Introduction to Microlocal Analysis First lecture: Basics

Dorothea Bahns (Göttingen)

Third Summer School on "Dynamical Approaches in Spectral Geometry"

"Microlocal Methods in Global Analysis"

University of Göttingen August 27-30, 2018

D. Bahns (Göttingen)

Introduction to Microlocal Analysis, I

August 2018 1 / 20

(Tempered) distributions - basic properties

Tensor product, convolution, Schwartz kernel theorem

Differential operators with constant coefficients

Distributions

Definition (Topology on $\mathscr{C}^{\infty}_{c}(X)$, the space of test functions)

Let $X \subseteq \mathbb{R}^n$ be open. A sequence $(\phi_j)_j \subset \mathscr{C}^{\infty}_c(X)$ is said to converge to 0 in $\mathscr{C}^{\infty}_c(X)$ iff there is a fixed compact $K \subset X$ s.t. supp $\phi_j \subseteq K$ for all j and all derivatives $\partial^{\alpha} \phi_j$ converge uniformly to 0 as j tends to ∞ .

Definition

The space of distributions $\mathscr{D}'(X)$ is the topological dual of $\mathscr{C}^{\infty}_{c}(X)$.

Distributions

Definition (Topology on $\mathscr{C}^{\infty}_{c}(X)$, the space of test functions)

Let $X \subseteq \mathbb{R}^n$ be open. A sequence $(\phi_j)_j \subset \mathscr{C}^{\infty}_{\mathcal{C}}(X)$ is said to converge to 0 in $\mathscr{C}^{\infty}_{\mathcal{C}}(X)$ iff there is a fixed compact $K \subset X$ s.t. supp $\phi_j \subseteq K$ for all j and all derivatives $\partial^{\alpha} \phi_j$ converge uniformly to 0 as j tends to ∞ .

Definition

The space of distributions $\mathscr{D}'(X)$ is the topological dual of $\mathscr{C}^{\infty}_{c}(X)$.

Topological dual = (sequ.) continuous linear functionals $u : \mathscr{C}^{\infty}_{c}(X) \to \mathbb{C}$

$$\mathscr{C}^{\infty}_{c}(X) \ni \phi \mapsto u(\phi) =: \langle u, \phi \rangle$$

Examples: the bump function ϕ is in $\mathscr{C}^{\infty}_{c}(\mathbb{R}^{n})$. Any $f \in L^{1}_{loc}(\mathbb{R}^{n})$ defines a distribution,

$$\langle f, \phi \rangle = \int f(x) \phi(x) \mathrm{d}x \; ,$$

 $\phi \mapsto \delta_{x_0}(\phi) = \phi(x_0)$ is a distribution. Hence the name "generalized functions".

Distributions II

Observe (not obvious!):

A linear functional on $\mathscr{C}^{\infty}_{c}(\mathbb{R}^{n})$ is in $\mathscr{D}'(\mathbb{R}^{n})$ iff for every compact $K \subset \mathbb{R}^{n}$, there exist *C* and *k* such that

$$|\langle u, \phi
angle| \leq C \sum_{|lpha| \leq k} \sup |\partial^{lpha} \phi(x)| \ , \ ext{for all} \ \phi \in \mathscr{C}^{\infty}_{c}(K)$$

Definition (order of a distribution)

If the same k can be chosen for all K, u is said to be of order $\leq k$.

Example

$$\phi \mapsto \partial^{\alpha} \phi(x_0)$$
 for fixed $x_0 \in \mathbb{R}^n$ is of order $|\alpha|$.

Localization and (singular) support

Remark (localization) Let $Y \subseteq X \subseteq \mathbb{R}^n$ be open.

- Then $\mathscr{C}^{\infty}_{c}(Y) \subseteq \mathscr{C}^{\infty}_{c}(X) \subseteq \mathscr{C}^{\infty}_{c}(\mathbb{R}^{n})$
- Let $u \in \mathscr{D}'(X)$, then

$$u_{\mathsf{Y}}: \mathscr{C}^{\infty}_{\mathsf{C}}(\mathsf{Y}) \ni \phi \mapsto \langle u, \phi \rangle$$

is a distribution on Y, called the restriction (localization) of u to Y.

Definition

Let $u \in \mathscr{D}'(X)$, then the support of u is the set of all x such that there is no open nbhd Y of x s.t. $u_Y = 0$ Its singular support singsupp u is the set of all x such that there is no open nbhd Y of x s.t. $u_Y \in \mathscr{C}^{\infty}$

Compactly supported distributions

Definition (Topology on $\mathscr{C}^{\infty}(X)$)

A sequence $(\phi_j)_j \subset \mathscr{C}^{\infty}(X)$ is said to converge to 0 in $\mathscr{C}^{\infty}(X)$ iff all derivatives $\partial^{\alpha}\phi_j$ converge to 0 uniformly on any compact set $K \subset X$ as j tends to ∞ .

Definition

The topological dual of $\mathscr{C}^{\infty}(X)$ (with this topology) is denoted $\mathscr{E}'(X)$.

Proposition

 $\mathscr{E}'(X)$ is identical with the set of distributions in X with compact support.

< ロ > < 同 > < 回 > < 回 >

Tempered distributions

Schwartz space = the space of rapidly decreasing smooth functions, $\mathscr{S}(\mathbb{R}^n) = \{\phi \in \mathscr{C}^{\infty}(\mathbb{R}^n) \mid \|\phi\|_{\alpha,\beta} := \sup |x^{\alpha}\partial^{\beta}\phi(x)| < \infty \text{ for all } \alpha, \beta\}$

Definition (Topology on $\mathscr{S}(\mathbb{R}^n)$)

A sequence of Schwartz functions $(\phi_j)_j \subset \mathscr{S}(\mathbb{R}^n)$ is said to converge to 0 in $\mathscr{S}(\mathbb{R}^n)$ iff $\|\phi_j\|_{\alpha,\beta} \to 0$ as *j* tends to ∞ for all α , β .

Definition (Tempered distributions)

The space of tempered distributions $\mathscr{S}'(\mathbb{R}^n)$ is the topological dual of $\mathscr{S}(\mathbb{R}^n)$.

Examples: $\mathscr{C}^{\infty}_{c}(\mathbb{R}^{n})$ is dense in $\mathscr{S}(\mathbb{R}^{n})$. $e^{-x^{2}} \in \mathscr{S}(\mathbb{R}^{n})$. Restricting $u \in \mathscr{S}'(\mathbb{R}^{n})$ to $\mathscr{C}^{\infty}_{c}(\mathbb{R}^{n})$ gives a distributions. By the denseness above, $\mathscr{S}'(\mathbb{R}^{n})$ can be identified with a subspace of $\mathscr{D}'(\mathbb{R}^{n})$. Moreover, $\mathscr{E}(\mathbb{R}^{n}) \subset \mathscr{S}'(\mathbb{R}^{n})$. Any polynomially bounded continuous function *f* is a tempered distribution with

$$\phi \mapsto \int f(x)\phi(x)dx =: \langle f, \phi \rangle$$

D. Bahns (Göttingen)

Operations on distributions

Definition (Topology on $\mathscr{D}'(X)$ and $\mathscr{S}'(\mathbb{R}^n)$: pointwise convergence)

A sequence of (tempered) distributions (u_j) converges to 0 as j tends to ∞ iff $\langle u_j, \phi \rangle \to 0$ for all $\phi \in \mathscr{C}^{\infty}_{c}(X)$ (or $\mathscr{S}(\mathbb{R}^n)$, resp.)

Corollary (Extending operations by duality)

Let g be a linear continuous map $\mathscr{C}^{\infty}_{c}(Y) \to \mathscr{C}^{\infty}_{c}(X)$ (or $\mathscr{S}(\mathbb{R}^{n}) \to \mathscr{S}(\mathbb{R}^{n})$), then the transpose g^{t} defined by

$$\langle \boldsymbol{g}^t(\boldsymbol{u}), \phi \rangle := \langle \boldsymbol{u}, \boldsymbol{g}(\phi) \rangle$$

is a (seq.) continuous map $\mathscr{D}'(\mathsf{Y}) \to \mathscr{D}'(\mathsf{X})$ (or $\mathscr{S}'(\mathbb{R}^n) \to \mathscr{S}'(\mathbb{R}^n)$).

To extend a contin. operation f on $\mathscr{C}^{\infty}_{c}(X)$ to one in $\mathscr{D}'(\mathbb{R}^{n})$, calculate $\langle fu, \phi \rangle = \langle u, f^{t}\phi \rangle$ for $u \in \mathscr{C}^{\infty}_{c}(X)$ and set $g = f^{t}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Operations on distributions – Examples

• The derivative $\partial^{\alpha} : \mathscr{D}'(X) \to \mathscr{D}'(X)$ is defined as the transpose of $(-1)^{|\alpha|} \partial^{\alpha} : \mathscr{C}^{\infty}_{c}(X) \to \mathscr{C}^{\infty}_{c}(X)$,

$$\langle \partial^{\alpha} \boldsymbol{u}, \phi \rangle = \langle \boldsymbol{u}, (-1)^{|\alpha|} \partial^{\alpha} \phi \rangle$$

For $u \in \mathscr{C}^{\infty}_{c}(X)$, this is the usual derivative (by partial integration).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Operations on distributions – Examples

• The derivative $\partial^{\alpha} : \mathscr{D}'(X) \to \mathscr{D}'(X)$ is defined as the transpose of $(-1)^{|\alpha|}\partial^{\alpha} : \mathscr{C}^{\infty}_{c}(X) \to \mathscr{C}^{\infty}_{c}(X),$

$$\langle \partial^{\alpha} \boldsymbol{u}, \phi \rangle = \langle \boldsymbol{u}, (-1)^{|\alpha|} \partial^{\alpha} \phi \rangle$$

For $u \in \mathscr{C}^{\infty}_{c}(X)$, this is the usual derivative (by partial integration). Similarly, one defines:

• Given a diffeomorphism $f : X \to Y$, the pullback of $u \in \mathscr{D}'(Y)$ along f is

 $\langle f^* u, \phi \rangle = \langle u, g^* \phi | \det g' | \rangle$ with $g = f^{-1}, g^* \phi = \phi \circ g$

This way, $f^*u = u \circ f$ for $u \in \mathscr{C}^{\infty}_{c}(Y)$ (by the transf. formula). • Multiplication with $\psi \in \mathscr{C}^{\infty}(X)$:

$$\langle \psi \mathbf{U}, \phi \rangle = \langle \mathbf{U}, \psi \phi \rangle$$

Observe: supp $\psi u \subset$ supp ψ .

• Analogously for $\mathscr{S}'(\mathbb{R}^n)$ (with $X = Y = \mathbb{R}^n$ and ψ polyn. bdd)

Operations on distributions – Fourier transform

• The Fourier transform

$$\mathscr{F}:\mathscr{S}(\mathbb{R}^n)\to\mathscr{S}(\mathbb{R}^n)\,,\qquad \mathscr{F}\phi(\xi)=\int \mathrm{e}^{-\mathrm{i}x\xi}\phi(x)\mathrm{d}x=:\hat{\phi}(\xi)$$

is a continuous isomorphism, with inverse

$$\mathscr{F}^{-1}\phi(x)=\int \phi(\xi) \mathrm{e}^{\mathrm{i} x\xi} \mathrm{d} \xi \ , \quad ext{ where } \mathrm{d} \xi=(2\pi)^{-n} \mathrm{d} \xi$$

Hence, $\mathscr{F} : \mathscr{S}'(\mathbb{R}^n) \to \mathscr{S}'(\mathbb{R}^n), \ u \mapsto \hat{u},$

$$\langle \hat{\pmb{u}}, \phi \rangle := \langle \pmb{u}, \hat{\phi} \rangle$$

is continuous.

Again, if $u \in \mathscr{S}(\mathbb{R}^n)$, we recover the ordinary Fourier transform.

Properties of the Fourier transform

Proposition

 $\mathscr{F}:\mathscr{S}'(\mathbb{R}^n)\to\mathscr{S}'(\mathbb{R}^n)$ is an isomorphism.

It holds $(D = -i\partial)$:

•
$$\widehat{D^{\alpha}u} = \xi^{\alpha}\hat{u}$$
 and $\widehat{x^{\alpha}u} = (-1)^{|\alpha|} D^{\alpha}\hat{u}$

 If u has compact support, its Fourier transform is a smooth function, and

$$\hat{u}(\xi) = \langle u, e^{-i\xi \cdot} \rangle = \langle u(x), e^{-i\xi x} \rangle \stackrel{\text{notation}}{=} \int u(x) e^{-i\xi x} dx$$

Example: For the δ distribution, $\delta_{x_0}(\phi) = \phi(x_0)$, we have

$$\widehat{\delta_{x_0}}, \phi \rangle = \langle \delta_{x_0}, \hat{\phi} \rangle = \hat{\phi}(x_0) = \int \mathrm{e}^{-\mathrm{i}x_0\xi} \phi(\xi) d\xi = \langle \mathrm{e}^{-\mathrm{i}x_0}, \phi \rangle,$$

SO

$$\widehat{\delta_{x_0}}(\xi) = e^{-ix_0\xi} = \langle \delta_{x_0}, e^{-i\xi \cdot} \rangle \stackrel{\text{notation}}{=} \int \delta_{x_0}(x) e^{-i\xi x} dx$$

Tensorproduct

Let $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^m$ be open.

Theorem (tensor product)

Let $u \in \mathscr{D}'(X)$, $v \in \mathscr{D}'(Y)$. Then there is a unique element of $\mathscr{D}'(X \times Y)$, called the tensor product $u \otimes v$, such that

 $\langle u \otimes v, \phi \otimes \psi \rangle = \langle u, \phi \rangle \langle v, \psi \rangle \text{ for } \phi \in \mathscr{C}^{\infty}_{c}(X), \ \psi \in \mathscr{C}^{\infty}_{c}(Y).$

The proof relies on the fact that $\{\phi \otimes \psi | \phi \in \mathscr{C}^{\infty}_{c}(X), \psi \in \mathscr{C}^{\infty}_{c}(Y)\}$ is dense in $\mathscr{C}^{\infty}_{c}(X \times Y)$.

For $u \in \mathscr{C}^{\infty}_{c}(X)$, $v \in \mathscr{C}^{\infty}_{c}(Y)$, $u \otimes v$ as above is the tensor product of functions, $u \otimes v(x, y) = u(x)v(y)$.

Convolution

Proposition

Let $u, v \in \mathscr{D}'(\mathbb{R}^n)$, v compactly supported. Then

$$\langle u * v, \phi \rangle := \langle u \otimes v(x, y), \phi(x + y) \rangle$$

defines a distribution. It holds $\partial^{\alpha}(u * v) = u * \partial^{\alpha}v = \partial^{\alpha}u * v$ and supp $u * v \subset$ supp u + supp v. If $v = \rho \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{n})$, then $u * \rho \in \mathscr{C}^{\infty}(\mathbb{R}^{n})$ (regularization). If $u \in \mathscr{C}^{\infty}(\mathbb{R}^{n})$, then $u * \rho$ is the convolution.

Notation: $\langle u * v, \phi \rangle = \int u(x)v(y)\phi(x+y)dxdy$.

u * v is still defined by the above for general $u, v \in \mathscr{D}'(\mathbb{R}^n)$ if $(x, y) \mapsto x + y$ is proper on supp $u \times \text{supp } v$.

 $\delta * u = u$ for all $u \in \mathscr{D}'(\mathbb{R}^n)$.

Schwarz kernel theorem

An integral transform $f \mapsto \int_Y K(x, y)f(y)dy$ with kernel K (function on $X \times Y$) maps a suitable class of functions on Y to functions on X. Generalization to distributions:

Theorem

There is an one-to-one correspondence between linear continuous operators A: $\mathscr{C}^{\infty}_{c}(Y) \to \mathcal{D}'(X)$ and kernels $K \in \mathscr{D}'(X \times Y)$. For $\phi \in \mathscr{C}^{\infty}_{c}(X)$ and $\psi \in \mathscr{C}^{\infty}_{c}(Y)$,

$$\langle \mathbf{A}\psi,\phi\rangle=\langle \mathbf{K},\phi\otimes\psi\rangle.$$

Proof idea " \supseteq " For $K \subset X$, $K' \subset Y$ compact, there are *C* and *N* s.t.

$$|\langle \mathsf{K}, \phi \otimes \psi \rangle| \leq \mathsf{C} \sum_{|\alpha| \leq \mathsf{N}} \|\partial^{\alpha} \phi\|_{\infty} \sum_{|\beta| \leq \mathsf{N}} \|\partial^{\beta} \psi\|_{\infty} \quad \text{ for all } \phi \in \mathscr{C}^{\infty}_{\mathsf{c}}(\mathsf{K}), \psi \in \mathscr{C}^{\infty}_{\mathsf{c}}(\mathsf{K}')$$

"⊆" uniqueness: from denseness of $\{\phi \otimes \psi\}$ in $\mathscr{C}^{\infty}_{c}(X \times Y)$. Existence: show that estimate above holds for $B(\psi, \phi) := \langle A\psi, \phi \rangle$ and that this suffices for *B* to extend to a distribution on $X \times Y$.

High frequency cone

- Analysis on *T***X* (phase space): in addition to local information (*x*-space) analyse behaviour w.r.t. covariables (ξ-space).
- Main idea: Fourier transform of a compactly supported smooth function is a Schwartz function; Fourier transform of a compactly supported distribution v is smooth. Hence: if there are directions where $\mathscr{F}(v)$ does not decay quickly, there are singularities.

Definition

Let *v* be cptly supported distribution. Its high frequency cone $\Sigma(v)$ is the set of all $\eta \neq 0$ that have no conic nbhd V_{η} such that

for all
$$N=1,2,\ldots \exists C_N ext{ s.t. } |\hat{v}(\xi)| \leq C_N \langle \xi
angle^{-N}$$
 for all $\xi \in V_\eta$

where $\langle \xi \rangle = (1 + |\xi|^2)^{\frac{1}{2}}$ is the Japanese bracket.

 $\Sigma(v)$ is a closed cone. Example: $\Sigma(\delta) = \mathbb{R}^n \setminus 0$

Wavefront set

For $u \in \mathscr{D}'(X)$ localize:

For $x \in X$, set $\Sigma_x = \bigcap_{\phi} \Sigma(\phi u)$ where $\phi \in \mathscr{C}^{\infty}_{c}(X)$ with $\phi(x) \neq 0$.

Definition

The wavefront set of $u \in \mathscr{D}'(X)$ is

$$WF(u) = \{(x,\xi) \in \dot{T}^*X = X \times (\mathbb{R}^n \setminus 0) | \xi \in \Sigma_x(u)\}$$

The projection of WF(u) onto the first variables is the singular support of u.

Previous constructions revisited

• For a linear differential operator $P = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$ be with smooth coefficients a_{α} on X, we have

$$WF(Pu) \subseteq WF(u)$$

- If the set of normals of a smooth map *f* : *Y* → *X* has empty intersection with *WF*(*u*), the pullback of *u* along *f* can be uniquely defined and *WF*(*f***u*) ⊆ *f***WF*(*u*).
- For contin. Iin. $A: \mathscr{C}^{\infty}_{c}(Y) \to \mathcal{D}'(X)$ and its kernel $K \in \mathscr{D}'(X \times Y)$ from Schwartz' kernel theorem, we have

 $\mathsf{WF}(\mathcal{A}\psi) \subset \{(x,\xi) \,|\, (x,y,\xi,0) \in \mathit{WF}(\mathcal{K}) \text{ for some } y \in \mathsf{supp } \psi\}$

Fundamental solutions

Definition

A fundamental solution for a differential operator $P(D) = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$ on \mathbb{R}^n is a distribution $E \in \mathscr{D}'(\mathbb{R}^n)$, s.t. $P(D)E = \delta$.

Why is this interesting? If *E* exists, the existence of smooth solutions to P(D)u = f with $f \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{n})$ is guaranteed (and can be calculated explicitly if *E* is known explicitly):

u := E * f is a smooth function with

$$P(D)u = (P(D)E) * f = \delta * f = f$$

Example

On \mathbb{R}^3 , $E(x) = -\frac{1}{4\pi |x|}$ is a fundamental sol'n to Poisson's equation $\Delta u = f$.

Malgrange-Ehrenpreis theorem

Theorem

Every constant coefficient differential operator on \mathbb{R}^n possesses a fundamental solution.

Remarks:

Classic proof idea relies on Hahn-Banach argument, were not constructive.

The theorem fails in general for nonconstant smooth coefficients (Lewy's example: there is an equation P(D)u = f (everything smooth) that does not have a smooth solution).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Structure theorems

Theorem

Every tempered distribution is a derivative of finite order of some continuous function of polynomial growth.

Theorem

If $u \in \mathscr{D}'(X)$ then there are continuous functions f_{α} , such that

$$u = \sum_{\alpha \ge \mathbf{0}} \partial^{\alpha} f_{\alpha}$$

where the sum is locally finite, i.e. on any compact set $K \subset X$, only a finite number of the f_{α} do not vanish identically.

Theorem

If supp $u = \{x_0\}$, then there are $N \in \mathbb{N}_0$ and $c_\alpha \in \mathbb{C}$, s.t.

$$u = \sum_{|\alpha| \le N} c_{\alpha} \, \partial^{\alpha} \delta_{x_0}$$

D. Bahns (Göttingen)

Introduction to Microlocal Analysis, I