Introduction to Microlocal Analysis Third lecture: Distributions on manifolds

Ingo Witt (Göttingen)

Third Summer School on "Dynamical Approaches in Spectral Geometry"

"Microlocal Methods in Global Analysis"

University of Göttingen August 27-30, 2018

The 16

Pseudodifferential analysis on manifolds

Pseudodifferential operators of real principal type, I

▲ 同 ト → 三 ト

Densities

To define distributions on a \mathscr{C}^{∞} manifold *X*, one needs an invariant integration on *X*. This is achieved with the help of densities bundles.

Definition

The 1-density bundle is the line bundle $\Omega^1 = \Omega^1_X$ over *X* with transition function $|\det(\partial x/\partial y)|$ for coordinate changes $x \mapsto y$ on *X*.

Corollary

There is an invariant integration
$$\int_X : L^1_c(X; \Omega^1) \to \mathbb{C}$$
.

Indeed, on local coordinates,

$$\int_X u = \int_U u(x) \, \mathrm{d}x = \int_V u(x) \, |\det \left(\partial x / \partial y \right)| \, \mathrm{d}y$$

for coordinate charts $U, V \subseteq X$, and supp $u \subseteq U \cap V$.

Distributional sections

Definition

For a \mathscr{C}^{∞} \mathbb{C} -vector bundle *E* over *X*, $\mathscr{D}'(X; E)$ is defined as the topological dual of $\mathscr{C}^{\infty}_{c}(X; E' \otimes \Omega^{1})$.

Remark (Justification)

It holds $L^1_{loc}(X; E) \subset \mathscr{D}'(X; E)$ canonically. For $f \in L^1_{loc}(X; E)$, the action on $\mathscr{C}^{\infty}_{c}(X; E' \otimes \Omega^1)$ is given by $\phi \mapsto \int_X \langle f, \phi \rangle_{E,E'}$.

Notation

The dual pairing between $\mathscr{D}'(X; E)$ and $\mathscr{C}^{\infty}_{c}(X; E' \otimes \Omega^{1})$ will be denoted by

$$\langle u, \phi \rangle = \int_X \langle u, \phi \rangle_{E, E'}.$$

The Schwartz kernel theorem

Theorem (Schwartz kernel theorem, revised)

There is an one-to-one correspondence between linear continuous operators A: $\mathscr{C}^{\infty}_{c}(Y; E) \rightarrow \mathcal{D}'(X; F)$ and their kernels $K \in \mathscr{D}'(X \times Y; F \boxtimes (E' \otimes \Omega^{1}_{Y}))$. For $u \in \mathscr{C}^{\infty}_{c}(X; F' \otimes \Omega^{1}_{X})$, $v \in \mathscr{C}^{\infty}_{c}(Y; E)$,

$$\langle Av, u \rangle = \int_{X \times Y} \langle K, u \otimes v \rangle_{F \boxtimes E', F' \boxtimes E}.$$

Note that $\Omega_x^1 \boxtimes \Omega_y^1 \cong \Omega_{X \times Y}^1$, and then the necessary identifications are easily made.

Remark

It is a common strategy in modern (harmonic, microlocal, etc.) analysis to study linear operators through their kernels.

			~ ~ ~ ~
Ingo Witt (Göttingen)	Introduction to Microlocal Analysis, III	August 2018	5/16

-

200

Pseudodifferential operators, I

Definition

A linear operator $A: \mathscr{C}^{\infty}_{c}(X; E) \to \mathscr{C}^{\infty}(X; F)$ is said to be a pseudodifferential operator of order $m \in \mathbb{R}$ and type 1,0 if

- sing supp $K \subset \Delta_X$,
- $A \in \Psi_{1,0}^m(U; \mathbb{C}^K, \mathbb{C}^L)$ in any coordinate patch $U \subseteq X$ over which $E \cong U \times \mathbb{C}^K$. $F \cong U \times \mathbb{C}^L$ are trivial.

The space $\Psi_{cl}^{\mu}(X; E, F)$ of classical pseudodifferential operators of order $\mu \in \mathbb{C}$ is similarly defined.

- $\Psi_{cl}^{\mu}(X; E, F) \subset \Psi_{1,0}^{m}(X; E, F)$, where $m = \Re \mu$.
- Diff^m(X; E, F) $\subset \Psi_{cl}^m(X; E, F)$.
- If $A \in \Psi_{1,0}^m(X; E, F)$, then $A: \mathscr{E}'(X; E) \to \mathscr{D}'(X; F)$.

∃ ► < ∃ ►</p>

Pseudodifferential operators, II

- A ∈ Ψ^m_{1,0}(X; E, F) is said to be properly supported if both projections π_L: supp K → X and π_R: supp K → X are proper. In this case, A respects compact supports. Moreover, A: C[∞](X; E) → C[∞](X; F) and A: D'(X; E) → D'(X; F).
- (Composition) If A ∈ Ψ^m_{1,0}(X; E, F), B ∈ Ψ^{m'}_{1,0}(X; F, G), and one of them is properly supported, then B ∘ A ∈ Ψ^{m+m'}(X; E, F). If both A, B are classical, then B ∘ A is classical.
- (Adjoints) If $A \in \Psi_{1,0}^m(X; E, F)$, then $A^* \in \Psi_{1,0}^m(X; F^* \otimes \Omega^1, E^* \otimes \Omega^1)$. If A is classical, then A^* is classical.
- (Mapping properties) If $A \in \Psi_{1,0}^m(X; E, F)$, then $A \colon H_c^{\sigma+m}(X; E) \to H_{loc}^{\sigma}(X; F)$ for any $\sigma \in \mathbb{R}$.

Principal symbol

- $A \in \Psi_{cl}^{\mu}(X; E, F)$ possesses a well-defined principal symbol $\sigma^{\mu}(A) \in S^{(\mu)}(\dot{T}^*X; \operatorname{Hom}(\pi^*E, \pi^*F))$, where $\pi \colon \dot{T}^*X \to X$ is the canonical projection.
- If $Au(x) = \int e^{i(x-y)\xi} a(x, y, \xi) u(y) dy d\xi$ in local coordinates, then

$$\sigma^{\mu}(\boldsymbol{A})(\boldsymbol{X},\boldsymbol{\xi}) = \boldsymbol{a}_{(\mu)}(\boldsymbol{X},\boldsymbol{X},\boldsymbol{\xi}).$$

•
$$\sigma^{\mu+\mu'}(\boldsymbol{B}\circ\boldsymbol{A})=\sigma^{\mu'}(\boldsymbol{B})\,\sigma^{\mu}(\boldsymbol{A}).$$

Theorem

The principal symbol map fits into a short exact sequence

$$0 \to \Psi_{\mathsf{cl}}^{\mu-1}(X; E, F) \to \Psi_{\mathsf{cl}}^{\mu}(X; E, F) \xrightarrow{\sigma^{\mu}} \mathcal{S}^{(\mu)}(\dot{T}^*X; \mathsf{Hom}(\pi^*E, \pi^*F)) \to 0.$$

Sac

Ellipticity

Definition

 $A \in \Psi^{\mu}_{cl}(X; E, F)$ is said to be elliptic if $\sigma^{\mu}(A)$ is pointwise a linear isomorphism.

Recall that $\sigma^{\mu}(A)(x,\xi) \colon E_x \to F_x$ is a linear map for $(x,\xi) \in \dot{T}^*X$.

Theorem

Let $A \in \Psi^{\mu}_{cl}(X; E, F)$ be elliptic. Then there is a parametrix, i.e., a properly supported pseudodifferential operator $B \in \Psi^{-\mu}_{cl}(X; F, E)$ such that both $A \circ B - 1$, $B \circ A - 1$ have a \mathscr{C}^{∞} kernel.

Corollary (Elliptic regularity)

Let $A \in \Psi_{cl}^{\mu}(X; E, F)$ be elliptic, $u \in \mathscr{E}'(X; E)$ and $Au \in H_{loc}^{\sigma}(X; F)$ for some $\sigma \in \mathbb{R}$. Then $u \in H_{c}^{\sigma+m}(X; E)$, where $m = \Re \mu$.

ヘロマ ヘビマ ヘビマ イロマ

Basics on symplectic geometry

- T^*X is a homogeneous symplectic manifold with symplectic form $\omega = dx \wedge d\xi = dx_1 \wedge d\xi_1 + \ldots + dx_n \wedge d\xi_n$. It holds $\omega = -d\alpha$, where $\alpha = \omega(\cdot, R) = \xi dx = \xi_1 dx_1 + \ldots + \xi_n dx_n$ is the canonical 1-form and $R = \xi \partial/\partial \xi$ is the radial vector field.
- Given $p \in \mathscr{C}^{\infty}(\dot{T}^*X; \mathbb{R})$, we define the Hamilton vector field H_p by $\omega(\cdot, H_p) = dp$, i.e.,

$$H_{p} = \frac{\partial p}{\partial \xi} \frac{\partial}{\partial x} - \frac{\partial p}{\partial x} \frac{\partial}{\partial \xi}.$$

 In particular, the integral curves (x(t), ξ(t)) of H_p are given as solutions of the Hamilton equations

$$\dot{x}(t) = rac{\partial p}{\partial \xi}(x(t),\xi(t)), \quad \dot{\xi}(t) = -rac{\partial p}{\partial x}(x(t),\xi(t)).$$

Note that p is constant entlang the integral curves of H_p , for

$$\frac{\mathrm{d}}{\mathrm{d}t}p(x(t),\xi(t)) = p_x \dot{x} + p_\xi \dot{\xi} = p_x p_\xi - p_\xi p_x = 0.$$

Ingo Witt (Göttingen)

Introduction to Microlocal Analysis, III

First-order hyperbolic systems

Now let $X = \mathbb{R}^n$ or X be compact.

We consider the Cauchy problem

(1)
$$D_t u = a(t, x, D_x)u + f(t, x), \quad u\Big|_{t=0} = g(x)$$

where $a \in \mathscr{C}^{\infty}([0, T]; \Psi^{1}_{cl}(X; \mathbb{C}^{N}))$. We assume that $\sigma^{1}(a)(t, x, \xi)$ is real-valued.

Proposition

Under these condition, Eq. (1) possesses a unique solution $u \in \mathscr{C}^k([0, T]; H^{\sigma}(X; \mathbb{C}^N))$ provided that $f \in W^{k,1}((0, T); H^{\sigma}(X; \mathbb{C}^N))$ and $g \in H^{\sigma}(X; \mathbb{C}^N)$.

Proof. Energy estimates combined with functional-analytic arguments.

Ingo Witt (Göttingen)

イロト 不得 トイヨト イヨト 二日

Propagator and fundamental solution

It follows that there are invertible linear operators (propagator)

$$U(t,s)\colon H^{\sigma}(X;\mathbb{C}^N)\to H^{\sigma}(X;\mathbb{C}^N)$$

for $0 \le s$, $t \le T$ with U(t, t) = 1 and $U(t, r) \circ U(r, s) = U(t, s)$ for $0 \le s$, $r, t \le T$ and a linear operator (forward fundamental solution)

$$E\colon W^{1,k}((0,T); H^{\sigma}(X; \mathbb{C}^N) \to \mathscr{C}^k([0,T]; H^{\sigma}(X; \mathbb{C}^N))$$

with the property that the solution of Eq. (1) equals

 $u=U(\cdot,0)g+Ef.$

Proposition

It holds

$$Ef(t,\cdot) = \mathrm{i} \int_0^t U(t,s) f(s,\cdot) \,\mathrm{d} s, \quad 0 \leq t \leq T.$$

Egorov's theorem

We shall see later that U(t, s) is a Fourier integral operator.

Remark

The fundamental solution E is more complicated. In fact, its kernel is a so-called one-sided paired Lagrangian distribution.

Theorem (Egorov)

Let $P \in \Psi^{\mu}_{cl}(X; \mathbb{C}^N)$. Then $P(t) = U(t, 0)PU(0, t) \in \Psi^{\mu}_{cl}(X; \mathbb{C}^N)$ and

 $\sigma^{\mu}(\boldsymbol{P}(t)) = \sigma^{\mu}(\boldsymbol{P}) \circ \chi_{t,0},$

where $\chi_{t,0}$ is the flow of the time-dependent Hamilton vector field $H_{\sigma^1(a)}$ from time t to time 0.

Sac

・ロト (過) (日) (日) (日)

Propagation of singularities

Let $P \in \Psi^{\mu}_{cl}(X; E)$. Recall that

```
WF(Pu) \subseteq WF(u) \subseteq WF(Pu) \cup Char P.
```

Theorem

Let $q = \det \sigma^m(P)$ be real-valued. Then $WF(u) \setminus WF(Pu)$ is invariant under the flow of the Hamilton vector field H_q .

Proof. There are several known proofs. One employs Egorov's theorem.

Remark

This statement on the propagation of singularities is a microlocalized version of the basic energy inequalities.

イロト イポト イヨト イヨト

Lagrangian distributions

Let $\Lambda \subset \dot{T}^*X$ be a conic Lagrangian submanifold. In particular, $\alpha|_{\Lambda} = 0$ and dim $\Lambda = \dim X$.

Definition

 $u \in \mathscr{D}'(X)$ is said to be a classical Lagrangian distribution with respect to Λ , of order $\mu \in \mathbb{C}$, if

• WF(u) $\subseteq \Lambda$,

• microlocally near any $\lambda \in \Lambda$,

$$u(x) = (2\pi)^{-(n+2N)/4} \int e^{i\varphi(x,\theta)} a(x,\theta) d\theta,$$

where φ is a non-degenerate phase function parametrizing Λ (= Λ_{φ}) near λ and $a \in S_{cl}^{\mu+(n-2N)/4}(\mathbb{R}^n \times \mathbb{R}^N)$.

• We write $u \in I^{\mu}_{cl}(X, \Lambda)$.

3

Examples of Lagrangian distributions

- Conormal distributions: $I_{cl}^{\mu}(X, Y) = I_{cl}^{\mu}(X, \Lambda)$, where $Y \subset X$ is a submanifold and $\Lambda = N^* Y$ is the conormal bundle of Y in X.
- In particular, $\delta(x) = \int e^{ix \cdot \xi} d\xi$ belongs to $I_{cl}^{n/4}(\mathbb{R}^n, \{0\})$.
- $A \in \Psi^{\mu}_{cl}(X)$ means exactly that the kernel of A belongs to $I^{\mu}_{cl}(X \times X, \Delta_X; \mathbb{C} \boxtimes \Omega^1)$.

Theorem

The kernel of the operator $U(\cdot,0)$ belongs to $I_{cl}^{-1/4}((0,T) \times X \times X,\Lambda)$, where

$$\Lambda' = \{ (t, \tau, \mathbf{x}, \xi, \mathbf{y}, \eta) \mid \tau = \sigma^{1}(\mathbf{a})(t, \mathbf{x}, \xi), \ \chi_{t,0}(\mathbf{x}, \xi) = (\mathbf{y}, \eta) \}$$

Proof. Geometric optics construction.

Ingo Witt (Göttingen)

- ロ ト - 4 日 ト - 4 日 ト - 日 ト