq Y \subseteq A \Rightarrow Y \in \mathcal{F}$
 - $\blacktriangleright X,Y\in \mathcal{F} \Rightarrow X\cap Y\in \mathcal{F}$
- ▶ A filter \mathcal{F} on A is called a Cauchy filter if and only if for every neighborhood U of zero: $\exists B \in \mathcal{F} : B B \subseteq U$.
- A filter \mathcal{F} is convergent to $x \in E$ if and only if \mathcal{F} contains the neighborhood filter \mathcal{U}_x of x;

$$\mathcal{U}_x \coloneqq \{ U \subseteq E; \exists V \subseteq E \text{ open} \colon x \in V \subseteq U \}.$$

- A is complete if and only if every Cauchy filter on A is convergent in A.
- \blacktriangleright E is quasi-complete if and only if every closed and bounded subset of E is complete.

	Integration in Topological Vector Spaces	FIOs 000	ζ -functions 000000000000000000000000000000000000	Index Bundle 00000000
--	--	-------------	--	--------------------------

complete ↓ quasi-complete ↓ sequentially complete

	Integration in Topological Vector Spaces	FIOs 000	ζ -functions 000000000000000000000000000000000000	Index Bundle 00000000
--	--	-------------	--	--------------------------

 $\begin{array}{c} \text{complete} \\ \downarrow \\ \text{quasi-complete} \\ \downarrow \\ \text{sequentially} \\ \text{complete} \\ \downarrow \\ \text{metric convex} \\ \text{compactness property} \end{array}$

 $\zeta\text{-functions}$ of Fourier Integral Operators: Integration Theory

T. Hartung

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
000000000000	000	000000000000000000000000000000000000	00000000

 $\zeta\text{-functions}$ of Fourier Integral Operators: Integration Theory

T. Hartung

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
000000000000	000	000000000000000000000000000000000000	00000000

	Integration in Topological Vector Spaces	FIOs 000	ζ -functions 000000000000000000000000000000000000	Index Bundle 00000000
--	--	-------------	--	--------------------------

Lemma (Sombrero Lemma)

Let E be metrizable and (Ω, Σ, μ) a compact Borel measure space. Then, $C(\Omega, E) \subseteq S\mathcal{M}(\mu; E).$

Lemma (generalized Sombrero Lemma)

Let E be a separable metric space and (Ω, Σ, μ) a Radon measure space. Then, $S\mathcal{M}(\mu; E) = \mathcal{M}(\mu; E)$.

Integration in Topological Vector Spaces $000000000000000000000000000000000000$	FIOs	ζ -functions	Index Bundle
	000	0000000000000000	00000000

Let (Ω, Σ, μ) be σ -finite, F another Hausdorffian locally convex topological vector space, and $f \in \overline{SL}_1(\mu; E)$.

(i) Let $B \in L(\tilde{E}, \tilde{F})$. Then, $B \circ f \in \bar{S}L_1(\mu; F)$ and

$$B\int_{\Omega}fd\mu=\int_{\Omega}B\circ fd\mu.$$

	Integration in Topological Vector Spaces $000000000000000000000000000000000000$	FIOs 000	ζ -functions 000000000000000	Index Bundle 00000000
--	---	-------------	---------------------------------------	--------------------------

Let (Ω, Σ, μ) be σ -finite, F another Hausdorffian locally convex topological vector space, and $f \in \bar{S}L_1(\mu; E)$. (i) Let $B \in L(\tilde{E}, \tilde{F})$. Then, $B \circ f \in \bar{S}L_1(\mu; F)$ and $B \int_{\Omega} f d\mu = \int_{\Omega} B \circ f d\mu$.

•
$$f \in \mathcal{S}(\mu; E) \Rightarrow B \int_{\Omega} f d\mu = \int_{\Omega} B \circ f d\mu$$
 trivial

Integration in Topological Vector Spaces $000000000000000000000000000000000000$	FIOs	ζ -functions	Index Bundle
	000	00000000000000000	00000000

Let (Ω, Σ, μ) be σ -finite, F another Hausdorffian locally convex topological vector space, and $f \in \bar{S}L_1(\mu; E)$. (i) Let $B \in L(\tilde{E}, \tilde{F})$. Then, $B \circ f \in \bar{S}L_1(\mu; F)$ and $B \int_{\Omega} f d\mu = \int_{\Omega} B \circ f d\mu$.

•
$$f \in \mathcal{S}(\mu; E) \Rightarrow B \int_{\Omega} f d\mu = \int_{\Omega} B \circ f d\mu$$
 trivial
• $f \mapsto B \int_{\Omega} f d\mu, f \mapsto \int_{\Omega} B \circ f d\mu \in L(L_1(\mu; E), \tilde{F})$

	Integration in Topological Vector Spaces $000000000000000000000000000000000000$	FIOs 000	ζ -functions 000000000000000	Index Bundle 00000000
--	---	-------------	---------------------------------------	--------------------------

Let (Ω, Σ, μ) be σ -finite, F another Hausdorffian locally convex topological vector space, and $f \in \bar{S}L_1(\mu; E)$. (i) Let $B \in L(\tilde{E}, \tilde{F})$. Then, $B \circ f \in \bar{S}L_1(\mu; F)$ and $B \int_{\Omega} f d\mu = \int_{\Omega} B \circ f d\mu$.

•
$$f \in \mathcal{S}(\mu; E) \Rightarrow B \int_{\Omega} f d\mu = \int_{\Omega} B \circ f d\mu$$
 trivial
• $f \mapsto B \int_{\Omega} f d\mu, f \mapsto \int_{\Omega} B \circ f d\mu \in L(L_1(\mu; E), \tilde{F})$
• $\Rightarrow B \int_{\Omega} f d\mu = \int_{\Omega} B \circ f d\mu$ on L_1 closure of $\mathcal{S}(\mu; E)$ by unique extension theorem

	Integration in Topological Vector Spaces $000000000000000000000000000000000000$	FIOs 000	ζ -functions 000000000000000	Index Bundle 00000000
--	---	-------------	---------------------------------------	--------------------------

Let (Ω, Σ, μ) be σ -finite, F another Hausdorffian locally convex topological vector space, and $f \in \bar{S}L_1(\mu; E)$. (i) Let $B \in L(\tilde{E}, \tilde{F})$. Then, $B \circ f \in \bar{S}L_1(\mu; F)$ and $B \int_{\Omega} f d\mu = \int_{\Omega} B \circ f d\mu$.

(ii) Let $E_0 \subseteq E$ be a closed subspace and $f(\omega) \in E_0$ for μ -almost every $\omega \in \Omega$. Then, $\int_{\Omega} f d\mu \in E_0$.

• Let $\varphi \in E'$ with $\varphi|_{E_0} = 0$

FIOs	ζ -functions	Index Bundle
000	000000000000000000000000000000000000	00000000
	FIOs 000	

Let (Ω, Σ, μ) be σ -finite, F another Hausdorffian locally convex topological vector space, and $f \in \bar{S}L_1(\mu; E)$. (i) Let $B \in L(\tilde{E}, \tilde{F})$. Then, $B \circ f \in \bar{S}L_1(\mu; F)$ and $B \int_{\Omega} f d\mu = \int_{\Omega} B \circ f d\mu$.

• Let
$$\varphi \in E'$$
 with $\varphi|_{E_0} = 0$
• $\varphi \int f d\mu = \int \underbrace{\varphi \circ f}_{=0} d\mu = 0$

	Integration in Topological Vector Spaces $000000000000000000000000000000000000$	FIOs 000	ζ -functions 000000000000000	Index Bundle 00000000
--	---	-------------	---------------------------------------	--------------------------

Let (Ω, Σ, μ) be σ -finite, F another Hausdorffian locally convex topological vector space, and $f \in \bar{S}L_1(\mu; E)$. (i) Let $B \in L(\tilde{E}, \tilde{F})$. Then, $B \circ f \in \bar{S}L_1(\mu; F)$ and $B \int_{\Omega} f d\mu = \int_{\Omega} B \circ f d\mu$.

- (ii) Let $E_0 \subseteq E$ be a closed subspace and $f(\omega) \in E_0$ for μ -almost every $\omega \in \Omega$. Then, $\int_{\Omega} f d\mu \in E_0$.
 - Let $\varphi \in E'$ with $\varphi|_{E_0} = 0$
 - $\varphi \int f d\mu = \int \varphi \circ f d\mu = 0$
 - ▶ Hahn-Banach: $\int f d\mu \in E_0$ (otherwise, $\exists \varphi \in E'$: $\varphi|_{E_0} = 0 \land \varphi \int f d\mu = 1$)

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
000000000	000	000000000000000	0000000

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	00000000000000000	00000000

Let $f \in \overline{S}L_1(\mu; E)$, F another Hausdorffian locally convex topological vector space, and $A: D(A) \subseteq E \to F$ a closed linear operator. Let $f(\omega) \in D(A)$ for μ -almost every $\omega \in \Omega$ and $A \circ f \in \overline{S}L_1(\mu; F)$. Then, we obtain $\int_{\Omega} f d\mu \in D(A)$ and $A \int_{\Omega} f d\mu = \int_{\Omega} A \circ f d\mu$.

• $i_E: E \to E \times F; x \mapsto (x,0)$ and $i_F: F \to E \times F; y \mapsto (0,y)$ continuous

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
000000000	000	000000000000000	00000000

•
$$i_E: E \to E \times F; x \mapsto (x,0) \text{ and } i_F: F \to E \times F; y \mapsto (0,y) \text{ continuous}$$

• $\Rightarrow \Omega \ni \omega \mapsto (f(\omega), Af(\omega)) = i_E(f(\omega)) + i_F(Af(\omega)) \text{ is in } \overline{SL}_1(\mu; E \times F)$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	00000000000000000	00000000

- $i_E: E \to E \times F; x \mapsto (x,0)$ and $i_F: F \to E \times F; y \mapsto (0,y)$ continuous
- $\blacktriangleright \Rightarrow \Omega \ni \omega \mapsto (f(\omega), Af(\omega)) = i_E(f(\omega)) + i_F(Af(\omega)) \text{ is in } \bar{S}L_1(\mu; E \times F)$
- ▶ A closed lin. subspace, $(f(\omega), Af(\omega)) \in A$ for μ -ae $\omega \in \Omega \Rightarrow \int_{\Omega} (f, Af) d\mu \in A$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
000000000	000	000000000000000	00000000

- $i_E: E \to E \times F; x \mapsto (x,0)$ and $i_F: F \to E \times F; y \mapsto (0,y)$ continuous
- $\blacktriangleright \Rightarrow \Omega \ni \omega \mapsto (f(\omega), Af(\omega)) = i_E(f(\omega)) + i_F(Af(\omega)) \text{ is in } \bar{\mathcal{S}}L_1(\mu; E \times F)$
- A closed lin. subspace, $(f(\omega), Af(\omega)) \in A$ for μ -ae $\omega \in \Omega \Rightarrow \int_{\Omega} (f, Af) d\mu \in A$
- $\operatorname{pr}_E : E \times F \to E; (x, y) \mapsto x \Rightarrow \operatorname{pr}_E \int_{\Omega} (f, Af) d\mu = \int_{\Omega} \operatorname{pr}_E \circ (f, Af) d\mu = \int_{\Omega} f d\mu$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
000000000	000	000000000000000	00000000

- $i_E: E \to E \times F; x \mapsto (x,0)$ and $i_F: F \to E \times F; y \mapsto (0,y)$ continuous
- $\blacktriangleright \Rightarrow \Omega \ni \omega \mapsto (f(\omega), Af(\omega)) = i_E(f(\omega)) + i_F(Af(\omega)) \text{ is in } \bar{\mathcal{S}}L_1(\mu; E \times F)$
- A closed lin. subspace, $(f(\omega), Af(\omega)) \in A$ for μ -ae $\omega \in \Omega \Rightarrow \int_{\Omega} (f, Af) d\mu \in A$
- $\blacktriangleright \operatorname{pr}_E \colon E \times F \to E; \ (x,y) \mapsto x \Rightarrow \operatorname{pr}_E \int_{\Omega} (f,Af) d\mu = \int_{\Omega} \operatorname{pr}_E \circ (f,Af) d\mu = \int_{\Omega} f d\mu$
- $\operatorname{pr}_F: E \times F \to F; (x, y) \mapsto y \Rightarrow \operatorname{pr}_F \int_{\Omega} (f, Af) d\mu = \int_{\Omega} Af d\mu$

000000000000000000000000000000000000000	Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
	000000000	000	000000000000000	00000000

- $i_E: E \to E \times F; x \mapsto (x,0)$ and $i_F: F \to E \times F; y \mapsto (0,y)$ continuous
- $\blacktriangleright \Rightarrow \Omega \ni \omega \mapsto (f(\omega), Af(\omega)) = i_E(f(\omega)) + i_F(Af(\omega)) \text{ is in } \bar{\mathcal{S}}L_1(\mu; E \times F)$
- A closed lin. subspace, $(f(\omega), Af(\omega)) \in A$ for μ -ae $\omega \in \Omega \Rightarrow \int_{\Omega} (f, Af) d\mu \in A$
- $\blacktriangleright \operatorname{pr}_E: \ E \times F \to E; \ (x,y) \mapsto x \Rightarrow \operatorname{pr}_E \int_{\Omega} (f,Af) d\mu = \int_{\Omega} \operatorname{pr}_E \circ (f,Af) d\mu = \int_{\Omega} f d\mu$
- $\operatorname{pr}_F : E \times F \to F; (x, y) \mapsto y \Rightarrow \operatorname{pr}_F \int_{\Omega} (f, Af) d\mu = \int_{\Omega} Af d\mu$
- $\blacktriangleright \Rightarrow \left(\int_{\Omega} f d\mu, \int_{\Omega} A f d\mu\right) = \int_{\Omega} (f, A f) d\mu \in A$

000000000000000000000000000000000000000	Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
	000000000	000	000000000000000	00000000

- $i_E: E \to E \times F; x \mapsto (x,0)$ and $i_F: F \to E \times F; y \mapsto (0,y)$ continuous
- $\blacktriangleright \Rightarrow \Omega \ni \omega \mapsto (f(\omega), Af(\omega)) = i_E(f(\omega)) + i_F(Af(\omega)) \text{ is in } \bar{\mathcal{S}}L_1(\mu; E \times F)$
- A closed lin. subspace, $(f(\omega), Af(\omega)) \in A$ for μ -ae $\omega \in \Omega \Rightarrow \int_{\Omega} (f, Af) d\mu \in A$
- $\operatorname{pr}_E : E \times F \to E; (x, y) \mapsto x \Rightarrow \operatorname{pr}_E \int_{\Omega} (f, Af) d\mu = \int_{\Omega} \operatorname{pr}_E \circ (f, Af) d\mu = \int_{\Omega} f d\mu$
- $\operatorname{pr}_F : E \times F \to F; (x, y) \mapsto y \Rightarrow \operatorname{pr}_F \int_{\Omega} (f, Af) d\mu = \int_{\Omega} Af d\mu$
- $\blacktriangleright \Rightarrow \left(\int_{\Omega} f d\mu, \int_{\Omega} A f d\mu\right) = \int_{\Omega} (f, A f) d\mu \in A$
- $\blacktriangleright \Rightarrow \int_{\Omega} f d\mu \in D(A) \land A \int_{\Omega} f d\mu = \int_{\Omega} A \circ f d\mu$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000●	000	000000000000000	00000000

Let $f \in \overline{S}L_1(\mu; E)$, F another Hausdorffian locally convex topological vector space, and $A: D(A) \subseteq E \to F$ a closed linear operator. Let $f(\omega) \in D(A)$ for μ -almost every $\omega \in \Omega$ and $A \circ f \in \overline{S}L_1(\mu; F)$. Then, we obtain $\int_{\Omega} f d\mu \in D(A)$ and $A \int_{\Omega} f d\mu = \int_{\Omega} A \circ f d\mu$.

• Similarly: A quasi-complete \Rightarrow need to approximate f and $A \circ f$ with bounded nets of simple functions
Integration in Topological Vector Spaces 000000000000	FIOs	ζ -functions	Index Bundle
	000	000000000000000000000000000000000000	00000000

Theorem ("Hille")

Let $f \in \overline{S}L_1(\mu; E)$, F another Hausdorffian locally convex topological vector space, and $A: D(A) \subseteq E \to F$ a closed linear operator. Let $f(\omega) \in D(A)$ for μ -almost every $\omega \in \Omega$ and $A \circ f \in \overline{S}L_1(\mu; F)$. Then, we obtain $\int_{\Omega} f d\mu \in D(A)$ and $A \int_{\Omega} f d\mu = \int_{\Omega} A \circ f d\mu$.

- Similarly: A quasi-complete \Rightarrow need to approximate f and $A \circ f$ with bounded nets of simple functions
- ▶ Similarly: A sequentially-complete ⇒ need to approximate f and $A \circ f$ with sequences of simple functions

Integration in Topological Vector Spaces 000000000000	FIOs	ζ -functions	Index Bundle
	000	000000000000000000000000000000000000	00000000

Theorem ("Hille")

Let $f \in \overline{S}L_1(\mu; E)$, F another Hausdorffian locally convex topological vector space, and $A: D(A) \subseteq E \to F$ a closed linear operator. Let $f(\omega) \in D(A)$ for μ -almost every $\omega \in \Omega$ and $A \circ f \in \overline{S}L_1(\mu; F)$. Then, we obtain $\int_{\Omega} f d\mu \in D(A)$ and $A \int_{\Omega} f d\mu = \int_{\Omega} A \circ f d\mu$.

- Similarly: A quasi-complete \Rightarrow need to approximate f and $A \circ f$ with bounded nets of simple functions
- ▶ Similarly: A sequentially-complete \Rightarrow need to approximate f and $A \circ f$ with sequences of simple functions
- Pettis integral: $\forall \varphi \in F' \ \forall B \in L(\tilde{E}, \tilde{F}): \ \varphi \circ B \in E' \land \ \varphi B \int f d\mu = \int \varphi \circ B \circ f d\mu = \varphi \int B \circ f d\mu$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	0 00	0000000000000000	00000000

Fourier Integral Operators on a manifold X

▶ Fourier Integral Operators are integral operators $A: C_c^{\infty}(X) \to C_c^{\infty}(X)'$ of the form

$$\forall \varphi \in C_c^{\infty}(X) \colon A\varphi(x) = \int_X k_A(x,y)\varphi(y)d\mathrm{vol}_X(y)$$

where k_A is a Lagrangian distribution.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	0 00	0000000000000000	00000000

Fourier Integral Operators on a manifold X

▶ Fourier Integral Operators are integral operators $A: C_c^{\infty}(X) \to C_c^{\infty}(X)'$ of the form

$$\forall \varphi \in C_c^{\infty}(X) : A\varphi(x) = \int_X k_A(x, y)\varphi(y) d\operatorname{vol}_X(y)$$

where k_A is a Lagrangian distribution.

• Lagrangian distributions are classified by their wave front sets. The set of all Lagrangian distributions with wave front set in a suitable cone Γ of the co-tangent bundle $T^*X \times 0$ is the Hörmander space \mathcal{D}'_{Γ} .

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	o●o	000000000000000000	00000000

 \mathcal{A}_{Γ} vs \mathcal{D}'_{Γ}

For an algebra \mathcal{A} , consider $\int_{\Omega} A d\mu$. Then,

$$\begin{split} \left\langle \int_{\Omega} A d\mu \ \varphi, \psi \right\rangle &= \int_{\Omega} \langle A(\omega)\varphi, \psi \rangle d\mu(\omega) \\ &= \int_{\Omega} \int_{X^2} k_A(\omega)(x, y)\varphi(y)\psi(x) d\mathrm{vol}_{X^2}(x, y)d\mu(\omega) \\ &= \int_{\Omega} \langle k_A(\omega), \psi \otimes \varphi \rangle d\mu(\omega) \\ &= \left\langle \int_{\Omega} k_A d\mu, \psi \otimes \varphi \right\rangle \end{split}$$

implies that the kernel $\int_{\Omega} k_A d\mu$ of $\int_{\Omega} A d\mu$ is given by an integral in \mathcal{D}'_{Γ} .

	Integration in Topological Vector Spaces 00000000000	FIOs ooe	ζ -functions	Index Bundle 00000000
--	---	-------------	--------------------	--------------------------

Theorem (Dabrowski-Brouder; 2014)

In its normal topology, \mathcal{D}'_{Γ} is a nuclear, semi-reflexive, semi-Montel, complete normal space of distributions.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	ooe	000000000000000000000000000000000000	00000000

Theorem (Dabrowski-Brouder; 2014)

In its normal topology, \mathcal{D}'_{Γ} is a nuclear, semi-reflexive, semi-Montel, <u>complete</u> normal space of distributions.

Integration in Topological Vector SpacesFIOsζ-functionsIndex Bun000	Integration in Topological Vector Spaces
---	--

Theorem (Dabrowski-Brouder; 2014)

In its normal topology, \mathcal{D}'_{Γ} is a nuclear, semi-reflexive, semi-Montel, <u>complete</u> normal space of distributions.

Theorem (Dabrowski-Brouder; 2014)

 \mathcal{D}'_{Γ} quasi-complete in the Hörmander topology.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
	000	000000000000000000000000000000000000	00000000
	000	000000000000000000000000000000000000000	00000000

Theorem (Dabrowski-Brouder; 2014)

In its normal topology, \mathcal{D}'_{Γ} is a nuclear, semi-reflexive, semi-Montel, <u>complete</u> normal space of distributions.

Theorem (Dabrowski-Brouder; 2014)

 \mathcal{D}'_{Γ} quasi-complete in the Hörmander topology.

Theorem (Dabrowski-Brouder; 2014)

Bounded subsets are the same for the normal and Hörmander topology. Furthermore, closed bounded sets are compact and metrizable.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	•00000000000000	0000000

Fourier Integral Operator ζ -functions

- $\zeta(A)$ is meromorphic with isolated poles of finite order.
- ► $\exists r \in \mathbb{R} : \zeta(A)|_{\mathbb{C}_{\Re(\cdot) < r}}$ is holomorphic.

Definition $(\mathcal{D}'_{\Gamma,R,\Omega,\mathrm{plh}})$

For $R \in \mathbb{R}$ and $\Omega \subseteq_{\text{open,connected}} \mathbb{C}$ such that $\forall r \in \mathbb{R} : \{z \in \Omega; \Re(z) < r\} \neq \emptyset$, we define $\mathcal{D}'_{\Gamma,R,\Omega,\text{plh}} \subseteq C^{\omega}(\mathbb{C}, \mathcal{D}'_{\Gamma})$ to be the set of gauged poly-log-homogeneous kernels in \mathcal{D}'_{Γ} whose ζ -functions are holomorphic in Ω and none of the degrees of homogeneity at zero have real part greater than R.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000000000000000000000000	00000000

Let $R \in \mathbb{R}$ and $\Omega \subseteq \mathbb{C}$ be open and connected such that $\forall r \in \mathbb{R} : \{z \in \Omega; \Re(z) < r\} \neq \emptyset$. Then,

$$\zeta|_{\mathcal{D}'_{\Gamma,R,\Omega,\mathrm{plh}}}: \ \mathcal{D}'_{\Gamma,R,\Omega,\mathrm{plh}} o C^{\omega}(\Omega)$$

has a quasi-complete extension $\zeta_{R,\Omega} \subseteq C^{\omega}(\mathbb{C}, \mathcal{D}'_{\Gamma}) \oplus C^{\omega}(\Omega)$.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	$\circ \bullet \circ \circ$	00000000

Let $R \in \mathbb{R}$ and $\Omega \subseteq \mathbb{C}$ be open and connected such that $\forall r \in \mathbb{R} : \{z \in \Omega; \Re(z) < r\} \neq \emptyset$. Then,

$$\zeta|_{\mathcal{D}'_{\Gamma,R,\Omega,\mathrm{plh}}}: \mathcal{D}'_{\Gamma,R,\Omega,\mathrm{plh}} \to C^{\omega}(\Omega)$$

has a quasi-complete extension $\zeta_{R,\Omega} \subseteq C^{\omega}(\mathbb{C}, \mathcal{D}'_{\Gamma}) \oplus C^{\omega}(\Omega).$

- Let $(v_{\alpha}, \zeta(v_{\alpha}))_{\alpha \in A}$ be a bounded net in $\mathcal{D}'_{\Gamma, R, \Omega, \text{plh}} \oplus C^{\omega}(\Omega), v_{\alpha} \to 0,$ $\zeta(v_{\alpha}) \to : v \in C^{\omega}(\Omega), \text{ and } z \in \Omega$
- $V \coloneqq \{v_{\alpha}(z); \alpha \in A\}$ bounded in $\mathcal{D}'_{\Gamma} \Rightarrow$ metrizable
- $Z := \{\zeta(v_{\alpha})(z); \alpha \in A\} \cup \{v(z)\}$ bounded in $\mathbb{C} \Rightarrow$ metrizable
- $\{(v_{\alpha}(z), \zeta(v_{\alpha})(z); \alpha \in A\} \subseteq V \times Z \text{ (metrizable set)} \Rightarrow \text{ suffices to use sequences}$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000000000000000000000000	00000000

Let $R \in \mathbb{R}$ and $\Omega \subseteq \mathbb{C}$ be open and connected such that $\forall r \in \mathbb{R} : \{z \in \Omega; \Re(z) < r\} \neq \emptyset$. Then,

$$\zeta|_{\mathcal{D}'_{\Gamma,R,\Omega,\mathrm{plh}}}: \mathcal{D}'_{\Gamma,R,\Omega,\mathrm{plh}} \to C^{\omega}(\Omega)$$

has a quasi-complete extension $\zeta_{R,\Omega} \subseteq C^{\omega}(\mathbb{C}, \mathcal{D}'_{\Gamma}) \oplus C^{\omega}(\Omega).$

- ► Let $(u_n(z))_n \in V^{\mathbb{N}}, u_n(z) \to 0, \zeta(u_n)(z) \to v(z), (f_m)_m \delta$ -sequence $\to \delta_{\text{diag}}$
- then $\forall m : \lim_n \langle u_n, f_m \rangle = 0$ compactly
- for $\Re(z) \ll 0$: $\lim_{m} \langle u_n(z), f_m \rangle = \zeta(u_n)(z)$
- $\overset{\varepsilon}{3} \text{ argument:} \\ |v(z)| \le |v(z) \zeta(u_n)(z)| + |\zeta(u_n)(z) \langle u_n(z), f_m \rangle| + |\langle u_n(z), f_m \rangle| \le \varepsilon$
- $(\Re(z) \ll 0 \Rightarrow v(z) = 0) \Rightarrow v = 0$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000000000000000000000000	00000000

Let $R \in \mathbb{R}$ and $\Omega \subseteq \mathbb{C}$ be open and connected such that $\forall r \in \mathbb{R} : \{z \in \Omega; \Re(z) < r\} \neq \emptyset$. Then,

$$\mathcal{L}|_{\mathcal{D}'_{\Gamma,R,\Omega,\mathrm{plh}}}: \mathcal{D}'_{\Gamma,R,\Omega,\mathrm{plh}} \to C^{\omega}(\Omega)$$

has a quasi-complete extension $\zeta_{R,\Omega} \subseteq C^{\omega}(\mathbb{C}, \mathcal{D}'_{\Gamma}) \oplus C^{\omega}(\Omega).$

Corollary

Let $R_1, R_2 \in \mathbb{R}, R_1 \leq R_2$, and $\Omega \subseteq \mathbb{C}$ be open and connected such that $\forall r \in \mathbb{R} : \{z \in \Omega; \ \Re(z) < r\} \neq \emptyset$. Then, it is possible to choose $\zeta_{R_1,\Omega}$ and $\zeta_{R_2,\Omega}$ such that $\zeta_{R_1,\Omega} \subseteq \zeta_{R_2,\Omega}$.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000000000000000000000000000	0000000

 $\zeta\text{-}\mathrm{extensions}$ on joint holomorphic domains

Theorem

Let $\Omega \subseteq \mathbb{C}$ be open and connected such that $\forall r \in \mathbb{R} : \{z \in \Omega; \Re(z) < r\} \neq \emptyset$. Then,

$$\zeta_{\Omega} \coloneqq \bigcup_{N \in \mathbb{N}} \zeta_{N,\Omega} \subseteq C^{\omega}(\mathbb{C}, \mathcal{D}'_{\Gamma}) \oplus C^{\omega}(\Omega)$$

is a quasi-complete operator.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000000000000000000000000000	0000000

 ζ -extensions on joint holomorphic domains

Theorem

Let $\Omega \subseteq \mathbb{C}$ be open and connected such that $\forall r \in \mathbb{R} : \{z \in \Omega; \Re(z) < r\} \neq \emptyset$. Then,

$$\zeta_{\Omega} \coloneqq \bigcup_{N \in \mathbb{N}} \zeta_{N,\Omega} \subseteq C^{\omega}(\mathbb{C}, \mathcal{D}'_{\Gamma}) \oplus C^{\omega}(\Omega)$$

is a quasi-complete operator.

▶ Strict inductive limits of quasi-complete spaces are quasi-complete.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000000000000000000000000	00000000

Let *E* be a vector space, $(X_{\iota}, \tau_{\iota})$ a family of locally convex topological vector spaces, and $(f_{\iota})_{\iota \in I}$ a family of linear maps $f_{\iota} : X_{\iota} \to E$.

(i) Then there exists a finest linear, locally convex topology τ on E for which all $f_{\iota}: (X_{\iota}, \tau_{\iota}) \to (E, \tau)$ are continuous. τ is called the final topology of E with respect to $(X_{\iota}, \tau_{\iota}, f_{\iota})_{\iota \in I}$.

The final topology is called a locally convex inductive limit if an only if I is directed and $E = \bigcup_{\iota \in I} X_{\iota}$. Furthermore, the inductive limit is strict if and only if $X_{\iota} \subseteq X_{\kappa} \Rightarrow \tau_{\iota} = \tau_{\kappa} \cap X_{\iota}$.

(ii) Let (F, σ) be another locally convex topological vector space and $g: E \to F$ linear. Then $g: (E, \tau) \to (F, \sigma)$ is continuous if and only if $\forall \iota \in I: g \circ f_{\iota} \in C((X_{\iota}, \tau_{\iota}), (F, \sigma))$.

Let \leq be a pre-order (reflexive and transitive binary relation) on the set A. Then, (A, \leq) is called directed if and only $\forall a, b \in A \exists c \in A : a \leq c \land b \leq c$.

	Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000000000000000000000000000000	000000000	000	000000000000000000000000000000000000000	00000000

Example

Consider $\Omega \subseteq \mathbb{R}^n$ open and let

 $\mathcal{D}_K(\Omega) \coloneqq \{ f \in C_c^{\infty}(\Omega); \text{ spt} f \subseteq K \}.$

Then $\mathcal{D}_{K}(\Omega)$ is a Fréchet space with the seminorms $\left(\left\|\partial^{k}f\right\|_{L_{\infty}(K)}\right)_{k\in\mathbb{N}_{0}}$. Since $K\subseteq K'$ implies $\mathcal{D}_{K}(\Omega)\subseteq \mathcal{D}_{K'}(\Omega)$, and $\tau_{\mathcal{D}_{K}(\Omega)}=\tau_{\mathcal{D}_{K'}(\Omega)}\cap \mathcal{D}_{K}(\Omega)$, we observe that $C_{c}^{\infty}(\Omega)$ is a strict inductive limit $\bigcup_{K\subseteq_{compact}\Omega}\mathcal{D}_{K}(\Omega)$. A strict inductive limit of Fréchet spaces is also known as LF-space.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000	0000000

Pettis integration in ζ_{Ω}

Theorem

Let (K, Σ, μ) be a measure space, and $f : K \to D(\zeta_{\Omega})$ and $\zeta_{\Omega} \circ f$ be μ -Pettis integrable (e.g., f continuous, K compact, and μ a Borel measure). Then,

$$\int_{K} f d\mu \in D\left(\zeta_{\Omega}\right)$$

and

$$\zeta_{\Omega}\left(\int_{K}fd\mu\right)=\int_{K}\zeta_{\Omega}\circ fd\mu.$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000000000000000000000000000	0000000

Definition

• $f \in M_{\zeta}$ if and only if $f \in L_{1,\text{loc}}(\mathbb{C}) \cap W^1_{1,\text{loc}}(\mathbb{R}^2)$ and there exists $r \in \mathbb{R}$ such that $f|_{\mathbb{C}_{\Re(\cdot) < r}}$ is holomorphic.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000000000000000000000000000	0000000

Definition

• $f \in M_{\zeta}$ if and only if $f \in L_{1,\text{loc}}(\mathbb{C}) \cap W^{1}_{1,\text{loc}}(\mathbb{R}^{2})$ and there exists $r \in \mathbb{R}$ such that $f|_{\mathbb{C}_{\mathfrak{R}(\cdot) < r}}$ is holomorphic. $f, g \in M_{\zeta}, f \sim g$ if and only if $\exists r \in \mathbb{R} : f|_{\mathbb{C}_{\mathfrak{R}(\cdot) < r}} = g|_{\mathbb{C}_{\mathfrak{R}(\cdot) < r}}$.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000	0000000

Definition

• $f \in M_{\zeta}$ if and only if $f \in L_{1,\text{loc}}(\mathbb{C}) \cap W^{1}_{1,\text{loc}}(\mathbb{R}^{2})$ and there exists $r \in \mathbb{R}$ such that $f|_{\mathbb{C}_{\Re(\cdot) < r}}$ is holomorphic. $f, g \in M_{\zeta}, f \sim g$ if and only if $\exists r \in \mathbb{R} : f|_{\mathbb{C}_{\Re(\cdot) < r}} = g|_{\mathbb{C}_{\Re(\cdot) < r}}$.

$$\blacktriangleright D \coloneqq \left\{ \Omega \subseteq_{\text{open,connected}} \mathbb{C}; \exists r \in \mathbb{R} : \mathbb{C}_{\mathfrak{R}(\cdot) < r} \subseteq \Omega \right\}$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000000000000000000000000000	0000000

Definition

• $f \in M_{\zeta}$ if and only if $f \in L_{1,\text{loc}}(\mathbb{C}) \cap W^{1}_{1,\text{loc}}(\mathbb{R}^{2})$ and there exists $r \in \mathbb{R}$ such that $f|_{\mathbb{C}_{\Re(\cdot) < r}}$ is holomorphic. $f, g \in M_{\zeta}, f \sim g$ if and only if $\exists r \in \mathbb{R} : f|_{\mathbb{C}_{\Re(\cdot) < r}} = g|_{\mathbb{C}_{\Re(\cdot) < r}}.$

$$\blacktriangleright D \coloneqq \left\{ \Omega \subseteq_{\text{open,connected}} \mathbb{C}; \exists r \in \mathbb{R} : \mathbb{C}_{\mathfrak{R}(\cdot) < r} \subseteq \Omega \right\}$$

• for $\Omega \in D$, $H_{\zeta}(\Omega) \coloneqq \{f \in M_{\zeta}; f|_{\Omega} \text{ holomorphic}\}$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	0000000000000000	0000000

Corollary

 (D, \supseteq) is a directed set.

Corollary

 $M_{\zeta} = \bigcup_{\Omega \in D} H_{\zeta}(\Omega)$

 $\zeta\text{-functions}$ of Fourier Integral Operators: Integration Theory

T. Hartung

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	0000000000000000	0000000

Theorem (Trace Operator)

Let $G \subseteq \mathbb{R}^2$ be open, bounded, connected, and have Lipschitz boundary. Then, there exists $T \in L(W_1^1(G), L_1(\partial G))$ such that $\forall u \in C(\overline{G}) : Tu = u|_{\partial G}$.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000000000000000000000000	00000000

Theorem (Trace Operator)

Let $G \subseteq \mathbb{R}^2$ be open, bounded, connected, and have Lipschitz boundary. Then, there exists $T \in L(W_1^1(G), L_1(\partial G))$ such that $\forall u \in C(\overline{G}) : Tu = u|_{\partial G}$.

• For $\zeta(A)$, consider

$$I_A \coloneqq \{\Omega \in D; \exists f_\Omega \in H_{\zeta}(\Omega) \colon f_\Omega|_{\Omega} = \zeta(A)|_{\Omega} \}.$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000		00000000

Theorem (Trace Operator)

Let $G \subseteq \mathbb{R}^2$ be open, bounded, connected, and have Lipschitz boundary. Then, there exists $T \in L(W_1^1(G), L_1(\partial G))$ such that $\forall u \in C(\overline{G}) : Tu = u|_{\partial G}$.

• For $\zeta(A)$, consider

$$I_A \coloneqq \{\Omega \in D; \ \exists f_\Omega \in H_{\zeta}(\Omega) : \ f_\Omega|_{\Omega} = \zeta(A)|_{\Omega} \}.$$

• (I_A, \subseteq) is directed.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000		00000000

Theorem (Trace Operator)

Let $G \subseteq \mathbb{R}^2$ be open, bounded, connected, and have Lipschitz boundary. Then, there exists $T \in L(W_1^1(G), L_1(\partial G))$ such that $\forall u \in C(\overline{G}) : Tu = u|_{\partial G}$.

• For $\zeta(A)$, consider

$$I_A \coloneqq \{\Omega \in D; \exists f_\Omega \in H_{\zeta}(\Omega) \colon f_\Omega|_\Omega = \zeta(A)|_\Omega\}.$$

- (I_A, \subseteq) is directed.
- ► Let $G \subseteq \mathbb{C}$ be open, bounded, connected, and with ∂G Lipschitz such that $\zeta(A)$ is continuous on ∂G , $z_0 \in G$, and $\zeta(A) \simeq [f_\Omega] \in M_{\zeta}$. Then,

$$\lim\left(\frac{1}{2\pi i}\int_{\partial G}\frac{Tf_{\Omega}(z)}{(z-z_0)^{n+1}}dz\right)_{\Omega\in I_A}=\frac{1}{2\pi i}\int_{\partial G}\frac{\zeta(A)(z)}{(z-z_0)^{n+1}}dz.$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000	0000000

Topology of $H_{\zeta}(\Omega)$

Definition

On $H_{\zeta}(\Omega)$, we consider the semi-norms generated by the quotient of $W^1_{1,\text{loc}}(\mathbb{R}^2) \cap C^{\omega}(\Omega)$ equipped with the semi-norms

$$\forall K \subseteq_{\text{compact}} \Omega : p_K^H(f) \coloneqq \|f|_K\|_{C(K,\mathbb{C})}$$
$$\forall K \subseteq_{\text{compact}} \mathbb{R}^2 : p_K^W(f) \coloneqq \|f|_K\|_{L_1(K,\mathbb{C})} + \|f'|_K\|_{L_1(K,\mathbb{R}^{2,2})}$$

with respect to $f \sim g \iff \exists r \in \mathbb{R} : \ f|_{\mathbb{C}_{\Re(\cdot) < r}} = g|_{\mathbb{C}_{\Re(\cdot) < r}}.$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	0000000000000000	0000000

Topology of $H_{\zeta}(\Omega)$ and the space of ζ -functions M_{ζ}

Theorem

- $H_{\zeta}(\Omega)$ is a Fréchet space.
- Let $\Omega_0, \Omega_1 \in D$ and $\Omega_0 \supseteq \Omega_1$. Then, $H_{\zeta}(\Omega_0) \subseteq H_{\zeta}(\Omega_1)$ and the topology induced by $H_{\zeta}(\Omega_1)$ coincides with the topology in $H_{\zeta}(\Omega_0)$. Furthermore, $H_{\zeta}(\Omega_0)$ is closed in $H_{\zeta}(\Omega_1)$.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	0000000000000000	0000000

Topology of $H_{\zeta}(\Omega)$ and the space of ζ -functions M_{ζ}

Theorem

- $H_{\zeta}(\Omega)$ is a Fréchet space.
- Let $\Omega_0, \Omega_1 \in D$ and $\Omega_0 \supseteq \Omega_1$. Then, $H_{\zeta}(\Omega_0) \subseteq H_{\zeta}(\Omega_1)$ and the topology induced by $H_{\zeta}(\Omega_1)$ coincides with the topology in $H_{\zeta}(\Omega_0)$. Furthermore, $H_{\zeta}(\Omega_0)$ is closed in $H_{\zeta}(\Omega_1)$.

Corollary

 $M_{\zeta} = \bigcup_{n \in \mathbb{N}} H_{\zeta} \left(\mathbb{C}_{\mathfrak{R}(\cdot) < -n} \right)$ endowed with the strict inductive limit topology is a complete Hausdorff LF-space.

	Integration in Topological Vector Spaces	FIOs 000	ζ-functions 000000000€00000	Index Bundle 00000000
--	--	-------------	--------------------------------	--------------------------

All
$$\zeta|_{\mathcal{D}'_{\Gamma,n,\mathbb{C}_{\mathfrak{R}}(\cdot)<-n},\mathbb{D}^{\mathrm{ph}}}$$
 have a quasi-complete extension $\tilde{\zeta}_{n,\mathbb{C}_{\mathfrak{R}}(\cdot)<-n}$ in $C^{\omega}(\mathbb{C},\mathcal{D}'_{\Gamma}) \oplus H_{\zeta}(\mathbb{C}_{\mathfrak{R}}(\cdot)<-n})$ satisfying $\tilde{\zeta}_{n,\mathbb{C}_{\mathfrak{R}}(\cdot)<-n} \subseteq \tilde{\zeta}_{n+1,\mathbb{C}_{\mathfrak{R}}(\cdot)<-n-1}$.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	0000000000000000	0000000

All
$$\zeta|_{\mathcal{D}'_{\Gamma,n,\mathbb{C}_{\mathfrak{R}(\cdot)<-n}},\mathrm{plh}}$$
 have a quasi-complete extension $\tilde{\zeta}_{n,\mathbb{C}_{\mathfrak{R}(\cdot)<-n}}$ in
 $C^{\omega}(\mathbb{C},\mathcal{D}'_{\Gamma})\oplus H_{\zeta}(\mathbb{C}_{\mathfrak{R}(\cdot)<-n})$ satisfying $\tilde{\zeta}_{n,\mathbb{C}_{\mathfrak{R}(\cdot)<-n}}\subseteq \tilde{\zeta}_{n+1,\mathbb{C}_{\mathfrak{R}(\cdot)<-n-1}}$.

- $(v_{\alpha}, \zeta(v_{\alpha}))_{\alpha \in A}$ bounded net, $v_{\alpha} \to 0$ in $C^{\omega}(\mathbb{C}, \mathcal{D}'_{\Gamma}), \zeta(v_{\alpha}) \to v$ in $H_{\zeta}(\mathbb{C}_{\mathfrak{R}(\cdot) < -n})$
- $\Rightarrow \zeta(v_{\alpha})|_{\mathbb{C}_{\mathfrak{R}(\cdot)<-n}} \to v|_{\mathbb{C}_{\mathfrak{R}(\cdot)<-n}} \text{ in } C^{\omega}(\mathbb{C}_{\mathfrak{R}(\cdot)<-n})$
- same proof as before: $v|_{\mathbb{C}_{\mathfrak{R}(\cdot) < -n}} = 0$
- hence $\zeta(v_{\alpha}) = 0$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	0000000000000000	0000000

All
$$\zeta|_{\mathcal{D}'_{\Gamma,n,\mathbb{C}_{\mathfrak{R}(\cdot)<-n},\mathrm{plh}}}$$
 have a quasi-complete extension $\tilde{\zeta}_{n,\mathbb{C}_{\mathfrak{R}(\cdot)<-n}}$ in $C^{\omega}(\mathbb{C},\mathcal{D}'_{\Gamma}) \oplus H_{\zeta}(\mathbb{C}_{\mathfrak{R}(\cdot)<-n})$ satisfying $\tilde{\zeta}_{n,\mathbb{C}_{\mathfrak{R}(\cdot)<-n}} \subseteq \tilde{\zeta}_{n+1,\mathbb{C}_{\mathfrak{R}(\cdot)<-n-1}}$.

$$\mathcal{D}_{\Gamma,\mathrm{plh}}' \coloneqq \overline{\bigcup_{n \in \mathbb{N}} \mathcal{D}_{\Gamma,n,\mathbb{C}_{\mathfrak{R}(\cdot) < -n},\mathrm{plh}}^{C^{\omega}(\mathbb{C},\mathcal{D}_{\Gamma}')}} \subseteq C^{\omega}(\mathbb{C},\mathcal{D}_{\Gamma}')$$
$$\zeta_{\Gamma,\mathrm{plh}} \coloneqq \bigcup_{n \in \mathbb{N}} \tilde{\zeta}_{n,\mathbb{C}_{\mathfrak{R}(\cdot) < -n}} \subseteq \mathcal{D}_{\Gamma,\mathrm{plh}}' \oplus M_{\zeta}$$

 $\zeta\text{-functions}$ of Fourier Integral Operators: Integration Theory

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	0000000000000000	0000000

All
$$\zeta|_{\mathcal{D}'_{\Gamma,n,\mathbb{C}_{\mathfrak{R}(\cdot)<-n}},\mathrm{plh}}$$
 have a quasi-complete extension $\tilde{\zeta}_{n,\mathbb{C}_{\mathfrak{R}(\cdot)<-n}}$ in $C^{\omega}(\mathbb{C},\mathcal{D}'_{\Gamma}) \oplus H_{\zeta}(\mathbb{C}_{\mathfrak{R}(\cdot)<-n})$ satisfying $\tilde{\zeta}_{n,\mathbb{C}_{\mathfrak{R}(\cdot)<-n}} \subseteq \tilde{\zeta}_{n+1,\mathbb{C}_{\mathfrak{R}(\cdot)<-n-1}}$.

$$\mathcal{D}_{\Gamma,\mathrm{plh}}' \coloneqq \overline{\bigcup_{n \in \mathbb{N}} \mathcal{D}_{\Gamma,n,\mathbb{C}_{\mathfrak{R}(\cdot) < -n},\mathrm{plh}}^{\prime}}^{C^{\omega}(\mathbb{C},\mathcal{D}_{\Gamma}')} \subseteq C^{\omega}(\mathbb{C},\mathcal{D}_{\Gamma}')$$
$$\zeta_{\Gamma,\mathrm{plh}} \coloneqq \bigcup_{n \in \mathbb{N}} \tilde{\zeta}_{n,\mathbb{C}_{\mathfrak{R}(\cdot) < -n}} \subseteq \mathcal{D}_{\Gamma,\mathrm{plh}}' \oplus M_{\zeta}$$

Theorem

$$\zeta_{\Gamma,\mathrm{plh}} \subseteq \mathcal{D}'_{\Gamma,\mathrm{plh}} \oplus M_{\zeta}$$
 is a quasi-complete operator.

 $\zeta\text{-functions}$ of Fourier Integral Operators: Integration Theory

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000000000000000000000000	00000000

Pettis integration in ζ

Theorem

Let (K, Σ, μ) be a measure space, and $f: K \to D(\zeta_{\Gamma, \text{plh}})$ and $\zeta_{\Gamma, \text{plh}} \circ f$ be μ -Pettis integrable (e.g., f continuous, K compact, and μ a Borel measure). Then,

 $\int_{K} f d\mu \in D\left(\zeta_{\Gamma, \text{plh}}\right)$

and

$$\zeta_{\Gamma,\mathrm{plh}}\left(\int_K fd\mu\right) = \int_K \zeta_{\Gamma,\mathrm{plh}} \circ fd\mu.$$
Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000000000000000000000000000	0000000

Example (Heat trace)

Let

- M closed, compact C^{∞} -manifold,
- $|\Delta|$ be the (positive) Laplacian on M, and
- T the semi-group generated by $-|\Delta|$.

Then,

$$\forall t \in \mathbb{R}_{>0} : \operatorname{tr} T(t) = \frac{\operatorname{vol}(M)}{(4\pi t)^{\frac{\dim M}{2}}} + \frac{\operatorname{total \, curvature}(M)}{3(4\pi)^{\frac{\dim M}{2}} t^{\frac{\dim M}{2}-1}} + \dots$$

 $\zeta\text{-functions}$ of Fourier Integral Operators: Integration Theory

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000000000000000000000000000	0000000

Example (Heat trace)

Let

- M closed, compact C^{∞} -manifold,
- $|\Delta|$ be the (positive) Laplacian on M, and
- T the semi-group generated by $-|\Delta|$.
- W the (semi-)group generated by $i\sqrt{|\Delta|}$.

Then,

$$\forall t \in \mathbb{R}_{>0} : \operatorname{tr} T(t) = \frac{\operatorname{vol}(M)}{(4\pi t)^{\frac{\dim M}{2}}} + \frac{\operatorname{total curvature}(M)}{3(4\pi)^{\frac{\dim M}{2}}t^{\frac{\dim M}{2}-1}} + \dots$$
$$\operatorname{tr}_{\mathrm{KV}} W(t) \rightsquigarrow \text{ wave trace invariants}$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	00000000000000000000000	00000000

Let $(M, g(\omega))_{\omega \in \Omega}$ be a family of Riemannian C^{∞} -manifolds over a Radon measure probability space Ω such that $\Omega \ni \omega \mapsto T(\omega) = (t \mapsto e^{-|\Delta(\omega)|t})$ and $\Omega \ni \omega \mapsto W(\omega) = (t \mapsto e^{i\sqrt{|\Delta(\omega)|t}})$ bounded and almost separably valued. Then,

 $\mathbb{E}\zeta(T) = \zeta(\mathbb{E}T)$ and $\mathbb{E}\zeta(W) = \zeta(\mathbb{E}W)$.

In particular, if $\mathbb{E}T$ is the heat semi-group of some $(M, g_{\mathbb{E}})$ and $\mathbb{E}W$ the wave group of some $(M, g_{\mathbb{E},W})$, then we the heat and wave invariants of $(M, g_{\mathbb{E}})$ and $(M, g_{\mathbb{E},W})$ respectively coincide with the expected heat and wave invariants of $(M, g(\omega))_{\omega \in \Omega}$. E.g.,

$$\mathbb{E}\mathrm{vol}_g M = \mathrm{vol}_{g_{\mathbb{E}}} M.$$

FIOs 000	ζ -functions 00000000000000000000000	Index Bundle 00000000
	FIOs 000	FIOs ζ-functions οοο οσοσοσοσοσοσοοοο

Consider the probability space $([0,3], \mathcal{B}([0,3]), \frac{1}{3}\lambda)$ and the family of manifolds M_{ω} given by the following deformation from sphere to torus in \mathbb{R}^3 .

Let W_{ω} be the wave group and T_{ω} the heat semi-group on M_{ω} . Then, $\omega \mapsto W_{\omega}$ and $\omega \mapsto T_{\omega}$ are bounded and almost separably valued, and $\mathbb{E}\zeta(W) = \zeta(\mathbb{E}W)$.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
000000000	000	000000000000000000000000000000000000000	00000000

Consider the probability space $([0,3], \mathcal{B}([0,3]), \frac{1}{3}\lambda)$ and the family of manifolds M_{ω} given by the following deformation from sphere to torus in \mathbb{R}^3 .

Let $D_{\omega} \coloneqq d_{\omega} + d_{\omega}^*$ as a map from even to odd exterior powers of the cotangent bundle of M_{ω} . Then, tr $\left(e^{-D_{\omega}^*D_{\omega}t} - e^{-D_{\omega}D_{\omega}^*t}\right) = \chi_{\text{Euler}}(M_{\omega})$. Thus,

$$\mathbb{E}\chi_{\text{Euler}}(M) = 2 \cdot \frac{1}{3} + 0 \cdot \frac{2}{3} = \frac{2}{3}.$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000	00000000

tr: $\Psi^{-\infty} \to \mathbb{C}$ is continuous

 $\zeta\text{-functions}$ of Fourier Integral Operators: Integration Theory

	Integration in Topological Vector Spaces	FIOs 000	ζ -functions 00000000000000	Index Bundle 00000000
--	--	-------------	-----------------------------------	--------------------------

 $\mathrm{tr}: \ \Psi^{-\infty} \to \mathbb{C} \ is \ continuous$

Theorem (Closed Graph Theorem)

Let X be an LF-space, Y a Fréchet space, and $T: X \to Y$ a linear operator (everywhere defined). Then, the following are equivalent.

- (i) T is continuous.
- (ii) T is closed.
- (iii) T is closable.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	0000000000000000	00000000

 $\mathrm{tr}: \ \Psi^{-\infty} \to \mathbb{C} \ is \ continuous$

•
$$(A_n)_n \in \mathbb{N} \in (\Psi^{-\infty})^{\mathbb{N}}, A_n \to 0 \text{ in } \Psi^{-\infty}, \operatorname{tr} A_n \to t \text{ in } \mathbb{C}$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	0000000000000000	00000000

- $(A_n)_n \in \mathbb{N} \in (\Psi^{-\infty})^{\mathbb{N}}, A_n \to 0 \text{ in } \Psi^{-\infty}, \operatorname{tr} A_n \to t \text{ in } \mathbb{C}$
- a_n symbol of $A_n \Rightarrow \forall m \in \mathbb{R} : a_n \to 0$ in $S^m(X \times X \times \mathbb{R}^{\dim X})$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	00000000000000	0000000

- $(A_n)_n \in \mathbb{N} \in (\Psi^{-\infty})^{\mathbb{N}}, A_n \to 0 \text{ in } \Psi^{-\infty}, \operatorname{tr} A_n \to t \text{ in } \mathbb{C}$
- a_n symbol of $A_n \Rightarrow \forall m \in \mathbb{R} : a_n \to 0$ in $S^m(X \times X \times \mathbb{R}^{\dim X})$
- ► For $m < -\dim X 1$: $\tau : S^m \to \mathbb{C}$; $f \mapsto \int_X \int_{\mathbb{R}^{\dim X}} f(x, x, \xi) d\xi d\operatorname{vol}_X(x)$ continuous $(|\tau(f)| \le C_f \operatorname{vol}_X(X) \int_{\mathbb{R}^{\dim X}} (1 + \|\xi\|^2)^{\frac{m}{2}} d\xi$ where C_f is one of the semi-norms of S^m)

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	00000000000000	0000000

- $(A_n)_n \in \mathbb{N} \in (\Psi^{-\infty})^{\mathbb{N}}, A_n \to 0 \text{ in } \Psi^{-\infty}, \operatorname{tr} A_n \to t \text{ in } \mathbb{C}$
- a_n symbol of $A_n \Rightarrow \forall m \in \mathbb{R} : a_n \to 0$ in $S^m(X \times X \times \mathbb{R}^{\dim X})$
- For $m < -\dim X 1$: $\tau : S^m \to \mathbb{C}$; $f \mapsto \int_X \int_{\mathbb{R}^{\dim X}} f(x, x, \xi) d\xi d\operatorname{vol}_X(x)$ continuous $(|\tau(f)| \le C_f \operatorname{vol}_X(X) \int_{\mathbb{R}^{\dim X}} (1 + \|\xi\|^2)^{\frac{m}{2}} d\xi$ where C_f is one of the semi-norms of S^m)

• Thus,
$$\tau(a_n) \to 0$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	00000000000000	0000000

- $(A_n)_n \in \mathbb{N} \in (\Psi^{-\infty})^{\mathbb{N}}, A_n \to 0 \text{ in } \Psi^{-\infty}, \operatorname{tr} A_n \to t \text{ in } \mathbb{C}$
- a_n symbol of $A_n \Rightarrow \forall m \in \mathbb{R} : a_n \to 0$ in $S^m(X \times X \times \mathbb{R}^{\dim X})$
- For $m < -\dim X 1$: $\tau : S^m \to \mathbb{C}$; $f \mapsto \int_X \int_{\mathbb{R}^{\dim X}} f(x, x, \xi) d\xi d\operatorname{vol}_X(x)$ continuous $(|\tau(f)| \le C_f \operatorname{vol}_X(X) \int_{\mathbb{R}^{\dim X}} (1 + \|\xi\|^2)^{\frac{m}{2}} d\xi$ where C_f is one of the semi-norms of S^m)

• Thus,
$$\operatorname{tr} A_n = \tau(a_n) \to 0$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	00000000000000	0000000

- $(A_n)_n \in \mathbb{N} \in (\Psi^{-\infty})^{\mathbb{N}}, A_n \to 0 \text{ in } \Psi^{-\infty}, \operatorname{tr} A_n \to t \text{ in } \mathbb{C}$
- a_n symbol of $A_n \Rightarrow \forall m \in \mathbb{R} : a_n \to 0$ in $S^m(X \times X \times \mathbb{R}^{\dim X})$
- For $m < -\dim X 1$: $\tau : S^m \to \mathbb{C}$; $f \mapsto \int_X \int_{\mathbb{R}^{\dim X}} f(x, x, \xi) d\xi d\operatorname{vol}_X(x)$ continuous $(|\tau(f)| \le C_f \operatorname{vol}_X(X) \int_{\mathbb{R}^{\dim X}} (1 + \|\xi\|^2)^{\frac{m}{2}} d\xi$ where C_f is one of the semi-norms of S^m)

• Thus,
$$t \leftarrow \operatorname{tr} A_n = \tau(a_n) \to 0$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	00000000000000	0000000

- $(A_n)_n \in \mathbb{N} \in (\Psi^{-\infty})^{\mathbb{N}}, A_n \to 0 \text{ in } \Psi^{-\infty}, \operatorname{tr} A_n \to t \text{ in } \mathbb{C}$
- a_n symbol of $A_n \Rightarrow \forall m \in \mathbb{R} : a_n \to 0$ in $S^m(X \times X \times \mathbb{R}^{\dim X})$
- For $m < -\dim X 1$: $\tau : S^m \to \mathbb{C}$; $f \mapsto \int_X \int_{\mathbb{R}^{\dim X}} f(x, x, \xi) d\xi d\operatorname{vol}_X(x)$ continuous $(|\tau(f)| \le C_f \operatorname{vol}_X(X) \int_{\mathbb{R}^{\dim X}} (1 + \|\xi\|^2)^{\frac{m}{2}} d\xi$ where C_f is one of the semi-norms of S^m)

▶ Thus,
$$t \leftarrow \operatorname{tr} A_n = \tau(a_n) \rightarrow 0$$
, i.e., $t = 0$ and tr closable.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000		•0000000

Index bundle

The index bundle of a family of operators $(f(\omega))_{\omega \in \Omega}$ is given by

$$\operatorname{IND}(f)(\omega) = \ker f(\omega) - \ker f(\omega)^*$$

as interpreted in the K-theory of isomorphism classes of vector bundles with the direct sum.

Here, we will consider the following construction. Let ${\cal S}$ be an abelian monoid. Then, we define

$$K(S) \coloneqq S^2/_{\{(x,y)\in S^2; x=y\}}$$

with the canonical injection $S \ni s \mapsto (s, 0) \in K(S)$ and $\forall s \in S : -s = (0, s)$.

	Integration in Topological Vector Spaces 00000000000	FIOs 000	ζ -functions 000000000000000000000000000000000000	Index Bundle
--	---	-------------	--	--------------

Index bundle

$$IND(f)(\omega) = \ker f(\omega) - \ker f(\omega)^*$$
$$= (\ker f(\omega), 0) - (\ker f(\omega)^*, 0)$$
$$= (\ker f(\omega), 0) + (0, \ker f(\omega)^*)$$
$$= (\ker f(\omega), \ker f(\omega)^*)$$

can be interpreted as ker $f(\omega) \oplus \ker f(\omega)^*$ and, if each $f(\omega)$ is a closed Fredholm operator between Hilbert spaces H_0 and H_1 , we obtain

$$\operatorname{IND}(f)(\omega) = \underbrace{\ker f(\omega) \oplus \ker f(\omega)^*}_{\subseteq H_0 \oplus H_1} \in \operatorname{CLR}(H_0, H_1).$$

	Integration in Topological Vector Spaces 00000000000	FIOs 000	ζ -functions	Index Bundle
--	---	-------------	--------------------	--------------

Gap topology

Definition

Let H be a Hilbert space and $U,V{\subseteq}H$ closed linear (non-empty) subspaces. Then, we define

$$\delta_H(U,V) \coloneqq \begin{cases} 0 & , \ U = \{0\} \\ \sup\{\operatorname{dist}_H(u,V); \ u \in U \cap \partial B_H \} & , \ U \neq \{0\} \end{cases}$$

and

$$\hat{\delta}_H(U,V) \coloneqq \max\{\delta_H(U,V), \delta_H(V,U)\} = \|\operatorname{pr}_U - \operatorname{pr}_V\|_{L(H)}.$$

Then, $(CLR(H_0, H_1), \hat{\delta}_{H_0 \oplus H_1})$ is a complete metric space.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000000000000000000000000	

Back to the index bundle

- Let $F(H_0, H_1) := \{ f \in CLR(H_0, H_1); f \text{ is a closed Fredholm operator} \}.$
- Let $\mathcal{P}(\operatorname{CLR}(H_0, H_1))$ be the power set of $\operatorname{CLR}(H_0, H_1)$.

Integration in Topological Vector SpacesF1Osζ-functionsIndex Bundle00	Integration in Topological Vector Spaces	FIOs 000	ζ -functions 000000000000000000000000000000000000	Index Bundle 00000000
---	--	-------------	--	--------------------------

Back to the index bundle

- Let $F(H_0, H_1) := \{ f \in CLR(H_0, H_1); f \text{ is a closed Fredholm operator} \}.$
- Let $\mathcal{P}(\text{CLR}(H_0, H_1))$ be the power set of $\text{CLR}(H_0, H_1)$.
- Recall, we are working in a K-theory of isomorphism classes of vector bundles, i.e.,

$$\left[\ker f(\omega) \oplus V_0\right] - \left[\ker f(\omega)^* \oplus V_1\right] = \left[\ker f(\omega)\right] - \left[\ker f(\omega)^*\right]$$

provided $\dim V_0 = \dim V_1$.

Integration in Topological Vector SpacesF1Osζ-functionsIndex Bundle00	Integration in Topological Vector Spaces	FIOs 000	ζ -functions 000000000000000000000000000000000000	Index Bundle 00000000
---	--	-------------	--	--------------------------

Back to the index bundle

- Let $F(H_0, H_1) := \{ f \in CLR(H_0, H_1); f \text{ is a closed Fredholm operator} \}.$
- Let $\mathcal{P}(\text{CLR}(H_0, H_1))$ be the power set of $\text{CLR}(H_0, H_1)$.
- Recall, we are working in a K-theory of isomorphism classes of vector bundles, i.e.,

$$\left[\ker f(\omega) \oplus V_0\right] - \left[\ker f(\omega)^* \oplus V_1\right] = \left[\ker f(\omega)\right] - \left[\ker f(\omega)^*\right]$$

provided $\dim V_0 = \dim V_1$.

• Then, IND: $F(H_0, H_1) \rightarrow \mathcal{P}(CLR(H_0, H_1)).$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000000000000000000000000	0000€000

A topology on the set of index bundles

Definition

Let $x = \ker f - \ker f^* \in \text{IND}[F(H_0, H_1)]$ and $\varepsilon \in \mathbb{R}_{>0}$. Then, we define $B_{\text{IND}}(x, \varepsilon)$ as the set of $\ker g - \ker g^* \in \text{IND}[F(H_0, H_1)]$ such that there exist $V_0 \subseteq_{\text{lin}}(\ker g)^{\perp H_0}$ and $V_1 \subseteq_{\text{lin}}(\ker g^*)^{\perp H_1}$ with

$$\dim V_0 = \dim V_1 \land \hat{\delta} (x, (\ker g \oplus V_0, \ker g^* \oplus V_1)) < \varepsilon.$$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000000000000000000000000	0000●000

A topology on the set of index bundles

Definition

Let $x = \ker f - \ker f^* \in \text{IND}[F(H_0, H_1)]$ and $\varepsilon \in \mathbb{R}_{>0}$. Then, we define $B_{\text{IND}}(x, \varepsilon)$ as the set of $\ker g - \ker g^* \in \text{IND}[F(H_0, H_1)]$ such that there exist $V_0 \subseteq_{\text{lin}}(\ker g)^{\perp_{H_0}}$ and $V_1 \subseteq_{\text{lin}}(\ker g^*)^{\perp_{H_1}}$ with

$$\dim V_0 = \dim V_1 \land \hat{\delta} (x, (\ker g \oplus V_0, \ker g^* \oplus V_1)) < \varepsilon.$$

The family

 $\{B_{\text{IND}}(x,\varepsilon) \subseteq \text{IND}[F(H_0,H_1)]; x \in \text{IND}[F(H_0,H_1)], \varepsilon \in \mathbb{R}_{>0}\}$

defines a subbasis of the topology \mathcal{T}_{IND} of $\text{IND}[F(H_0, H_1)]$.

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000	00000000

Let H_0 and H_1 be Hilbert spaces. Then,

IND $\in C\left(\left(F(H_0, H_1), \hat{\delta}_{H_0 \oplus H_1}\right), (\text{IND}[F(H_0, H_1)], \mathcal{T}_{\text{IND}}\right)\right)$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000	00000000

Let H_0 and H_1 be Hilbert spaces. Then,

IND
$$\in C\left(\left(F(H_0, H_1), \hat{\delta}_{H_0 \oplus H_1}\right), (\text{IND}[F(H_0, H_1)], \mathcal{T}_{\text{IND}}\right)\right)$$

Corollary

Let H_0 and H_1 be Hilbert spaces, Ω a topological space, $f \in C(\Omega, F(H_0, H_1))$, and $g \in \mathcal{M}(\Omega, F(H_0, H_1))$. Then,

 $IND \circ f \in C(\Omega, (IND[F(H_0, H_1)], \mathcal{T}_{IND}))$ and $IND \circ g \in \mathcal{M}(\Omega, (IND[F(H_0, H_1)], \mathcal{T}_{IND})).$

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
0000000000	000	000000000000000	00000000

```
Let H_0 and H_1 be Hilbert spaces, and
```

DIM :
$$\text{IND}[F(H_0, H_1)] \to \mathbb{Z}; \text{ ker } f - \text{ker } f^* \mapsto \text{ind} f.$$

Then,

DIM $\in C((IND[F(H_0, H_1)], \mathcal{T}_{IND}), \mathbb{Z}).$

Furthermore, let Ω a topological space, $f \in C(\Omega, F(H_0, H_1))$, and $g \in \mathcal{M}(\Omega, F(H_0, H_1))$. Then,

```
\operatorname{ind} \circ f = \operatorname{DIM} \circ \operatorname{IND} \circ f \in C(\Omega, \mathbb{Z})
and \operatorname{ind} \circ g = \operatorname{DIM} \circ \operatorname{IND} \circ g \in \mathcal{M}(\Omega, \mathbb{Z}).
```

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000000000000000000000000	0000000●

 Atiyah, Patodi, Singer defined spectral flow of paths of bounded self-adjoint Fredholm operators as the first Chern number of the "self-adjoint index bundle"

••••••••••••••••••••••••••••••••••••••	Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
	00000000000	000	000000000000000000000000000000000000	0000000●

- Atiyah, Patodi, Singer defined spectral flow of paths of bounded self-adjoint Fredholm operators as the first Chern number of the "self-adjoint index bundle"
- Is the first Chern number continuous/measurable with respect to \mathcal{T}_{IND} ?

Integration in Topological Vector Spaces	FIOs	ζ -functions	Index Bundle
00000000000	000	000000000000000000000000000000000000	0000000●

- Atiyah, Patodi, Singer defined spectral flow of paths of bounded self-adjoint Fredholm operators as the first Chern number of the "self-adjoint index bundle"
- Is the first Chern number continuous/measurable with respect to \mathcal{T}_{IND} ?
- If so \Rightarrow stochastic versions of the spectral flow.