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1. QFT ON CURVED SPACETIMES

1.1. Lorentzian manifolds.

Definition. Lorentzian manifold pM, gq: M smooth manifold, g Lorentzian metric,
i.e. a smooth map M Q x ÞÑ gpxq, where gpxq is a sym. bilinear form on TxM of
signature p1, n� 1q.
Definition. A vector v P TxM is time-like if v � gpxqv   0, null if v � gpxqv � 0,
space-like if v � gpxqv ¡ 0.

A spacetime is a Lorentzian manifold pM, gq equipped with a time-orientation, i.e. a
continuous time-like Killing vector field. This splits cone of time-like vector fields
Cpxq � TxM into two components C�pxq.
Definitions. A piecewise C1 curve γ : I Ñ M is causal if its tangent vectors are
time-like or null. If K �M , its causal future/past is J�pKq ���

�
xPK J�pxq, where

J�pxq ��� tγpsq : γ causal future/past directed starting at x, s P Ru.
We set JpKq ��� J�pKq Y J�pKq. One says K1, K2 � M are causally separated if
JpK1q XK2 � H.

1.2. Introduction to QFT.

Let pM, gq be a spacetime. Let m P R, and

P � �lg �m2 � �|g|� 1
2Ba|g| 12 gabBb �m2 (the Klein-Gordon operator).

Linear quantum fields: φ P D1pM ;Hq with values in Hilbert space H s.t. Pφ � 0 and:

(1) φpvq� � φpvq for v P C8
c pM ;Rq (where φpvq � ´

M
φpxqdvolgpxq)

(2) DΩ P H s.t.

tφpv1q . . . φpviqΩ : v1, . . . , vi P C8
c pMq, i P Nu

is dense in H
(3) rφpxq, φpx1qs � 0 if x, x1 PM are space-like separated

(canonical choice: rφpxq, φpx1qs � iGpx, x1q1 )
1
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If pM, gq � R1,d and m ¡ 0, φvacpxq is the reference dynamics for non-interacting
(non-linear) fields.

In general, no canonical choice of φpxq: we can probe quantum effects induced by the
geometry.

Difficulties:

 H not a priori given!
 φpxq very singular, φpxq2 does not exist
 locally, φpxq should ressemble φvacpxq

This boils down to two-point functions

Λ�px, x1q ��� pΩ|φpxqφpx1qΩq.
The program is to construct first Λ�px, x1q.
Remark 1. Formally, pΩ|φ2pxqΩq � limxÑx1 Λ

�px, x1q � 8
Remark 2. Necessarily, Λ� ¥ 0. Other global or asymptotic conditions often imposed
on physical grounds.

1.3. Quantization.

Remark. Commutation relations encoded by choice of real symplectic space.

Let h a (complex) Hilbert space. The bosonic Fock space is

Γsphq ���
8à
n�0

bn
s h.

Creation/annihilation operators:

a�phqΨn ���
?
n� 1hbs Ψn,

aphqΨn ���
?
n
�ph| bs 1n�1

�
Ψn,

for h P h and Ψn P bn
s h, where ph| is the map h Q u ÞÑ ph|uq P C. As quadratic forms

on a suitable domain,

raph1q, aph2qs � ra�ph1q, a�ph2qs � 0,

raph1q, a�ph2qs � ph1|h2q1, h1, h2 P h.

Therefore, if φFphq ��� 1?
2
paphq � a�phqq then�

φFph1q, φFph2q
� � i Imph1|h2q1 ��� iph1 � σh2q1.

The vacuum vector is Ω � p1, 0, . . . q. Observe that we can modify the Hilbert space
while keeping the above commutation relation unchanged. Indeed, for phR, σq a fixed
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symplectic space, we can define using some operator j:

ph1|h2qF ��� h1 � σjh2 � ih1 � σh2.

This works provided phR, σ, jq is Kähler, i.e. j2 � �1 and σ � j ¥ 0. A new Hilbert
space is obtained by complexification pα � iβqh ��� αh � jβh for h P hR, α � iβ P C,
and by taking the completion. Thus, different choices of j give different Hilbert spaces
and different fields (possibly non-unitarily equivalent).

In practice it is better to work with complex vector spaces exclusively, and encode the
choice of j in terms of two-point functions Λ�.

Proposition. Let q be a hermitian form on a complex vector space V . Suppose Λ� are
two non-degenerate forms s.t.

p1q Λ� ¥ 0, p2q Λ� � Λ� � q.

Let V cpl be the completion w.r.t. 1
2
pΛ� � Λ�q. Then there exists j such that pV cpl

R , σ, jq
is Kähler and

σj � 1

2
RepΛ� � Λ�q, σ � Im q.

Consequently,

pv1|v2qF � 1

2

�
v1 � Λ�v2 � v1 � Λ�v2

�
.

The proof is particularly easy if Λ� � �qc�, where c� are projections (note c� � c� �
1), i.e. j � ipc� � c�q.
This gives pΩ|φpv1qφpv2qΩq � v1 � Λ�v2, @vi P V s.t. vi � vi.

1.4. Propagators.

Assumption. pM, gq is globally hyperbolic, i.e., J�pK1q X J�pK2q is compact for all
K1, K2 compact.

Working assumption. We assume M � Rt � Σ with Σ compact or Σ � Rd, and

g � �dt2 � ht, t ÞÑ ht smooth with value in Riemannian metrics.

In this setting, global hyperbolicity equivalent to: for fixed t P R, each maximally
extended time-like geodesic hits Rt � Σ once.

Then P � B2
t � rptqBt � apt, x, Bxq, where rptq � |ht|� 1

2Bt|ht| 12 and

iq σprpaqpt, x, kq � k � h�1
t pxqk,

iiq apt, x, Bxq � a�pt, x, Bxq
w.r.t. pf1|f2qt �

´
Σ
f1f2|ht| 12dx.

Remark. Considering f1 � P � f2 instead of P for f1, f2 P C8pMq, f1, f2 ¡ 0
corresponds to more general g.
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Terminology. One says G : C8
c pMq Ñ C8pMq is a propagator if either

(1) PG � 1 and GP � 1 on C8
c pMq (inverse), or

(2) PG � 0 and GP � 0 on C8
c pMq (bi-solution).

Theorem. [goes back to Leray] There exist unique retarded/advanced inverses G� :
C8

c pMq Ñ C8pMq, i.e. @v, suppG�v � J�psupp vq.
Here, psuppG�vq X tt � su is compact for all s, and empty for large �s.
Definition. Pauli-Jordan bi-solution (or causal propagator) G ��� G� �G�.

By P � P � and uniqueness of G�, G�
� � G	. Hence G� � �G on C8

c pMq.
The symplectic space for QFT is C8

c pM ;Rq{PC8
c pM ;Rq equipped with G. Complex

version: C8
c pMq{PC8

c pMq equipped with iG.

To quantize we need two-point functions Λ� : C8
c pMq Ñ C8pMq s.t.

p1q Λ� ¥ 0, p2q Λ� � Λ� � iG, p3q PΛ� � Λ�P � 0.

From this we get fields φprvsq, v P C8
c pM ;Rq. Note that Pφ � 0.

Example. Suppose P � B2
t � ∆x �m2 and m ¡ 0. Then�

Λ�
vacv

�ptq � ˆ
R

e�ipt�sq?�∆x�m2

?�∆x �m2
vpsqds

Characteristic feature: solves
�
i�1Bt �

?�∆x �m2
�
upt, xq � 0.

Physical principle. Admissible Λ� should have same short-distance behaviour as Λ�
vac

(Hadamard condition). Consequence (Radzikowski theorem): Λ� � singular, geomet-
ric part + smooth part.

2. HADAMARD TWO-POINT FUNCTIONS

2.1. Cauchy problem.

We fix s P R.

Theorem. @v P C8
c pΣq2, D!u P C8pMq (space-compact) solving#

Pu � 0

%psqu � f

where %psqu � pupsq, i�1Btupsqq.
The dual is %psq�f � f 0 b δpsq � if 1 b δ1psq : D1pΣq2 Ñ D1pMq.

Let q �
�

0 1
1 0



.
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Proposition. Upsq � i�1p%psqGq�q on C8
c pΣ;C2q.

Proof: Green’s formula gives
ˆ
J�pΣq

�
u1Pu2 � Pu1u2

�
dvolg �

ˆ
Σ

�Btu1u2 � u1Btu2

�
dvolh.

Applied to u1 � G	v, u2 � u � Upsqf , v P C8
c pMq,

ˆ
J�pΣq

vu dvolg �
ˆ

Σ

�
G�vBtu� BtG�vu

�
dvolh,

ˆ
J�pΣq

vu dvolg �
ˆ

Σ

�
G�vBtu� BtG�vu

�
dvolh.

Since JpΣq �M , adding the two we get
ˆ
M

vu dvolg �
ˆ

Σ

�BtGvu�GvBtu
�
dvolh.

Now use G� � �G and formula for %psq�. l

Hence, continuous extension Upsq : E 1pΣq2 Ñ D1pMq.
Proposition. Suppose c�psq : C8

c pΣq2 Ñ C8pΣq2 satisfy

p1q � qc�psq ¥ 0, p2q c�psq � c�psq � 1.

Then Λ� ��� �Upsq�qc�psqUpsq are two-point functions.

We write
�B2

t � rptqBt � aptq�uptq � 0 as

i�1Btψptq � Hptqψptq, Hptq �
�

0 1
aptq irptq



,

by setting

ψptq �
�

uptq
i�1Btuptq



��� %ptqu.

Upt, sq ��� %ptqUpsq P BpH1pΣq ` L2pΣqq evolution generated by Hptq. Then:

q � U�ps, tqqUps, tq.

Example. If aptq � a ¥ 0, rptq � 0 then Λ�
vac has data

c�vacpsq � c�vac � 1R�pHq � 1

2

�
1 �a� 1

2

�a 1
2 1



.
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2.2. Hadamard condition.

The principal symbol of P is ppt, x, τ, kq � τ 2 � k � htpxqk.

CharpP q � N� YN�, N� �
!
pt, x, τ, kq : τ � �pk � htpxqkq 1

2 , k � 0
)

If Γ � T �M � T �M ,

Γ1 ���
 �px1, ξ1q, px2, ξ2q

�
:
�px1, ξ1q, px2,�ξ2q

� P Γ
(
.

Definition. Λ� is Hadamard if

(Had) WFpΛ�q1 � N� �N�.

Theorem. [Radzikowski] If Λ�, rΛ� are Hadamard two-point functions then Λ� � rΛ�

has C8pM �Mq kernel.
Proof: Λ� � Λ� � Λ̃� � Λ̃� � iG, hence Λ� � Λ̃� � Λ� � Λ̃�. These have disjoint
wave front sets by (Had). Hence WFpΛ� � rΛ�q1 � H. l

Remark. We can deduce WFpΛ�q1 exactly.

Lemma. WFpΛ�q1 � N� � T �M implies (Had).
Proof: Use Λ� ¥ 0 to symmetrize WFpΛ�q1. Then eliminate singularities in T �M � o
using [Duistermaat, Hörmander]. l

Theorem. Λ�
vac are Hadamard.

Proof: Use pi�1Bt �
?�∆x �m2qΛ�

vac � 0.

Application. (Quantum Energy Inequalities, [Fewster]) For fixed x P Σ,

Eϕ ���
ˆ
R
pΛ� � rΛ�qpt, t, x, xqϕ2ptq exists .

(Renormalized charge density, averaged along timelike curve). Setting Λ�
ϕ : C8

c pRq Ñ
C8

c pRq the op. with kernel ϕptqΛ�pt, t1, x, xqϕpt1q,
Eϕ � TrpΛ�

ϕ � rΛ�
ϕ q � TrpθpDtqpΛ�

ϕ � rΛ�
ϕ qθpDtqq � Trpθp�DtqpΛ�

ϕ � rΛ�
ϕ qθp�Dtqq

� TrpθpDtqpΛ�
ϕ � rΛ�

ϕ qθpDtqq � Trpθp�DtqpΛ�
ϕ � rΛ�

ϕ qθp�Dtqq
¥ �TrpθpDtqrΛ�

ϕθpDtqq � Trpθp�DtqrΛ�
ϕθp�Dtqq ��� �Cϕ.

3. CONSTRUCTION BY PSEUDO-DIFFERENTIAL CALCULUS

3.1. Uniform PDO calculus.

In what follows ΨµpΣq is Hörmander’s (uniform) calculus if Σ � Rd and the usual
calculus on manifolds if Σ is compact. In more general non-compact cases one needs
some global calculus that replaces ΨµpΣq.
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Let bptq � b1ptq � b0ptq, s.t.:

pEq biptq P C8pR; ΨipMqq, i � 0, 1,

b1ptq is elliptic, symmetric and bounded from below on H8pMq.
Define Ubpt, sq by: $''&''%

B
BtUbpt, sq � ibptqUbpt, sq, t, s P R,
B
BsUbpt, sq � �iUbpt, sqbpsq, t, s P R,

Ubps, sq � 1, s P R.

Here Ubpt, sq is strongly continuous in pt, sq with values in BpL2pMqq (one needs to
work a bit and use perturbation theory, note that b is not necessarily self-adjoint).

Lemma.

(1) Ubpt, sq P BpHmpMqq for m P Z Y t�8u, R2 Q pt, sq ÞÑ Ubpt, sq is strongly
continuous on HmpMq,

(2) if r�8 P Ψ�8pMq then Ubpt, sqr�8, r�8Ubpt, sq P C8pR2
t,s,Ψ

�8pMqq.
Theorem. [Egorov] Let a P ΨmpMq and bptq satisfying pEq. Then

apt, sq ��� Ubpt, sqaUbps, tq P C8pR2,ΨmpMqq.
Moreover

σprpaqpt, sq � σprpaq � Φps, tq,
where Φpt, sq : T �M Ñ T �M is the flow of the time-dependent Hamiltonian σprpbqptq.
Theorem. [essentially Seeley] Let a P C8pR; ΨmpΣqq be elliptic, selfadjoint, aptq ¥
c1 for c ¡ 0, t P R. Then as P C8pR; ΨmspΣqq for any s P R and

σprpasqptq � σprpaptqqs.

3.2. Approximate diagonalization of evolution.

Method due to [Junker], [Junker, Schrohe], [Gérard, W.], [Gérard, Oulghazi, W.]

Suppose we have bptq P C8pR; Ψ1pΣqq elliptic s.t.

(J) pBt � ib�ptq � rptqq � pBt � ib�ptqq � B2
t � rptqBt � aptq mod smoothing

Set

ψ̃ptq ���
�Bt � ib�ptq
Bt � ib�ptq



uptq.

Then ψ̃ptq � S�1ptqψptq with

S�1ptq � i

� �b�ptq 1
�b�ptq 1



, Sptq � i�1

�
1 �1

b�ptq �b�ptq


pb�ptq � b�ptqq�1,
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if b�ptq � b�ptq invertible. We have� Bt � ib� � r 0
0 Bt � ib� � r



ψ̃ptq � 0

modulo smoothing. Even better diagonalization:

T ptq ��� Sptqpb� � b�q 1
2 ptq � i�1

�
1 �1
b� �b�



pb� � b�q� 1

2 ,

T�1ptq � ipb� � b�q� 1
2

� �b� 1
�b� 1



,

gives

(3.1) T �ptqqT ptq �
�

1 0
0 �1



��� qad.

We get:
Upt, sq � T ptqUadpt, sqT psq�1

� T ptqUdpt, sqT psq�1 � C8pR2; Ψ�8pΣqq.
Now: c�pt0q ��� T pt0qπ�T�1pt0q,

π� �
�

1 0
0 0



, π� �

�
0 0
0 1



.

And U�pt, sq ��� Upt, t0qc�pt0qUpt0, sq propagates with correct wave front set!

3.3. Riccati equation.

Equation (J) is:
iBtb� � b�2 � a� irb� � 0 mod smoothing .

Without loss, assume aptq uniformly positive.

Theorem. D b P C8pR; Ψ1pΣqq s.t.

iq b � a
1
2 � C8pR; Ψ0pΣqq,

iiq pb� b�q�1 � p2aq� 1
4 p1� r�1qp2aq� 1

4 , r�1 P C8pR; Ψ�1pΣqq,
iiiq pb� b�q�1 ¥ ca�

1
2 , for some c P C8pR;Rq, c ¡ 0,

ivq iBtb� � b�2 � a� irb� � r��8 P C8pR; Ψ�8pΣqq,
for b� ��� b, b� ��� �b�.

Proof: Modulo smoothing, a � Oppcq, c P C8pR;S1
phpT �Σqq, with cprpt, x, ξq �

pξ �h�1
t pxqξq 1

2 . We look for b of the form b � Oppcq�Oppdq for d P C8pR;S0
phpT �Σqq.

Since Oppcq is elliptic, we can fix a symbol ĉ P C8pR;S�1
ph pT �Σqq s.t. Oppĉq is a

parametrix of Oppcq.
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Modulo error terms in C8pR;W�8pΣqq, (J) becomes:

(3.2) Oppdq � i

2
pOppĉqOppBtcq � OppĉqrOppcqq � F pOppdqq,

for:

F pOppdqq � 1

2
Oppĉq �iOppBtdq � rOppcq,Oppdqs � irOppdq � Oppdq2� .

From symbolic calculus, we obtain that:

F pOppdqq � OppF̃ pdqq � C8pR; Ψ�8pΣqq,
for

F̃ pdq � 1

2
ĉ� piBtd� c�d� d�c� ir�d� d�dq ,

The equation (3.2) becomes:

(3.3) d � a0 � F̃ pdq,
for

a0 � i

2
pĉ�Btc� ĉ�r�cq P C8pR;S0

phpT �Σqq.
The map F̃ has the following property:

(3.4)
d1, d2 P C8pR;S0

phpT �Σqq, d1 � d2 P C8pR;S�jph pT �Σqq

ñ F̃ pd1q � F̃ pd2q P C8pR;S�j�1
ph pT �Σqq.

This allows to solve symbolically (3.3) by setting

d�1 � 0, dn ��� a0 � F̃ pdn�1q,
and

d �
¸
nPN

dn � dn�1,

which is an asymptotic series since by (3.4) we see that

dn � dn�1 P C8pR;S�nph pT �Σqq.
Hence Oppc� dq solves (J) modulo C8pR; Ψ�8pΣqq.
We observe then that if b P C8pR; Ψ8pΣqq we have:

pBtbq� � Btpb�q � rb� � b�r,

This implies that �Oppdq� is also a solution modulo C8pR; Ψ�8pΣqq.
To complete the construction of b�, we consider

s � Oppc� dq � Oppc� dq�,
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which is selfadjoint, with principal symbol equal to 2pξ �h�1
t pxqξq 1

2 . There exists r�8 P
C8pR; Ψ�8pΣqq such that

(3.5) s� r�8 � a
1
2 .

We set now:

b ��� Oppc� dq � 1

2
r�8.

Properties i) and iv) follow from the same properties of Oppc � dq. To prove property
ii) we write

b� b� � p2aq 1
4 p1� r̃�1qp2aq 1

4 ,

where r̃�1 P C8pR; Ψ�1pΣqq, by [Seeley]. Since p1� r̃�1q is boundedly invertible, we
have again by [Seeley]

p1� r̃�1q�1 � 1� r�1, r�1 P C8pR; Ψ�1pΣqq,
which implies ii). l

4. SCATTERING BY GEOMETRY

4.1. Setup.

Definition. Ψm,δ
td pR; Σq ��� Op of t-dependent symbols apt, x, kq P Sm,δtd pR; Σq, i.e.:

|Bαt BβxBγkapt, x, kq| ¤ Cαβγxtyδ�αxkym�|γ|, α P N, β, γ P Nd,

where xty � p1� t2q 1
2 , xky � p1 � |k|2q 1

2 .

Assumption. D δ ¡ 0 and aout P Ψ2pΣq elliptic, aoutpx, Dxq ¥ m2 ¡ 0, s.t. on R��Σ

apt, x, Dxq � aoutpx, Dxq P Ψ2,�δ
td pR; Σq,

rptq P Ψ0,�1�δ
td pR; Σq.

Asymptotic dynamics: Pout � B2
t � aoutpx, , Dxq.

Asymptotic (‘out’) vacuum:

c�,vac
out � 1

2

�
1 �a�

1
2

out

�a
1
2
out 1

�
.

Theorem. [Gérard, W.] Let

c�outptq ��� lim
t�Ñ�8

Upt, t�qc�,vac
out Upt�, tq

Then the corresponding Λ�
out satisfies (Had).
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4.2. Time-decaying ΨDO families.

Lemma. Let δ P R and pmjq a real sequence decreasing to �8. Then if aj P
Ψ
mj ,�δ
td pR; Σq there exists a P Ψm0,�δ

td pR; Σq, unique mod Ψ�8,�δ
td pR; Σq, s.t.

a �
8̧

j�0

aj, i.e. a�
Ņ

j�0

aj P Ψ
mN�1,�δ
td pR; Σq, @N P N.

Ellipticity is uniform in t.

Theorem. [Seeley] works also for Ψm,0
td pR; Σq provided aptq ¥ c01 for c0 ¡ 0.

Proposition. Let ai P Ψ2,0
td pR; Σq, i � 1, 2 elliptic, ai � a�i and aiptq ¥ c01, c0 ¡ 0.

Assume a1 � a2 P Ψ2,�δ
td pR; Σq, δ ¡ 0. Then @α P R:

aα1 � aα2 P Ψ2α,�δ
td pR; Σq.

Proposition. D bptq � a
1
2 ptq � Ψ0,�1�δ

td pR; Σq � a
1
2
out � Ψ1,�δ

td pR�; Σq s.t.

iBtb� b2 � a� irb P Ψ�8,�1�δ
td pR; Σq.

Proof: The key is:

c1, c2 P Ψ0,�µ
td , c1 � c2 P Ψ�j,�µ

td ñ F pc1q � F pc2q P Ψ�j�1,�µ
td .

4.3. Proof.

The proof boils down to:

Proposition. D Cauchy data c�refp0q of Hadamard two-point function s.t.

c�outp0q � c�refp0q � Ψ�8pΣq.

The crucial lemma is:

Lemma. Let Woutptq � Uadp0, tqUad
outpt, 0q. Then

lim
tÑ�8

Woutptqπ�Woutptq�1 � π� � Ψ�8pΣq b LpC2q, in BpL2pΣq b C2q.
Proof: Cook method:

lim
tÑ�8

Woutptqπ�Woutptq�1

� π� �
ˆ �8

0

BtpWoutptqπ�Woutptq�1qdt in BpL2pΣq b C2q.
The integral term is:

BtpWoutptqπ�Woutptq�1q � �iUp0, tqrHadptq, π�sUpt, 0q
� Up0, tqrR�8ptq, π�sUpt, 0q, R�8 P Ψ�8,�1�δ

td pR; Σq bBpC2q.
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4.4. More general consequences. Suppose now Σ is compact and we have an asymp-
totic dynamics Hout at t � �8 and also at t � �8. Modulo time-decaying, smoothing
(hence compact) terms, we can now solve a global problem: Pu � v with u and v with
asymptotic data at �8 in Ker1R�pHoutq and asymptotic data at �8 in Ker1R�pHoutq.
This gives Fredholm property of P on suitable Hilbert spaces (somewhat analogous to
anisotropic Sobolev spaces)! One can prove that P is actually invertible and P�1 is
a Feynman parametrix in the sense of Duistermaat & Hörmander (this is a statement
about the wave front set). This is closely related to essential self-adjointness of P !

For Σ � Rd one needs to impose and control the decay in spatial directions to get
compact remainder terms. The techniques are similar but require a different pseudo-
differential calculus.

Global Fredholm problems and inverses for P using different (but always microlocal)
techniques: [Gell-Redman, Haber, Vasy ’13], [Bär, Strohmaier ’18], [Gérard, W. ’17],
[Vasy ’17], etc.

Black hole spacetimes are more complicated...

5. THERMAL AND LOCAL-TO-GLOBAL EFFECTS

5.1. Thermal states.

Recall that if aptq � a ¥ 0 and rptq � 0,

c�vac � 1R�pHq � 1

2

�
1 �a� 1

2

�a 1
2 1



.

Thermal state at temperature T � 2π{β corresponds to:

c�β � p1� e	βHq�1,

Note pc�vacq2 � c�vac but not true for c�β . Note also limβÑ�8 c�β � c�vac.

Those choices are canonically associated to time-like Killing vector field Bt.
Consider two ‘Wick-rotated’ situations, with t � is. Let k � ds2 � h, and A � Bs�H .

On R� Σ:

A�1vpsq �
ˆ
R
Kps� s1qvps1qds

Kpsq ��� e�sH
�
1R�psq1R�pHq � 1R�psq1R�pHq

�
.

On Sβ � Σ,

A�1vpsq �
ˆ
Sβ
Kps� s1qvps1qds1

Kpsq ��� e�sH
�
1R�psqp1 � e�βHq�1 � 1R�psqp1 � eβHq�1

�
.
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Let γf ��� fp0�q.
Proposition. γA�1γ� equals c�vac, resp. c�β .

5.2. Unruh effect.

Let M � R2, g � �dt2 � dx2, and M� � tx PM : x ¡ tu. New coordinates on M�:

t � a�1ear sinhpaηq
x � a�1ear coshpaηq

Then g � e2arp�dη2 � dr2q.
Theorem. The vacuum for Bt restricts to thermal state (with β � 2π{β) on M� for Bη.
On black-hole space-times with stationary exterior regions (or more precisely, space-
times with bifurcate Killing horizons), similar result, but Hadamard extendability across
the horizon enforces that 2π{β is exactly the Hawking temperature [Sanders ’15; Gérard
’18].

5.3. Reeh-Schlieder property.

Definition. px0, ξ0q R WFapuq (the analytic wave front set of u P D1pRnq) if D nbh. U
of x0 and Γ of ξ0, and a bounded sequence uN P E 1pRnq s.t. uk � u in U and��ξNxuNpξq�� ¤ CpCpN � 1qqN , ξ P Γ.

Generalizes to real-analytic M .

Definition. For F � M , the normal set NpF q � T �Mzo is the set of px0, ξ0q s.t. x0 P
F , ξ0 � 0, and Df P C2pM ;Rq s.t. dfpx0q � ξ0 or dfpx0q � �ξ0 and F � tx : fpxq ¤
fpx0qu.
Theorem. [Kashiwara-Kawai] @u P D1pMq, Npsuppuq � WFapuq.
Definition. analytic Hadamard condition WFapΛ�q1 � N� �N�.

Lemma. Let M be real-analytic, connected. If WFapuq X �WFapuq, and O � M
open non-empty, then

u|O � 0 ñ u � 0.

Proof: Npsuppuq � �Npsuppuq, so assumption implies Npsuppuq � H. Hence
B suppu � H, so suppu � H or suppu �M (impossible if u|O � 0). l

Theorem. [Strohmaier, Verch, Wollenberg ’02] If Λ� analytic Hadamard then for any
open O �M ,

Vect
 ±p

i�1 φpuiqΩvac : p P N, ui P C8
c pOq

(
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dense in H.
Proof: Suppose Φ is orthogonal. Then all distributions

p±p�1
i�1 φpuiqφp�qΩvac|Φq

vanish on O. Assumptions of Lemma are satisfied, so these distributions vanish on M .
We conclude

p±p�1
i�1 φpuiqφp�qΩvac|Φq

In view of density of

Vect
 ±p

i�1 φpuiqΩvac : p P N, ui P C8
c pMq(,

this implies Φ � 0. l

Theorem. [Gérard, W. ’17] Analytic Hadamard two-point functions Λ� exist in ana-
lytic case.

5.4. Outlook.

Other methods: propagation estimates near radial sets

Open questions concern:

(1) Scattering + Hadamard condition on rotating black hole spacetimes
(asymptotically thermal effects, extendability theoremes),

(2) Reeh-Schlieder property of i.e. HHI state.
(3) Coupling φpxq with dynamical g
(4) ‘Spectral geometry’ of the Klein-Gordon operator P

etc.
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