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1. QFT ON CURVED SPACETIMES

1.1. Lorentzian manifolds.

Definition. Lorentzian manifold (), g): M smooth manifold, g Lorentzian metric,
i.e. a smooth map M > z +— g(x), where g(z) is a sym. bilinear form on 7, M of
signature (1,n — 1).

Definition. A vector v € T, M is time-like if v - g(x)v < 0, null if v - g(x)v = 0,
space-like if v - g(x)v > 0.

A spacetime is a Lorentzian manifold (M, g) equipped with a time-orientation, i.e. a
continuous time-like Killing vector field. This splits cone of time-like vector fields
C(x) c T, M into two components C* ().

Definitions. A piecewise C' curve v : I — M is causal if its tangent vectors are
time-like or null. If X' < M, its causal future/past is J1 (K) := | J,c;c J+(z), where

Ji(z) := {y(s) :  causal future/past directed starting at z, s € R}.

We set J(K) := J, (K) v J (K). One says K1, Ky © M are causally separated if
J(Kl) M K2 = @

1.2. Introduction to QFT.
Let (M, g) be a spacetime. Let m € R, and

P=-,+m*= —|g|’%ﬁm|g|%gab&l7 + m? (the Klein-Gordon operator).

Linear quantum fields: ¢ € D’(M; #H) with values in Hilbert space # s.t. P¢ = 0 and:

(1) ¢(v)* = ¢(v) for v e CP(M;R) (where ¢(v) = [,, ¢(x)dvoly(x))
(2) Q2 e H s.t.

{op(v1) ... ()22 vy,...,v,€ CP(M), i e N}

is dense in ‘H
(3) [¢(x), p(z")] = 0if x,2" € M are space-like separated
(canonical choice: [¢(z), p(2')] = iG(z,2")1)
1
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If (M,g) = R and m > 0, ¢yac(z) is the reference dynamics for non-interacting
(non-linear) fields.

In general, no canonical choice of ¢(x): we can probe quantum effects induced by the
geometry.

Difficulties:

e H not a priori given!
e ¢(x) very singular, ¢(z)? does not exist
e locally, ¢(x) should ressemble ¢y, (x)

This boils down to two-point functions

At (z,2') = (Q(z)p(2')).
The program is to construct first A*(x, z').
Remark 1. Formally, (2|¢?(2)Q2) = lim,_, AT (z,2') = o0

Remark 2. Necessarily, A" > 0. Other global or asymptotic conditions often imposed
on physical grounds.

1.3. Quantization.
Remark. Commutation relations encoded by choice of real symplectic space.

Let h a (complex) Hilbert space. The bosonic Fock space is

0
[s(h) == @®:h
n=0
Creation/annihilation operators:
a*(h)¥, == vn+1h®¥,,

a() W, = v/ ((h] ®, 1,1) .

for h € h and ¥,, € ®h, where (h| is the map h 5 u — (h|u) € C. As quadratic forms
on a suitable domain,

la(hi1), a(h2)] = [a* (1), a*(he)] = 0,
[a(hy),a*(he)] = (h1]h2)1, hy,hs € b.

Therefore, if ¢p(h) := \/Li (a(h) + a*(h)) then

|66 (h1), ¢ (h2)| = iTm(ha|ho)1 =t i(hy - oho)1.

The vacuum vector is 2 = (1,0,...). Observe that we can modify the Hilbert space
while keeping the above commutation relation unchanged. Indeed, for (hg, o) a fixed
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symplectic space, we can define using some operator j:
(]'L1|h2)F = hl . O'jhg + lhl . O'hg.

This works provided (b, 0,j) is Kéhler, i.e. j> = —1 and 0 o j > 0. A new Hilbert
space is obtained by complexification (a + i8)h := ah + jBh for h € bg, a + i € C,
and by taking the completion. Thus, different choices of j give different Hilbert spaces
and different fields (possibly non-unitarily equivalent).

In practice it is better to work with complex vector spaces exclusively, and encode the
choice of j in terms of two-point functions A*.

Proposition. Let ¢ be a hermitian form on a complex vector space V. Suppose A* are
two non-degenerate forms s.t.

(1) A=0, (2) AT—A =g

Let VP! be the completion w.r.t. (A" 4+ A~). Then there exists j such that (Ve 0,)
is Kihler and

1
oj = §Re(AJr + A7), 0 =Img.
Consequently,
1

(v1|v2)p = B (U_l Aoy + 07 - A_UQ) .

The proof is particularly easy if A* = +qc*, where c* are projections (note ¢™ + ¢~ =
1),ie.j=1i(ct —c).

This gives (Q2|o(v1)P(v2)Q2) = U1 - Atwg, Yo, € Vst 77 = v;.

1.4. Propagators.

Assumption. (M, g) is globally hyperbolic, i.e., J; (K1) n J_(K3) is compact for all
K, Ky compact.

Working assumption. We assume M = R, x 3 with ¥ compact or ¥ = R?, and
g = —dt* + hy, t — h; smooth with value in Riemannian metrics.

In this setting, global hyperbolicity equivalent to: for fixed ¢ € R, each maximally
extended time-like geodesic hits R; x X once.

Then P = 02 + r(t)é, + a(t,x, &), where r(t) = |hy| 20,|hy|? and
i) op(a)(t,x, k) = k- hi (k,
i1) a(t,x,0x) = a*(t,x, 0y)

wrt. (filfo)e = [ fifolhe|2 dx.

Remark. Considering f; o P o f5 instead of P for fi, fo € C®(M), fi,fo > 0
corresponds to more general g.
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Terminology. One says G : C°(M) — C*(M) is a propagator if either

(1) PG =1and GP = 1 on C®(M) (inverse), or
(2) PG =0and GP = 0 on C*(M) (bi-solution).

Theorem. [goes back to Leray] There exist unique retarded/advanced inverses G :
CP(M) — C*(M),i.e. Vv, supp G4+v < Jy(suppv).

Here, (supp G+v) n {t = s} is compact for all s, and empty for large +s.
Definition. Pauli-Jordan bi-solution (or causal propagator) G := G, — G_.
By P = P* and uniqueness of G, G = Gy. Hence G* = —G on CP(M).

The symplectic space for QFT is C°(M;R)/PCP(M;R) equipped with G. Complex
version: C°(M)/PCF (M) equipped with iG.

To quantize we need two-point functions A* : CX (M) — C*(M) s.t.
(1) A==0, (2) AT—A"=iG, (3) PAT=ATP=0.
From this we get fields ¢([v]), v € CP(M;R). Note that P¢p = 0.

Example. Suppose P = ¢ — A, + m? and m > 0. Then
ti(t—s)vV/—Ax+m2
(Ai v ©

t —
vac )( ) R \/m v
Characteristic feature: solves (710, + v/—Ay + m?)u(t,x) = 0.

Physical principle. Admissible A* should have same short-distance behaviour as AL

vac

(Hadamard condition). Consequence (Radzikowski theorem): AT = singular, geomet-
ric part + smooth part.

(s)ds

2. HADAMARD TWO-POINT FUNCTIONS

2.1. Cauchy problem.
We fix s € R.
Theorem. Vv € C*(X)?, Ilu € C°(M) (space-compact) solving

Pu=20
{Q(S)U =f
where o(s)u = (u(s), i du(s)).
The dualis o(s)*f = f°®6(s) —if! ®§'(s) : D'(¥)? — D'(M).

f:
Letq=((1) é)



Introductory notes on microlocal analysis in QFT on curved spacetimes

Proposition. U(s) =i7'(o(s)G)*q on C*(%; C?).
Proof: Green’s formula gives

/ (u_1Pu2 - P_ulug)dvolg = / (5tu1u2 - u_latug)dvolh.
J+ (%)

P

Applied to u; = Grv, us =u = U(s)f,ve CP(M),
/ vu dvol, = / (G_vé‘tu — 5tG_vu)dvolh,
T+ () >
/ vu dvol, = / (G+Ué‘tu — 5tG+vu)dvolh.
J_(%) >
Since J(X) = M, adding the two we get
/ vu dvol, = / (6thu - @@u) dvoly,.
M s
Now use G* = —(G and formula for o(s)*. []

Hence, continuous extension U(s) : £'(X)? — D'(M).
Proposition. Suppose c*(s) : C*(X)? — C°(X)? satisfy

(1) £qct(s) =0, (2) c"(s)+c(s)=1.
Then A* := +U(s)*qc™(s)U(s) are two-point functions.
We write (07 + r(t)d; + a(t))u(t) = O as

by setting
o0 = (150 ) = eton
U(t, s) == o(t)U(s) € B(H(S) ® L*(X)) evolution generated by H(t). Then:
q=U"(s,t)qU(s,1).

Example. If a(t) = a > 0, r(t) = 0 then A7, has data

vac
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2.2. Hadamard condition.
The principal symbol of P is p(t,x, 7, k) = 72 — k - hy(x)k.
Char(P) = Nt UN~, Nt = {(t,X,T,k): +(k - he(x)k)3, k:;éO}
Ul cT*M xT*M,
[ = {((x1, &), (22,&)) : ((21. &), (22, ~&)) € T}

Definition. A< is Hadamard if
(Had) WF(AY) c Nt x NE.

Theorem. [Radzikowski] If A*, A* are Hadamard two-point functions then A* — A*
has C*°(M x M) kernel.

Proof: A" — A~ = A" — A~ =iG, hence A* — AT = A~ — A~. These have disjoint
wave front sets by (Had). Hence WF(A* — /N\i)’ = . ]

Remark. We can deduce WF(A*) exactly.

Lemma. WF(A*) < N* x T*M implies (Had).
Proof: Use AT > 0 to symmetrize WF(A*)'. Then eliminate singularities in 7* M x o
using [Duistermaat, Hormander]. []

Theorem. A*  are Hadamard.

vac

Proof: Use (i"10; £ vV/—A, + m2)AL_=0.
Application. (Quantum Energy Inequalities, [Fewster]) For fixed x € 3,
E, - / (A* — ROY(E 1%, )2 () exists .
R

(Renormalized charge density, averaged along timelike curve). Setting A% :CP(R) —
C*(R) the op. with kernel p(t)A* (¢, ¢, x x)gp(t’ ),

E, = Tr(A] = A)) = Te(6(D) (A = AL)O(D)) + Tr(0(=Da) (AL — K)0(=Dy))
= Tr(9(Dt)( AD)O(D)) + Tr(O(=Di)(A, — A,)0(=Dy))
~Tr(0(D)A0(D1)) = Te(6(=Dy)AL0(~=Dy)) =: —C,.

3. CONSTRUCTION BY PSEUDO-DIFFERENTIAL CALCULUS

3.1. Uniform PDO calculus.

In what follows W*(3) is Hérmander’s (uniform) calculus if ¥ = R? and the usual
calculus on manifolds if > is compact. In more general non-compact cases one needs
some global calculus that replaces ¥*(X).
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Let b(t) = by(t) + bo(t), s.t.:
gy B0 € CUEWOD), i =01,

by (t) is elliptic, symmetric and bounded from below on H*(M).
Define U,(t, s) by:

SU(t,5) = b()Us(t, 9), 1,5 € R,

%Ub(t7 S) = _lUb(t7 S)b(s)7 t,s€ R,

Up(s,s) =1, seR.

Here U,(t, s) is strongly continuous in (¢, s) with values in B(L?*(M)) (one needs to
work a bit and use perturbation theory, note that b is not necessarily self-adjoint).

Lemma.

(1) Uy(t,s) € B(H™(M)) form € Z u {too}, R? 3 (t,s) — U,(t,s) is strongly
continuous on H™ (M),
(2) if r_o € W™P(M) then Uy(t, 5)r_o, 7_0Us(t, 5) € CP(RF,, U~*(M)).

Theorem. [Egorov] Let a € ¥ (M) and b(¢) satisfying (). Then
a(t,s) == Uy(t, s)aUy(s, t) € C°(R?*, U™ (M)).
Moreover
ope(a)(t,s) = opr(a) o O(s, 1),
where ®(t,s) : T*M — T*M is the flow of the time-dependent Hamiltonian o, (b)(?).

Theorem. [essentially Seeley] Let a € C*(R; U™ (X)) be elliptic, selfadjoint, a(t) >
cl for ¢ > 0, t € R. Then a® € C*(R; ¥™*(X)) for any s € R and

apr(a°) () = ope(a(t))’.

3.2. Approximate diagonalization of evolution.

Method due to [Junker], [Junker, Schrohe], [Gérard, W.], [Gérard, Oulghazi, W.]
Suppose we have b(t) € C*(R; U! (X)) elliptic s.t.

A (0 +ibE(t) + (1)) o (9 —ibT(t)) = 87 + r(t)0; + a(t) mod smoothing
Set

a0 = (3700 v
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if b7 (t) — b~ (t) invertible. We have

O +ib™ +r 0 TN
( 0 at+ib++r)w(t)_0

modulo smoothing. Even better diagonalization:

10 = 5007 -0k =it (5 e

=

gives
G.1) T*(1)qT(t) = < é N ) g
We get:
Ul(t,s) = T(HU(t,s)T(s) ™
= T(HUYL, 8)T(s)™ + C* (R U~*(%))

Now: c*(to) := T'(to)m T (to),

. (10 (00
=\Voo0o /)" Vo 1)

And U= (t,s) :== U(t, to)c*(to)U(to, s) propagates with correct wave front set!

3.3. Riccati equation.

Equation (J) is:
i0,bT — b** 4+ a + irb™ = 0 mod smoothing .

Without loss, assume a(t) uniformly positive.
Theorem. b€ C*(R; ¥ (X)) s.t.
i) b=ar +C®(R; V(N)),
) (b+b*) "t = (20)"1(1 +7_1)(20)71, r_, € CO(R; U(%)),
iii)  (b+ ") = caz, for some c € C*(R;R), ¢ > 0,
)

i) i0,bt — b2 4 a4 irbt = r¥ e C*(R; U-*(X)),
for b* = b, b= = —b*.
Proof:  Modulo smoothing, a = Op(c), ¢ € C*(R; S}, (T*Y)), with ¢ (t, 2,&) =

(&-h; 1(2)€)2. We look for b of the form b = Op(c) + Op(d) for d € C*(R; Spn(T*%)).
Since Op(c) is elliptic, we can fix a symbol ¢ € C*(R; S;hl (T*X)) s.t. Op(¢) is a
parametrix of Op(c).
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Modulo error terms in C*°(R; W~*(%)), (J) becomes:

(3.2) Op(d) = (Op( )Op(d:c) + Op(e)rOp(c)) + F(Op(d)),

for:
F(Op(d)) = %Op(é) (i0p(@wd) + [Op(c), Op(d)] + irOp(d) — Op(d)?) .

From symbolic calculus, we obtain that:

F(Op(d)) = Op(F(d)) + C*(R; ¥~*(%)),
for

- 1

F(d) = Eé* (i0pd + cxd — dxc + ir+=d — d=d) ,
The equation (3.2) becomes:
(3.3) d = ay+ F(d),
for .

1 ~ ®
ag = 5(0*@0 + érrec) € C%(R; SO (T*Y)).

The map F has the following property:
dl, d2 S COO(R Soh(T* ))7 d1 — d2 € OOO(R S ( ))

(3.4) ) e
= F(dy) — F(dy) € C*(R; S;7"H(T*%)).

» ~ph

This allows to solve symbolically (3.3) by setting
d =0, d,:=ay+ F(d, 1),

d~ ) dy—dy,

neN
which is an asymptotic series since by (3.4) we see that

dp — dyy € CF(R; S (T7Y)).
Hence Op(c + d) solves (J) modulo C*(R; ¥~*(X%)).
We observe then that if b € C°(R; ¥* (X)) we have:
(0ib)* = 0(b*) + rb* — b*r,
This implies that —Op(d)* is also a solution modulo C*(R; U~*(X)).

and

To complete the construction of b*, we consider

s = Op(c+d) + Op(c+d)*,
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which is selfadjoint, with principal symbol equal to 2(¢ - h; (z)€)=. There exists r_q €
C*(R; W~*(X)) such that

D=

3.5 S+ 7T_p ~az.
We set now:

1
b:=Op(c+d)+ 37—

Properties i) and iv) follow from the same properties of Op(c + d). To prove property
ii) we write

b+ b* = (2a)1(1 +7_1)(20)7,
where 71 € C*(R; ¥~1(X)), by [Seeley]. Since (1 + 7_;) is boundedly invertible, we
have again by [Seeley]

(1 + f_l)_l =14r_4,7r41€ OOO(R, \I/_I(E))7
which implies ii). []

4. SCATTERING BY GEOMETRY

4.1. Setup.
Definition. ¥}»’(R;Y) := Op of t-dependent symbols a(t, x, k) € S|7°(R; ¥), i.e.:
|07 0700alt, x, k)| < Capy(8)” )™ P, aeN, B,y e N,
where (t) = (1 + 2)2, k) = (1 + |k|?)2.
Assumption. 3§ > 0 and a,y; € V(X)) elliptic, aou (X, Dy) = m? > 0,s.t. on Ry x X
a(t,x, Dy) — aou (X, Dy) € U2 °(R; X),
r(t) e BOTIT(R; D).

Asymptotic dynamics: Py = 07 + dout (X, , Dy ).

Asymptotic (‘out’) vacuum:

Theorem. [Gérard, W.] Let
Cout(t) i= Tm Ut t)con™U(ts,t)

out tytoo

Then the corresponding AL, satisfies (Had).
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4.2. Time-decaying YDO families.
Lemma. Letd € R and (m;) a real sequence decreasing to —co. Then if a; €
U (R; ) there exists a € U °(R; ), unique mod U **(R; ¥), s.t.
o N
a~a;ie.a—) a;e Ui (R ), YN e N.
j=0

j=0
Ellipticity is uniform in ¢.

Theorem. [Seeley] works also for U%*(R; X) provided a(t) = ¢o1 for ¢y > 0.

Proposition. Let a; € U2 (R; %), i = 1,2 elliptic, a; = a} and a;(t) > ¢1, ¢g > 0.
Assume a; — az € U2 °(R; %), d > 0. Then Yo € R:

af —a$ € U O(R; :).

Proposition. 3 b(t) = a2 (t) + VT (R X)) = a2, + UL (RE; X) s.t.
0 — b +a+irbe U0 (R, D).
Proof: The key is:

077/"/ 7.77711' 7‘7717711'
cr,ee V" g —ceV " = F(a)— F(e) e Uy :

4.3. Proof.

The proof boils down to:

+

Proposition. 3 Cauchy data c;

(0) of Hadamard two-point function s.t.
(0) = cip(0) + T (D).

+ +
C ref

out

The crucial lemma is:
Lemma. Let W (t) = U*4(0,)U2(¢,0). Then
Jim Wou ()7 Wou (8) 1 = 7" + 9 *(2) @ L(C?), in B(L*(2) © C).
Proof: Cook method:
lim Wy ()7 W ()™

t—+00
+00
= 7T+ + / at(Wout(t)W+Wout(t)_l)dt in B(LZ(E) ® Cz)
0
The integral term is:
6t(VVout (t)ﬂ+Wout (t)il) = _IU(Oa t) [Had(t)7 7T+]U(ta O)
= U(0,t)[R_o(t), 7 ]U(t,0), R_y € U> ' (R; 2) @ B(C?).
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4.4. More general consequences. Suppose now Y. is compact and we have an asymp-
totic dynamics H,, att = 400 and also at ¢ = —co. Modulo time-decaying, smoothing
(hence compact) terms, we can now solve a global problem: Pu = v with v and v with
asymptotic data at +o0 in Ker 1g+(H,,) and asymptotic data at —oo in Ker 1g— (Hoyt )-
This gives Fredholm property of P on suitable Hilbert spaces (somewhat analogous to
anisotropic Sobolev spaces)! One can prove that P is actually invertible and P! is
a Feynman parametrix in the sense of Duistermaat & Hormander (this is a statement
about the wave front set). This is closely related to essential self-adjointness of P!

For ¥ = RY one needs to impose and control the decay in spatial directions to get
compact remainder terms. The techniques are similar but require a different pseudo-
differential calculus.

Global Fredholm problems and inverses for P using different (but always microlocal)
techniques: [Gell-Redman, Haber, Vasy ’13], [Bir, Strohmaier *18], [Gérard, W. *17],
[Vasy "17], etc.

Black hole spacetimes are more complicated...

5. THERMAL AND LOCAL-TO-GLOBAL EFFECTS

5.1. Thermal states.
Recall that if a(t) = a = 0 and r(t) = 0,

11 +a
C;ac:1R+(H):§<+a% 1 >

Thermal state at temperature 7' = 27/[5 corresponds to:

c;g“ = (1 — P

N

Note (c.)? = &, but not true for ¢5. Note also limg_, o, ¢5 = ¢

vac vac vac*

Those choices are canonically associated to time-like Killing vector field 0.

Consider two ‘Wick-rotated’ situations, with ¢ = is. Let k = ds> + h,and A = 0, + H.

On R x X:
/K s — s)(s)ds
i= e M (1g+ (5)1g+ (H) — 1z-(s)1- (H))
On S x X
A to(s) K(s— s)v(s")ds'
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Letvyf := f(0%).

Proposition. yA1~v* equals ¢

vac?

resp. .

5.2. Unruh effect.

Let M = R?, g = —dt? + dx*,and M+ = {x € M : x > t}. New coordinates on M *:
t = a ‘e sinh(an)
x = a~'e" cosh(an)

Then g = " (—dn? + dr?).

Theorem. The vacuum for ¢; restricts to thermal state (with 5 = 27/3) on M for 0.

On black-hole space-times with stationary exterior regions (or more precisely, space-
times with bifurcate Killing horizons), similar result, but Hadamard extendability across
the horizon enforces that 27//3 is exactly the Hawking temperature [Sanders *15; Gérard
“18].

5.3. Reeh-Schlieder property.

Definition. (2°,¢°) ¢ WF,(u) (the analytic wave front set of u € D'(R")) if 3 nbh. U
of 2 and T" of £°, and a bounded sequence uy € &'(R") s.t. uy = v in U and

¥R (&) < C(C(N + 1), ¢eT.

Generalizes to real-analytic M.

Definition. For F' = M, the normal set N(F) < T*M\o is the set of (2°,£%) s.t. 2° €
F, &% 0,and 3f € C*(M;R) s.t. df (2°) = L or df (2°) = =Y and F < {z: f(x) <
fa9)}.

Theorem. [Kashiwara-Kawai] Vu € D'(M), N(suppu) < WF,(u).

Definition. analytic Hadamard condition WF, (A1) < N'* x A%,

Lemma. Let M be real-analytic, connected. If WF,(u) n —WF,(u), and O ¢ M
open non-empty, then

ulpo=0 = u=0.

Proof: N (suppu) = —N(supp u), so assumption implies N(suppu) = . Hence
dsuppu = J, sosuppu = & or supp u = M (impossible if u|p = 0). []

Theorem. [Strohmaier, Verch, Wollenberg *02] If A* analytic Hadamard then for any
open O < M,

Veet{ [T_; ¢(u) Qe : pEN, u; € C2(0)}
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dense in H.
Proof: Suppose @ is orthogonal. Then all distributions

-1
(TTi=1 d(ui) (1) Qvac| P)

vanish on O. Assumptions of Lemma are satisfied, so these distributions vanish on M.

We conclude

( f;l (u:)D(+) Qvac|P)
In view of density of
Vect{ [T, 0(wi)Qvac - PEN, w; € CSO(M)},
this implies ¢ = 0. []

Theorem. [Gérard, W. *17] Analytic Hadamard two-point functions A* exist in ana-
lytic case.

5.4. Outlook.
Other methods: propagation estimates near radial sets
Open questions concern:

(1) Scattering + Hadamard condition on rotating black hole spacetimes
(asymptotically thermal effects, extendability theoremes),

(2) Reeh-Schlieder property of i.e. HHI state.

(3) Coupling ¢(z) with dynamical g

(4) ‘Spectral geometry’ of the Klein-Gordon operator P
etc.
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