Summer School on Microlocal Methods in Global Analysis, Göttingen, August 2018

Introductory notes on microlocal analysis in QFT on curved spacetimes

Michał WROCHNA

1. QFT ON CURVED SPACETIMES

1.1. Lorentzian manifolds.

Definition. Lorentzian manifold (M, q): M smooth manifold, q Lorentzian metric, i.e. a smooth map $M \ni x \mapsto g(x)$, where g(x) is a sym. bilinear form on $T_x M$ of signature (1, n-1).

Definition. A vector $v \in T_x M$ is time-like if $v \cdot g(x)v < 0$, null if $v \cdot g(x)v = 0$, space-like if $v \cdot q(x)v > 0$.

A spacetime is a Lorentzian manifold (M, g) equipped with a *time-orientation*, i.e. a continuous time-like Killing vector field. This splits cone of time-like vector fields $C(x) \subset T_x M$ into two components $C^{\pm}(x)$.

Definitions. A piecewise C^1 curve $\gamma : I \to M$ is causal if its tangent vectors are time-like or null. If $K \subset M$, its causal future/past is $J_{\pm}(K) := \bigcup_{x \in K} J_{\pm}(x)$, where

 $J_{\pm}(x) := \{ \gamma(s): \ \gamma \text{ causal future/past directed starting at } x, \ s \in \mathbb{R} \}.$

We set $J(K) := J_+(K) \cup J_-(K)$. One says $K_1, K_2 \subset M$ are causally separated if $J(K_1) \cap K_2 = \emptyset.$

1.2. Introduction to QFT.

Let (M, g) be a spacetime. Let $m \in \mathbb{R}$, and

$$P = -\Box_g + m^2 = -|g|^{-\frac{1}{2}}\partial_a |g|^{\frac{1}{2}}g^{ab}\partial_b + m^2 \quad \text{(the Klein-Gordon operator)}.$$

Linear quantum fields: $\phi \in \mathcal{D}'(M; \mathcal{H})$ with values in Hilbert space \mathcal{H} s.t. $P\phi = 0$ and:

(1) $\phi(v)^* = \phi(v)$ for $v \in C_c^{\infty}(M; \mathbb{R})$ (where $\phi(v) = \int_M \phi(x) d\operatorname{vol}_g(x)$) (2) $\exists \Omega \in \mathcal{H} \text{ s.t.}$

$$\{\phi(v_1)\dots\phi(v_i)\Omega: v_1,\dots,v_i\in C_{\rm c}^{\infty}(M), \ i\in\mathbb{N}\}$$

is dense in \mathcal{H}

(3) $[\phi(x), \phi(x')] = 0$ if $x, x' \in M$ are space-like separated (canonical choice: $[\phi(x), \phi(x')] = iG(x, x')\mathbf{1}$)

If $(M,g) = \mathbb{R}^{1,d}$ and m > 0, $\phi_{vac}(x)$ is the reference dynamics for non-interacting (non-linear) fields.

In general, no canonical choice of $\phi(x)$: we can probe quantum effects induced by the geometry.

Difficulties:

- \mathcal{H} not a priori given!
- $\phi(x)$ very singular, $\phi(x)^2$ does not exist
- locally, $\phi(x)$ should ressemble $\phi_{\rm vac}(x)$

This boils down to two-point functions

$$\Lambda^+(x,x') := (\Omega | \phi(x)\phi(x')\Omega).$$

The program is to construct first $\Lambda^+(x, x')$.

Remark 1. Formally, $(\Omega | \phi^2(x) \Omega) = \lim_{x \to x'} \Lambda^+(x, x') = \infty$

Remark 2. Necessarily, $\Lambda^+ \ge 0$. Other global or asymptotic conditions often imposed on physical grounds.

1.3. Quantization.

Remark. Commutation relations encoded by choice of real symplectic space.

Let \mathfrak{h} a (complex) Hilbert space. The bosonic Fock space is

$$\Gamma_{\mathrm{s}}(\mathfrak{h}) := \bigoplus_{n=0}^{\infty} \otimes_{\mathrm{s}}^{n} \mathfrak{h}.$$

Creation/annihilation operators:

$$a^*(h)\Psi_n := \sqrt{n+1} h \otimes_{\mathrm{s}} \Psi_n,$$

$$a(h)\Psi_n := \sqrt{n} ((h| \otimes_{\mathrm{s}} \mathbf{1}_{n-1}) \Psi_n)$$

for $h \in \mathfrak{h}$ and $\Psi_n \in \bigotimes_{\mathrm{s}}^n \mathfrak{h}$, where (h| is the map $\mathfrak{h} \ni u \mapsto (h|u) \in \mathbb{C}$. As quadratic forms on a suitable domain,

$$[a(h_1), a(h_2)] = [a^*(h_1), a^*(h_2)] = 0,$$

$$[a(h_1), a^*(h_2)] = (h_1|h_2)\mathbf{1}, \quad h_1, h_2 \in \mathfrak{h}.$$

Therefore, if $\phi_{\rm F}(h) := \frac{1}{\sqrt{2}} \left(a(h) + a^*(h) \right)$ then

$$\left[\phi_{\mathrm{F}}(h_1),\phi_{\mathrm{F}}(h_2)\right] = \mathrm{i}\,\mathrm{Im}(h_1|h_2)\mathbf{1} =: \mathrm{i}(h_1\cdot\sigma h_2)\mathbf{1}.$$

The <u>vacuum vector</u> is $\Omega = (1, 0, ...)$. Observe that we can modify the Hilbert space while keeping the above commutation relation unchanged. Indeed, for $(\mathfrak{h}_{\mathbb{R}}, \sigma)$ a fixed

symplectic space, we can define using some operator j:

$$(h_1|h_2)_{\mathrm{F}} := h_1 \cdot \sigma \mathrm{j}h_2 + \mathrm{i}h_1 \cdot \sigma h_2$$

This works provided $(\mathfrak{h}_{\mathbb{R}}, \sigma, j)$ is <u>Kähler</u>, i.e. $j^2 = -1$ and $\sigma \circ j \ge 0$. A new Hilbert space is obtained by complexification $(\alpha + i\beta)h := \alpha h + j\beta h$ for $h \in \mathfrak{h}_{\mathbb{R}}, \alpha + i\beta \in \mathbb{C}$, and by taking the completion. Thus, different choices of j give different Hilbert spaces and different fields (possibly non-unitarily equivalent).

In practice it is better to work with complex vector spaces exclusively, and encode the choice of j in terms of *two-point functions* Λ^{\pm} .

Proposition. Let q be a hermitian form on a complex vector space V. Suppose Λ^{\pm} are two non-degenerate forms s.t.

(1)
$$\Lambda^{\pm} \ge 0$$
, (2) $\Lambda^{+} - \Lambda^{-} = q$.

Let V^{cpl} be the completion w.r.t. $\frac{1}{2}(\Lambda^+ + \Lambda^-)$. Then there exists j such that $(V_{\mathbb{R}}^{\text{cpl}}, \sigma, j)$ is Kähler and

$$\sigma \mathbf{j} = \frac{1}{2} \operatorname{Re}(\Lambda^+ + \Lambda^-), \ \sigma = \operatorname{Im} q.$$

Consequently,

$$(v_1|v_2)_{\mathrm{F}} = \frac{1}{2} \left(\overline{v_1} \cdot \Lambda^+ v_2 + \overline{v_1} \cdot \Lambda^- v_2 \right)$$

The proof is particularly easy if $\Lambda^{\pm} = \pm qc^{\pm}$, where c^{\pm} are projections (note $c^{+} + c^{-} = 1$), i.e. $j = i(c^{+} - c^{-})$.

This gives $(\Omega | \phi(v_1) \phi(v_2) \Omega) = \overline{v_1} \cdot \Lambda^+ v_2, \forall v_i \in V \text{ s.t. } \overline{v_i} = v_i.$

1.4. Propagators.

Assumption. (M, g) is globally hyperbolic, i.e., $J_+(K_1) \cap J_-(K_2)$ is compact for all K_1, K_2 compact.

Working assumption. We assume $M = \mathbb{R}_t \times \Sigma$ with Σ compact or $\Sigma = \mathbb{R}^d$, and

 $g = -dt^2 + h_t$, $t \mapsto h_t$ smooth with value in Riemannian metrics.

In this setting, global hyperbolicity equivalent to: for fixed $t \in \mathbb{R}$, each maximally extended time-like geodesic hits $\mathbb{R}_t \times \Sigma$ once.

Then $P = \partial_t^2 + r(t)\partial_t + a(t, \mathbf{x}, \partial_\mathbf{x})$, where $r(t) = |h_t|^{-\frac{1}{2}}\partial_t |h_t|^{\frac{1}{2}}$ and *i*) $\sigma_{\mathrm{pr}}(a)(t, \mathbf{x}, k) = k \cdot h_t^{-1}(\mathbf{x})k$, *ii*) $a(t, \mathbf{x}, \partial_\mathbf{x}) = a^*(t, \mathbf{x}, \partial_\mathbf{x})$

w.r.t. $(f_1|f_2)_t = \int_{\Sigma} \overline{f_1} f_2 |h_t|^{\frac{1}{2}} d\mathbf{x}.$

Remark. Considering $f_1 \circ P \circ f_2$ instead of P for $f_1, f_2 \in C^{\infty}(M)$, $f_1, f_2 > 0$ corresponds to more general g.

Terminology. One says $G: C_c^{\infty}(M) \to C^{\infty}(M)$ is a propagator if either

- (1) $PG = \mathbf{1}$ and $GP = \mathbf{1}$ on $C_c^{\infty}(M)$ (inverse), or (2) PG = 0 and GP = 0 on $C_c^{\infty}(M)$ (bi-solution).

Theorem. [goes back to Leray] There exist unique <u>retarded/advanced inverses</u> G_{\pm} : $C^{\infty}_{c}(M) \to C^{\infty}(M)$, i.e. $\forall v$, supp $G_{\pm}v \subset J_{\pm}(\operatorname{supp} v)$.

Here, $(\operatorname{supp} G_{\pm}v) \cap \{t = s\}$ is compact for all s, and empty for large $\pm s$.

Definition. <u>Pauli-Jordan bi-solution</u> (or causal propagator) $G := G_+ - G_-$.

By $P = P^*$ and uniqueness of G_{\pm} , $G_{\pm}^* = G_{\mp}$. Hence $G^* = -G$ on $C_c^{\infty}(M)$.

The symplectic space for QFT is $C_{\rm c}^{\infty}(M;\mathbb{R})/PC_{\rm c}^{\infty}(M;\mathbb{R})$ equipped with G. Complex version: $C_{\rm c}^{\infty}(M)/PC_{\rm c}^{\infty}(M)$ equipped with iG.

To quantize we need two-point functions $\Lambda^{\pm}: C^{\infty}_{c}(M) \to C^{\infty}(M)$ s.t.

(1)
$$\Lambda^{\pm} \ge 0$$
, (2) $\Lambda^{+} - \Lambda^{-} = \mathbf{i}G$, (3) $P\Lambda^{\pm} = \Lambda^{\pm}P = 0$.

From this we get fields $\phi([v]), v \in C_{c}^{\infty}(M; \mathbb{R})$. Note that $P\phi = 0$.

Example. Suppose $P = \partial_t^2 - \Delta_x + m^2$ and m > 0. Then

$$\left(\Lambda_{\rm vac}^{\pm}v\right)(t) = \int_{\mathbb{R}} \frac{e^{\pm i(t-s)\sqrt{-\Delta_{\rm x}+m^2}}}{\sqrt{-\Delta_{\rm x}+m^2}}v(s)ds$$

Characteristic feature: solves $(i^{-1}\partial_t \pm \sqrt{-\Delta_x + m^2})u(t, x) = 0.$

Physical principle. Admissible Λ^{\pm} should have same short-distance behaviour as Λ^{\pm}_{vac} (Hadamard condition). Consequence (Radzikowski theorem): $\Lambda^{\pm} = singular$, geometric part + smooth part.

2. HADAMARD TWO-POINT FUNCTIONS

2.1. Cauchy problem.

We fix $s \in \mathbb{R}$.

Theorem. $\forall v \in C_c^{\infty}(\Sigma)^2, \exists ! u \in C^{\infty}(M)$ (space-compact) solving

$$\begin{cases} Pu = 0\\ \varrho(s)u = f \end{cases}$$

where $\rho(s)u = (u(s), i^{-1}\partial_t u(s)).$ The dual is $\rho(s)^* f = f^0 \otimes \delta(s) - if^1 \otimes \delta'(s) : \mathcal{D}'(\Sigma)^2 \to \mathcal{D}'(M).$ Let $q = \begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix}$.

Proposition. $U(s) = i^{-1}(\varrho(s)G)^*q$ on $C_c^{\infty}(\Sigma; \mathbb{C}^2)$. *Proof:* Green's formula gives

$$\int_{J_{\pm}(\Sigma)} \left(\overline{u_1} P u_2 - \overline{P u_1} u_2 \right) d\mathrm{vol}_g = \int_{\Sigma} \left(\overline{\partial_t u_1} u_2 - \overline{u_1} \partial_t u_2 \right) d\mathrm{vol}_h.$$

Applied to $u_1 = G_{\mp}v$, $u_2 = u = U(s)f$, $v \in C_c^{\infty}(M)$,

$$\int_{J_{+}(\Sigma)} \overline{v}u \, d\mathrm{vol}_{g} = \int_{\Sigma} \left(\overline{G_{-}v} \partial_{t}u - \overline{\partial_{t}G_{-}v}u \right) d\mathrm{vol}_{h},$$
$$\int_{J_{-}(\Sigma)} \overline{v}u \, d\mathrm{vol}_{g} = \int_{\Sigma} \left(\overline{G_{+}v} \partial_{t}u - \overline{\partial_{t}G_{+}v}u \right) d\mathrm{vol}_{h}.$$

Since $J(\Sigma) = M$, adding the two we get

$$\int_{M} \overline{v} u \, d\mathrm{vol}_{g} = \int_{\Sigma} \left(\overline{\partial_{t} G v} u - \overline{G v} \partial_{t} u \right) d\mathrm{vol}_{h}.$$

Now use $G^* = -G$ and formula for $\rho(s)^*$. \Box

Hence, continuous extension $U(s) : \mathcal{E}'(\Sigma)^2 \to \mathcal{D}'(M)$. **Proposition.** Suppose $c^{\pm}(s) : C_c^{\infty}(\Sigma)^2 \to C^{\infty}(\Sigma)^2$ satisfy

(1)
$$\pm qc^{\pm}(s) \ge 0$$
, (2) $c^{+}(s) + c^{-}(s) = \mathbf{1}$.

Then $\Lambda^{\pm} := \pm U(s)^* qc^{\pm}(s)U(s)$ are two-point functions. We write $(\partial_t^2 + r(t)\partial_t + a(t))u(t) = 0$ as

$$i^{-1}\partial_t\psi(t) = H(t)\psi(t), \quad H(t) = \begin{pmatrix} 0 & \mathbf{1} \\ a(t) & ir(t) \end{pmatrix},$$

by setting

$$\psi(t) = \begin{pmatrix} u(t) \\ \mathrm{i}^{-1}\partial_t u(t) \end{pmatrix} =: \varrho(t)u.$$

 $U(t,s) := \varrho(t)U(s) \in B(H^1(\Sigma) \oplus L^2(\Sigma))$ evolution generated by H(t). Then:

$$q = U^*(s, t)qU(s, t).$$

Example. If $a(t) = a \ge 0$, r(t) = 0 then $\Lambda_{\text{vac}}^{\pm}$ has data

$$c_{\mathrm{vac}}^{\pm}(s) = c_{\mathrm{vac}}^{\pm} = \mathbf{1}_{\mathbb{R}^{\pm}}(H) = \frac{1}{2} \begin{pmatrix} \mathbf{1} & \pm a^{-\frac{1}{2}} \\ \pm a^{\frac{1}{2}} & \mathbf{1} \end{pmatrix}.$$

2.2. Hadamard condition.

The principal symbol of P is $p(t, \mathbf{x}, \tau, k) = \tau^2 - k \cdot h_t(\mathbf{x})k$.

$$\operatorname{Char}(P) = \mathcal{N}^+ \cup \mathcal{N}^-, \ \mathcal{N}^\pm = \left\{ (t, \mathbf{x}, \tau, k) : \tau = \pm (k \cdot h_t(\mathbf{x})k)^{\frac{1}{2}}, \ k \neq 0 \right\}$$

If $\Gamma \subset T^*M \times T^*M$,

$$\Gamma' := \left\{ \left((x_1, \xi_1), (x_2, \xi_2) \right) : \left((x_1, \xi_1), (x_2, -\xi_2) \right) \in \Gamma \right\}.$$

Definition. Λ^{\pm} is *Hadamard* if

(Had) $\operatorname{WF}(\Lambda^{\pm})' \subset \mathcal{N}^{\pm} \times \mathcal{N}^{\pm}.$

Theorem. [Radzikowski] If Λ^{\pm} , $\tilde{\Lambda}^{\pm}$ are Hadamard two-point functions then $\Lambda^{\pm} - \tilde{\Lambda}^{\pm}$ has $C^{\infty}(M \times M)$ kernel. *Proof:* $\Lambda^{+} - \Lambda^{-} = \tilde{\Lambda}^{+} - \tilde{\Lambda}^{-} = iG$, hence $\Lambda^{+} - \tilde{\Lambda}^{+} = \Lambda^{-} - \tilde{\Lambda}^{-}$. These have disjoint wave front sets by (Had). Hence $WF(\Lambda^{\pm} - \tilde{\Lambda}^{\pm})' = \emptyset$. \Box

Remark. We can deduce $WF(\Lambda^{\pm})'$ exactly.

Lemma. $WF(\Lambda^{\pm})' \subset \mathcal{N}^{\pm} \times T^*M$ implies (Had). *Proof:* Use $\Lambda^{\pm} \ge 0$ to symmetrize $WF(\Lambda^{\pm})'$. Then eliminate singularities in $T^*M \times o$ using [Duistermaat, Hörmander]. \Box

Theorem. $\Lambda_{\text{vac}}^{\pm}$ are Hadamard. *Proof:* Use $(i^{-1}\partial_t \pm \sqrt{-\Delta_x + m^2})\Lambda_{\text{vac}}^{\pm} = 0.$

Application. (Quantum Energy Inequalities, [Fewster]) For fixed $x \in \Sigma$,

$$E_arphi := \int_{\mathbb{R}} (\Lambda^+ - \widetilde{\Lambda}^+)(t,t,\mathrm{x},\mathrm{x}) arphi^2(t) \;\; ext{exists} \; .$$

(Renormalized charge density, averaged along timelike curve). Setting $\Lambda_{\varphi}^{\pm} : C_{c}^{\infty}(\mathbb{R}) \to C_{c}^{\infty}(\mathbb{R})$ the op. with kernel $\varphi(t)\Lambda^{\pm}(t,t',\mathbf{x},\mathbf{x})\varphi(t')$,

$$E_{\varphi} = \operatorname{Tr}(\Lambda_{\varphi}^{+} - \tilde{\Lambda}_{\varphi}^{+}) = \operatorname{Tr}(\theta(D_{t})(\Lambda_{\varphi}^{+} - \tilde{\Lambda}_{\varphi}^{+})\theta(D_{t})) + \operatorname{Tr}(\theta(-D_{t})(\Lambda_{\varphi}^{+} - \tilde{\Lambda}_{\varphi}^{+})\theta(-D_{t}))$$

$$= \operatorname{Tr}(\theta(D_{t})(\Lambda_{\varphi}^{+} - \tilde{\Lambda}_{\varphi}^{+})\theta(D_{t})) + \operatorname{Tr}(\theta(-D_{t})(\Lambda_{\varphi}^{-} - \tilde{\Lambda}_{\varphi}^{-})\theta(-D_{t}))$$

$$\geq -\operatorname{Tr}(\theta(D_{t})\tilde{\Lambda}_{\varphi}^{+}\theta(D_{t})) - \operatorname{Tr}(\theta(-D_{t})\tilde{\Lambda}_{\varphi}^{-}\theta(-D_{t})) =: -C_{\varphi}.$$

3. CONSTRUCTION BY PSEUDO-DIFFERENTIAL CALCULUS

3.1. Uniform PDO calculus.

In what follows $\Psi^{\mu}(\Sigma)$ is Hörmander's (uniform) calculus if $\Sigma = \mathbb{R}^d$ and the usual calculus on manifolds if Σ is compact. In more general non-compact cases one needs some global calculus that replaces $\Psi^{\mu}(\Sigma)$.

Let $b(t) = b_1(t) + b_0(t)$, s.t.: (E) $b_i(t) \in C^{\infty}(\mathbb{R}; \Psi^i(M)), i = 0, 1,$ $b_i(t)$ is elliptic symmetric and be

 $b_1(t)$ is elliptic, symmetric and bounded from below on $H^{\infty}(M)$.

Define $U_b(t, s)$ by:

$$\begin{cases} \frac{\partial}{\partial t}U_b(t,s) = \mathrm{i}b(t)U_b(t,s), \ t,s \in \mathbb{R}, \\ \frac{\partial}{\partial s}U_b(t,s) = -\mathrm{i}U_b(t,s)b(s), \ t,s \in \mathbb{R}, \\ U_b(s,s) = \mathbf{1}, \ s \in \mathbb{R}. \end{cases}$$

Here $U_b(t,s)$ is strongly continuous in (t,s) with values in $B(L^2(M))$ (one needs to work a bit and use perturbation theory, note that b is not necessarily self-adjoint).

Lemma.

(1) $U_b(t,s) \in B(H^m(M))$ for $m \in \mathbb{Z} \cup \{\pm \infty\}$, $\mathbb{R}^2 \ni (t,s) \mapsto U_b(t,s)$ is strongly continuous on $H^m(M)$,

(2) if
$$r_{-\infty} \in \Psi^{-\infty}(M)$$
 then $U_b(t,s)r_{-\infty}$, $r_{-\infty}U_b(t,s) \in C^{\infty}(\mathbb{R}^2_{t,s},\Psi^{-\infty}(M))$.

Theorem. [Egorov] Let $a \in \Psi^m(M)$ and b(t) satisfying (E). Then

$$a(t,s) := U_b(t,s)aU_b(s,t) \in C^{\infty}(\mathbb{R}^2, \Psi^m(M))$$

Moreover

$$\sigma_{\rm pr}(a)(t,s) = \sigma_{\rm pr}(a) \circ \Phi(s,t),$$

where $\Phi(t,s): T^*M \to T^*M$ is the flow of the time-dependent Hamiltonian $\sigma_{\rm pr}(b)(t)$.

Theorem. [essentially Seeley] Let $a \in C^{\infty}(\mathbb{R}; \Psi^m(\Sigma))$ be elliptic, selfadjoint, $a(t) \ge c\mathbf{1}$ for $c > 0, t \in \mathbb{R}$. Then $a^s \in C^{\infty}(\mathbb{R}; \Psi^{ms}(\Sigma))$ for any $s \in \mathbb{R}$ and

$$\sigma_{\rm pr}(a^s)(t) = \sigma_{\rm pr}(a(t))^s.$$

3.2. Approximate diagonalization of evolution.

Method due to [Junker], [Junker, Schrohe], [Gérard, W.], [Gérard, Oulghazi, W.] Suppose we have $b(t) \in C^{\infty}(\mathbb{R}; \Psi^{1}(\Sigma))$ elliptic s.t.

(J) $(\partial_t + ib^{\pm}(t) + r(t)) \circ (\partial_t - ib^{\pm}(t)) = \partial_t^2 + r(t)\partial_t + a(t) \mod smoothing$ Set

$$\tilde{\psi}(t) := \begin{pmatrix} \partial_t - \mathrm{i}b^-(t) \\ \partial_t - \mathrm{i}b^+(t) \end{pmatrix} u(t).$$

Then $\tilde{\psi}(t) = S^{-1}(t)\psi(t)$ with

$$S^{-1}(t) = i \begin{pmatrix} -b^{-}(t) & \mathbf{1} \\ -b^{+}(t) & \mathbf{1} \end{pmatrix}, \quad S(t) = i^{-1} \begin{pmatrix} \mathbf{1} & -\mathbf{1} \\ b^{+}(t) & -b^{-}(t) \end{pmatrix} (b^{+}(t) - b^{-}(t))^{-1},$$

if $b^+(t) - b^-(t)$ invertible. We have

$$\begin{pmatrix} \partial_t + ib^- + r & 0\\ 0 & \partial_t + ib^+ + r \end{pmatrix} \tilde{\psi}(t) = 0$$

modulo smoothing. Even better diagonalization:

$$T(t) := S(t)(b^{+} - b^{-})^{\frac{1}{2}}(t) = i^{-1} \begin{pmatrix} \mathbf{1} & -\mathbf{1} \\ b^{+} & -b^{-} \end{pmatrix} (b^{+} - b^{-})^{-\frac{1}{2}},$$

$$T^{-1}(t) = i(b^{+} - b^{-})^{-\frac{1}{2}} \begin{pmatrix} -b^{-} & \mathbf{1} \\ -b^{+} & \mathbf{1} \end{pmatrix},$$

gives

(3.1)
$$T^*(t)qT(t) = \begin{pmatrix} \mathbf{1} & 0\\ 0 & -\mathbf{1} \end{pmatrix} =: q^{\mathrm{ad}}.$$

We get:

$$U(t,s) = T(t)U^{ad}(t,s)T(s)^{-1}$$

= $T(t)U^{d}(t,s)T(s)^{-1} + C^{\infty}(\mathbb{R}^{2}; \Psi^{-\infty}(\Sigma)).$

Now: $c^{\pm}(t_0) := T(t_0)\pi^{\pm}T^{-1}(t_0),$

$$\pi^+ = \left(\begin{array}{cc} \mathbf{1} & 0\\ 0 & 0 \end{array}\right), \ \pi^- = \left(\begin{array}{cc} 0 & 0\\ 0 & \mathbf{1} \end{array}\right).$$

And $U^{\pm}(t,s) := U(t,t_0)c^{\pm}(t_0)U(t_0,s)$ propagates with correct wave front set!

3.3. Riccati equation.

Equation (J) is:

$$\mathrm{i}\partial_t b^{\pm} - b^{\pm 2} + a + \mathrm{i}rb^{\pm} = 0 \mod \mathrm{smoothing}$$
.

Without loss, assume a(t) uniformly positive.

Theorem. $\exists b \in C^{\infty}(\mathbb{R}; \Psi^{1}(\Sigma))$ s.t.

i)
$$b = a^{\frac{1}{2}} + C^{\infty}(\mathbb{R}; \Psi^{0}(\Sigma)),$$

ii) $(b + b^{*})^{-1} = (2a)^{-\frac{1}{4}}(1 + r_{-1})(2a)^{-\frac{1}{4}}, r_{-1} \in C^{\infty}(\mathbb{R}; \Psi^{-1}(\Sigma)),$

- *iii*) $(b+b^*)^{-1} \ge ca^{-\frac{1}{2}}$, for some $c \in C^{\infty}(\mathbb{R};\mathbb{R}), c > 0$,
- $$\begin{split} iv) \quad \mathrm{i}\partial_t b^\pm b^{\pm 2} + a + \mathrm{i} r b^\pm &= r^\pm_{-\infty} \in C^\infty(\mathbb{R}; \Psi^{-\infty}(\Sigma)), \\ &\text{for } b^+ := b, \; b^- := -b^*. \end{split}$$

Proof: Modulo smoothing, $a = \operatorname{Op}(c), c \in C^{\infty}(\mathbb{R}; S^{1}_{\mathrm{ph}}(T^{*}\Sigma))$, with $c_{\mathrm{pr}}(t, x, \xi) = (\xi \cdot h_{t}^{-1}(x)\xi)^{\frac{1}{2}}$. We look for b of the form $b = \operatorname{Op}(c) + \operatorname{Op}(d)$ for $d \in C^{\infty}(\mathbb{R}; S^{0}_{\mathrm{ph}}(T^{*}\Sigma))$. Since $\operatorname{Op}(c)$ is elliptic, we can fix a symbol $\hat{c} \in C^{\infty}(\mathbb{R}; S^{-1}_{\mathrm{ph}}(T^{*}\Sigma))$ s.t. $\operatorname{Op}(\hat{c})$ is a parametrix of $\operatorname{Op}(c)$. Modulo error terms in $C^{\infty}(\mathbb{R}; \mathcal{W}^{-\infty}(\Sigma))$, (J) becomes:

(3.2)
$$\operatorname{Op}(d) = \frac{1}{2} (\operatorname{Op}(\hat{c}) \operatorname{Op}(\partial_t c) + \operatorname{Op}(\hat{c}) r \operatorname{Op}(c)) + F(\operatorname{Op}(d)).$$

for:

$$F(\operatorname{Op}(d)) = \frac{1}{2} \operatorname{Op}(\hat{c}) \left(\operatorname{iOp}(\partial_t d) + \left[\operatorname{Op}(c), \operatorname{Op}(d) \right] + \operatorname{irOp}(d) - \operatorname{Op}(d)^2 \right).$$

From symbolic calculus, we obtain that:

$$F(\operatorname{Op}(d)) = \operatorname{Op}(\tilde{F}(d)) + C^{\infty}(\mathbb{R}; \Psi^{-\infty}(\Sigma)),$$

for

$$\tilde{F}(d) = \frac{1}{2}\hat{c}*\left(\mathrm{i}\partial_t d + c*d - d*c + \mathrm{i}r*d - d*d\right),$$

The equation (3.2) becomes:

$$(3.3) d = a_0 + \tilde{F}(d)$$

for

$$a_0 = \frac{1}{2}(\hat{c}*\partial_t c + \hat{c}*r*c) \in C^{\infty}(\mathbb{R}; S^0_{\mathrm{ph}}(T^*\Sigma)).$$

The map \tilde{F} has the following property:

(3.4)
$$d_1, d_2 \in C^{\infty}(\mathbb{R}; S^0_{\mathrm{ph}}(T^*\Sigma)), \ d_1 - d_2 \in C^{\infty}(\mathbb{R}; S^{-j}_{\mathrm{ph}}(T^*\Sigma))$$
$$\Rightarrow \quad \tilde{F}(d_1) - \tilde{F}(d_2) \in C^{\infty}(\mathbb{R}; S^{-j-1}_{\mathrm{ph}}(T^*\Sigma)).$$

This allows to solve symbolically (3.3) by setting

$$d_{-1} = 0, \ d_n := a_0 + \tilde{F}(d_{n-1}),$$

and

$$d \simeq \sum_{n \in \mathbb{N}} d_n - d_{n-1},$$

which is an asymptotic series since by (3.4) we see that

$$d_n - d_{n-1} \in C^{\infty}(\mathbb{R}; S^{-n}_{\mathrm{ph}}(T^*\Sigma)).$$

Hence Op(c + d) solves (J) modulo $C^{\infty}(\mathbb{R}; \Psi^{-\infty}(\Sigma))$.

We observe then that if $b \in C^{\infty}(\mathbb{R}; \Psi^{\infty}(\Sigma))$ we have:

$$(\partial_t b)^* = \partial_t (b^*) + rb^* - b^* r,$$

This implies that $-Op(d)^*$ is also a solution modulo $C^{\infty}(\mathbb{R}; \Psi^{-\infty}(\Sigma))$.

To complete the construction of b^{\pm} , we consider

$$s = \operatorname{Op}(c+d) + \operatorname{Op}(c+d)^*,$$

which is selfadjoint, with principal symbol equal to $2(\xi \cdot h_t^{-1}(x)\xi)^{\frac{1}{2}}$. There exists $r_{-\infty} \in C^{\infty}(\mathbb{R}; \Psi^{-\infty}(\Sigma))$ such that

(3.5)
$$s + r_{-\infty} \sim a^{\frac{1}{2}}.$$

We set now:

$$b := \operatorname{Op}(c+d) + \frac{1}{2}r_{-\infty}$$

Properties *i*) and *iv*) follow from the same properties of Op(c + d). To prove property *ii*) we write

$$b + b^* = (2a)^{\frac{1}{4}} (\mathbf{1} + \tilde{r}_{-1}) (2a)^{\frac{1}{4}},$$

where $\tilde{r}_{-1} \in C^{\infty}(\mathbb{R}; \Psi^{-1}(\Sigma))$, by [Seeley]. Since $(1 + \tilde{r}_{-1})$ is boundedly invertible, we have again by [Seeley]

$$(\mathbf{1} + \tilde{r}_{-1})^{-1} = \mathbf{1} + r_{-1}, \ r_{-1} \in C^{\infty}(\mathbb{R}; \Psi^{-1}(\Sigma)),$$

which implies ii).

4. Scattering by geometry

4.1. Setup.

Definition. $\Psi_{td}^{m,\delta}(\mathbb{R};\Sigma) := Op \text{ of } t\text{-dependent symbols } a(t, \mathbf{x}, k) \in S_{td}^{m,\delta}(\mathbb{R};\Sigma), \text{ i.e.:}$

$$\left|\partial_t^{\alpha}\partial_{\mathbf{x}}^{\beta}\partial_{\mathbf{x}}^{\gamma}a(t,\mathbf{x},k)\right| \leqslant C_{\alpha\beta\gamma}\langle t\rangle^{\delta-\alpha}\langle k\rangle^{m-|\gamma|}, \ \alpha\in\mathbb{N}, \ \beta,\gamma\in\mathbb{N}^d,$$

where $\langle t \rangle = (1 + t^2)^{\frac{1}{2}}, \langle k \rangle = (1 + |k|^2)^{\frac{1}{2}}.$

Assumption. $\exists \delta > 0 \text{ and } a_{\text{out}} \in \Psi^2(\Sigma) \text{ elliptic, } a_{\text{out}}(\mathbf{x}, D_{\mathbf{x}}) \ge m^2 > 0 \text{, s.t. on } \mathbb{R}_+ \times \Sigma$

$$a(t, \mathbf{x}, D_{\mathbf{x}}) - a_{\mathrm{out}}(\mathbf{x}, D_{\mathbf{x}}) \in \Psi_{\mathrm{td}}^{2, -\delta}(\mathbb{R}; \Sigma),$$

$$r(t) \in \Psi_{\mathrm{td}}^{0, -1-\delta}(\mathbb{R}; \Sigma).$$

Asymptotic dynamics: $P_{out} = \partial_t^2 + a_{out}(x, D_x)$. Asymptotic ('out') vacuum:

$$c_{\text{out}}^{\pm,\text{vac}} = \frac{1}{2} \begin{pmatrix} \mathbf{1} & \pm a_{\text{out}}^{-\frac{1}{2}} \\ \pm a_{\text{out}}^{\frac{1}{2}} & \mathbf{1} \end{pmatrix}.$$

Theorem. [Gérard, W.] Let

$$c_{\text{out}}^{\pm}(t) := \lim_{t_+ \to +\infty} U(t, t_+) c_{\text{out}}^{\pm, \text{vac}} U(t_+, t)$$

Then the corresponding Λ_{out}^{\pm} satisfies (Had).

4.2. Time-decaying Ψ DO families.

Lemma. Let $\delta \in \mathbb{R}$ and (m_j) a real sequence decreasing to $-\infty$. Then if $a_j \in \Psi_{td}^{m_j,-\delta}(\mathbb{R};\Sigma)$ there exists $a \in \Psi_{td}^{m_0,-\delta}(\mathbb{R};\Sigma)$, unique mod $\Psi_{td}^{-\infty,-\delta}(\mathbb{R};\Sigma)$, s.t.

$$a \sim \sum_{j=0}^{\infty} a_j$$
, i.e. $a - \sum_{j=0}^{N} a_j \in \Psi_{\mathrm{td}}^{m_{N+1}, -\delta}(\mathbb{R}; \Sigma), \ \forall N \in \mathbb{N}.$

Ellipticity is uniform in t.

Theorem. [Seeley] works also for $\Psi_{td}^{m,0}(\mathbb{R};\Sigma)$ provided $a(t) \ge c_0 \mathbf{1}$ for $c_0 > 0$.

Proposition. Let $a_i \in \Psi_{td}^{2,0}(\mathbb{R};\Sigma)$, i = 1, 2 elliptic, $a_i = a_i^*$ and $a_i(t) \ge c_0 \mathbf{1}$, $c_0 > 0$. Assume $a_1 - a_2 \in \Psi_{td}^{2,-\delta}(\mathbb{R};\Sigma)$, $\delta > 0$. Then $\forall \alpha \in \mathbb{R}$:

$$a_1^{\alpha} - a_2^{\alpha} \in \Psi_{\mathrm{td}}^{2\alpha, -\delta}(\mathbb{R}; \Sigma)$$

Proposition. $\exists b(t) = a^{\frac{1}{2}}(t) + \Psi^{0,-1-\delta}_{td}(\mathbb{R};\Sigma) = a^{\frac{1}{2}}_{out} + \Psi^{1,-\delta}_{td}(\mathbb{R}^{\pm};\Sigma)$ s.t. $i\partial_t b - b^2 + a + irb \in \Psi^{-\infty,-1-\delta}_{td}(\mathbb{R};\Sigma).$

Proof: The key is:

$$c_1, c_2 \in \Psi_{\mathrm{td}}^{0,-\mu}, \ c_1 - c_2 \in \Psi_{\mathrm{td}}^{-j,-\mu} \Rightarrow F(c_1) - F(c_2) \in \Psi_{\mathrm{td}}^{-j-1,-\mu}.$$

4.3. Proof.

The proof boils down to:

Proposition. \exists Cauchy data $c_{\text{ref}}^{\pm}(0)$ of Hadamard two-point function s.t.

$$c_{\text{out}}^{\pm}(0) = c_{\text{ref}}^{\pm}(0) + \Psi^{-\infty}(\Sigma).$$

The crucial lemma is:

Lemma. Let $W_{\text{out}}(t) = U^{\text{ad}}(0, t)U^{\text{ad}}_{\text{out}}(t, 0)$. Then

$$\lim_{t \to +\infty} W_{\text{out}}(t)\pi^+ W_{\text{out}}(t)^{-1} = \pi^+ + \Psi^{-\infty}(\Sigma) \otimes L(\mathbb{C}^2), \text{ in } B(L^2(\Sigma) \otimes \mathbb{C}^2).$$

Proof: Cook method:

$$\lim_{t \to +\infty} W_{\text{out}}(t) \pi^+ W_{\text{out}}(t)^{-1}$$

= $\pi^+ + \int_0^{+\infty} \partial_t (W_{\text{out}}(t) \pi^+ W_{\text{out}}(t)^{-1}) dt$ in $B(L^2(\Sigma) \otimes \mathbb{C}^2)$

The integral term is:

$$\begin{aligned} \partial_t (W_{\text{out}}(t)\pi^+ W_{\text{out}}(t)^{-1}) &= -\mathrm{i}U(0,t) [H^{\mathrm{ad}}(t),\pi^+] U(t,0) \\ &= U(0,t) [R_{-\infty}(t),\pi^+] U(t,0), \ R_{-\infty} \in \Psi_{\mathrm{td}}^{-\infty,-1-\delta}(\mathbb{R};\Sigma) \otimes B(\mathbb{C}^2). \end{aligned}$$

4.4. More general consequences. Suppose now Σ is compact and we have an asymptotic dynamics H_{out} at $t = +\infty$ and also at $t = -\infty$. Modulo time-decaying, smoothing (hence compact) terms, we can now solve a global problem: Pu = v with u and v with asymptotic data at $+\infty$ in Ker $\mathbf{1}_{\mathbb{R}^+}(H_{\text{out}})$ and asymptotic data at $-\infty$ in Ker $\mathbf{1}_{\mathbb{R}^-}(H_{\text{out}})$. This gives Fredholm property of P on suitable Hilbert spaces (somewhat analogous to anisotropic Sobolev spaces)! One can prove that P is actually invertible and P^{-1} is a Feynman parametrix in the sense of Duistermaat & Hörmander (this is a statement about the wave front set). This is closely related to essential self-adjointness of P!

For $\Sigma = \mathbb{R}^d$ one needs to impose and control the decay in spatial directions to get compact remainder terms. The techniques are similar but require a different pseudo-differential calculus.

Global Fredholm problems and inverses for *P* using different (but always microlocal) techniques: [Gell-Redman, Haber, Vasy '13], [Bär, Strohmaier '18], [Gérard, W. '17], [Vasy '17], etc.

Black hole spacetimes are more complicated...

5. THERMAL AND LOCAL-TO-GLOBAL EFFECTS

5.1. Thermal states.

Recall that if $a(t) = a \ge 0$ and r(t) = 0,

$$c_{\mathrm{vac}}^{\pm} = \mathbf{1}_{\mathbb{R}^{\pm}}(H) = \frac{1}{2} \begin{pmatrix} \mathbf{1} & \pm a^{-\frac{1}{2}} \\ \pm a^{\frac{1}{2}} & \mathbf{1} \end{pmatrix}.$$

Thermal state at temperature $T = 2\pi/\beta$ corresponds to:

$$c_{\beta}^{\pm} = (\mathbf{1} - \mathrm{e}^{\mp\beta H})^{-1},$$

Note $(c_{\text{vac}}^{\pm})^2 = c_{\text{vac}}^{\pm}$ but not true for c_{β}^{\pm} . Note also $\lim_{\beta \to +\infty} c_{\beta}^{\pm} = c_{\text{vac}}^{\pm}$.

Those choices are canonically associated to time-like Killing vector field ∂_t .

Consider two 'Wick-rotated' situations, with t = is. Let $k = ds^2 + h$, and $A = \partial_s + H$. On $\mathbb{R} \times \Sigma$:

$$A^{-1}v(s) = \int_{\mathbb{R}} K(s-s')v(s')ds$$

$$K(s) := e^{-sH} (\mathbf{1}_{\mathbb{R}^+}(s)\mathbf{1}_{\mathbb{R}^+}(H) - \mathbf{1}_{\mathbb{R}^-}(s)\mathbf{1}_{\mathbb{R}^-}(H)).$$

On $\mathbb{S}_{\beta} \times \Sigma$,

$$A^{-1}v(s) = \int_{\mathbb{S}_{\beta}} K(s-s')v(s')ds'$$

$$K(s) := e^{-sH} (\mathbf{1}_{\mathbb{R}^{+}}(s)(1-e^{-\beta H})^{-1} - \mathbf{1}_{\mathbb{R}^{-}}(s)(1-e^{\beta H})^{-1})$$

Let $\gamma f := f(0^+)$. **Proposition.** $\gamma A^{-1} \gamma^*$ equals c_{vac}^+ , resp. c_{β}^+ .

5.2. Unruh effect.

Let
$$M = \mathbb{R}^2$$
, $g = -dt^2 + dx^2$, and $M^+ = \{x \in M : x > t\}$. New coordinates on M^+ :
 $t = a^{-1}e^{ar}\sinh(a\eta)$
 $\mathbf{x} = a^{-1}e^{ar}\cosh(a\eta)$

Then $g = e^{2ar}(-d\eta^2 + dr^2)$.

Theorem. The vacuum for ∂_t restricts to thermal state (with $\beta = 2\pi/\beta$) on M^+ for ∂_η .

On black-hole space-times with stationary exterior regions (or more precisely, spacetimes with *bifurcate Killing horizons*), similar result, but Hadamard extendability across the horizon enforces that $2\pi/\beta$ is exactly the *Hawking temperature* [Sanders '15; Gérard '18].

5.3. Reeh-Schlieder property.

Definition. $(x^0, \xi^0) \notin WF_a(u)$ (the analytic wave front set of $u \in \mathcal{D}'(\mathbb{R}^n)$) if \exists nbh. U of x^0 and Γ of ξ^0 , and a bounded sequence $u_N \in \mathcal{E}'(\mathbb{R}^n)$ s.t. $u_k = u$ in U and

$$\left|\xi^N \widehat{u_N}(\xi)\right| \leq C(C(N+1))^N, \ \xi \in \Gamma.$$

Generalizes to real-analytic M.

Definition. For $F \subset M$, the <u>normal set</u> $N(F) \subset T^*M \setminus o$ is the set of (x^0, ξ^0) s.t. $x^0 \in F, \xi^0 \neq 0$, and $\exists f \in C^2(M; \mathbb{R})$ s.t. $df(x^0) = \xi^0$ or $df(x^0) = -\xi^0$ and $F \subset \{x : f(x) \leq f(x^0)\}$.

Theorem. [Kashiwara-Kawai] $\forall u \in \mathcal{D}'(M), N(\operatorname{supp} u) \subset WF_{a}(u).$

Definition. analytic Hadamard condition $WF_a(\Lambda^{\pm})' \subset \mathcal{N}^{\pm} \times \mathcal{N}^{\pm}$.

Lemma. Let M be real-analytic, connected. If $WF_a(u) \cap -WF_a(u)$, and $O \subset M$ open non-empty, then

$$u|_O = 0 \implies u = 0.$$

Proof: $N(\operatorname{supp} u) = -N(\operatorname{supp} u)$, so assumption implies $N(\operatorname{supp} u) = \emptyset$. Hence $\partial \operatorname{supp} u = \emptyset$, so $\operatorname{supp} u = \emptyset$ or $\operatorname{supp} u = M$ (impossible if $u|_{\mathcal{O}} = 0$). \Box

Theorem. [Strohmaier, Verch, Wollenberg '02] If Λ^{\pm} analytic Hadamard then for any open $O \subset M$,

Vect {
$$\prod_{i=1}^{p} \phi(u_i) \Omega_{\text{vac}}$$
 : $p \in \mathbb{N}, u_i \in C_c^{\infty}(O)$ }

dense in \mathcal{H} .

Proof: Suppose Φ is orthogonal. Then all distributions

$$\left(\prod_{i=1}^{p-1}\phi(u_i)\phi(\cdot)\Omega_{\rm vac}|\Phi\right)$$

vanish on O. Assumptions of Lemma are satisfied, so these distributions vanish on M. We conclude

$$(\prod_{i=1}^{p-1} \phi(u_i)\phi(\cdot)\Omega_{\text{vac}}|\Phi)$$

In view of density of

Vect {
$$\prod_{i=1}^{p} \phi(u_i) \Omega_{\text{vac}}$$
 : $p \in \mathbb{N}, u_i \in C_c^{\infty}(M)$ },

this implies $\Phi = 0$. \Box

Theorem. [Gérard, W. '17] Analytic Hadamard two-point functions Λ^{\pm} exist in analytic case.

5.4. Outlook.

Other methods: propagation estimates near radial sets

Open questions concern:

- (1) Scattering + Hadamard condition on rotating black hole spacetimes (asymptotically thermal effects, extendability theoremes),
- (2) Reeh-Schlieder property of i.e. HHI state.
- (3) Coupling $\phi(x)$ with dynamical g
- (4) 'Spectral geometry' of the Klein-Gordon operator P etc.

UNIVERSITÉ GRENOBLE ALPES, INSTITUT FOURIER, UMR 5582 CNRS, CS 40700, 38058 GRENO-BLE CEDEX 09, FRANCE

Email address: michal.wrochna@univ-grenoble-alpes.fr