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Oscillatory integrals

Oscillatory integrals – Intro

Let ϕ and a be smooth functions on X × RN , X ⊆ Rn open. If a is
compactly supported in the θ variable, and =φ ≥ 0, then

u(x) =

∫
eiϕ(x ,θ)a(x , θ)dθ

is a function. Goal: Give this expression meaning as a distribution

C∞c (X ) 3 φ 7→
∫

eiϕ(x ,θ)a(x , θ)φ(x)dxdθ

for more general a and suitable ϕ.

Example∫
eixθd̄θ = δ0(x).
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Oscillatory integrals

Phase functions and symbols

Definition (phase function)

Let X ⊆ Rn be open, let Γ be an open cone in X × ṘN) (i.e. conic w.r.t.
the second set of variables). A function ϕ ∈ C∞(Γ) is called a phase
function if
a) =ϕ ≥ 0, b) ϕ(x , λθ) = λϕ(x , θ) for all λ > 0 (homogeneity), and
c) ϕ′(x , θ) 6= 0 (non-degeneracy).

Definition (Symbols)

Let m be real, ρ ∈ (0,1] and δ ∈ [0,1). Then

Sm
ρ,δ(X×RN) = {a ∈ C∞(X×RN) | for any α, β and cpt K ⊂ X , ∃C s.t.

|∂βx ∂αθ a(x , θ)| ≤ C〈θ〉m−ρ|α|+δ|β| }

is called the space of symbols of order m and type ρ, δ. Topology on
Sm
ρ,δ: given by optimal constants (which give a family of seminorms).

D. Bahns (Göttingen) Introduction to Microlocal Analysis, II August 2018 4 / 13



Oscillatory integrals

Oscillatory integrals

Theorem
Given a phase function ϕ on Γ and a closed cone F ⊂ Γ ∪ (X × {0}),
there is a unique way to define Iϕ(a) ∈ D ′(X ) for all a ∈

⋃
m,ρ,δ Sm

ρ,δ with
support in F , such that
a) If

∫
eiϕ(x ,θ)a(x , θ)dθ is absolutely convergent, it is equal to Iϕ(a)

b) for every m, ρ, δ fixed, the map Sm
ρ,δ 3 a 7→ Iϕ(a) ∈ D ′(X ) is

continuous and linear.
Iϕ(a) is called an oscillatory integral, formally denoted by the integral
above.

One possible way to prove this is a partition of unity argument:
∑

j ψj (θ) = 1 with
compactly supported ψj . Set 〈Iϕ(a), φ〉 =

∑
j〈Iϕ(ψja), φ〉, show that the r.h.s.

converges and has the desired properties.

Why these symbol classes? We will look at this question later (slide 8).
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Oscillatory integrals

WF of Iϕ(a)

Theorem
With definitions as above, one finds

WF (Iϕ(a)) ⊂ Λϕ

where

Λϕ = {(x , ϕ′x (x , θ))|(x , θ) ∈ F and ϕ′θ(x , θ) = 0} ⊂ X × Rn

is the manifold of stationary phase (of ϕ).

Proof idea: estimate φ̂Iϕ(a)(ξ) using again the partition of unity,∑∫ ∫
ei(ϕ(x,θ)−xξ) φ(x)χj (θ) a(x , θ) dxdθ

Intuition: when ϕ′θ(x , θ) = 0, the oscillations are too slow to control the θ-integration.
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Pseudodifferential operators on Rn

Pseudodifferential operators on Rn – definition

Definition
For m ∈ R, ρ ∈ (0,1] and δ ∈ [0,1), Sm

ρ,δ(Rn × Rn) is the set of all
a ∈ C∞(Rn × Rn) s.t. for any α, β ∃C s.t.

|∂βx ∂αξ a(x , ξ)| ≤ C〈ξ〉m−ρ|α|+δ|β|

Let φ ∈ S (Rn), a ∈ Sm
ρ,δ, then

(Op(a)φ)(x) := a(x ,D)φ(x) :=

∫
eixξa(x , ξ)φ̂(ξ)d̄ξ .

is called the pseudodifferential operator of the symbol a. Denote by
Ψm
ρ,δ(Rn) all pseudodiff. op’s of symbols a ∈ Sm

ρ,δ.

Modifications... e.g. 〈x〉µ for fixed µ on the r.h.s. Important special case: Sm := Sm
1,0.

Example: Sm 3 a(x , ξ) =
∑
|α|≤m cα(x)ξα, cα ∈ C∞b , and a(x ,D)φ(x) =

∑
cα(x)Dα

x φ
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Pseudodifferential operators on Rn

Remarks

Rewrite
(Op(a)φ)(x) =

∫
eixξa(x , ξ)φ̂(ξ)d̄ξ

in terms of its Schwartz kernel:

(Op(a)φ)(x) =

∫
K (x , x − y)φ(y)dy , K (x , x − y) =

∫
ei(x−y)ξa(x , ξ)d̄ξ .

Observe:

As long as ρ > 0, K is C∞ away from the diagonal x = y and rapidly decreasing for
|x − y | → ∞. Reason:

Dβ
x Dγ

z zαK (x , z) =

∫
Dβ

x Dα
ξ a(x , ξ) ξγ︸ ︷︷ ︸

∈ Sm−ρ|α|+δ|β|+γ|

eizξd̄ξ

so, given β and γ, the integrand is integrable for α big enough.
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Pseudodifferential operators on Rn

We specialize to ρ = 1, δ = 0

Definition (Sobolev space)

Let s be real. The L2-based Sobolev space Hs is the space of all
u ∈ S ′(Rn), s.t. û is a function and 〈ξ〉sû ∈ L2. Hs is endowed with the
norm ‖u‖2Hs =

∫
〈ξ〉2s|û(ξ)|2 d̄ξ.

Example: δ ∈ Hs(Rn) for s < −n/2.
Observe (Sobolev embedding theorem): u ∈ Hs(Rn) for s > n/2 then u is continuous.

Theorem
Let A ∈ Ψm

1,0(Rn).
A : S (Rn)→ S (Rn) is continuous.
A : Hs(Rn)→ Hs−m(Rn) is bounded.
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Pseudodifferential operators on Rn

Asymptotic expansion

Definition
a ∈ Sm = Sm

1,0 has the asymptotic expansion a ∼
∑∞

j=0 a(m−j) in Sm if
the a(m−j) are in Sm−j , and for all M, we have

a−
∑
j<M

a(m−j) ∈ Sm−M .

am is called the principal symbol. A symbol a is called classical if
a ∼

∑
j a(m−j) where each a(m−j) is positively homogeneous of degree

m − j in ξ for |ξ| ≥ 1.

Example: a(x , ξ) = 〈ξ〉 = (1 + |ξ|2)
1
2 ∈ S1. For |ξ| ≥ 1, convergent series

representation 〈ξ〉 = |ξ|(1 + 1
2 |ξ|
−2 − 1

8 |ξ|
−4 + ...) Asymptoptic expansion:

〈ξ〉 ∼ χ(ξ)|ξ|+ 1
2χ(ξ)|ξ|−1 − 1

8χ(θ)|ξ|−3 + ... where χ ∈ C∞ smoothly cuts out the
singularity in 0

χ(ξ) =

{
0 for |ξ| ≤ 1

2
1 for |ξ| ≥ 1
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Pseudodifferential operators on Rn

Reconstruction

Often, we only have asymptotic formulas (see below). However, by the following
theorem, they are essentially as good as the real thing:

Lemma (“reconstruction”)

Let m ∈ R. Given a(m−j) ∈ Sm−j for j = 0,1,2, ... there is a symbol in
a ∈ Sm such that a ∼

∑
j a(m−j) in Sm

Proposition (application of the lemma)

Let a ∈ Sm, b ∈ Sk . Then there is p =: a#b ∈ Sm+k such that
Op(a) ◦Op(b) = Op(p). It has the asymptotic expansion

p(x , ξ) ∼
∑
α

1
α!
∂αξ a(x , ξ)Dα

x b(x , ξ)

Moreover, # : Sm × Sk → Sm+k is continuous.

Similarly, the asymptotic expansion for the formal adjoint of a symbol is known.
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Pseudodifferential operators on Rn

Parametrices

Another important application: Existence of “inverses” for Op(a):

Theorem
Let a ∈ Sm be elliptic of order m i.e. there is R ≥ 0 and C s.t. a(x , ξ) is
invertible for all |ξ| ≥ R, x ∈ Rn and |a(x , ξ)−1| ≤ C|ξ|−m.
Then there is a symbol b ∈ S−m (called parametrix for a) s.t.

a#b − 1 =: r1 and b#a− 1 =: r2

with rj ∈ S−∞.

Proof idea: iteratively construct a suitable asymptotic series.
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Pseudodifferential operators on Rn

Elliptic regularity

Theorem
Let P ∈ Ψm

ρ,δ, ρ ∈ (0,1] and δ ∈ [0,1), then for any u ∈ D ′(Rn),

WF (Pu) ⊆WF (u) ⊆WF (Pu) ∪ charP ,

where charP is the set of all (x , ξ) ∈ Rn × Ṙn where the principal
symbol cannot be inverted with inverse in S−m

ρ,δ .

The first inclusion was discussed in the first lecture for differential operators.

Corollary
If P as above is elliptic, then

WF (u) = WF (Pu)
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