Introduction to Microlocal Analysis Second lecture: Pseudodifferential operators on \mathbb{R}^n

Dorothea Bahns (Göttingen)

Third Summer School on "Dynamical Approaches in Spectral Geometry"

"Microlocal Methods in Global Analysis"

University of Göttingen August 27-30, 2018

Pseudodifferential operators on \mathbb{R}^n

< A

Oscillatory integrals - Intro

Let φ and *a* be smooth functions on $X \times \mathbb{R}^N$, $X \subseteq \mathbb{R}^n$ open. If *a* is compactly supported in the θ variable, and $\Im \phi \ge 0$, then

$$u(x) = \int e^{i\varphi(x,\theta)} a(x,\theta) d\theta$$

is a function. Goal: Give this expression meaning as a distribution

$$\mathscr{C}^{\infty}_{c}(X) \ni \phi \mapsto \int \mathrm{e}^{\mathrm{i} \varphi(x,\theta)} a(x,\theta) \phi(x) \mathrm{d} x \mathrm{d} heta$$

for more general *a* and suitable φ .

Example

$$\int \mathrm{e}^{\mathrm{i}x\theta} \mathrm{d}\theta = \delta_0(x).$$

Phase functions and symbols

Definition (phase function)

Let $X \subseteq \mathbb{R}^n$ be open, let Γ be an open cone in $X \times \mathbb{R}^N$) (i.e. conic w.r.t. the second set of variables). A function $\varphi \in \mathscr{C}^{\infty}(\Gamma)$ is called a phase function if

a) $\Im \varphi \ge 0$, b) $\varphi(x, \lambda \theta) = \lambda \varphi(x, \theta)$ for all $\lambda > 0$ (homogeneity), and c) $\varphi'(x, \theta) \ne 0$ (non-degeneracy).

Definition (Symbols)

Let *m* be real, $\rho \in (0, 1]$ and $\delta \in [0, 1)$. Then

 $S^{m}_{\rho,\delta}(X \times \mathbb{R}^{N}) = \{ a \in \mathscr{C}^{\infty}(X \times \mathbb{R}^{N}) \mid \text{ for any } \alpha, \beta \text{ and cpt } K \subset X, \exists C \text{ s.t.} \\ |\partial_{x}^{\beta} \partial_{\theta}^{\alpha} a(x,\theta)| \leq C \langle \theta \rangle^{m-\rho|\alpha|+\delta|\beta|} \}$

is called the space of symbols of order *m* and type ρ , δ . Topology on $S^m_{\rho,\delta}$: given by optimal constants (which give a family of seminorms).

Oscillatory integrals

Theorem

Given a phase function φ on Γ and a closed cone $F \subset \Gamma \cup (X \times \{0\})$, there is a unique way to define $I_{\varphi}(a) \in \mathscr{D}'(X)$ for all $a \in \bigcup_{m,\rho,\delta} S^m_{\rho,\delta}$ with support in F, such that

- a) If $\int e^{i\varphi(x,\theta)}a(x,\theta)d\theta$ is absolutely convergent, it is equal to $I_{\varphi}(a)$
- b) for every m, ρ , δ fixed, the map $S^m_{\rho,\delta} \ni a \mapsto I_{\varphi}(a) \in \mathscr{D}'(X)$ is continuous and linear.

 $I_{\varphi}(a)$ is called an oscillatory integral, formally denoted by the integral above.

One possible way to prove this is a partition of unity argument: $\sum_{j} \psi_{j}(\theta) = 1$ with compactly supported ψ_{j} . Set $\langle I_{\varphi}(a), \phi \rangle = \sum_{j} \langle I_{\varphi}(\psi_{j}a), \phi \rangle$, show that the r.h.s. converges and has the desired properties.

Why these symbol classes? We will look at this question later (slide 8).

D. Bahns (Göttingen)

< <p>A < </p>

WF of $I_{\varphi}(a)$

Theorem

With definitions as above, one finds

 $WF(I_{arphi}(a))\subset \Lambda_{arphi}$

where

$$\Lambda_arphi = \{(x, arphi_x'(x, heta)) | (x, heta) \in {\sf F} ext{ and } arphi_ heta'(x, heta) = 0\} \subset {\sf X} imes \mathbb{R}^n$$

is the manifold of stationary phase (of φ).

Proof idea: estimate $\widehat{\phi l_{\varphi}(a)}(\xi)$ using again the partition of unity,

$$\sum \int \int e^{i(\varphi(x,\theta)-x\xi)} \phi(x) \chi_j(\theta) a(x,\theta) dx d\theta$$

Intuition: when $\varphi'_{\theta}(x,\theta) = 0$, the oscillations are too slow to control the θ -integration.

Pseudodifferential operators on \mathbb{R}^n – definition

Definition

For $m \in \mathbb{R}$, $\rho \in (0, 1]$ and $\delta \in [0, 1)$, $S^m_{\rho, \delta}(\mathbb{R}^n \times \mathbb{R}^n)$ is the set of all $a \in \mathscr{C}^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ s.t. for any $\alpha, \beta \exists C$ s.t.

$$|\partial_x^{eta}\partial_\xi^{lpha} a(x,\xi)| \leq C \langle \xi
angle^{m-
ho|lpha|+\delta|eta|}$$

Let $\phi \in \mathscr{S}(\mathbb{R}^n)$, $a \in S^m_{\rho,\delta}$, then

$$(Op(a)\phi)(x) := a(x,D)\phi(x) := \int \mathrm{e}^{\mathrm{i} x\xi} a(x,\xi)\hat{\phi}(\xi)\mathrm{d}\xi$$

is called the pseudodifferential operator of the symbol *a*. Denote by $\Psi^m_{\rho,\delta}(\mathbb{R}^n)$ all pseudodiff. op's of symbols $a \in S^m_{\rho,\delta}$.

Modifications... e.g. $\langle x \rangle^{\mu}$ for fixed μ on the r.h.s. Important special case: $S^m := S^m_{1,0}$. Example: $S^m \ni a(x,\xi) = \sum_{|\alpha| \le m} c_{\alpha}(x)\xi^{\alpha}$, $c_{\alpha} \in \mathscr{C}^{\infty}_b$, and $a(x,D)\phi(x) = \sum c_{\alpha}(x)D^{\alpha}_x\phi$

Remarks

Rewrite

$$(Op(a)\phi)(x) = \int e^{ix\xi} a(x,\xi)\hat{\phi}(\xi)d\xi$$

in terms of its Schwartz kernel:

$$(Op(a)\phi)(x) = \int K(x,x-y)\phi(y)dy, \quad K(x,x-y) = \int e^{i(x-y)\xi}a(x,\xi)d\xi.$$

Observe:

As long as $\rho > 0$, K is \mathscr{C}^{∞} away from the diagonal x = y and rapidly decreasing for $|x - y| \to \infty$. Reason:

$$D_x^{\beta} D_z^{\gamma} z^{\alpha} \mathcal{K}(x, z) = \int \underbrace{D_x^{\beta} D_\xi^{\alpha} a(x, \xi) \xi^{\gamma}}_{\in S^{m-\rho|\alpha|+\delta|\beta|+\gamma|}} e^{iz\xi} d\xi$$

so, given β and γ , the integrand is integrable for α big enough.

We specialize to $\rho = 1$, $\delta = 0$

Definition (Sobolev space)

Let *s* be real. The *L*²-based Sobolev space *H*^{*s*} is the space of all $u \in \mathscr{S}'(\mathbb{R}^n)$, s.t. \hat{u} is a function and $\langle \xi \rangle^s \hat{u} \in L^2$. *H*^{*s*} is endowed with the norm $||u||_{H^s}^2 = \int \langle \xi \rangle^{2s} |\hat{u}(\xi)|^2 d\xi$.

Example: $\delta \in H^{s}(\mathbb{R}^{n})$ for s < -n/2.

Observe (Sobolev embedding theorem): $u \in H^{s}(\mathbb{R}^{n})$ for s > n/2 then u is continuous.

Theorem

Let $A \in \Psi_{1,0}^m(\mathbb{R}^n)$. • $A : \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}(\mathbb{R}^n)$ is continuous.

• $A: H^{s}(\mathbb{R}^{n}) \to H^{s-m}(\mathbb{R}^{n})$ is bounded.

Asymptotic expansion

Definition

 $a \in S^m = S^m_{1,0}$ has the asymptotic expansion $a \sim \sum_{j=0}^{\infty} a_{(m-j)}$ in S^m if the $a_{(m-j)}$ are in S^{m-j} , and for all M, we have

$$a-\sum_{j$$

 a_m is called the principal symbol. A symbol *a* is called classical if $a \sim \sum_j a_{(m-j)}$ where each $a_{(m-j)}$ is positively homogeneous of degree m - j in ξ for $|\xi| \ge 1$.

Example: $a(x,\xi) = \langle \xi \rangle = (1+|\xi|^2)^{\frac{1}{2}} \in S^1$. For $|\xi| \ge 1$, convergent series representation $\langle \xi \rangle = |\xi|(1+\frac{1}{2}|\xi|^{-2}-\frac{1}{8}|\xi|^{-4}+...)$ Asymptoptic expansion: $\langle \xi \rangle \sim \chi(\xi)|\xi| + \frac{1}{2}\chi(\xi)|\xi|^{-1} - \frac{1}{8}\chi(\theta)|\xi|^{-3} + ...$ where $\chi \in \mathscr{C}^{\infty}$ smoothly cuts out the singularity in 0

$$\chi(\xi) = \begin{cases} 0 & \text{for } |\xi| \le \frac{1}{2} \\ 1 & \text{for } |\xi| \ge 1 \end{cases}$$

Reconstruction

Often, we only have asymptotic formulas (see below). However, by the following theorem, they are essentially as good as the real thing:

Lemma ("reconstruction")

Let $m \in \mathbb{R}$. Given $a_{(m-j)} \in S^{m-j}$ for j = 0, 1, 2, ... there is a symbol in $a \in S^m$ such that $a \sim \sum_j a_{(m-j)}$ in S^m

Proposition (application of the lemma)

Let $a \in S^m$, $b \in S^k$. Then there is $p =: a \# b \in S^{m+k}$ such that $Op(a) \circ Op(b) = Op(p)$. It has the asymptotic expansion

$$p(x,\xi) \sim \sum_{\alpha} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a(x,\xi) D_{x}^{\alpha} b(x,\xi)$$

Moreover, $\# : S^m \times S^k \to S^{m+k}$ is continuous.

Similarly, the asymptotic expansion for the formal adjoint of a symbol is known.

D. Bahns (Göttingen)

Parametrices

Another important application: Existence of "inverses" for Op(a):

Theorem

Let $a \in S^m$ be elliptic of order m i.e. there is $R \ge 0$ and C s.t. $a(x, \xi)$ is invertible for all $|\xi| \ge R$, $x \in \mathbb{R}^n$ and $|a(x, \xi)^{-1}| \le C|\xi|^{-m}$. Then there is a symbol $b \in S^{-m}$ (called parametrix for a) s.t.

$$a\#b-1 =: r_1$$
 and $b\#a-1 =: r_2$

with $r_i \in S^{-\infty}$.

Proof idea: iteratively construct a suitable asymptotic series.

< ロ > < 同 > < 回 > < 回 >

Elliptic regularity

Theorem

Let
$$P \in \Psi^m_{\rho,\delta}$$
, $\rho \in (0,1]$ and $\delta \in [0,1)$, then for any $u \in \mathscr{D}'(\mathbb{R}^n)$,

$$WF(Pu) \subseteq WF(u) \subseteq WF(Pu) \cup \operatorname{char} P$$
,

where char *P* is the set of all $(x, \xi) \in \mathbb{R}^n \times \dot{\mathbb{R}}^n$ where the principal symbol cannot be inverted with inverse in $S_{\rho,\delta}^{-m}$.

The first inclusion was discussed in the first lecture for differential operators.

Corollary

If P as above is elliptic, then

$$WF(u) = WF(Pu)$$