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Bochner Integral

Definition
Let (Ω,Σ, µ) be a measure space and E a topological vector space.
▸ f ∈ EΩ is called simple (f ∈ S(µ;E)) if and only if f[Ω]⊆finiteE and

∀e ∈ f[Ω] ∖ {0} ∶ [{e}]f ∈ Σ ∧ µ([{e}]f) < ∞.

▸ Let f = ∑e∈f[Ω]∖{0} e1[{e}]f ∈ S(µ;E). Then, we define the Bochner integral

∫
Ω
fdµ ∶= ∑

e∈f[Ω]∖{0}

µ([{e}]f) e.
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Measurability

Definition (continued)

▸ f ∈ EΩ is called measurable (f ∈ M(µ;E)) if and only if

∀S⊆openE ∶ [S]f ∈ Σ.

▸ f ∈ EΩ is called strongly measurable (f ∈ SM(µ;E)) if and only if

∃s ∈ S(µ;E)
N
∶ sn → f (n→∞) µ-almost everywhere.

Note SM(µ;E)⊆M(µ;E).
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Pettis Integral

Definition (continued)

▸ Let f ∈ M(µ;E), ∀x′ ∈ E′ ∶ x′ ○ f ∈ L1(µ), and I ∈ (E′)∗ such that

∀x′ ∈ E′
∶ I(x′) = ∫

Ω
x′ ○ f dµ.

f is called µ-Dunford-Pettis-integrable if and only if I is unique. Then, we will
use the notation ∫Ω fdµ ∶= I.

▸ f ∈ M(µ;E) is called µ-Pettis-integrable if and only if f is
µ-Dunford-Pettis-integrable and I ∈ E.
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Lp(µ;E)

Definition (continued)

Let E be locally convex with semi-norms (pι)ι∈I . Then, we define

(S)Lp(µ;E) ∶={f ∈ (S)M(µ;E); ∀ι ∈ I ∶ pι ○ f ∈ Lp(µ)},

(S)Np(µ;E) ∶={f ∈ (S)Lp(µ;E); ∀ι ∈ I ∶ ∥pι ○ f∥Lp(µ) = 0}

and

(S)Lp(µ;E) ∶= (S)Lp(µ;E)/(S)Np(µ;E).
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Bochner Integral
From now on: E locally convex and Hausdorff.

Theorem
Lp(µ;E) is locally convex and Hausdorff.

Theorem
The Bochner integral

∫ ∶ S(µ;E)⊆L1(µ;E) → E

is a continuous linear operator and extends uniquely to

∫ ∶ S̄L1(µ;E) ∶= SL1(µ;E)
L1(µ;E)

→ Ẽ.
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convex compactness

Definition
E has the convex compactness property if and only if

∀C⊆compactE ∶ convC ⊆compact E.

E has the metric convex compactness property if and only if

∀C⊆compact,metrizableE ∶ convC ⊆compact E.
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Pettis integral

Theorem (Pfister; 1981)

Let E be a locally convex topological vector space and a Hausdorff space. Then, the
following are equivalent.
(i) E has the (metric) convex compactness property.
(ii) Let Ω be a compact (metric) space, µ a (positive) Borel measure on Ω, and

f ∈ C(Ω,E). Then, f is µ-Pettis integrable.
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Let E be a topological vector space and A⊆E.
▸ A filter F on A is a family of subsets of A such that

▸ ∅ ∉ F
▸ X ∈ F ∧ X⊆Y ⊆A ⇒ Y ∈ F
▸ X,Y ∈ F ⇒ X ∩ Y ∈ F

▸ A filter F on A is called a Cauchy filter if and only if for every neighborhood
U of zero: ∃B ∈ F ∶ B −B⊆U .

▸ A filter F is convergent to x ∈ E if and only if F contains the neighborhood
filter Ux of x;

Ux ∶= {U⊆E; ∃V ⊆E open ∶ x ∈ V ⊆U}.

▸ A is complete if and only if every Cauchy filter on A is convergent in A.
▸ E is quasi-complete if and only if every closed and bounded subset of E is

complete.
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Lemma (Sombrero Lemma)

Let E be metrizable and (Ω,Σ, µ) a compact Borel measure space. Then,
C(Ω,E) ⊆ SM(µ;E).

Lemma (generalized Sombrero Lemma)

Let E be a separable metric space and (Ω,Σ, µ) a Radon measure space. Then,
SM(µ;E) =M(µ;E).
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Lemma
Let (Ω,Σ, µ) be σ-finite, F another Hausdorffian locally convex topological vector
space, and f ∈ S̄L1(µ;E).
(i) Let B ∈ L(Ẽ, F̃ ). Then, B ○ f ∈ S̄L1(µ;F ) and

B ∫
Ω
fdµ = ∫

Ω
B ○ fdµ.

(ii) Let E0⊆E be a closed subspace and f(ω) ∈ E0 for µ-almost every ω ∈ Ω. Then,
∫Ω fdµ ∈ E0.
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Lemma
Let (Ω,Σ, µ) be σ-finite, F another Hausdorffian locally convex topological vector
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(ii) Let E0⊆E be a closed subspace and f(ω) ∈ E0 for µ-almost every ω ∈ Ω. Then,
∫Ω fdµ ∈ E0.

▸ f ∈ S(µ;E) ⇒ B ∫Ω fdµ = ∫ΩB ○ fdµ trivial

▸ f ↦ B ∫Ω fdµ, f ↦ ∫ΩB ○ fdµ ∈ L(L1(µ;E), F̃ )

▸ ⇒ B ∫Ω fdµ = ∫ΩB ○ fdµ on L1 closure of S(µ;E) by unique extension theorem
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▸ ϕ ∫ fdµ = ∫ dµ = 0
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Theorem (“Hille”)

Let f ∈ S̄L1(µ;E), F another Hausdorffian locally convex topological vector space,
and A ∶ D(A)⊆E → F a closed linear operator. Let f(ω) ∈D(A) for µ-almost every
ω ∈ Ω and A ○ f ∈ S̄L1(µ;F ).
Then, we obtain ∫Ω fdµ ∈D(A) and A ∫Ω fdµ = ∫ΩA ○ fdµ.
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Theorem (“Hille”)

Let f ∈ S̄L1(µ;E), F another Hausdorffian locally convex topological vector space,
and A ∶ D(A)⊆E → F a closed linear operator. Let f(ω) ∈D(A) for µ-almost every
ω ∈ Ω and A ○ f ∈ S̄L1(µ;F ).
Then, we obtain ∫Ω fdµ ∈D(A) and A ∫Ω fdµ = ∫ΩA ○ fdµ.

▸ iE ∶ E → E × F ; x↦ (x,0) and iF ∶ F → E × F ; y ↦ (0, y) continuous

▸ ⇒ Ω ∋ ω ↦ (f(ω),Af(ω)) = iE(f(ω)) + iF (Af(ω)) is in S̄L1(µ;E × F )

▸ A closed lin. subspace, (f(ω),Af(ω)) ∈ A for µ-ae ω ∈ Ω ⇒ ∫Ω(f,Af)dµ ∈ A
▸ prE ∶ E × F → E; (x, y) ↦ x ⇒ prE ∫Ω(f,Af)dµ = ∫Ω prE ○ (f,Af)dµ = ∫Ω fdµ
▸ prF ∶ E × F → F ; (x, y) ↦ y ⇒ prF ∫Ω(f,Af)dµ = ∫ΩAfdµ
▸ ⇒ (∫Ω fdµ, ∫ΩAfdµ) = ∫Ω(f,Af)dµ ∈ A
▸ ⇒ ∫Ω fdµ ∈D(A) ∧ A ∫Ω fdµ = ∫ΩA ○ fdµ
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∀ϕ ∈ F ′ ∀B ∈ L(Ẽ, F̃ ) ∶ ϕ ○B ∈ E′ ∧ ϕB ∫ fdµ = ∫ ϕ ○B ○ fdµ = ϕ ∫ B ○ fdµ

ζ-functions of Fourier Integral Operators: Integration Theory T. Hartung



Integration in Topological Vector Spaces FIOs ζ-functions Index Bundle

Fourier Integral Operators on a manifold X

▸ Fourier Integral Operators are integral operators A ∶ C∞
c (X) → C∞

c (X)′ of the
form

∀ ϕ ∈ C∞
c (X) ∶ Aϕ(x) = ∫

X
kA(x, y)ϕ(y)dvolX(y)

where kA is a Lagrangian distribution.

▸ Lagrangian distributions are classified by their wave front sets. The set of all
Lagrangian distributions with wave front set in a suitable cone Γ of the
co-tangent bundle T ∗X ∖ 0 is the Hörmander space D′Γ.
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AΓ vs D′Γ
For an algebra A, consider ∫ΩAdµ. Then,

⟨∫
Ω
Adµ ϕ,ψ⟩ =∫

Ω
⟨A(ω)ϕ,ψ⟩dµ(ω)

=∫
Ω
∫
X2
kA(ω)(x, y)ϕ(y)ψ(x)dvolX2(x, y)dµ(ω)

=∫
Ω
⟨kA(ω), ψ ⊗ ϕ⟩dµ(ω)

= ⟨∫
Ω
kAdµ,ψ ⊗ ϕ⟩

implies that the kernel ∫Ω kAdµ of ∫ΩAdµ is given by an integral in D′Γ.
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Hörmander spaces

Theorem (Dabrowski-Brouder; 2014)

In its normal topology, D′Γ is a nuclear, semi-reflexive, semi-Montel, complete
normal space of distributions.

Theorem (Dabrowski-Brouder; 2014)

D′Γ quasi-complete in the Hörmander topology.

Theorem (Dabrowski-Brouder; 2014)

Bounded subsets are the same for the normal and Hörmander topology.
Furthermore, closed bounded sets are compact and metrizable.
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Fourier Integral Operator ζ-functions

▸ ζ(A) is meromorphic with isolated poles of finite order.
▸ ∃r ∈ R ∶ ζ(A)∣CR(⋅)<r

is holomorphic.

Definition (D′Γ,R,Ω,plh)

For R ∈ R and Ω⊆open,connectedC such that ∀r ∈ R ∶ {z ∈ Ω; R(z) < r} ≠ ∅, we define
D′Γ,R,Ω,plh⊆C

ω(C,D′Γ) to be the set of gauged poly-log-homogeneous kernels in D′Γ
whose ζ-functions are holomorphic in Ω and none of the degrees of homogeneity at
zero have real part greater than R.
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Theorem
Let R ∈ R and Ω⊆C be open and connected such that ∀r ∈ R ∶ {z ∈ Ω; R(z) < r} ≠ ∅.
Then,

ζ ∣D′
Γ,R,Ω,plh

∶ D′Γ,R,Ω,plh → Cω(Ω)

has a quasi-complete extension ζR,Ω⊆Cω(C,D′Γ) ⊕C
ω(Ω).
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Theorem
Let R ∈ R and Ω⊆C be open and connected such that ∀r ∈ R ∶ {z ∈ Ω; R(z) < r} ≠ ∅.
Then,

ζ ∣D′
Γ,R,Ω,plh

∶ D′Γ,R,Ω,plh → Cω(Ω)

has a quasi-complete extension ζR,Ω⊆Cω(C,D′Γ) ⊕C
ω(Ω).

▸ Let (vα, ζ(vα))α∈A be a bounded net in D′Γ,R,Ω,plh ⊕C
ω(Ω), vα → 0,

ζ(vα) →∶ v ∈ C
ω(Ω), and z ∈ Ω

▸ V ∶= {vα(z); α ∈ A} bounded in D′Γ ⇒ metrizable
▸ Z ∶= {ζ(vα)(z); α ∈ A} ∪ {v(z)} bounded in C ⇒ metrizable
▸ {(vα(z), ζ(vα)(z);α ∈ A}⊆V ×Z (metrizable set)⇒ suffices to use sequences
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Theorem
Let R ∈ R and Ω⊆C be open and connected such that ∀r ∈ R ∶ {z ∈ Ω; R(z) < r} ≠ ∅.
Then,

ζ ∣D′
Γ,R,Ω,plh

∶ D′Γ,R,Ω,plh → Cω(Ω)

has a quasi-complete extension ζR,Ω⊆Cω(C,D′Γ) ⊕C
ω(Ω).

▸ Let (un(z))n ∈ V
N, un(z) → 0, ζ(un)(z) → v(z), (fm)m δ-sequence → δdiag

▸ then ∀m ∶ limn⟨un, fm⟩ = 0 compactly
▸ for R(z) ≪ 0 ∶ limm⟨un(z), fm⟩ = ζ(un)(z)
▸ ε

3 argument:
∣v(z)∣ ≤ ∣v(z) − ζ(un)(z)∣ + ∣ζ(un)(z) − ⟨un(z), fm⟩∣ + ∣⟨un(z), fm⟩∣ ≤ ε

▸ (R(z) ≪ 0 ⇒ v(z) = 0) ⇒ v = 0
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Theorem
Let R ∈ R and Ω⊆C be open and connected such that ∀r ∈ R ∶ {z ∈ Ω; R(z) < r} ≠ ∅.
Then,

ζ ∣D′
Γ,R,Ω,plh

∶ D′Γ,R,Ω,plh → Cω(Ω)

has a quasi-complete extension ζR,Ω⊆Cω(C,D′Γ) ⊕C
ω(Ω).

Corollary

Let R1,R2 ∈ R, R1 ≤ R2, and Ω⊆C be open and connected such that
∀r ∈ R ∶ {z ∈ Ω; R(z) < r} ≠ ∅. Then, it is possible to choose ζR1,Ω and ζR2,Ω such
that ζR1,Ω⊆ζR2,Ω.
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ζ-extensions on joint holomorphic domains

Theorem
Let Ω⊆C be open and connected such that ∀r ∈ R ∶ {z ∈ Ω; R(z) < r} ≠ ∅. Then,

ζΩ ∶= ⋃
N∈N

ζN,Ω⊆C
ω
(C,D′Γ) ⊕C

ω
(Ω)

is a quasi-complete operator.

▸ Strict inductive limits of quasi-complete spaces are quasi-complete.
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Let E be a vector space, (Xι, τι) a family of locally convex topological vector
spaces, and (fι)ι∈I a family of linear maps fι ∶ Xι → E.
(i) Then there exists a finest linear, locally convex topology τ on E for which all

fι ∶ (Xι, τι) → (E, τ) are continuous. τ is called the final topology of E with
respect to (Xι, τι, fι)ι∈I .
The final topology is called a locally convex inductive limit if an only if I is
directed and E = ⋃ι∈I Xι. Furthermore, the inductive limit is strict if and only
if Xι⊆Xκ ⇒ τι = τκ ∩Xι.

(ii) Let (F,σ) be another locally convex topological vector space and g ∶ E → F
linear. Then g ∶ (E, τ) → (F,σ) is continuous if and only if
∀ι ∈ I ∶ g ○ fι ∈ C((Xι, τι), (F,σ)) .

Let ≤ be a pre-order (reflexive and transitive binary relation) on the set A. Then,
(A,≤) is called directed if and only ∀a, b ∈ A ∃c ∈ A ∶ a ≤ c ∧ b ≤ c.
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Example

Consider Ω⊆Rn open and let

DK(Ω) ∶= {f ∈ C∞
c (Ω); sptf⊆K}.

Then DK(Ω) is a Fréchet space with the seminorms (∥∂kf∥
L∞(K)

)
k∈N0

.

Since K⊆K ′ implies DK(Ω)⊆DK′(Ω), and τDK(Ω) = τDK′(Ω) ∩DK(Ω), we observe
that C∞

c (Ω) is a strict inductive limit ⋃K⊆compactΩDK(Ω). A strict inductive limit
of Fréchet spaces is also known as LF-space.
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Pettis integration in ζΩ

Theorem
Let (K,Σ, µ) be a measure space, and f ∶ K →D(ζΩ) and ζΩ ○ f be µ-Pettis
integrable (e.g., f continuous, K compact, and µ a Borel measure). Then,

∫
K
fdµ ∈D (ζΩ)

and

ζΩ (∫
K
fdµ) = ∫

K
ζΩ ○ fdµ.
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Space of ζ-functions Mζ

Definition

▸ f ∈Mζ if and only if f ∈ L1,loc(C) ∩W 1
1,loc(R

2) and there exists r ∈ R such that
f ∣CR(⋅)<r

is holomorphic.

f, g ∈Mζ , f ∼ g if and only if ∃r ∈ R ∶ f ∣CR(⋅)<r
= g∣CR(⋅)<r

.

▸ D ∶= {Ω⊆open,connectedC; ∃r ∈ R ∶ CR(⋅)<r⊆Ω}

▸ for Ω ∈D, Hζ(Ω) ∶= {f ∈Mζ ; f ∣Ω holomorphic}
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Space of ζ-functions Mζ

Corollary

(D,⊇) is a directed set.

Corollary

Mζ = ⋃
Ω∈D

Hζ(Ω)
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Laurent coefficients in Mζ

Theorem (Trace Operator)

Let G⊆R2 be open, bounded, connected, and have Lipschitz boundary. Then, there
exists T ∈ L(W 1

1 (G), L1(∂G)) such that ∀u ∈ C(Ḡ) ∶ Tu = u∣∂G.

▸ For ζ(A), consider
IA ∶= {Ω ∈D; ∃fΩ ∈Hζ(Ω) ∶ fΩ∣Ω = ζ(A)∣Ω}.

▸ (IA,⊆) is directed.
▸ Let G⊆C be open, bounded, connected, and with ∂G Lipschitz such that ζ(A)

is continuous on ∂G, z0 ∈ G, and ζ(A) ≃ [fΩ] ∈Mζ . Then,

lim(
1

2πi
∫
∂G

TfΩ(z)

(z − z0)
n+1

dz)
Ω∈IA

=
1

2πi
∫
∂G

ζ(A)(z)

(z − z0)
n+1

dz.
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Laurent coefficients in Mζ
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Topology of Hζ(Ω)

Definition
On Hζ(Ω), we consider the semi-norms generated by the quotient of
W 1

1,loc(R
2) ∩Cω(Ω) equipped with the semi-norms

∀K⊆compactΩ ∶ pHK(f) ∶= ∥f ∣K∥C(K,C)

∀K⊆compactR2
∶ pWK (f) ∶= ∥f ∣K∥L1(K,C) + ∥f ′∣K∥

L1(K,R2,2)

with respect to f ∼ g ⇔ ∃r ∈ R ∶ f ∣CR(⋅)<r
= g∣CR(⋅)<r

.

ζ-functions of Fourier Integral Operators: Integration Theory T. Hartung



Integration in Topological Vector Spaces FIOs ζ-functions Index Bundle

Topology of Hζ(Ω) and the space of ζ-functions Mζ

Theorem

▸ Hζ(Ω) is a Fréchet space.
▸ Let Ω0,Ω1 ∈D and Ω0⊇Ω1. Then, Hζ(Ω0)⊆Hζ(Ω1) and the topology induced by
Hζ(Ω1) coincides with the topology in Hζ(Ω0).
Furthermore, Hζ(Ω0) is closed in Hζ(Ω1).

Corollary

Mζ = ⋃n∈NHζ (CR(⋅)<−n) endowed with the strict inductive limit topology is a
complete Hausdorff LF-space.
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Lemma
All ζ ∣D′

Γ,n,CR(⋅)<−n,plh
have a quasi-complete extension ζ̃n,CR(⋅)<−n

in

Cω (C,D′Γ) ⊕Hζ (CR(⋅)<−n) satisfying ζ̃n,CR(⋅)<−n
⊆ ζ̃n+1,CR(⋅)<−n−1

.

D
′
Γ,plh ∶=⋃

n∈N
D′Γ,n,CR(⋅)<−n,plh

Cω(C,D′Γ)
⊆ Cω(C,D′Γ)

ζΓ,plh ∶= ⋃
n∈N

ζ̃n,CR(⋅)<−n
⊆D

′
Γ,plh ⊕Mζ

Theorem
ζΓ,plh ⊆ D′Γ,plh ⊕Mζ is a quasi-complete operator.
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Pettis integration in ζ

Theorem
Let (K,Σ, µ) be a measure space, and f ∶ K →D(ζΓ,plh) and ζΓ,plh ○ f be µ-Pettis
integrable (e.g., f continuous, K compact, and µ a Borel measure). Then,

∫
K
fdµ ∈D (ζΓ,plh)

and

ζΓ,plh (∫
K
fdµ) = ∫

K
ζΓ,plh ○ fdµ.
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Example (Heat trace)

Let
▸ M closed, compact C∞-manifold,
▸ ∣∆∣ be the (positive) Laplacian on M , and
▸ T the semi-group generated by − ∣∆∣.

▸ W the (semi-)group generated by i
√

∣∆∣.

Then,

∀t ∈ R>0 ∶ trT (t) =
vol(M)

(4πt)
dimM

2

+
total curvature(M)

3(4π)
dimM

2 t
dimM

2
−1

+ . . .

trKVW (t) ↝ wave trace invariants
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Example

Let (M,g(ω))ω∈Ω be a family of Riemannian C∞-manifolds over a Radon measure
probability space Ω such that Ω ∋ ω ↦ T (ω) = (t↦ e−∣∆(ω)∣t) and

Ω ∋ ω ↦W (ω) = (t↦ ei
√

∣∆(ω)∣t) bounded and almost separably valued. Then,

Eζ(T ) = ζ (ET ) and Eζ(W ) = ζ (EW ) .

In particular, if ET is the heat semi-group of some (M,gE) and EW the wave
group of some (M,gE,W ), then we the heat and wave invariants of (M,gE) and
(M,gE,W ) respectively coincide with the expected heat and wave invariants of
(M,g(ω))ω∈Ω. E.g.,

EvolgM = volgEM.
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Consider the probability space ([0,3],B([0,3]), 1
3λ) and the family of manifolds

Mω given by the following deformation from sphere to torus in R3.

ω = 0 ω = 1 ω = 3

Let Wω be the wave group and Tω the heat semi-group on Mω. Then, ω ↦Wω and
ω ↦ Tω are bounded and almost separably valued, and Eζ(W ) = ζ(EW ).

ζ-functions of Fourier Integral Operators: Integration Theory T. Hartung



Integration in Topological Vector Spaces FIOs ζ-functions Index Bundle

Consider the probability space ([0,3],B([0,3]), 1
3λ) and the family of manifolds

Mω given by the following deformation from sphere to torus in R3.

ω = 0 ω = 1 ω = 3

Let Dω ∶= dω + d
∗
ω as a map from even to odd exterior powers of the cotangent

bundle of Mω. Then, tr (e−D
∗

ωDωt − e−DωD
∗

ωt) = χEuler(Mω). Thus,

EχEuler(M) = 2 ⋅
1

3
+ 0 ⋅

2

3
=

2

3
.
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Theorem
tr ∶ Ψ−∞ → C is continuous
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Theorem
tr ∶ Ψ−∞ → C is continuous

Theorem (Closed Graph Theorem)

Let X be an LF-space, Y a Fréchet space, and T ∶ X → Y a linear operator
(everywhere defined). Then, the following are equivalent.
(i) T is continuous.
(ii) T is closed.
(iii) T is closable.

ζ-functions of Fourier Integral Operators: Integration Theory T. Hartung



Integration in Topological Vector Spaces FIOs ζ-functions Index Bundle

Theorem
tr ∶ Ψ−∞ → C is continuous

▸ (An)n ∈ N ∈ (Ψ−∞)N, An → 0 in Ψ−∞, trAn →∶ t in C

▸ an symbol of An ⇒ ∀m ∈ R ∶ an → 0 in Sm(X ×X ×RdimX)

▸ For m < −dimX − 1: τ ∶ Sm → C; f ↦ ∫X ∫RdimX f(x,x, ξ)dξdvolX(x)

continuous (∣τ(f)∣ ≤ CfvolX(X) ∫RdimX (1 + ∥ξ∥2
)
m
2 dξ where Cf is one of the

semi-norms of Sm)
▸ Thus,

t←trAn =

τ(an) → 0

, i.e., t = 0 and tr closable.
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Index bundle

The index bundle of a family of operators (f(ω))ω∈Ω is given by

IND(f)(ω) = ker f(ω) − ker f(ω)∗

as interpreted in the K-theory of isomorphism classes of vector bundles with the
direct sum.
Here, we will consider the following construction. Let S be an abelian monoid.
Then, we define

K(S) ∶= S2
/{(x,y)∈S2; x=y}

with the canonical injection S ∋ s↦ (s,0) ∈K(S) and ∀s ∈ S ∶ −s = (0, s).
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Index bundle

IND(f)(ω) =ker f(ω) − ker f(ω)∗

=(ker f(ω),0) − (ker f(ω)∗,0)

=(ker f(ω),0) + (0,ker f(ω)∗)

= (ker f(ω),ker f(ω)∗)

can be interpreted as ker f(ω) ⊕ ker f(ω)∗ and, if each f(ω) is a closed Fredholm
operator between Hilbert spaces H0 and H1, we obtain

IND(f)(ω) = ker f(ω) ⊕ ker f(ω)∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⊆H0⊕H1

∈ CLR(H0,H1).
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Gap topology
Definition
Let H be a Hilbert space and U,V ⊆H closed linear (non-empty) subspaces. Then,
we define

δH(U,V ) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0 , U = {0}

sup{distH(u,V ); u ∈ U ∩ ∂BH} , U ≠ {0}

and

δ̂H(U,V ) ∶= max{δH(U,V ), δH(V,U)} = ∥prU − prV ∥L(H) .

Then, (CLR(H0,H1), δ̂H0⊕H1) is a complete metric space.
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Back to the index bundle

▸ Let F (H0,H1) ∶= {f ∈ CLR(H0,H1); f is a closed Fredholm operator}.
▸ Let P(CLR(H0,H1)) be the power set of CLR(H0,H1).

▸ Recall, we are working in a K-theory of isomorphism classes of vector bundles,
i.e.,

[ker f(ω) ⊕ V0] − [ker f(ω)∗ ⊕ V1] = [ker f(ω)] − [ker f(ω)∗]

provided dimV0 = dimV1.
▸ Then, IND ∶ F (H0,H1) → P(CLR(H0,H1)).
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A topology on the set of index bundles

Definition
Let x = ker f − ker f∗ ∈ IND[F (H0,H1)] and ε ∈ R>0. Then, we define BIND(x, ε) as
the set of ker g − ker g∗ ∈ IND[F (H0,H1)] such that there exist V0⊆lin(ker g)⊥H0 and
V1⊆lin(ker g∗)⊥H1 with

dimV0 = dimV1 ∧ δ̂ (x, (ker g ⊕ V0,ker g∗ ⊕ V1)) < ε.

The family

{BIND(x, ε)⊆IND[F (H0,H1)]; x ∈ IND[F (H0,H1)], ε ∈ R>0}

defines a subbasis of the topology TIND of IND[F (H0,H1)].

ζ-functions of Fourier Integral Operators: Integration Theory T. Hartung



Integration in Topological Vector Spaces FIOs ζ-functions Index Bundle

A topology on the set of index bundles

Definition
Let x = ker f − ker f∗ ∈ IND[F (H0,H1)] and ε ∈ R>0. Then, we define BIND(x, ε) as
the set of ker g − ker g∗ ∈ IND[F (H0,H1)] such that there exist V0⊆lin(ker g)⊥H0 and
V1⊆lin(ker g∗)⊥H1 with

dimV0 = dimV1 ∧ δ̂ (x, (ker g ⊕ V0,ker g∗ ⊕ V1)) < ε.

The family

{BIND(x, ε)⊆IND[F (H0,H1)]; x ∈ IND[F (H0,H1)], ε ∈ R>0}

defines a subbasis of the topology TIND of IND[F (H0,H1)].

ζ-functions of Fourier Integral Operators: Integration Theory T. Hartung



Integration in Topological Vector Spaces FIOs ζ-functions Index Bundle

Theorem
Let H0 and H1 be Hilbert spaces. Then,

IND ∈ C ( (F (H0,H1), δ̂H0⊕H1) , (IND[F (H0,H1)],TIND) )

Corollary

Let H0 and H1 be Hilbert spaces, Ω a topological space, f ∈ C(Ω, F (H0,H1)), and
g ∈ M(Ω, F (H0,H1)). Then,

IND ○ f ∈C (Ω, (IND[F (H0,H1)],TIND))

and IND ○ g ∈M(Ω, (IND[F (H0,H1)],TIND)) .
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IND ○ f ∈C (Ω, (IND[F (H0,H1)],TIND))

and IND ○ g ∈M(Ω, (IND[F (H0,H1)],TIND)) .

ζ-functions of Fourier Integral Operators: Integration Theory T. Hartung
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Example

Let H0 and H1 be Hilbert spaces, and

DIM ∶ IND[F (H0,H1)] → Z; ker f − ker f∗ ↦ indf.

Then,

DIM ∈ C ((IND[F (H0,H1)],TIND) ,Z) .

Furthermore, let Ω a topological space, f ∈ C(Ω, F (H0,H1)), and
g ∈ M(Ω, F (H0,H1)). Then,

ind ○ f = DIM ○ IND ○ f ∈ C (Ω,Z)

and ind ○ g = DIM ○ IND ○ g ∈ M(Ω,Z) .

ζ-functions of Fourier Integral Operators: Integration Theory T. Hartung
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Example

▸ Atiyah, Patodi, Singer defined spectral flow of paths of bounded self-adjoint
Fredholm operators as the first Chern number of the “self-adjoint index bundle”

▸ Is the first Chern number continuous/measurable with respect to TIND?
▸ If so ⇒ stochastic versions of the spectral flow.

ζ-functions of Fourier Integral Operators: Integration Theory T. Hartung
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