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Fourier integral operators

“Calculus” of wave front sets
Let A : C∞c (Y )→ D ′(X ) be a linear operator and K ∈ D ′(X × Y ) be its distributional
kernel. Identify T ∗(X × Y ) ∼= T ∗X × T ∗Y . Define

WF′(A) = {(x , ξ, y , η) ∈ Ṫ ∗X × Ṫ ∗Y | (x , y , ξ,−η) ∈WF(K )} (wave front
relation),

WFX (A) = {(x , ξ) ∈ Ṫ ∗X | ∃y ∈ Y : (x , y , ξ, 0) ∈WF(K )},
WF′Y (A) = {(y , η) ∈ Ṫ ∗X | ∃x ∈ X : (x , y , 0,−η) ∈WF(K )}.

Proposition

Let A : C∞c (Y )→ D ′(X ) and B : C∞c (Z )→ D ′(Y ). Suppose that
WF′Y (A) ∩WFY (B) = ∅,
the canonical projection
(supp KA × supp KB) ∩ (X ×∆Y × Z )→ X × Z is proper.

Then A ◦ B : C∞c (Z )→ D ′(X ) is defined. Moreover,

WF′(A ◦ B) ⊆WF′(A) ◦WF′(B)∪ (WFX (A)× 0Z ) ∪
(
0X ×WF′Z (B)

)
.
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Fourier integral operators

An example: Pullbacks

Let f : X → Y be C∞. Then f ∗ : C∞(Y )→ C∞(X ), u 7→ u ◦ f , has
kernel

K (x , y) = δ(y − f (x))

and, therefore,

WF(K ) = {(x , y , ξ, η) | y = f (x), ξ + tdf (x)η = 0, η 6= 0}.

We conclude that

WF′(f ∗) = {(x , tdf (x)η, f (x), η) | tdf (x)η 6= 0},
WF′Y (f ∗) = {(f (x), η) | tdf (x)η = 0, η 6= 0},

and WFX (f ∗) = ∅.
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Fourier integral operators

Fourier integral operators

Let Λ ⊂ Ṫ ∗(X × Y ) be a conic Lagrangian submanifold such that
C = Λ′ ⊂ Ṫ ∗X × Ṫ ∗Y (homogeneous canonical relation).

Example

Let χ : Ṫ ∗X → Ṫ ∗Y be a homogeneous canonical transformation. Then C = graphχ
is a homogeneous canonical relation.

Definition
A : C∞c (Y )→ C∞(X ) is said to be a classical Fourier integral operator
associated with C, of order µ ∈ C, if K ∈ Iµcl(X × Y ,Λ).

We write A ∈ Iµcl(X ,Y ,C).

Microlocally,

Au(x) =

∫
eiϕ(x,y,θ)a(x , y , θ)u(y) dyd̄θ,

where Λ = Λϕ and a ∈ Sµ+(nX +nY−2N)/4
cl (X × Y × RN).
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Fourier integral operators

Fourier integral operators, II

Remark
For u ∈ E ′(Y ), WF(Au) ⊆ C ◦WF(u).

Examples

Ψµ
cl(X ) = Iµcl(X ,X ,∆Ṫ∗(X)).

Let {U(t , s)}0≤t,s≤T be the propagator of Dt − a(t , x ,Dx ), where
a ∈ C∞([0,T ]; Ψ1

cl(X )) and σ1(a)(t , x , ξ) is real-valued. Then:

U(t , s) ∈ I0
cl(X ,X , graphχt ,s), where χt ,s is the flow of the

time-dependent Hamilton vector field Hσ1(a) from time t to time s.

U(·,0) ∈ I−1/4
cl ((0,T )× X ,X ,C), where

C = {(t , x , τ, ξ, y , η | τ = σ1(a)(t , x , ξ), χt ,0(x , ξ) = (y , η)}.
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Fourier integral operators

Principal symbol

A ∈ Iµcl(X ,Y ,C) possesses a principal symbol σµ(A) which is a
function on C (ignoring density factors and contributions from the
Keller-Maslov bundle). In local coordinates,

σµ(A)(x , ξ, y , η) = a(µ+(nX +nY−2N)/4)(x , y , θ)

where ϕ′θ(x , y , θ) = 0, ξ = ϕ′x (x , y , θ), and η = −ϕ′y (x , y , θ).

Remark

One has a notion of ellipticity if C is the graph of a homogeneous canonical
transformation. For an elliptic Fourier integral operator, there is a parametrix as before
(see also below).
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Fourier integral operators

Compositions

Now let A ∈ Iµcl(X ,Y ,C0) and B ∈ Iµ
′

cl (Y ,Z ,C1). We make the following
assumptions:

C0 × C1 and Ṫ ∗X ×∆Ṫ∗Y × Ṫ ∗Z intersect cleanly in a manifold C,
with excess e,
the fibers of the canonical map C → C0 ◦ C1 are connected and
compact,
the canonical projection
(supp KA × supp KB) ∩ (X ×∆Y × Z )→ X × Z is proper.

Then C0 ◦ C1 is a homogeneous canonical relation.

Theorem

Under these conditions, A ◦ B ∈ Iµ+µ′+e/2
cl (X ,Z ,C0 ◦ C1) and

σµ+µ′+e/2(A ◦ B) is computable in terms of σµ(A) and σµ
′
(B).
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Fourier integral operators

Mapping properties

Theorem
Let A ∈ Im(X ,Y ,C), where C is the graph of a homogeneous
canonical transformation. Then

A : Hσ+m
c (Y )→ Hσ

loc(X )

for all σ ∈ R.

Theorem

Let A ∈ Im(X ,Y ,C). Suppose that the radial vector fields of Ṫ ∗X and
Ṫ ∗Y are nowhere tangent to C. Then

A : Hσ+m
c (Y )→ Hσ−r

loc (X ),

where r ≥ corankωC/4 and ωC =
(
πX
∣∣
C

)∗
ωX =

(
πY
∣∣
C

)∗
ωY .
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Fourier integral operators

Egorov’s theorem, revised

Theorem
Let C be the graph of the homogeneous canonical transformation
χ : Ṫ ∗Y → Ṫ ∗X. Let A ∈ Iνcl(X ,Y ,C), B ∈ I−νcl (Y ,X ,C−1), and
P ∈ Ψµ

cl(X ), where at least two of these three operators are properly
supported. Then Q = BPA ∈ Ψµ

cl(Y ).
Moreover,

σµ(Q) = (σµ(P) ◦ χ)σ0(BA).

Note that BA ∈ Ψ0
cl(Y ).

Usually one chooses A to be elliptic and B to be a parametrix to A. Then, in
particular, σ0(BA) = 1.

Interpretation. In microlocal analyis, pseudodifferential operators assume the
role of cut-off functions, while elliptic Fourier integral operators take the part of
coordinate changes (e.g., in order to arrange some normal form).
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Pseudodifferential operators of real principal type, II

Pseudodifferential operators of real principal type

Definition
A pseudodifferential operator P ∈ Ψm

cl (X ) is said to be of real principal
type if

p = σm(P) is real-valued,
no complete null bicharacteristics of P stays over a compact set in
X .

Furthermore, X is said to be pseudo-convex with respect to P if, in
addition,

for any compact set K ⊆ X there exists a compact set K ′ ⊆ X with
the property that each null bicharacteristics of P with endpoints
over K stays entirely over K ′.

Example. Let (X , h) a globally hyperbolic space-time. Then the d’Alembertian �h is
of real principal type and X is pseudo-convex with respect to �h.
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Pseudodifferential operators of real principal type, II

Bicharacteristic relation

Remark

Apart from having a real principal symbol, the microlocal condition for P to be of real
principal type is that dp and α = ξ dx are nowhere collinear.

Lemma
Let P ∈ Ψm

cl (X ) be of real principal type and X be pseudo-convex with
respect to P. Then the bicharacteristic relation

C =
{

(x , ξ, y , η) ∈ Ṫ ∗X × Ṫ ∗X |
(x , ξ) and (y , η) lie on the same null bicharacteristics of P

}
is a homogeneous canonical relation.
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Pseudodifferential operators of real principal type, II

Distinguished parametrices

Now choose, for each connected component of Char P, an orientation
in the sense that (x , ξ) should lie either before or after (y , η) on the null
bicharacteristics that contains both of them and then form the
homogeneous canonical relation D, with nonempty boundary ∂D, that
contains the (x , ξ, y , η) determined that way. (In a sense, D is “half”
of C.)

Theorem (Duistermaat-Hörmander, ’72)
Under these conditions, P possesses a parametrix E such that

WF′(E) = ∆Ṫ∗X ∪ D.

Moreover, E is unique up to smoothing.
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Pseudodifferential operators of real principal type, II

Paired Lagrangian distributions
In fact, the kernel of E is a one-sided paired Lagrangian distribution
(Melrose-Uhlmann, ’79, Joshi, ’98). In the special case considered here, the local
model for the latter is u ∈ Iµ−1/2,µ

cl (Rn,Λ0,Λ1), where x = (x1, x ′′) ∈ R× Rn−1,
Λ0 = Ṫ ∗0 Rn = {(0, ξ) | ξ 6= 0}, Λ1 = {(x1, 0, 0, ξ′′) | x1 ≥ 0, ξ′′ 6= 0}, and

u(x) =

∫ ∞
0

∫
Rn

ei((x1−s)ξ1+x′′·ξ′′)a(s, x1, ξ) dξ ds,

where a ∈ Sµ+1/2−n/4
cl ([0,∞)× Rn × Rn).

Note that u ∈ Iµ−1/2
cl (Rn,Λ0 \ Λ1) and u ∈ Iµcl (R

n,Λ1 \ Λ0).

Moreover,

σ
µ−1/2
Λ0

(u) =
a(µ+1/2−n/4)(0, 0, ξ)

iξ1
on Λ0 \ Λ1,

σµΛ1
(u) = a(µ+1/2−n/4)(x1, (x1, 0), (0, ξ′′)) on Λ1 \ Λ0.

Further observe that there is the compatibity condition

iξ1 σ
µ−1/2
Λ0

(u) = σµΛ1
(u) on ∂Λ1 = Λ0 ∩ Λ1.
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Weyl asymptotics

The wave trace

X – C∞ closed manifold, dim X = n,
P ∈ Ψ1(X ; Ω1/2), P = P∗ > 0,
P has purely discrete spectrum (as an unbounded operator in
L2(X ; Ω1/2),
λ1 ≤ λ2 ≤ λ3 ≤ . . . – eigenvalues of P, with eigenfunctions
φj ∈ C∞(X ; Ω1/2) that are chosen to form an orthonormal basis in
L2(X ; Ω1/2),
λj ∼ c j1/n as j →∞ by a rough version of Weyl’s law.

The wave trace is

w(t) =
∞∑

j=1

eiλj t , t ∈ R.

which is formally the trace of the wave group {eitP}t∈R.
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Weyl asymptotics

The wave kernel

Remark

It holds eitP =
∫∞

0 eitλ dEλ, where {dEλ}λ≥0 is the spectral measure of P. Taking
traces on both sides, one obtains w(t) =

∫∞
0 eitλ dN(λ), where N(λ) = #{j | λj ≤ λ}

is the counting function of P. In particular, the wave trace w is (essentially) the Fourier
transform of the (counting) measure dN.

Let U : C∞(X ; Ω1/2)→ C∞(R× X ; Ω0 � Ω1/2) be the solution operator
of the Cauchy problem for Dt − P. We already know that
U ∈ I−1/4

cl (R× X ,X ,C; Ω1/2), where

C = {(t , x , τ, ξ, y , η) | τ = p(x , ξ), (x , ξ) = χt (y , η)},
p = σ1(P), and {χt}t∈R is the flow of Hp.

The kernel of U is

U(t , x , y) =
∑

j

eitλjφj(x)φj(y).

Ingo Witt (Göttingen) Introduction to Microlocal Analysis, IV August 2018 16 / 18



Weyl asymptotics

Singularities of the wave trace

Hence, w = π∗∆
∗U, where

∆: R× X → R× X × X is the diagonal map,
∆∗ : C∞(R× X × X ; Ω0 � Ω1/2 � Ω1/2)→ C∞(R× X ; Ω0 � Ω1),
π∗ : C∞(R× X ; Ω0 � Ω1)→ C∞(R) is integration along fibers.

Note that π∗∆∗ ∈ I0
cl(R,R× X × X ,C0; Ω1/2), where

C0 = {(t , τ, t , x , x , τ, ξ,−ξ) | τ 6= 0}.

Lemma

It holds w ∈ S ′(R; Ω1/2) and

WF(w) ⊆ {(t , τ) | ∃ (x , ξ) ∈ Ṫ ∗X : χt (x , ξ) = (x , ξ), τ > 0}.
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Weyl asymptotics

Weyl’s law with remainder estimate

Now a careful analysis of the “big” singularity of the wave trace w at
t = 0 yields Weyl’s law together with a sharp remainder estimate:

Theorem (Hörmander, ’68)

Let P ∈ Ψm(X ; Ω1/2), m > 0, and P = P∗ > 0. Then

NP(λ) = #{j | λj ≤ λ} = c λn/m + O(λ(n−1)/m) as λ→∞,

where
c =

∫
p(x ,ξ)≤1

dxd̄ξ.

Proof. Work with P1/m ∈ Ψ1
cl(X ; Ω1/2). �
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