MULTIPLE VECTOR BUNDLES: CORES, SPLITTINGS AND
DECOMPOSITIONS

MALTE HEUER AND MADELEINE JOTZ LEAN

ABSTRACT. This paper introduces oo- and n-fold vector bundles as special
functors from the oo- and n-cube categories to the category of smooth
manifolds. We study the cores and “n-pullbacks” of n-fold vector bundles and
we prove that any n-fold vector bundle admits a non-canonical isomorphism
to a decomposed n-fold vector bundle. A colimit argument then shows that
oo-fold vector bundles admit as well non-canonical decompositions. For the
convenience of the reader, the case of triple vector bundles is discussed in
detail.

1. Introduction

Double vector bundles were introduced by Pradines [18] as a structural tool in
his study of nonholonomic jets. Since then, double vector bundles have been used
e.g. in integration problems in Poisson geometry [17, 2, 11, 1, 10], and Pradines’
symmetric double vector bundles (with inverse symmetry) have turned out to
be equivalent to graded manifolds of degree 2 [9]. Pradines’ original definition
was in terms of double vector bundle charts [18]:

Let M be a smooth manifold and D a topological space with a map I11: D —
M. A double vector bundle chart is a quintuple c = (U, ©,V;, V5, Vy), where
U is an open set in M, Vi, V,, V3 are three (finite dimensional) vector spaces
and ©: TI71(U) — U x Vi x Vo x Vjy is a homeomorphism such that I1 = pr; o ©.

Two smooth double vector bundle charts ¢ and ¢ are smoothly compatible
if Vi =V/ fori=0,1,2 and the “change of chart” © o ©~' over UNU’ has the
form

(@, 01,02, v0) = (@, pr(x)v1, p2(2)v2, po(T)vo + w(@)(V1, v2))

with x € UNU', v; € Vi, p; € C°(UNU',GIV;)) fori = 0,1,2 and w €
C*(UNU',Hom(V; ® V5,Vy)). A smooth double vector bundle atlas 2
on D is a set of double vector bundle charts of D that are pairwise smoothly
compatible and such that the family of underlying open sets in M covers M. A
(smooth) double vector bundle structure on D is a maximal smooth double vector
bundle atlas on D.
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A double vector bundle consists then of a smooth manifold D, together with
vector bundle structures D — Ay, D — Ay, Ay — M, Ay — M:

D
pAl
D — A

ngl lfh )

AQ q2

such that the structure maps (bundle projection, addition, scalar multiplication
and zero section) of D over A are vector bundle morphisms over the corresponding
structure maps of B — M and the other way around. Equivalently, the condition
that each addition in D is a morphism with respect to the other is exactly

(dy 424, d2) +a, (d3 +a, ds) = (dy +a, d3) +4, (d2 +a, ds) (1)

for dl, dg, dg, ds € D with pgl (dl) = pgl (dg), pgl (dg) = pﬁl <d4) and pi (dl) =
ph (d3), pR,(ds) = p& (ds). This is today’s usual definition of a double vector
bundle; which has been used since [14]. It is easy to see that a double vector
bundle following Pradines’ definition is a double vector bundle in the “modern”
sense [18], but the converse is more difficult to see. Pradines’ double vector
bundle charts are equivalent to local linear splittings of today’s double vector
bundles. Let us be more precise.

Given three vector bundles A, B and C' over M with respective vector bundle
projections g4, gp and g¢, the space

Axy BxyC~gy(BoC)~gy(AdC)

has two vector bundle structures, one over A, and one over B. These two vector
bundle structures are compatible in the sense of both definitions above. Such a
double vector bundle is called a decomposed double vector bundle, with sides
A and B and with “core” C. In particular, if C' is the trivial vector bundle M
over M, we get the “vacant” double vector bundle A x; B [14]. A (local) linear
splitting of a double vector bundle (D; A, B; M) is an injective morphism of
double vector bundles

Yv: Aly xu Bly = (qg o pp) ' (U),

over the identity on the sides A|y and B|y, where U C M is an open subset.
A (local) decomposition of (D; A, B; M) with core C' is an isomorphism of
double vector bundles

SUI A|U XU B|U Xu C’|U — (QB Opg)_l(U),
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which is the identity on the sides and on the core. Linear splittings are equivalent
to decompositions; and a local decomposition of D as above with the open set
U trivialising simultaneously A, B and C gives a smooth double vector bundle
chart of D, defined by ©: (gg o pB)"H(U) — U x R* x R® x R

0 = (pry, da, 6, dc) o (Sv) ™",

where a, b, ¢ are the ranks of A, B, C, respectively and ¢4: ¢, (U) — U x R®
is the trivialisation of A over U, etc.

Starting with the definition from [14], it was until recently not known how to
show the existence of local double vector bundle charts, or equivalently of local
linear splittings. In fact, Mackenzie later added the existence of a global splitting
to his definition of a double vector bundle, and also of triple vector bundles
(see e.g. [16, Definition 1], [6], [4]). It turns out that Mackenzie’s additional
condition in his definition is redundant. The existence of local splittings for
the above definition of double vector bundles has been mentioned at several
places [8, 5], but the first elementary construction was given by Fernando del
Carpio-Marek in his thesis [3], starting from the hypothesis that the double
projection (p&,pB): D — A x,; B of a double vector bundle is a surjective
submersion.

Note here that in [18], Pradines pasted local decompositions together with a
partition of unity, in order to get a global decomposition (see in our proof of
Theorem 3.5 below). In other words, the existence of local decompositions is
equivalent to the existence of a global linear splitting or decomposition.

We will explain below (in Section 1) how to deduce very easily from the
surjectivity of the double projection (p%,pB): D — A xj; B the existence of
a global splitting. This surjectivity, that is sometimes also assumed as part of
the definition of a double vector bundle (this is e.g. done explicitly in a former
version of [16] that can be found on arXiv.org, and implicitly in [3]), is in fact
always ensured by Lemma 2.13 below (see also Remark 2.14). Although we find
a more elegant proof of the existence of global splittings of double vector bundles
than the one in [3], it turns out that the method there is easier to understand
and more elementary in the case of a general n-fold vector bundle. Our first goal
in this project was to build on del Carpio-Marek’s method in order to construct
local splittings of triple vector bundles. It was then natural to adapt our proof to
the construction of local linear splittings of n-fold vector bundles; and we found
that a colimit argument yields the existence of global linear decompositions for
oo-fold vector bundles as well.

Let us mention here that Eckhard Meinrenken showed us recently a beautiful
construction of global linear splittings of double vector bundles using the normal
functor, and an interesting alternative proof to the submersive surjectivity of the
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double projection [13], using the commuting scalar multiplications of a double
vector bundle.

In this paper, we introduce multiple vector bundles [7] as special functors
from hypercube categories to smooth manifold, such that generating arrows
are sent to vector bundle projections, and elementary squares to double vector
bundles. In particular, we define co-fold vector bundles as such functors from
the infinite hypercube category. We study in great detail the cores of multiple
vector bundles and find on them rich structure of multiple vector bundles as
well. We define the n-pullback of an n-fold vector bundle and the surjective
submersion onto it — in the case of a double vector bundle, this is the surjectivity
of (pR,pB): D — A xj; B — and most importantly we prove by induction
over n that each n-fold vector bundle admits local splittings and therefore a
non-canonical global decomposition.

n-fold vector bundles were previously defined in [7], [5]. It is not difficult to
see that the definitions are the same: Gracia-Saz and Mackenzie’s n-fold vector
bundles are smooth manifolds with n “commuting” vector bundle structures
in the sense that all squares are double vector bundles, and Grabowski and
Rotkiewicz’s are smooth manifolds with n commuting scalar multiplications.
Grabowski and Rotkiewicz sketch in [5] a proof of global splittings of their
n-fold vector bundles. Our construction is more precise since it explains all the
multiple core and their roles in the decomposition; and most importantly it gives
the decompositions of oo-fold vector bundles with a colimit construction. Our
definition of multiple vector bundles as special functors from cube categories to
manifolds allows us to work with n-fold vector bundles without giving a central
role to the total space — an co-fold vector bundle cannot be defined as a smooth
manifold with infinitely many commuting scalar multiplications!

OUTLINE OF THE PAPER. In the next section 1 we explain for the convenience of
the reader how to prove that double vector bundles admit linear decompositions.

In Section 2 we define multiple vector bundles. We construct their pullbacks
(Section 2.9) and we explain the rich structure on the different cores of multiple
vector bundles (Section 2.17).

In Section 3 we define linear splittings and decompositions of n-fold vector
bundles. We explain how the two notions are essentially equivalent (Section 3.1)
and we prove the existence of local splittings of a given n-fold vector bundle
(Section 3.4). We deduce the existence of global decompositions of n-fold vector
bundles and we explain how n-fold vector bundles can alternatively be defined
as smooth manifolds with an atlas of compatible n-fold vector bundle charts
(Section 3.8).

In Section 4 we prove that each oo-fold vector bundle admits a linear decom-
position. Finally in Section 5 we explain for the convenience of the reader most
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of our constructions and results in the case of a triple vector bundle. In that
special case, we explain the relation between linear splittings and multiple linear
sections.

RELATION WITH OTHER WORK. We heard after having mostly completed this
work that the content of Theorem 2.10 for n = 3 can be found as well in the
recent paper [4]; unfortunately the proof given there has some errors.

Some of our results on cores in Section 2.17 seem to be known in [7], but
they are not central in that paper so not precisely formulated and proved. The
cores of triple vector bundles can also be found in [4] and [15] — our proof of
Theorem 2.20 relies on the fact that the side cores of a triple vector bundle are
double vector bundles [15].

PREPARATION: ON LINEAR SPLITTINGS OF DOUBLE VECTOR BUNDLES. Let
(D, A, B, M) be a double vector bundle with core C. That is, the space C is the
double kernel C' = {d € D | p5(d) =04, pBP(d) =08 for some m € M}. It
has a natural vector bundle structure over M since +4 and +5 of two elements
of C coincide by the interchange law (1), see (5) below.

The additional axiom that the double projection (p,pE): D — A x; B is
a surjective submersion is sometimes added to the definition. We explain in
Theorem 2.10, see also Remark 2.14, why this additional axiom is not needed
[13]. The surjectivity of (p§,pB) yields the exactness of the sequence

| LB (PRr8) |
0— qgC -5 D 25 qgA — 0 (2)

of vector bundles over B. The map tg: q5C — D is the core inclusion over B;
sending (b, c) to 0 44 c. Its image are precisely the elements of D that project
under pf to zero elements of A.

A section £ € T'4(D) is linear over a section b € I'(B) if the map {: A — D
is a vector bundle morphism over the base map b: M — B. The space I'(D) of
linear sections of D — A is a C°°(M)-module since for £ € T'% (D) linear over
b e I'(B) and for f € C*(M), the section ¢}y f - £ is linear over fb. We get a
morphism 7: 'Y (D) — I'(B) of C*°(M)-modules, sending a linear section to
its base section. If a linear section ¢ € T'4(D) has the zero section 07 € T'(B)
as its base section, then for all a,, € A, D 3 &(ayn) = 02 +p ¢(ay,) for some
¢(am) € C(m). The linearity of £ implies that ¢ € I'(A*® C'). We denote then §
by ¢, and we get the map *: I'(Hom(A, C)) — I'4 (D) that sends ¢ to ¢ € T'%(D)
defined by ¢(a) = 07 +p ¢(a) for all a € A.

A splitting s: ¢ A — D of (2) lets us define for every b € I(B) a section b of
D — A, given by b(ap) = s(am, b(m)) for all a,, € A. We get then immediately
pRob=bogs: M — B and

blay, +a3,) = s(ay, +a;,,b(m)) = s(ay,, b(m)) +5 s(ay,, b(m)) = ba,,) +5b(a3,),
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i.e. b: A— D is a vector bundle morphism over b: M — B. In other words, b
is an element of 'y (D). Therefore, the third arrow in

0 — D(Hom(A, C)) — T4(D) — I(B) — 0 (3)

is surjective and the short sequence of C*°(M)-modules is exact. Then, since
['(Hom(A,C)) and T'(B) are locally free and finitely generated, T'%(D) is as
well and there exists a splitting h: ['(B) — T'4(D) of (3). Then h defines a
linear splitting 3,: A Xy B — D, Yp(am, by) = h(b)(a,,) for any b € I'(B) with
b(m) = b,,. Since h is C°°(M)-linear, it is easy to see that ¥, is well-defined,
i.e. that it does not depend on the choice of the sections of B.

Hence we have proved the following theorem.

1.1. THEOREM. Any double vector bundle D with sides A and B admits a linear
splitting >: A Xy B — D.

Del Carpio-Marek proves in his thesis [3] the existence of local splittings.
His method is the following. Take a splitting o: qg!A — D of the short exact
sequence (2) — here [3] seems to assume the surjectivity of the right-hand map
as an axiom in the definition of a double vector bundle. That is, ¢ is a vector
bundle morphism over the identity on B. Now choose U C M an open set that
trivialises both A and B and take the induced local frames (a4, ...,a;) and
(by,...,b) of Aand B over U. Then each b,, € Bly equals b,, = >!_, Bibi(m)
with £1,...,8, € R. Set Xy A‘U Xu B’U — <q3 Opg)_l(U),

l
ZU(ama bm) = Z 57, "A O'(Clm, bz(m))a
=1

where the sum is taken in the fiber of D over a,, € A. Then Yy is a local linear
splitting of D.

ACKNOWLEDGEMENTS. We warmly thank Rohan Jotz Lean for useful comments,
and Sam Morgan for telling us about the technique used in [13] for proving that
the double source map of a VB-groupoid is a surjective submersion (used in our
proof of Theorem 2.10).

We also thank the University of Sheffield for the received funding in form of
a PhD scholarship for Malte Heuer, which made this research possible.

2. Multiple vector bundles: definition and properties

In this section we introduce multiple vector bundles and discuss some of their
properties. The novelty of our definition is that instead of considering an n-fold
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vector bundle as a smooth manifold with n-commuting vector bundle structures,
we see a multiple vector bundle as a special functor from a cube category to
smooth manifolds. In particular, the “total space” of an n-fold vector bundle
does not play that central a role anymore, and we can even define co-fold vector
bundles, with no total space at all.

In the following, we write N for the set of positive integers: N = {1,2,...}.
For n € N, we write n for the set {1,...,n}.

2.1. MULTIPLE VECTOR BUNDLES. We consider the category with objects the
finite subsets I C N and with arrows

I—-J & JCI.

We call this category the standard co-cube category (V. It is generated as
a category by the arrows

I - I\{i} for [ CNfiniteandie .

That is, each subset I C N of cardinality k is the source of k generating arrows.
In a similar manner, we call the standard n-cube category [1" the category
with subsets I of n as objects and with arrows [ — J < J C [.
More generally, an n-cube category is a category that is isomorphic to the
standard n-cube category [J", while an co-cube category is a category that is
isomorphic to the standard co-cube category [IN.

2.2. DEFINITION. An oo-fold vector bundle, and respectively an n-fold vec-
tor bundle, is a covariant functor E: OY — Man™ — respectively a covariant
functor E: 0" — Man™ - to the category of smooth manifolds, such that,
writing E7 for B(I) and p% :=E(I — J),

(a) for all I CN (respectively I Cn) and alli € 1, pf\{i}: Er — Engy has a
smooth vector bundle structure, and

(b) for all I CN (respectively I Cn)andi#j €I,

PI(i)
Ef —————— Enggy

I I\{%}
Jpl\“} N} Jp’\“*”

IN{i,j}
Engy ——— Engg)

1s a double vector bundle.
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For better readability we will often write for the vector bundle projections
pi = ph gy and in the case of an n-fold vector bundle also p; := p%\{i}. The
smooth manifold Ey =: M will be called the absolute base of E. If E is an n-fold
vector bundle, the smooth manifold E(n) =: E is called its total space. Given a
finite subset I € N and ¢ € I, we write +p ;) for the addition and -\ for the
scalar multiplication of the vector bundle E; — En ;. This notation is omissive
since it only specifies the base space of the vector bundle in the fibers of which
the addition or scalar multiplication is taken. However, it is always clear from
the summands or factors which fiber space is considered.

We will generally say multiple vector bundle for an n-fold or oo-fold vector
bundle, when the dimension of the underlying cube diagram does not need to
be specified. Our definition of n-fold vector bundles is different but equivalent
notation to the definition in [7].

2.3. REMARK. There is a canonical functor 7i: O0" — OF for k < n defined
by () =1Nk and (I — J) = (I Nk)— (JNk). The canonical functor
. ON — O is defined in the same manner by 7 (I) = I Nn. Furthermore
there are inclusion functors of full subcategories 17: (¥ — O™ and (: O™ — O,

Given a k-fold vector bundle E : OF — Man™, the composition E o 2 is an
n-fold vector bundle whereas the composition E o 7t} is an oo-fold vector bundle.

In this light, a standard n-fold vector bundle E can be viewed as a special
case of a standard co-fold vector bundle E: OY — Man®™ such that additionally
E=Eolonl:

ON —E , Man®

W]

K - DN
L?’L

In other words E(I) = E(I Nn) for all I CN and E is completely determined by
its values on all the subsets of n already.

We will also more generally call an n-fold vector bundle a functor E: $™ —
Man®, where " is an n-cube category with isomorphism i: (0" — ™, such
that E o i is a standard n-fold vector bundle. Similarly, an oo-fold vector
bundle is a functor E: O — Man™, where OV is an oco-cube category with
isomorphism i: OY — ON, such that Eoi is a standard oco-fold vector bundle.
We need this generality of the definition for the study of the cores of a multiple
vector bundle.

The following proposition is straightforward and its proof is left to the reader.

2.4. PROPOSITION. Let E: OY — Man®™ be a multiple vector bundle.
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(a) For each pair of subsets J C I C N with J finite, the finite sets K C N
such that J C K C I form a full subcategory OF7 of 0N, which is itself a
(#1 — #J)-cube category and the restriction of E to 017 is a (#1 — #J)-
fold vector bundle with total space Ey (if I is finite) and absolute base E;,
denoted by B/, We call this the (I,J)-face of E.

(b) In particular, if I = () we obtain a (#I)-fold vector bundle E'P with total
space E; and absolute base M. We call BN the I-face of E.

Given an oo-fold vector bundle E: (Y — Man™ and an open subset
U C M, we define the restriction of E to U to be the oo-fold vector bun-

die Ely: OV — Man™, Ely(1) = (p})  (U) and Ely(I — J) = E(I —

‘]>|(pé)*1(U): (pé)_l U) — (p@_l (U). The absolute base of E|y is U. In
the same manner, if E: $" — Man® is an n-fold vector bundle, and U an open
subset of M, then its restriction E|y to U is an n-fold vector bundle with total
space (py)~'(U) and with absolute base U.

Now recall that a morphism (W; 4,1 p;1) of double vector bundles from
(D1; A1, By; My) to (Da; Ag, Bs; My) is a commutative cube

D1 Ll D2

all the faces of which are vector bundle morphisms. Similarly we define mor-
phisms of multiple vector bundles.

2.5. DEFINITION. Let E: OIF — Man™ and IF: <>I§ — Man®™ be two multiple
vector bundles. A morphism of multiple vector bundles from E to F is a
natural transformation 7: Eoi; — Foiy such that for all objects I of ON and
for all i € I, the commutative diagram

(1)

By —— Fuo
iy (1) ia ()
lpii(ﬁ\{m inz(f\{m

T(I\{i})
Ey gy —— Foagyp
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is a homomorphism of vector bundles.

Given two n-fold vector bundles E: O} — Man™ and F: 0§ — Man®™, a
morphism of n-fold vector bundles from E to F is a natural transformation
7:Eoiy — Foiy such that the diagram above is a vector bundle homomorphism
for all I Cn andi € I. The morphism T is surjective (resp. injective) if each
of its components T(I), I C n is surjective (resp. injective).

2.6. PROTOTYPES. In this section, we describe a few standard examples of
multiple vector bundles, that will be relevant in the formulation of our main
theorem.

DECOMPOSED MULTIPLE AND n-FOLD VECTOR BUNDLES. Consider a smooth

manifold M and a collection of vector bundles A = (g;: Ay = M) jcN, #7<00
with Ay = M. We define a functor E4: O — Man™ as follows. Each finite
subset I C N is sent to E; := [[J-; A, the fibered product of vector bundles
over M. -

For I C N with 1 < #I < oo and for k € I, the arrow I — I\ {k} is sent to
the canonical vector bundle projection

M M
pi: H A J — H A J-
JCI JCI\{k}
In particular, the arrow {i} — () for ¢ € N is sent to the vector bundle projection
péi} = quy: By = Ay — Ep = M. A multiple vector bundle EA: OY — Man™
constructed in this manner is called a decomposed multiple vector bundle.
A decomposed n-fold vector bundle EA: 0" — Man™ is defined accordingly.
In that case we will write E4 := E4(n) for the total space. Decomposed n-fold
vector bundles are also defined in [7].

2.7. EXAMPLE. A 3-fold vector bundle is also called a triple vector bundle. A
trivial or decomposed triple vector bundle s given by

Epipsy = Apy X Agay Xor Agay Xor Aoy X Ay X Agesy X Aqiesys
with decomposed sides

Euoy = Apy X Ay X Apey,  FEusy = Apy X Ay ¥ Apsy
Ea3y = Agay X Agzy X Az 3y
where Ar, I C n are all vector bundles over M, the projections are the appropriate

projections to the factors and the additions are defined in an obvious manner in
the fibers.
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VACANT MULTIPLE AND n-FOLD VECTOR BUNDLES. As a special case of this,

if A= (qgi: Ai » M);en is a collection of vector bundles over M, we construct
the multiple vector bundle EA: ON — Man®™ as follows:

Is—)ﬁAi, (I - I\ {k}) —~ (pk 114 — H A)

icl icl iel\{k}

Such a multiple vector bundle is called a vacant decomposed multiple vector
bundle. We will see later that all cores of these multiple vector bundles are
trivial.

Given a collection of vector bundles A = (¢;: Ay — M)jcn, #i<c0, With
Ay = M, we can define A = (¢;: A; — M);eny by A; = Agy. We get then a
monomorphism of multiple vector bundles

v: EA — EA (4)

defined by «(I): TTi¢; Ay — T17e; Asy o) ((vi)ier) = (wy)scr, wgy = v; for
i €I, wy=uvp:=m € Mandw; = 07 for #.J > 2. In particular, 1({i}) = idag,
for all 7 € N.

In the case of an n-fold vector bundle we write E := E(n) for the total space.

“DIAGONAL” DECOMPOSED AND VACANT k-FOLD VECTOR BUNDLES. More
generally, consider a collection A = (¢;: A; — M);c,, of vector bundles, with

Ay = M, and a partition p = {[1,..., Iy} of n with I; # 0, for j = 1,... k.

Then we can define a k-cube category {” with objects the subsets v C p and

with morphisms vy — 15 < vy C 1y, We will write [v] := Uge, K for v C p.

Now we define a vacant k-fold vector bundle @: QP — Man™ by

v [[ Ax, (V—>V\{I})l—>(p,’j\{l}: II 4« — I AK).

Kev Kev Kev\{I}

In a similar manner, we define a decomposed k-fold vector bundle Ef: or —
Man®™ by

V= H A[V/], (V—>V\{]} (H A[l,/ — H A[V/),

V' Cy V' Cv V' Cu\{I}

where the map on the right-hand side is the canonical projection. We get as
before an obvious monomorphism of k-fold vector bundles ¢*: IEJ;;‘ — ]E;j‘. For
each v C p we have furthermore the obvious canonical injections

n°(v): B H Apy = EA(lv H Ay

V' Cuv JCV]

11
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THE TANGENT PROLONGATION OF AN n-FOLD VECTOR BUNDLE. Given an
n-fold vector bundle E: 0" — Man® we define an (n 4 1)-fold vector bundle
TE: 0" — Man®, the tangent prolongation of E, as follows. Given I C n,
we set TE(I) := E; and TE(I U{n + 1}) := TE;. Furthermore, fori € I Cn
we set

TE(I — I\ {i}) :=p!: E; = Engy,
TEJU{n+1} > T Uu{n+1)\{i}) =T(p)): TEr — TEngy ,
TE([U{TL—Fl} —)]) ‘= DPE;: TE; —>E],

where the last map is the canonical projection.

MULTIPLE HOMOMORPHISM VECTOR BUNDLES. Given two n-fold vector bundles
E and F with the same absolute base E(f)) = F(()) = M we construct an n-fold
vector bundle Hom,, (E, F), which is the n-fold analogon of the bundle Hom(E, F’)
for ordinary vector bundles £ and F' over M.

For m € M the restrictions E|,, and F|,, define n-fold vector bundles over a
single point as absolute base. With this we can define Hom, (E, F) to be

Hom, (E,F) := {@m: E|,, = F|,, morphism of n-fold vector bundles | m € M} :

This space is equipped with an obvious projection to M. Since n-fold vector bun-
dle morphisms have underlying (n—1)-fold vector bundle morphisms between the
faces there are additionally projections Hom,, (E, F) — Hom,,_; (E2\{F}H0 o\{k}0)
for all k € n. Each of these projections carries a vector bundle structure, with the
sum of two morphisms ®,, and ¥,, projecting to the same base ¢: E2\F} = —
Fo\E} |, defined as (@, 4\ (k) Um)(e) = Pple) +mx Pm(e). These vector
bundle structures define an n-fold vector bundle Hom(E, F) with total space
Hom,,(E, F) and absolute base M, by setting Hom(EE, F)(I) := Homy,(E/? F10).

Every morphism of n-fold vector bundles E — T over the identity on M
corresponds to a smooth map M — Hom,(E,F) which is a section of the
projection to M.

In particular, let F — M be an ordinary vector bundle and consider the
n-fold vector bundle F defined by F(n) = F and F(I) = M for all I C n. Then
we write Mor, (E, F') for the space of n-fold vector bundle morphisms from E to
F over id,.

2.8. LEMMA. Let E be an n-fold vector bundle over M and F' be a vector bundle
over M. Then the space Mor,(E, F') is a C*°(M)-module.

PROOF. An element 7 of Mor,(E, F') necessarily satisfies 7(1): E(I) — M,
7(I)(e) = pj(e) for all e € E(I), I C n. Take fi, f, € C*(M) and 7,72 €



MULTIPLE VECTOR BUNDLES: CORES, SPLITTINGS AND DECOMPOSITIONS 13

Mor,(E, F'). Then (f; -7+ fo-72): E — F is defined by (f1 71+ f2-72)(I)(e) =
pyle) for all e € E(I), I S nand (f; -7 + fo - 72)(n)(e) = fi(pjle)) - ma(e) +
f2(pf(e)) - ma(e) for e € E(n).

By construction, (f; - 71 + f2 - 72)(n) is smooth and

E(ﬂ) (f17—1+f27—2)(ﬂ) F

lpi\m JqF

E(n\ {i}) — =,

is a morphism of vector bundles for all € n. For I C n and ¢ € I, the map
(fi -1+ fo-m)): E(I) — M is obviously a vector bundle morphism over

T(I\{i}): E(I\ {i}) — M. .

2.9. THE n-PULLBACK OF AN n-FOLD VECTOR BUNDLE. Let E be an n-fold
vector bundle. We define the n-pullback of E to be the set

P= {(el, oy en) |e; € By and p?\{i}(ei) = piﬂ\{j}(ej) fori,j € @} .
We prove the following theorem, which is central in our proof of the existence

of a linear splitting.

2.10. THEOREM. Let E: 1" — Man® be an n-fold vector bundle. Then

(a) P defined as above is a smooth embedded submanifold of the product
Eﬁ\{l} X ... X Eﬁ\{n}.

(b) The functor P defined by P(n) = P, P(S) = Eg for all S C n and the
vector bundle projections pY: Eg — Es\qiy for all S € n andi € S and
it P = Engy, (e1,...,en) — € is an n-fold vector bundle.

(¢) The map w(n): E — P given by m(n): e — (pi(e),...,pu(e)), defines
together with ©(J) = idg, for J C n, a surjective n-fold vector bundle
morphism w: E — P.

Note that for each i € n, the top map n(n): E — P of 7 is necessarily
a vector bundle morphism over the identity on FE ;. For the proof of this
theorem, we need the following lemmas.

2.11. LEMMA. Let f: M — N be a smooth surjective submersion, and let
qe: E — N be a smooth vector bundle. Then the inclusion f'E — E x M is a
smooth embedding.

This lemma is standard and its proof is left as an exercise. The next statement
is obvious.
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2.12. LEMMA. Let A — M and B — N be two smooth vector bundles, and let
¢: A — B be a homomorphism of vector bundles over a surjective submersion
f: M — N. Assume that ¢ is surjective in each fiber. Then the pullback
homomorphism f'¢: A — f'B, apm — (¢(awm), m) over the identity on M is
surjective in each fiber.

The following lemma is central in our proof, its technique is inspired by a
similar one in [13].

2.13. LEMMA. Let A — M and B — N be two smooth vector bundles, and let
¢: A — B be a homomorphism of vector bundles over a smooth map f: M — N.
Then ¢ is a surjective submersion if and only if ¢ is surjective in each fiber and
f is a surjective submersion.

ProoF. Choose a,, € A. Then it is easy to see in local coordinates that
the tangent space T,, A splits as T,, A ~ T,, M ® A(m), and the tangent space
T4(an) B splits as Ty N ® B(f(m)). In those splittings, the map T, ¢: T, A —
T(a,,) B reads

Tam(b = Tmf S (b’A(m) TmM S A<m> — Tf(m)N D B(f<m>>

Therefore, T,,,¢ is surjective if and only if T}, f: T\, M — Ty N is surjective
and @|apmy: A(m) — B(f(m)) is surjective. Since the surjectivity of ¢ implies
the surjectivity of f, the proof can easily be completed. [

2.14. REMARK. Take D a double vector bundle with sides A and B. Then
qs: B — M is a surjective submersion since it it a vector bundle projection, and
pgz D — A is a surjective submersion for the same reason. Hence Lemma 2.13
implies that pY is surjective in each fiber. Now if A Xy B is identified with ¢ A,
then (p%,p5): D — A xy B coincides with the pullback morphism qsp%: D —
qgA as morphism of vector bundles over B. By Lemma 2.12, it is hence
surjective in each fiber, and so (p%,pB): D — A xy; B is surjective. This shows
Theorem 2.10 in the case n = 2 since then A Xy B is an embedded submanifold of
A X B, it is the total space of a double vector bundle with sides A and B and with
trivial core, and the projection w({1,2}): D — A xy; B is equal to (p4,pB). This
reasoning is due to [13], and the proof of Theorem 2.10 is just a generalisation
of it to the case of an arbitrary n, with a central role of Lemma 2.13 and of
Lemma 2.12.

2.15. LEMMA. Let qa: A — M be a smooth vector bundle, and let B C A and
N C M be embedded submanifolds with qa(B) = N and such that for each
n € N, B(n) C A(n) is a vector subspace. Then B — N has a unique smooth
vector bundle structure, such that the smooth embeddings build a vector bundle
homomorphism into A — M.
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This last lemma is standard as well. We leave its proof to the reader.

PrROOF PROOF OF THEOREM 2.10. We prove this by induction over n. The
case of n = 1 is trivially satisfied since in that case E is an ordinary vector
bundle £ = Egy — Eg = M and so P = M. Let us now take n € N with n > 2
and assume that all three claims are true for any (n — 1)-fold vector bundle E.

Recall from Proposition 2.4 that E»¥} is an (n — 1)-fold vector bundle. The
corresponding (n — 1)-pullback is

PP = {(el, ok en) e e Engiy: p?\{i}(ei) :piﬁ\{j}(ej) fori,jen\ {k}} .

By the induction hypothesis (b), this is the total space of an (n — 1)-fold
vector bundle P,* with underlying nodes E; for k € J C n. The absolute
base of this (n — 1)-fold vector bundle is Eyy, and by (c) we have a smooth
morphism 7P : B2k} — PP of (n — 1)-fold vector bundles that is surjective. In
a similar manner, E2\%}0 is an (n — 1)-fold vector bundle. The corresponding

(n — 1)-pullback is

P = {(by, .. k) [ b € By s 50 (b)) = T (by) for i j € n\ (K}

Again by the induction hypothesis (b) this is the total space of an (n — 1)-fold
vector bundle PI°¥ with underlying nodes E; for J C n '\ {k}. By (c) we have a
smooth surjective morphism 71°% : E2\MEH s Plow of (1, — 1)-fold vector bundles.

By the induction hypothesis (a), Pi'? and Pl°% are embedded submanifolds
of H%i Ey\ iy and H%i E,\ i1y, respectively. Since for each 7 # k in n, we have

the smooth vector bundle p%\{i}: Ew{iy = En\{ik), the product [[;=y Ep\ sy has
n n i1 Sn
a smooth vector bundle structure over [[;=; Ey\ ik}, the projection of which
itk

we denote by gi. Using the surjectivity of m}°%(n \ {k}): En\ sy — PV, the

surjectivity of py: B — E,\ (i}, as well as the identities piﬂ\{k} opr = p%\{’} o p;

for i # k, we find easily that g, (PyP) = P°%. Further, P'® is clearly closed

under the addition of [[i=y En\ iy — [liz1 En\fiky. Lemma 2.15 yields then that
itk itk

qu: P® — PV is a smooth vector bundle.
Next let us set for simplicity 0y := m¥(n\ {k}): Ep e — P, Recall that
it is defined by

okt en e (PP ),k p2 P ey))

Since n > 2 we can choose ¢ € n\ {k}. Then 8§;: E,ky — PV is a surjec-
tive smooth vector bundle homomorphism over the identity on E,\ (3. By
Lemma 2.13, it is a surjective submersion. We consider the pullback vector

15
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bundles (0;)' PP over E,\ (4}, for each k € n. As a set, each (d;,)'Py'Pcan easily
be identified with P.

Denote by ¢y the inclusion of P;® in E,\ (13 X ... k... x Eo\(ny- Then P is
embedded into Ey\ (13 X ... X E,\n) via the composition

up Pk XidEﬂ\{k} ~
P — Pk X Eﬂ\{k} > (Eg\{l} X ... k... % Eﬂ\{n}> X Eﬂ\{k} s

where the map on the left is the embedding as in Lemma 2.11. It is easy to see
that up to the obvious reordering of the factors on the right, the embeddings
obtained for k£ = 1,...,n are the same map. Therefore, all the obtained smooth
structures on P are compatible and so P is a smooth manifold and all its
projections are smooth. In particular, we have proved (a).

The compatibility of the vector bundle structures of P over E, (;; and
En\jy for i # j follows from the compatibility of the structures in E2\ED
More precisely for i,j € n, the interchange law in the double vector bundle
(P, En\ (i}, En\ (5} En\fi,jy) follows from the interchange laws in the double vector
bundles (E@\{k}nE@\{k,i},E@\{k,j}yE@\{k,i,j}> for all k € ﬂ\ {Z,j} We let the
reader check this as an exercise. Hence we can define P: (1" — Man® and we
obtain an n-fold vector bundle.

For each k =1,...,n, m;*(n): E — P,'® is a vector bundle morphism over
Okt Enry — PPV, The pullback of m;F(n) via the map 4, is hence a vector
bundle morphism E — (J;)' Py over the identity on E, (), and it is easy to
see that it coincides — via the identification of P with (0;)' Py — with the n-fold
projection 7(n) from E to P. Hence m: E — P is an n-fold vector bundle
morphism.

As before choose i € n\ {k}. Since m,%(n): E — P.® is a surjective vector
bundle morphism over the identity on Ej,\ (3, it is a surjective submersion by
Lemma 2.13. But since 8y : Ey\(xy — Pro% is a surjective submersion and 7,7 (n)
is a vector bundle morphism over d, by Lemma 2.13 it must be surjective in each
fiber of py: E — E, 3. By Lemma 2.12, the pullback 7(n) = §,m,.%(n): E — P
is then surjective in each fiber of py: E — E,\ (). Since the base map is the
identity on Ep\(xy, m(n) is surjective. n

Note that we have proved as well the following result.

2.16. COROLLARY. In the situation of Theorem 2.10, the projection w(n): E —
P is a surjective submersion.

2.17. CORES OF A MULTIPLE VECTOR BUNDLE. Given a double vector bundle
(D, A, B, M), the intersection (p5)~(0%,) N (p&)~1(04,) is called the core of the
double vector bundle (D, A, B, M). It has a natural vector bundle structure over
M, which is often denoted q¢o: C'— M. In this section, we explain the cores of
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multiple vector bundles. These cores have also been defined using a different
notation by Alfonso Gracia-Saz and Kirill Mackenzie in [7].

Let E be a multiple vector bundle with absolute base M := Fjy. For each
S C N and each k € S, we have the zero section OE’\S{k}: Es\iy = Es, e —~ Ofs.
For each R C S C N, all compositions of #5 — # R composable zero sections,
starting with some oﬁu‘{"}: Er — Egrugy, for some i € S\ R, and ending into
Eg, are equal and the obtained map is written O%S: Er — Es. In particular, we
set 05° = id Bg. 1f it is clear from the context, which multiple vector bundle we
are considering, we write 0% := 055°. The image of e € E under 0%, is denoted
by 0, and the image of Er under 03 is written 0%. For better readability we
sometimes write 05, := 05 and 0% := 0%.

Choose a subset S C N and j,k € S with j # k. Then

pS

ES 4k> ES\{k}

Jpjs pr\{k}
S\(5}

P
Es\ijy = Es\(iy

is a double vector bundle, which has therefore a core
S (S -1 (S\{s} S -1 (S\{k}
Eg ey = (05\5y) (OS\{j,k}> N (P3\xy) (OS\{j,k}> :
This core has then an induced vector bundle structure over Eg\ ;3 with projec-

- S\{i} .9 : S .S g
tion (pg\ 1y OpS\{j})|E{Sj,k}’ which we denote by cf; 1 EY; 1y — Eg\(jx}. This is
a special case of the side cores, as the following proposition shows.

2.18. PROPOSITION. Let E be a multiple vector bundle, S C N a finite subset
and J C S non-empty. The (S, J)-core

By =N (02) -

jeJ
is a smooth embedded submanifold of Es and inherits a vector bundle structure
over Eg\; with projection ¢ := (E(S — S\ I)ps ES — Eg\y. In particular,
for J = {s} of cardinality 1, we get ES = Es and ¢ = p?.
PROOF. That EY is a submanifold of Eg follows from Theorem 2.10: Consider
the (S, S\ J)-face of E, the #.J-fold vector bundle E%\/. We denote the corre-

sponding #.J-pullback by P3. This is the total space of an #.J-fold vector bundle
P5 with absolute base E s\s- The image of Eg\ ; under any #.J composable zero

sections of P57, Z := O;Z ., is an embedded submanifold of P7. By Corollary 2.16

17
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the #J-fold projection 75: Es — P7 is a surjective submersion. E7 is the
preimage of Z under 75 and is thus a smooth embedded submanifold of Es.
The vector bundle structure is similar to the case n = 2. Any two elements
e, e € B Wiﬁh c¢5(e) = cj(¢/) =: b can be added over any pf, for j € J, since
ps(e) = OS\{J = p3(€¢'). All the additions clearly preserve E. For any j € J,

Ogsgj }is an embedded submanifold of Es\ (7 and we get a unique vector bundle

structure ES — OS\{j ; according to Lemma 2.15. The interchange laws in

all the double vector bundles (Es, Es\(j,}, Es\(jo}, Es\(j1,jo}) imply that after
identification of Ogs.{]j b with Es\; all the additions coincide: Since we have

S — 05 = 0% .
0Csvi1y = 05 = 051155, we find easily
b b

/ S S /
e + e :(6 -+ 05\{-}> + <0 S\{jo} + 6)
$\U1} S\Gar 0y ) s\ \ 0, s\ ()

S S ! /
=le + 05\{'}) -+ <05\{'} + 6)26 + €.
( s\t 0 ) sy \ 0, Y sy $\{ja}

Therefore, £ has a well-defined vector bundle structure over Es\j. [

We begin by proving that a side core can be constructed ‘by stages’

2.19. LEMMA. Let E be a multiple vector bundle and S C N. Choose K C J C S.
Then

ES = {e c By |pf(e) € Ogiﬁj},j € J\ K, and ci(e) € Ogsf} . (6)

PRrROOF. For simplicity, we denote here by X the set on the right-hand side of

the equation. First, take e € E5. Then since pf(e) € Ogi‘{]j} for all j € J, and

since K C J, we have for k € K: p; ( ) = OS\{k} for some e, € Eg\ ;. Since

05\ F = OSX?, we find p;(e) € gig} for all k € K. Therefore e € E% with

p3(e) € gigj} for j € J\ K and we only need to check that c3-(e) € 02&(

in order to find that e € X. But for any choice of k € K, we find c3-(e) =
S\{k S\{k .
Poue(e) = P\ (0 (€) = P (0514) = 051 with ¢, € Es.
Conversely, take e € X. Then since e € E% we find for each k € K an
element e; € Eg x such that pj(e) = OS\{k} But then e, = ps\{k} (05\{k})

S\{k S\{k
DT (15(€)) = DS 1y (€) = cii(e) € 05\ shows that e € (pf) ! (os§§ ). Since

k € K was arbitrary and also e € (p§)~" (Ogit{,kw for all j € J\ K, we find that
e € ES. ]
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Using this, we prove the following theorem.

2.20. THEOREM. Let E be a multiple vector bundle. For each S C N and J C S
non-empty, the space ES is the total space of an (#S — #J + 1)-fold vector
bundle in the following way.

The partition p5 = {J, {s1},....{Ss—ws+1)}} of S into the set J and sets
with one element gives rise to a (#S — #J + 1)-cube category O35 = 0PI as
in section 2.6. We will again write [v] := Uge, K for any subset v C p5. Now
define ES: 05 — Man™ by setting E5(v) = EBV] if J € v and E(v) = Ey if
J & v and define the morphisms by

ES(n = v) = E((] = () o BY = EF . if Jem Cn,
ES(n — v2) =E([n] = [1a]): By — By, ifra Cuy #J

E?(Vl — VQ)

Then ES is a (#S — #J + 1)-fold vector bundle.

PrROOF. The nodes of E§ are given by Efl for JCS"C Sand Eyfor I C S\ J.
The generating arrows are given by p/: Ef — Epgy for i € I € S\ J and
¢5: By — Esn; and pf’]E;S/ : BY — Efl\{i} for i € S\ J. In the following we
just write pis/ for the restriction pf/|E§/.

For #J < #.S we prove by induction over #.J =: [ that this defines a multiple
vector bundle. For J = {s} of cardinality 1 it is easy to see that ES = ES?,
which is an #S-fold vector bundle by Proposition 2.4.

Now assume that Efjl 77777 i,y is the total space of a (#S5 — [ + 2)-fold vector
bundle. Choose j; € S\ {j1,...,51-1}, 8" C S with {j1,..., 5} =1 J C 5, and
choose i € S’ \ J. Then by the induction hypothesis and Proposition 2.4,

’
pS

g i S\ {41}
E{jl ~~~~~ Ji—1} o E{jl ,,,,, Ji-1}
\C{J’lx;-,jl—l} \
vy Esn\{j1,egi1} J Egn\ (...}
S\ {i} S\ {i,g1}
E{jl ----- Ji—1} E{jl ----- Ji—1}

T T~

Esn(r,i1,i} Esn (igy,..qi}

E(n]\J = [w]) o BV S By ife Con, Jenm \ 1.

19
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is a triple vector bundle, and by (6), its upper side core is

s’
S’ J
E7} ———— Egny

s’ !
Jp i pr v

sngip o
E; T Egnutiy)-

Hence this diagram is a double vector bundle (see for example [15]) and, as

before, all commutative squares in our (#S — [ + 1)-cube diagram are double
vector bundles. [

If | = #5, then J = S and E% has a vector bundle structure over M with
projection ¢2 = E(S — 0). The nodes at the source of only one arrow of E3
are the nodes Eg; of E for ¢ € S\ J, and the (J, J)-core ¢}: E — M of the
# J-fold vector bundle bundle E7.

We have then for each v C p§ an inclusion n”(v): Ej(v) < Ej,, since Ej(v)
is an embedded submanifold of Ej,; for all v C p3.

2.21. EXAMPLE. Given the n-fold vector bundle E4 defined in section 2.6, its

(S, J)-core (EA)S has nodes (EA)5(v) = [1ic, Ap for v C p5 = p5 and can

thus be identified with E;‘% defined as in section 2.6. In particular, (E4)3 = Ag.
For instance, for n = 3 (see Example 2.7) we have decomposed cores

EHS}S} = Ay xXu Apoy X Apazy E{%;‘ff’} = Aqy Xu Apsy Xum Aqesy
Bl = Apy xar Apsy Xar Ay

2.22. REMARK.

(a) Given an n-fold vector bundle E it follows directly from the definitions that
the cores of the faces of E are given by the faces of the cores of E. That is,
(ES)5 = (E5)"7? for J C 5.

(b) Note also that (6) can now be written E5 = (Ef;)ig;

(¢c) For I,J C S with INJ =10 the intersection of the cores E7 U E5 is the
S S
dterated core (B, = (B},

(d) In the case of I U J # 0 the intersection of the core EY U EY is given by
E7.; instead.
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2.23. PROPOSITION. Given a morphism 7: E — F of multiple vector bundles,
we have for any J C S C N an induced core morphism of the (#S — #J + 1)-fold
vector bundles 75 : ES — F5 defined by

() = T([V])lE[Jy] : EBV] — F}V] for v C pf with J € v
() =7(V): By — Fy forv C p5 with J ¢ v,

where we consider EBV] and F}V] as subsets of K}, and Fj,), respectively. Further-
more, (-)5 is a covariant functor from multiple vector bundles to multiple vector

bundles.

PROOF. For J ¢ v there is nothing to show as E5(v) = E([v]) and F5(v) = F([v])
and thus all the maps are well defined vector bundle morphisms.
For J € v it remains to be shown that 77 is well defined, that is T([V])(EBV]) -

F}V]. Linearity follows then directly from linearity of 7. The manifold EBV] is

defined as the set of all elements of £y, that project to OIE,’}[@,\U Y for all Jj e J.
Since for all I C n, 7(I): E; — F; is a vector bundle homomorphism over

T(I'\{i}) for all 7 € I, the image of e € EBV] under 7[v] thus projects to OI[FV’][<}I-\{j}

in Fj,)\(;) and is an element of F}V].
Functoriality follows directly from the definition: in the case of J & v

(0om)5w) = (0 or)(W]) =a([v]) o([v]) = 05 (v) o 75 (v),
whereas for J € v

(007)5(w) = (0 0 T)([W])] g1 = o (W) 0 7([W)| gt = 05 () 0 77 (v) .

From Theorem 2.10 we obtain easily the following proposition; the n-fold
analogon of the core sequences for double vector bundles, which were defined
by Kirill Mackenzie in [15]. They are important in the proof of the existence of
decompositions of n-fold vector bundles. We call them the ultracore sequences
of E.

2.24. PROPOSITION. Let E be an n-fold vector bundle. For each k € n, we have
a short exact sequence

0 —— (pp*hEr —— B ", p 0
En\(ry Ep\(k} B\ (k)

of vector bundles over Eyn 1y, where P is the n-pullback defined in Theorem 2.10.

21
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PROOF. By Theorem 2.10, the map 7(n): E — P is a surjective vector bundle
morphism over id Ep i)+
Take any e in the kernel of 7(n) considered as vector bundle morphism over
Ep\(xy- Denote its projection in £ for any J C n\ {k} by e, with m := ey € M.
Write n \ {k} = {Jj1,...,Jn_1}. Define now recursively
fO =e, fl — flfl o OE

Gy oaMkILd ) '

Then it is easy to show by induction that p7(f') = 0! . The above

rn(n\{k,j1,-»31})
implies that f"~! projects to Oil for all I C n. It is thus an element of the

ultracore EZ, and we denote it by z := f*~'.
Now

E E E
€= z + 02 ) + 02 + ... + 0
((( m\Gno1) Un=1d ) mGam) SUn-1dn-2} | o) m\Gy M (7)

=:1(z, eﬂ\{k}) )

and the defined map ¢: EF Xy Ep\(xy — F is clearly an injective morphism of
vector bundles over E,\ (x}, making the sequence exact. We let the reader check
that ¢ does not depend on the chosen order of the set n\ {k}. =

3. Splittings of n-fold vector bundles

In this section we achieve our main goal in this paper: we prove that any
n-fold vector bundle admits a (non-canonical) linear splitting. We begin by
discussing the notions of linear splitting versus linear decomposition. Then we
prove inductively our main theorem, and finally we explain how n-fold vector
bundles can now be defined using n-fold vector bundle atlases.

3.1. SPLITTINGS AND DECOMPOSITIONS OF n-FOLD VECTOR BUNDLES. Let
E be an n-fold vector bundle. This gives rise to a family A of smooth vector
bundles A = (g;: A; = M) jcn, #7<00 Over M = E(() defined by Ay = Epyy
fori =1,...,n and A; = EJ for #J > 2. By Example 2.21, if E is already
a decomposed n-fold vector bundle, then each element of the family of vector
bundles defining it appears as one of the cores of [E. This is why we call the
vector bundles A; = E7 the building bundles of E.

We can then consider the decomposed n-fold vector bundles EA and E := E4
defined in Section 2.6. We call E* the decomposed n-fold vector bundle associated
to E and E the vacant, decomposed n-fold vector bundle associated to E.
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3.2. DEFINITION. A linear splitting of the n-fold vector bundle E is a monomor-
phism £: E — E of n-fold vector bundles, such that fori =1,...,n, S({i}): Eyy —
Ey is the identity.

A decomposition of the n-fold vector bundle E is a natural isomorphism
S: E4 — E of n-fold vector bundles over the identity maps S({i}) = idpg,: Ay —
Eyiy such that additionally the induced core morphisms S{({I}) are the identities
idE} forall I Cn.

Linear splittings and decompositions of double vector bundles are equivalent
to each other. Given a splitting ¥, define the decomposition by S(am,, by, ) =
Y(@m, b)) +8 (OI?W +4Cm) = S(am,by) +4a (OGDm +5 ¢n). Conversely, given a
decomposition S define the splitting by X(am, by) := S(@m, b, 0€). These two
constructions are obviously inverse to each other. We prove here that a similar
equivalence holds true in the general case of n-fold vector bundles.

A linear splitting ¥ of an n-fold vector bundle IE and decompositions S of the
highest order cores — the (n — 1)-fold vector bundles EF for all I C n with #1 = 2
— are called compatible if they coincide on all possible intersections. That is,
31({{k}ken\l})|i(@\z) = X(n\I) and SI(P?)\(EA)%(EA)% = SJ(P%H(EA)%(EA)%
for all I,J C n of cardinality 2. Note that we view here the total spaces of
(EAZ, (E4)S and of EF and Ej as embedded in EA = EA(n) and E = E(n),
respectively. Also recall that Ef({k}rens) = E(n\ I) by definition.

3.3. THEOREM.

(a) Let S be a decomposition of an n-fold vector bundle E: 0" — Man®™.
Then the composition ¥ = So1: E — E, with ¢ defined as in (4), is
a splitting of E. Furthermore, the core morphisms ST: EF7 — E% are
decompositions of EY for all J C n and these decompositions and the linear
splitting are compatible.

(b) Conversely, given a linear splitting 2 of E and compatible decompositions
of the highest order cores B with top maps 87 : (EA); — EY, for J Cn
with #J = 2, there exists a unique decomposition S of E such that ¥ = Sou
and such that the core morphisms of S are given by S7(p%) = 87 for all J.

PROOF. Let us consider a decomposition S: E4 — E. Then the composition
Y = S o is clearly a monomorphism of n-fold vector bundles, with X({i}) =
S({i}) ou({i}) = idg,, oidg,, = idg,,. Furthermore, Proposition 2.23 implies
that the restrictions 87 are isomorphisms of multiple vector bundles. Since for
any v C p7 the (v,v)-core of E} equals E[[E]] which follows from Remark 2.22
for J € v and directly from the definition for J & v, these are all the building
bundles of E%. Now S[[:]] =id 5 and thus S induces the identity on all building
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bundles of EY} and is therefore a decomposition. Since all 87 and % are defined
as restrictions of the same map S they are clearly compatible.

Conversely, assume that we have a splitting ¥ of [E and compatible decompo-
sitions 87 of the cores E with J C n, #J = 2 as in (b). We prove that there is
a unique decomposition S of E that restricts in the sense of (b) to ¥ and the S”.

Let now Jy, ..., J(g) denote the subsets of n with #.J, = 2. We define now

an increasing chain of (;‘) decomposed n-fold vector bundles as follows. For

kE=0,..., (g) define a family of vector bundles over M, A* = (Br);c, with
By = Ay for all I with either #1 = 1 or if there is ¢ < k such that J; C I; and

Br = M otherwise. Now let EF := EA" with total space EF := EA*(n). There
are obvious inclusions E(n) = E® — F' — ... — EG) = EA(n). We thus view
the E* as submanifolds of E4(n). Note that additionally (E4)} C E* for all
1 < k. Now we show that we can define a decomposition S of E inductively on
the E¥ for k=0,..., (") and that it is unique with respect to the given linear

2
splittings.

Since E® = E we set S° := X and this is clearly unique in the sense of
(b). By the compatibility condition it also restricts to S* on E° N (E4)] for
1=1,..., (g) Take now k£ > 0 and assume that we have a uniquely defined

injective morphism of n-fold vector bundles S*: E¥ — E that restricts to ¥ on
E® and to 87 on EF N (EA)] fori=1,..., (g) Take x = (as)rc, € E*.
Then in particular a; = 07‘;‘11 if #1 > 2 and there isno i < k+ 1 with J; C I.
Set y := (by)1c, with by = ay if either #1 = 1 or there is ¢ < k such that J; C [
and by = Of{ otherwise. Set furthermore z := (¢);c, where ¢; = by whenever
I Cn\ Jgy1, ¢ = ay whenever Ji; C I and there is no @ < k with J; C I,
and ¢; = 0/ otherwise. Then y € E* and z € (IEA)%,QH. Furthermore, writing
Je41 = {s,t}, it is easy to check that

n

x=y + (0 +z)_ + <0" —|—z>.
yg\{s} ( Ps(Y) iy yg\{t} Pe(Y) ey

The last equality follows directly from the interchange law in the double vector
bundle (E; Ep sy, En\ty; Ep\(s,43) since 87++1(z) is in the core of this double
vector bundle. Thus we can define

S (x) = S o e
(x) (y) ﬂ\t} ( N (sk(y)) ﬂ\‘i{‘t} (Z>)

= S* 0" Skt :
<y> ﬂ\—i{_t} ( Dt (Sk(y)) ﬂ\—i{_s} (Z))
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It is easy to check that this defines an injective morphism of n-fold vector
bundles S¥*1: EF! — E. Linearity over E, ;; follows directly from linear-
ity of S¥ and S/+! and the interchange laws in the double vector bundles
(E; En\(j}, En\(s): En\gis1) and (E; Ep 5y, En\ 135 En\ (1) since the construction
of y and z from x is linear. If now x was already in E*, then y = x and thus S**!
restricts to S* on E* and therefore also to ¥. If x was in (E4)% for any J C n
with #.J = 2, then y € E¥ N (E4)} and by induction hypothesis S*(y) = S7(y).
Furthermore, z € (E4)} N (E4)} and by the compatibility of S/ with §”
we get that S7+1(z) = S7(z). Thus clearly S*! restricts to all S7 on the
intersection E*t1 N (E4)%. Also it clearly is the only morphism from Ef*1 to E
restricting to S¥ on E* and to all 7 and thus by the induction hypothesis the
only morphism restricting to ¥ and all §7. Thus we find eventually a unique

injective morphism S := S(). BEA 5 E that restricts to ¥ and all S” for #J =2
That § is surjective now follows from linearity and a dimension count. ]

3.4. EXISTENCE OF SPLITTINGS. In this section, we finally state and prove
our main theorem. We prove by induction that every n-fold vector bundle is
non-canonically isomorphic to a decomposed one.

3.5. THEOREM. Let E be an n-fold vector bundle. Then there is a linear splitting
Y:E—E,

that is a monomorphism of n-fold vector bundles from the vacant, decomposed
n-fold vector bundle E associated to E, which was defined in Section 3.1, into E.

PRrROOF. We prove the following two claims by induction over n.

(a) Given an n-fold vector bundle E, there exist n linear splittings X,z of
E2\MFH for | € n, such that X, (3 (1) = Spy sy (1) for any I C o\ {i,5}

(b) Given a family of splittings as in (a), there exists a linear splitting of E
with X(7) = X, k3 (/) whenever I C n \ {k}.

The case of n = 1 is trivial. Take now n > 2 and assume that both statements
are true for [-fold vector bundles, for I < n. First, we prove (a). This is equivalent
to having splittings X2; of E? for all I C n such that X, (J) = ¥1,(J) whenever
J C I; N I,. We prove that claim with an induction over #1. For all I C n with
#I = 1 or #1 = 2, this is immediate.

Assume now that we have fixed linear splittings of EX? for all T with #1 =
[ < n—2,such that for all J C I} N1y, ¥1,(J) = X,(J) = X1,(J). For any
I C n with #I =1+ 1 we can then find by induction hypothesis (b) a linear
splitting ¥; of E/? which satisfies X;(J) = £ ;(J) for all J C I. Now for I, I
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of cardinality [ + 1 and J C I} N Iy, we get 3, (J) = X,(J) = X1, (J). This
shows that part (a) is satisfied for every n-fold vector bundle since we eventually
find linear splittings X\ (s} of all E,\ (xy which agree on all subsets I C n of
cardinality #I < (n — 2).

We denote in the following their top maps by

M
Sei= S @\ (D) I Ew = En -
ien\{k}

It is easy to check that given m € M and e; € LK with péi}(ei) = m for
i=1,...,n, the tuple (X;(eq,...,e,),Xa(e1,€3,...,€n),..., Sn(€1,...,€5-1) i8
an element of P. Short exact sequences of vector bundles are always non-
canonically split, so we can take a splitting ¢, of the short exact sequence of
vector bundles over E, (13 in Proposition 2.24. Define 7 : f‘gﬁ Euiy — E by
Y (er, ... en) > 0) (21(62, cosen), o(er s,y €n), ., Spler, . ,en_1)> :

(8)

This is a vector bundle morphism over the linear splitting % of Ej\ 1y such that

pj(gfj(ela .- 'aen)) - 2]’(61, e >éj7 SR 76n) € Eﬁ\{ﬂ} (9)

for j = 2,...,n. However, ©¥ is not necessarily linear over ¥; as 6; is not a
morphism of n-fold vector bundles. We will inductively construct a morphism
which is linear over all sides.

First we do this locally: we choose a neighbourhood U of m € M that
trivialises each of the Ey;, for ¢ = 1,...,n. Fix smooth local frames (b;, .. ., bl)
of By for l; = tkEy;y. Every element of Hf‘gn Egy over m € U can thus be
written uniquely as -

ln

ereven) = (3 BlB{ .. 3 200

J=1

where 5/ € R. Assume now that we have a morphism E,ﬁ v+ Ely — E|y which is
linear over the splittings 3, for j = 1,...k and satisfies additionally (9) for all
other j. We then define X7/, , ;; by

E=Ep\ (k1)
E o j E '
Yepo(en, .. en) = Z Bhia - Ek’U(€17...,ek,b‘,jc+1(m>,ek+2,...7€n) .
J=1 k1 -
This map is still a vector bundle morphism over ¥; for all j = 1,...,k,

which follows directly from the interchange laws in the double vector bun-
dles (E, Ep\ s En\ (k413 En\(jk+13)- That it is also a vector bundle morphism
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over Y41 is immediate. It furthermore still satisfies (9) for all other j. Starting
with the restriction to U of ¥¥ from (8) we get after (n — 1) iterations the top
map of a local linear splitting X% of E|y.

Now we will prove the existence of a global splitting using a partition of
unity. This method was already given for double vector bundles in the original
reference by Pradines [18]. Choose a locally finite cover of neighbourhoods as
above, U = {U, }aca, and a partition of unity {¢q }aca subordinate to U. Take
then the local linear splittings 25@ and define the global splitting for (eq,...,e,)
over m € M by

E—=En\(1y

YP(er, . en) = > palm) i S0 (e, ven).
{a: meUa} -

That this is indeed a vector bundle morphism over all ¥; follows from simple
computations again making use of the interchange laws in the double vector
bundles (E, Ep 1y, En\(j}, En\f1,51)-  Injectivity follows directly from this as
all 3, are injective. The linear splitting is then given by X(n) := ¥ and
X(I) := X\ k(1) whenever I C n\ {k}. This completes the proof. =

3.6. COROLLARY. Every n-fold vector bundle E is non-canonically isomorphic
to the associated decomposed n-fold vector bundle defined in Section 2.6.

ProOOF. This follows from Theorem 3.5 and Theorem 3.3. To apply Theorem 3.3
we have to show that we can construct compatible decompositions of all the
highest order cores. This follows from a similar argument to the beginning of
the proof of Theorem 3.5.

We have to consider all iterated highest order cores. These are firstly the
(n — 1)-fold vector bundles EF with I C n and #I = 2, secondly the (n — 2)-fold

vector bundles (E}))" with v C p7 and #v = 2 and so forth. Theorem 3.5 lets us
choose linear splittings of all these multiple vector bundles. Note that the same
multiple vector bundles can occur multiple times (see for example Remark 2.22
(c)). For these we still fix only one linear splitting. With Theorem 3.3 we obtain
then firstly unique decompositions of all occurring double vector bundles. After
fixing these, with Theorem 3.3 we obtain decompositions of all occurring triple
vector bundles and these are all compatible by construction. Fixing these we
obtain compatible decompositions of all occurring 4-fold vector bundles and so
forth. Eventually after obtaining compatible decompositions of the highest order
cores Theorem 3.3 gives us a decompositions of E. [

3.7. COROLLARY. For every n-fold vector bundle E and the associated n-pullback
P there is an injective morphism of n-fold vector bundles ¥¥': P — E simultane-
ously splitting all the ultracore sequences from Proposition 2.2/.
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PROOF. We can choose a decomposition of E with top map S¥: E4(n) — E.
This is a morphism over decompositions of the faces Ey\(x) for all & € n. These
decompositions induce a canonical associated decomposition of P, the top map
of which we denote by S”: [}, Ef — P. Together with the canonical inclusion
L H%n El — EA(n) we then define such a splitting with top map given by
YP(n):=8F o010 (SP)7L "

3.8. n-FOLD VECTOR BUNDLE ATLASES. In this section we show how a change
of splittings corresponds to statomorphisms of the decomposed multiple vector
bundle, which were introduced in [7]. We then explain how n-fold vector bundles
can alternatively be defined using smoothly compatible n-fold vector bundle
charts.

For [ a finite subset of N, we denote by P(I) = {{l1,..., Iy} | I = LU.. .U}
the set of disjoint partitions of I. Since the elements of P(I) are sets, not tuples,
we do not take the order into account. That is, we do not distinguish the
partition {Iy, I} from {5, I }.

3.9. DEFINITION. Let E be an n-fold vector bundle. A statomorphism of E
is an isomorphism 7: E — E that induces the identity on all building bundles
El for I Cn. The set of statomorphisms of E forms a group with composition.

3.10. PROPOSITION. Let E be an n-fold vector bundle and E* the correspond-
ing decomposed n-fold vector bundle as in Definition 3.2. The set of global
decompositions of E is a torsor over the group of statomorphisms of EA.

PROOF. Given a decomposition S: E4 — E and a statomorphism 7: E4 — EA
the composition So7: E4 — E is again a decomposition of E. This defines a right
action of the group of statomorphisms of E“ onto the set of decompositions of E.
Given two decompositions S, Ss: E4 — E the composition 7 := S; ' 0Sy: EA —
EA defines a statomorphism of EA such that S; o 7 = S,. This shows that the
action is transitive. That it is free is immediate as S o 7 = & clearly implies
T =id. [

The following description of statomorphisms can be found in slightly different
notation in [7].

3.11. PROPOSITION. A statomorphism 7 of EA is necessarily of the following
form:

p:{Il,...,Ik}EP(I)

7(n): (er)rca — ( > <Pp(6h7---a€1k)> ; (10)

where ¢, € N'(Hom(E]' ® ... ® E}l’:, ED) and for the trivial partition p = {I}
we additionally demand gy = idpgr.
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Now we define n-fold vector bundle charts and atlases and show that our
definition of n-fold vector bundles is equivalent to the definition in terms of
charts.

3.12. DEFINITION. Let M be a smooth manifold and E a topological space
together with a continuous map I1: E — M. An n-fold vector bundle chart
s a tuple

€= (Ua O, (VI)IQQ)?

where U is an open set in M, for each I C n the space Vi is a (finite dimensional)
real vector space and ©: II"Y(U) — U x [1;c, V1 is a homeomorphism such that
IT =pr; 0O. -

Two n-fold vector bundle charts ¢ = (U, O, (Vi)1cn) and ¢ = (U, 0", (V])rcn)
are smoothly compatible if Vi = V] for all I C n and the “change of chart”
©" 0O~ over UNU’ has the following form:

(pv (UI)Igg) = | p, ( > wo(p)(vry s - - - aUIk)) (11)

p={I1,.... I }eP(I)

withp e UNU', vy € Vi and w, € C*(UNU ,Hom(V, ® ... @ Vy,, V7)) for
P = {Il,...,Ik} S P(I)

A smooth n-fold vector bundle atlas A on E is a set of n-fold vector
bundle charts of E that are pairwise smoothly compatible and such that the set
of underlying open sets in M covers M. As usual, E is then a smooth manifold
and two smooth n-fold vector bundle atlases 2y and Ay are equivalent if their
union is a smooth n-fold vector bundle atlas. A smooth n-fold vector bundle

structure on E is an equivalence class of smooth n-fold vector bundle atlases on
E.

Let [E be an n-fold vector bundle. By Theorem 3.5 and Theorem 3.3 we have
a decomposition §: E4 — E of E, with A the family (A;);c, of vector bundles
over M defined by Ag;y = E({i}) for i € n and A; = Ef for I C n, #I > 2. Set
I=E(n—0): E— M. For each I C n, set V; := R¥m4/ the vector space on
which A; is modelled. Take a covering {U, }aca of M by open sets trivialising
all the vector bundles Ay;

oY g7 (Us) — Uy x Vp

for all I € n and all « € A. Then we define n-fold vector bundle charts
@al H_1<Ua> — Ua X ngg‘/[ by

Oa = (H X (QS?)IQQ) 0 S 1)
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Given «, f € A with U, NUgz # (), the change of chart

0, 005" (UaNUp) x [[ Vi = (UanUs) x [[ Vi

ICn ICn

is given by
(P, (v1)1cn) = (b, (P77 (P)V1)1cn), (12)

with p3° € C®(U, N Us, G1(V})) the cocycle defined by ¢¢ o (¢7)~"'. The two
charts are hence smoothly compatible and we get an n-fold vector bundle atlas
A ={(Ua,On, VI)icn) | @ € A} on E.

Conversely, given a space E with an n-fold vector bundle structure over a
smooth manifold M as in Definition 3.12, we define E: OY — Man® as follows.
Take a maximal atlas A = {(Ua, On, (VI)icn) | @ € A} of E; in particular
{Uq}aen is an open covering of M. For «, 3,7 € A we obtain from the identity
0,00, =06,005"'00500;" on II7H(U, NUs N U,) the following cocycle
conditions. For I Cn and p ={1y,..., I} € P(I):

w)*(p)(vry, - vr,) =
> W @) (wfﬁ;. sermy @ (@Wn)jen ), w0 e @) ((vfpjgl)) ,
{1 ..... k}:JlLl...LlJl
(13)

where 15, := Uje,,, I;-
We set E(n) = E, E(0) = M, and more generally for I C n,

E(1) = (lzL (Ua . gvj>) / -

with ~ the equivalence relation defined on | |,ex(Ua X [1;c; Vi) by

Usx ITVe 2 0 wisct) ~ (¢ (wicr) € Usx [[Vs

JCI JCI
if and only if p = ¢ and
(U])JQI = ( Z wp(p)<wJ1’ s 7ka)) :
p:{Jl ..... Jk}GP(J) JCI

The relations (13) show the symmetry and transitivity of this relation. As in
the construction of a vector bundle from vector bundle cocycles, one can show
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that E(/) has a unique smooth manifold structure such that II;: E(/) — M,
I;[p, (vr)1cy] = p is a surjective submersion and such that the maps

ol (Ua x | VJ) — U, x [[ Vy, [p. (v)ics] = (P, (vi)rcs)

JCI JCI

are diffeomorphisms, where 7;: | ep(Ua X [15c; V) — E(I) is the projection
to the equivalence classes.
We have then also #1 surjective submersions

pf\{i}t E() — E(I\ {d})

for ¢ € I, defined in charts by

Us X [T Vs 3 0, (vs)act) = (0, (a)igsct) € Uax ] Vi
JCI JCI\{i}

and it is easy to see that E(I) is a vector bundle over E(I \ {i}), and that for
1,7 €1,
PIv(i} .
E(7) E(I\ {i})
I I\ {7
Jpz\'{j} S lpl&}]}
E(I\{j}) ——— E(\{i,7})

is a double vector bundle, with obvious local trivialisations given by the local
charts.

The constructions above are inverse to each other and we get the following
corollary of our local splitting theorem.

3.13. COROLLARY. Definition 2.2 of an n-fold vector bundle as a functor from
the n-cube category is equivalent to Definition 3.12 of an n-fold vector bundle as
a space with a maximal n-fold vector bundle atlas.

Our construction above of an n-fold vector bundle atlas on E(n) from an
n-fold vector bundle yields an atlas with simpler changes of charts (12) than
the most general allowed change of charts (11). This is due to our choice of a
global decomposition of the n-fold vector bundle. Choosing different local or
global decompositions will yield an atlas with changes of charts as in (11). That
the equivalence class of atlases is independent of the choice of decomposition
follows from Proposition 3.10 and (10). Two different decompositions will give
compatible charts.
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4. Decompositions of oo-fold vector bundles

In this section we show how our proof of the existence of linear decompositions
of n-fold vector bundles for all n € N yields as well the existence of linear
decompositions of co-fold vector bundles. We write here co-VB for the category
of oco-fold vector bundles and oco-fold vector bundle morphisms.

Let E be an oo-fold vector bundle. Then for each n € N, the restriction
[E o ()Y defines an n-fold vector bundle, and E" := E o /) o 7Y defines again an
oo-fold vector bundle, given by E"(I) = E(I Nn) for all finite I C N. There is a
sequence of monomorphisms of co-fold vector bundles

L1 L2 L3
B % B 5 E2 2 (14)

defined by it (I) = 01" for k <1 € N and a finite subset I of N; remember that
0! =idg,. Thus we have a functor E': N — 0o-VB sending an object n € N to
E" and an arrow m < n to ¢. In the same manner, for each n € N there is a
monomorphism ¢,,: E* — E defined by ¢, (I) = 0}, : E*(I) — E([) for all finite
I CN. It is easy to see that E together with the inclusions ¢, : E* — E defines
a colimit for (14) in the category of co-fold vector bundles.

The inductive nature of the proof of Theorem 3.5 yields the following corollary.

4.1. COROLLARY. Let E be an oco-fold vector bundle. Let A = (qr: A; —
M)icn#1<00 e the family of vector bundles over M defined by A; = El for
2<#I <oo, Apy = By and Ag = E(0) = M. Then there exists a sequence
of decompositions S™: EA o N — E ol such that the diagram of oco-fold vector
bundles

E° E! E?

ST el (15

(EA? —— (EA)! —— (EA)? —— ..

°

commutes, where S™(I) := S™(INn) is the morphism of co-fold vector bundles
induced by S™.

Since (15) commutes, and for each n, 8" is an isomorphism, we find that
EA together with the morphisms 7(n) = 7} o (S")~! for all n, is also a colimit
for (14) in the category of co-fold vector bundles. Therefore there is a unique
isomorphism S: E* — E such that ¢, 0 S” = S o for all n € N. We get the
following theorem.

4.2. THEOREM. Let E be an oco-fold vector bundle. Let A = (q;: A; —
M) 1cn41<00 be the family of vector bundles over M defined by A = E} for
2 < #I < o0, Ay = By and Ay = E(0) = M.
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Then E is non-canonically isomorphic to the associated decomposed co-fold
vector bundle EA. More precisely, given a tower of decompositions as in (15), the
decomposition S: E* — E of E can be uniquely chosen so that for each n € N,
S™: (EYY" — E" satisfies

SYI)=8(Inn): EYY) =EAUINn) - E*I)=EUINn) (16

for all finite I C N.

PROOF. The morphism S: E4 — E is explicitly defined as follows. Choose a
finite subset I C N. Then there isn € N with / C n and we can set S(I) = S"(I).
The equalities (16) are now easy to check. =

5. Example: triple vector bundles

In this section, we explain for the convenience of the reader how our results and
considerations in Sections 2 and 3 read in the case n = 3. Then we consider
doubly linear sections of triple vector bundles, and we explain how they can be
understood — using linear decompositions — as horizontal lifts of pairs of linear
sections of the sides double vector bundles.

5.1. SPLITTINGS OF TRIPLE VECTOR BUNDLES. Given a triple vector bundle E
we will write in the following 7" := E({1,2,3}), D := E({1,2}), £ :=E({2,3}),
F:=E({1,3}), A:= Ep;, B := E{g and C := E3;. The triple vector bundle
is then a cube of vector bundle structures

T b D
pL R
\ rE \
PE F A
Py
1
| , a7
E o B qa
\ XB/‘
& C ae M

where all faces are double vector bundles.

We will denote the cores of the double vector bundles (T'; D, E; B), (T; E, F'; C),
(T; F,D; A) by Lpg, Lgr and Lpp and the cores of the double vector bundles
(D;A,B; M), (E;B,C; M), (F;C,A; M) by Kap, Kpc and K¢ g, respectively.
In the general notation we would write E{{;g}g} =: Lpp, E{{llg}?’} =: Lpg and

EES}S} =: Lgr for the upper cores and Eg;; =: Kag, Egiﬁ =: Kpc and
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is S := %{1122 ;’%, a vector bundle over M.

The upper cores Lpg, Lgr and Lpp are themselves double vector bundles
by Theorem 2.20. All three have by Lemma 2.19 the core S, whereas the sides
of Lpg are given by Ko and B, the sides of Lgr by K p and C', and the sides
of LFD by KBC and A.

A decomposition of a triple vector bundle (T'; D, E, F'; A, B, C; M) as above
is now an isomorphism of triple vector bundles S from the associated decomposed
triple vector bundle as in Example 2.7 to T" over decompositions of D, E and F
as double vector bundles and inducing the identity on S. In particular it is over
the identities on A, B and C, and is inducing the identities on K45, Kpc and
KC A-

A linear splitting of a triple vector bundle (T; D, E, F; A, B,C; M) as above
is an injective morphism of triple vector bundles ¥ from the vacant triple
vector bundle (A Xy B Xy C; AXy B, B Xy C,C %y A; A, B,C; M) over linear
splittings of the double vector bundles D, E and F', hence over the identities on
A, B and C.

We have proved the following lemma, which is the case n = 3 of Theorem 3.3.

5.2. LEMMA. A decomposition of a triple vector bundle T is equivalent to a
linear splitting of T and linear splittings of the three core double vector bundles
Lpg,Lgr and Lpp.

Note that here, starting from the splittings we get an explicit formula for
the decomposition: S(a,b,c,kap, kpc, koa, s) equals

((Z(a, b,¢) +p (00(p) +r X577 (a, kpe))) +r (05r g +5 555 (c, kAB)))
+E (O?;E(b’c’ch) +D ZLDE (b, kCA) +D (Og;D +F S)) .

Now let us consider the pullback triple vector bundle associated with a triple
vector bundle. Given double vector bundles (D, A, B, M), (E,B,C, M) and
(F,C, A, M), we consider the set

P={(de f)€DxExF| ph(d)=pi(f), pB(d) =ph(e), pE(e) =p5(f)}.

Then P is a triple vector bundle, with the obvious projections to D, E and F
and the additions defined as follows. The space E X F' has a vector bundle
structure

ExcF—BxyA,  (e,f) = (p5(e), ph(f)),
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with addition (eq, f1) + (e2, fo) = (€1 +5 €2, fi +a f2). Since D is a double
vector bundle and so non-canonically split, we have the surjective submersion
6P D — B xy A, given by 67(d) := (pB(d),p5(d)). We define the vector
bundle P — D as the pullback vector bundle structure (6°)'(E x¢ F) — D. We
call P the pullback triple vector bundle defined by D, E and F because

it fills a cube in a similar manner as the pullback in category theory fills a square.

We have three short exact sequences of vector bundles over D, E and F',
respectively; the one over D reads

(62 (pE.pE)

0 — (7D)'s T P 0,

where 78 = g4 o p§ = qp o pB. We are now able to state Theorem 3.5 in the

case n = 3.

5.3. THEOREM. Fvery triple vector bundle is non-canonically isomorphic to a
decomposed triple vector bundle.

5.4. SPLITTINGS, DECOMPOSITIONS AND HORIZONTAL LIFTS. Let us mention
first that a decomposition of a double vector bundle is equivalent to a splitting
of the short exact sequences given by its linear sections. As we have seen in
Section 1, a splitting >: A X,y B — D of D is equivalent to a homomorphism of
C>®(M)-modules op: I'(B) — ', (D) (a horizontal lift) which splits this short
exact sequence. The correspondence is given by o5 (b)(an) = X(ay,, b(m)) for all
beTI'(B) and a,, € A. By symmetry of ¥ a horizontal lift op is therefore also
equivalent to a horizontal lift o4: T'(A) — I'5(D), splitting the sequence

0 — I(Hom(B, C)) — I'%(D) —5 T'(A) = 0.

In this section, we explain how a splitting of the triple vector bundle 7' is
equivalent to a “horizontal lift” of pairs of linear sections in I'y (F') xp(c) I's(E)
to doubly linear sections of T'— D. Of course, similar results hold for doubly
linear sections of 7' — F as lifts of elements of I't(F) X4y I'5(D), ete.

5.5. DEFINITION. A doubly linear section of T over D is a section which is
a double vector bundle morphism from (D; A, B; M) to (T; F, E;C) over some
morphisms &: A — F,n: B— E, ¢c: M — C. The morphisms & and n are then
themselves linear sections of the double vector bundles E and F over the same
section of C'. We denote the set of doubly linear sections of T' over D by FZDQ (T).

The space I'(T) is naturally a C°°(M)-module: for f € C®(M) and € €
T (T) doubly linear over €4 € T (F) and £5 € T4 (E), the section (gaopR)*f-€
is doubly linear over ¢} f - €4 and qi f - €B.
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Consider the double vector bundle S with sides M and core S:

S 95 M

QSJ lid]\/j

M 2y

As we have seen in Lemma 2.8, the space Mors(D, S) of double vector bundle
morphisms D — S is a C°°(M)-module. It is easy to see that given a decomposi-
tion A X B Xy Kap — D, we get Morg(D,S) ~T'(Kjz®S5)@T'(A*®@B*®Y9).
We have an obvious inclusion

T Mory(D, S) — T (T),

the images of which are exactly the doubly linear sections that project to the
zero sections of E — A and F' — B, and so to the zero section of C.

Both 'Y (F) and T'5(E) project onto I'(C), thus we can build the pullback
D% (F) xr() ['5(E) which consists of pairs of linear sections of the respective
bundles which are linear over the same section of C'. Now ng (T) fits into a short
exact sequence of C°°(M)-modules as in the following proposition.

5.6. PROPOSITION. Let T be a triple bundle as in (17). We have a short exact
sequence of C*(M)-modules

0 = Mory(D, §) = T4(T) 5 T4 (F) xpe) Ty(E) = 0. (18)

PROOF. Injectivity of - is immediate. To show surjectivity of m, choose a
linear splitting X5F of the double vector bundle (T; E, F;C). Given £ =
(€7, €8) € TY(F) xp) T%(E) we can then define € € T%(T) by &(d) =
SEF(EE(pB(d)), £ (pR(d)). Tt is easy to see that this is in fact a doubly linear
section. Note that the map * does not define a splitting of the short exact
sequence, as it is not linear over D.

Given any ¢ € Mory(D, S) and d € D over a € A and b € B it is clear that
pE(d(d)) = 0F and pL(¢(d)) = 0F. Thus ¢ is linear over the zero sections of
E — Band F — A and thus in the kernel of 7. Conversely, given & € T'(T)
over the zero sections of £ — B and F' — A, we get for any d € D over a € A
and b € B that (g(d) —B Og) —F Og,f’ projects to zero in all directions and

thus defines an element ¢(d) of the triple core S. It is easy to check that this
assignment defines a morphism ¢ € Mory(D, S). Then £ = ¢ and the sequence
is exact. [
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5.7. PROPOSITION. A decomposition of a triple vector bundle T as in (17) is
equivalent to linear splittings of the double vector bundles D, E, F, Lpg and
Lgp and a horizontal lift, that is a splitting o: T (F) xrc) [5(E) — Io(T)
of the short exact sequence (18) that is compatible with the splittings of the double
vector bundles in the sense that for all d € D we have U(Qﬁ,Og)(d) =0} +p
stor (pB(d), 6" (p8(d))) for all 6 € T(Hom(A, Kc.)) and o(05, 67)(d) —
0F +5 SE#2 (pR(d), 7 (pB(d))) for all ¢¥ € T(Hom(B, Kpc))-

PROOF. A given decomposition S of T" induces decompositions of all the double
vector bundles by definition. These are equivalent to linear splittings and
horizontal lifts o : T'(C) — I'5(E) and of: T(C) — T%(F). Now any two linear
sections £F € TG(E) and £ € T%(F) over the same ¢ € I'(C) can be written
as &8 = ob(c) + ¢F and & = ok(c) + ¢ for some ¢F € I'(B* ® Kpc) and
¢t € T(A* ® K 4¢). We define a horizontal lift by

o (67,6) (S (am, b, kim)) = S, by, c(m), ki, & (), 67 (bn), 05,) -

It is easy to check that this lift satisfies the additional compatibility conditions.

Conversely, given linear splittings of the double vector bundles D, F, F', Lpg,
Lrp and a horizontal lift o satisfying the extra condition, we first define a linear
splitting X287 . C' x5y Kap — Lpr by 287 (e, kag) = o(oki(c),0E(c))(kap)
for any section ¢ of C' — M with ¢(m) = ¢,,, and where we view K 4p as a subset
of D. Then we define a linear splitting of T" by

5 (am; by ) = (08 (c), 06() ) (5 (am, b))

where ¢ € T'(C) is any section such that ¢(m) = ¢,,. Together with Lemma 5.2
this gives a decomposition of T'.

Straightforward computations show that these two constructions are indeed
inverse to each other and we get the desired equivalence. [

The analogon of Proposition 5.6 for general n is easy to write down and
prove [12], but Proposition 5.7 becomes highly technical for increasing n. It is
relatively easy to see that a horizontal lift defines a linear splitting of the n-fold
vector bundle, and conversely that a decomposition of an n-fold vector bundle
defines a horizontal lift. However, as the additional conditions in Proposition
5.7 and in Theorem 3.3 suggest, the formulation of equivalent constructions is
not straightforward.
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