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Abstract. This paper studies linear generalised complex structures over vector bundles,
as a generalised geometry version of holomorphic vector bundles. In an adapted linear
splitting, a linear generalised complex structure on a vector bundle E →M is equivalent to
a C-multiplication j in the fibers of T M ⊕ E∗ and C-Lie algebroid structure on T M ⊕ E∗.

Generalised complex Lie algebroids (or Glanon algebroids) are then studied in this
context, and expressed as a pair of complex conjugated Lie bialgebroids.
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1. Introduction

This paper studies linear generalised complex structures on vector bundles, and on Lie
algebroids. Generalised complex geometry was introduced by Hitchin in [14] as a unification
of symplectic and complex geometry. It was further developed by Gualtieri in his thesis [9, 11].
Since they simultaneously unify symplectic and complex structures, generalised complex
structures have been studied for their relation to T-duality – a concept arising in string theory
– by Cavalcanti and Gualtieri in [3]. Gualtieri also defined generalised Kähler structures in
[9, 12]. These have been studied for example in [15] and in [2].

The relation between generalised complex geometry and Lie algebroids and Lie groupoids
was first studied by Crainic in [5], and generalised complex structures on Lie groupoids and
Lie algebroids were studied in [21]. In particular, [21] proves that multiplicative generalised
complex structures on source simply connected Lie groupoids are equivalent to generalised
complex integrable Lie algebroids. This paper studies in more detail the obtained generalised
complex Lie algebroids (or Glanon algebroids), and in particular the underlying special case of
generalised complex vector bundles.

The notion of generalised holomorphic bundles has been introduced by Gualtieri [11, 10]
as a complex vector bundle E over a generalised complex manifold M , equipped with a flat
L-connection ∂̄ : Γ(E)→ Γ(L∗⊗E), where L is the +i-eigenbundle of the generalised complex
structure on M . This is in analogy to how a holomorphic vector bundle structure on E
over a complex manifold M is equivalent to a flat Dolbeault operator ∂̄E . However, while
a holomorphic vector bundle E →M amounts to a linear complex structure on the smooth
manifold E, in Gualtieri’s definition of a generalised holomorphic vector bundle the manifold
E itself does not carry a generalised complex structure.

This paper instead adopts the point of view that a “generalised holomorphic vector bundle”
should be a smooth vector bundle equipped with a linear generalised complex structure, and
explores the property of such an object – here, it is now the manifold M which does not
automatically inherit a generalised complex structure. Note that symplectic vector bundles,
i.e. smooth vector bundles equipped with a linear symplectic form, and Poisson holomorphic
vector bundles are natural examples of this notion of generalised holomorphic vector bundle.

The following sections describe holomorphic vector bundles as linear complex structures on
vector bundles, and explain how the obtained infinitesimal structures in this setting can be
recovered in the more general context of linear generalised complex structures.

Holomorphic vector bundles and linear complex structures. If q : E → M is a holo-
morphic vector bundle over a complex manifold M , then TE → E and TM → M are also
holomorphic vector bundles. The multiplication by i in the fibers of TM , when seen as a
real vector bundle, is the complex structure JM : TM → TM – i.e. a vector bundle morphism
over the identity that squares to − idTM . In the same manner JE : TE → TE is the complex
structure of TE, when seen as a real vector bundle over E. It is easy to see (see Section 3.1)
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that JE : TE → TE is a morphism of double vector bundles

(1)

T E T E

E E

T M T M

M M

JE

idE

JM

idM

with side morphisms JM : TM → TM and idE : E → E and with core morphism jE : E → E,
the multiplication by i in the fibers of E.

Theorem 1.1. A holomorphic structure on a smooth vector bundle E →M is equivalent to
an integrable linear almost complex structure JE as in (1).

Although this result seems evident, so far it does not seem to have been worked out in the
literature. The integrability of JE implies immediately the integrability of JM . Therefore,
if JE is integrable then (M,JM ) is a complex manifold. The integrability of JE can then
be reduced to the existence of a C-linear TM -connection ∇ on E, the complexification
D : Γ(TMC)× Γ(E)→ Γ(E) of which decomposes as

D = D0,1 +D0,1,

with D0,1 a flat T 0,1M -connection on E. Following classical results, see e.g. [22], D0,1 is then
the ∂̄-operator of a holomorphic structure on E, such that JE becomes the multiplication by i
in the fibers of TE. For the convenience of the reader, and since this approach to holomorphic
vector bundles is on the one hand new, and motivates on the other hand this paper’s study
of generalised complex vector bundles, the proof of Theorem 1.1 is carried out in detail in
Section 3.

Linear generalised complex structures. This paper studies the generalisation of this
description of holomorphic vector bundles, to vector bundles endowed with a linear generalised
complex structure. Since the terminology of generalised holomorphic vector bundles is already
used in the literature for a different generalisation of holomorphic vector bundles, here vector
bundles endowed with a linear generalised complex structure are simply called generalised
complex vector bundles.

Let E →M be a smooth vector bundle. The generalised tangent bundle TE = TE ⊕ T ∗E
is then a double vector bundle

TE ⊕ T ∗E E

TM ⊕ E∗ M

with core E ⊕ T ∗M . The vector bundle TE ⊕ T ∗E → E is naturally equipped with the
standard Courant algebroid structure over the manifold E.

Definition 1.2. A generalised complex structure J on a vector bundle E → M is called
linear if J : TE ⊕ T ∗E → TE ⊕ T ∗E is a morphism of double vector bundles over a side
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morphism j : TM ⊕ E∗ → TM ⊕ E∗ and with a core morphism jC : E ⊕ T ∗M → E ⊕ T ∗M .

(2)

T E ⊕ T ∗E T E ⊕ T ∗E

E E

T M ⊕ E∗ T M ⊕ E∗

M M

J

idE

j

idM

.

Consider first a linear generalised complex structure on a vector space V (i.e. on a vector
bundle over a point). In this case the tangent and cotangent bundle are canonically split,
TV ' V ×V and T ∗V ' V ×V ∗. The linearity condition on the generalised complex structure
J is equivalent to J being determined by the maps in the fibres, that is by the side morphism
jV ∗ : V ∗ → V ∗ and the core morphism jC : V → V . These have to be in negative duality to
each other, that is j = −jtC , since the generalised complex structure is orthogonal with respect
to the canonical pairing. Therefore, a linear generalised complex structure on a vector space
in this sense is equivalent to the choice of an ordinary complex structure in the vector space.

Back to the general case, this paper shows that after the choice of an adequate linear
splitting of TE ⊕ T ∗E, the generalised complex structure is equivalent to a special complex
Lie algebroid structure on TM ⊕ E∗, as in the following definition – the bundle TM ⊕ E∗ is
seen as a complex vector bundle with j : TM ⊕ E∗ → TM ⊕ E∗ the multiplication by i.

Definition 1.3. Let Q → M be a vector bundle with complex fibers, hence with a vector
bundle morphism j : Q→ Q such that j2 = − idQ. A complex Lie algebroid structure on
(Q, j) is a C-bilinear Lie algebra bracket [· , ·] on sections of Q and a morphism λ : Q→ TCM
of complex vector bundles that anchors the bracket: [q1, fq2] = λ(q1)(f)q2 + f [q1, q2] for all
f ∈ C∞(M,C) and q1, q2 ∈ Γ(Q).

A complex Lie algebroid (Q→M, j, λ, [· , ·]) is quasi-real if there exists

(1) a real vector bundle morphism ρ : Q→ TM such that λ = ρj : Q→ TCM defined by

(3) ρj(q) := 1
2(ρ(q)⊗ 1− ρ(jq)⊗ i)

for all q ∈ Γ(Q), and
(2) a dull bracket J· , ·K on (Q, ρ) such that the complexification (QC → M,ρC, J· , ·KC)

restricts to (Q1,0 →M,ρ1,0, J· , ·K1,0) on the i-eigenspace of jC, which coincides with
the complex Lie algebroid (Q→M,ρ, j, [· , ·]) via the canonical isomorphism

Q→ Q1,0, q 7→ 1
2(q ⊗ 1− j(q)⊗ i).

The definition above of a complex algebroid follows the one in [34] but assumes that the
complex-linear anchor is induced by a real anchor as in (3). The following theorem is the main
result of this paper.

Theorem 1.4. Let E →M be a smooth vector bundle. A linear generalised complex structure
on E with side j : TM ⊕E∗ → TM ⊕E∗ is equivalent to a quasi-real complex Lie algebroid
structure on (TM ⊕ E∗, j) with anchor prTM,j : TM ⊕ E∗ → TCM , ν 7→ 1

2 (prTM ν ⊗ 1 −
prTM (jν)⊗ i).
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In other words, a linear generalised complex structure with side j on a vector bundle
E is equivalent to a special complex Lie algebroid structure on the complex vector bundle
(TM⊕E∗ →M, j). The equivalence in Theorem 1.4 is of course the most important part of the
statement. It is explained along the introduction of the necessary tools: via this equivalence, a
quasi-real Lie algebroid structure on (TM ⊕ E∗, j) is sent to a generalised complex structure
J : TE ⊕ T ∗E → TE ⊕ T ∗E such that any dull bracket on TM ⊕ E∗ realising the complex
Lie bracket on (TM ⊕ E∗, j) is adapted to J .

In the case of a holomorphic vector bundle, the complex Lie algebroid found in Theorem
1.4 is simply T 1,0M ⊕ (E0,1)∗ →M , with the bracket defined by the complex Lie algebroid
bracket on T 1,0M (since M is a complex manifold), and the flat T 1,0M -connection on E0,1

that is complex conjugated to the ∂̄-operator ∂̄ : Γ(T 0,1M)×Γ(E1,0)→ Γ(E1,0). See Example
4.16.

Section 6 extends the results of Section 4 to the more general case of linear generalised
complex structures in VB-Courant algebroids. Making use of the correspondence between
VB-Courant algebroids and Lie 2-algebroids [24, 18], this leads after the choice of a linear
splitting to a definition of generalised complex structures in split Lie 2-algebroids.

Generalised complex Lie algebroids. In Section 5 the vector bundle is equipped with
the additional structure of a Lie algebroid, and the linear generalised complex structure is
required to be compatible with the Lie algebroid structure. The obtained generalised complex
Lie algebroids were already studied in [21], where they are called “Glanon algebroids”. The
paper [21] gives a correspondence between multiplicative generalised complex structures on Lie
groupoids and compatible generalised complex structures on Lie algebroids. Hence in order to
better understand generalised complex Lie groupoids it is useful to study generalised complex
Lie algebroids in this sense. The goal of this section is a deeper study of the properties of
generalised complex Lie algebroids, in the spirit of the study of holomorphic Lie algebroids
done in [23]: that paper studies holomorphic Lie algebroids in detail and shows an equivalence
between holomorphic Lie algebroid structures on A → M and linear holomorphic Poisson
structures on the complex dual HomC(A,C). Moreover, it shows that a holomorphic Lie
algebroid structure on A is equivalent to a matched pair [28, 27] of the complex Lie algebroids
T 0,1M and A1,0. Additionally, for a complex manifold M , the Lie algebroids T 1,0M and
T 0,1M form a matched pair of complex Lie algebroids with matched sum TCM and more
generally, for a holomorphic Lie algebroid A the Lie algebroids A1,0 and A0,1 form a matched
pair with matched sum AC.

[21] proves that a Poisson holomorphic Lie algebroid is equivalent to a holomorphic Lie
bialgebroid. More generally, Section 5 proves the following theorem:

Theorem 1.5. Let A→M be a Lie algebroid. Let J : TA⊕ T ∗A→ TA⊕ T ∗A be a linear
generalised complex structure on A with side j : TM ⊕ A∗ → TM ⊕ A∗. Then (A,J ) is a
Glanon algebroid if and only if the quasi-real complex Lie algebroid structure on (TM ⊕A∗, j)
found in Theorem 1.4 fits in a complex Lie bialgebroid (TM ⊕A∗,K−) over M .

Here, the complex Lie algebroid TM ⊕ A∗ is identified with U+, the i-eigenspace of jC
in (TM ⊕ A∗)C equipped with the complexification of a dull bracket realising the one on
(TM ⊕ A∗, j), as in (2) of Definition 1.3. The space K− is then the i-eigenspace of (−jt)C,
hence K− ' (A ⊕ T ∗M)C/K+ ' U∗+, since K+ is the annihilator of U+. The Lie algebroid
structure on A induces a degenerate Courant algebroid structure on A⊕ T ∗M (see Section
5.1), the complexification of which has K− and K+ as Dirac structures.
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The Drinfeld double Courant algebroid of the obtained complex Lie bialgebroid is isomorphic
to a Courant algebroid C±, which is obtained via a construction with complex A-Manin pairs
from A and U± (as in [17]). In the initially studied special case of holomorphic Lie algebroids,
where the generalised complex structure is induced by a complex structure, these Courant
algebroids C± decompose as a direct sum of Courant algebroids, C1,0

T ⊕ C
0,1
A , or C0,1

T ⊕ C
1,0
A ,

respectively. The Courant algebroid structure in C± is then the same as the matched pair
Courant algebroid structure on these bundles already given in [8]. This matched pair of Courant
algebroids arises from the aforementioned matched pair of Lie algebroids (T 0,1M,A1,0) of [23].
The Courant algebroids C± therefore are the generalised version of this matched sum Courant
algebroid in the special case of a holomorphic Lie algebroid.

Methodology. The key to the results in this paper is the equivalence of linear splittings
of TE ⊕ T ∗E with TM ⊕ E∗-Dorfman connections on E ⊕ T ∗M , in a similar way as linear
splittings of TE are equivalent to linear TM -connections on E; see [16]. Section 2.2 recalls this
correspondence. Proposition 4.7 establishes the existence of an adapted Dorfman connection
to any linear generalised almost complex structure J on E. This is a Dorfman connection the
horizontal sections of which are preserved by the generalised complex structure J .

This allows then a description of the properties of the generalised complex structures J in
terms of this adapted Dorfman connection and the side morphism j : TM ⊕ E∗ → TM ⊕ E∗,
see Theorem 4.10. Theorem 1.4 follows immediately from the study of the integrability of the
linear generalised complex structure in terms of its side morphism and an adapted Dorfman
connection.

Outline of the paper. Section 2 recalls some necessary background on Courant algebroids
and generalised complex structures, on linear splittings of VB-Courant algebroids and Dorfman
connections and on morphisms of 2-representations of Lie algebroids. Section 3 studies
holomorphic vector bundles and holomorphic Lie algebroids, describing holomorphic vector
bundles via linear complex structures on a real vector bundle.

Section 4 then studies linear generalised complex structures on vector bundles in detail.
For the convenience of the reader the basic definitions and properties of generalised complex
structures are given as well in Section 2.1. This section proves the existence of an adapted
Dorfman connection and uses it to construct the complex Lie algebroid in Theorem 1.4.

In Section 5, the vector bundle is endowed with the additional structure of a Lie algebroid
and the linear generalised complex structure J is assumed to be compatible with the Lie
algebroid structure. This is equivalent to J defining a morphism of 2-representations. Some
results of [23] are expanded in this more general framework.

Finally, Section 6 studies the more general case of a linear generalised complex structure
in a VB-Courant algebroid. Appendix A compares for completeness this paper’s adapted
Dorfman connections with the adapted generalised connections in [4].

Prerequisites and notation. All manifolds and vector bundles in this paper are smooth and
real. The reader is referred to Section 2.3 of [16] for the definition of a double vector bundle,
their morphisms and induced core morphisms and for the necessary background on linear
and core sections, and on their linear splittings and dualisations. Section 2.3 of [16] recalls
the definition of a VB-algebroid, and also the equivalence of 2-term representations up to
homotopy (called here 2-representations for short) with linear decompositions of VB-algebroids
[7]. The notation used here is the same as in [16]. In particular, a linear splitting of a double
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vector bundle (D,A,B,M) is written Σ: A ×M B → D, and the corresponding horizontal
lifts are then σ := σA : Γ(A)→ ΓlB(D) and σ := σB : Γ(B)→ ΓlA(D). The reader is invited to
consult also [29, 26, 7] for more details on double vector bundles.

Vector bundle projections are written qE : E →M , and pM : TM →M for tangent bundles.
Given a section ε of E∗, the map `ε : E → R is the linear function associated to it, i.e. the
function defined by em 7→ 〈ε(m), em〉 for all em ∈ E. The set of global sections of a vector
bundle E → M is denoted by Γ(E). Elements e ⊗ (a + ib) of the complexification EC maz
be written as ae+ ibe if there is no confusion with a complex structure of the vector bundle
E itself. The dual of a vector bundle morphism ϕ is written as ϕt, to avoid confusion with
pullbacks.

Acknowledgements. The authors thank Ping Xu and Chenchang Zhu for helpful comments
and useful questions on an early version of this paper. They are also grateful to Vicente Cortés
for pointing them to the reference [1].

2. Background

This section recalls basic notions and results, in particular on linear splittings of the
generalised tangent bundle of a vector bundle [16].

2.1. Courant algebroids and generalised complex structures. Let (E→M,ρ, 〈· , ·〉, J· , ·K)
be a Courant algebroid. That is [25, 30], ρ : E → TM is a vector bundle morphism over
the identity on M , 〈· , ·〉 : E ×M E → R is a non-degenerate bilinear pairing and J· , ·K is an
R-bilinear bracket on Γ(E) such that

(1) Je1, Je2, e3KK = JJe1, e2K, e3K + Je2, Je1, e3KK,
(2) ρ(e1)〈e2, e3〉 = 〈Je1, e2K, e3〉+ 〈e2, Je1, e3K〉 and
(3) Je1, e2K + Je2, e1K = ρtd〈e1, e2〉

for all e1, e2, e3 ∈ Γ(E) and f ∈ C∞(M). On the right-hand side of the third equation, E
is identified with E∗ via the pairing. The identity ρJe1, e2K = [ρ(e1), ρ(e2)] follows from the
equations above for all e1, e2 ∈ Γ(E) [33].

The vector bundle TM := TM ⊕ T ∗M over a smooth manifold M together with the
natural anchor ρ := prTM , the symmetric pairing 〈(vp, θp), (wp, ωp)〉 = θp(wp) + ωp(vp) and
the Courant-Dorfman bracket J(X, θ), (Y, ω)K = ([X,Y ],£Xω − ιY dθ) is the prototype of
a Courant algebroid. It is called here the standard Courant algebroid over M .

Definition 2.1. A generalised almost complex structure in E is a vector bundle mor-
phism J : E→ E over idM such that J 2 = −1 and J is orthogonal with respect to the pairing,
i.e. 〈J (e1),J (e2)〉 = 〈e1, e2〉, for all sections e1, e2 ∈ Γ(E).

Definition 2.2. A generalised almost complex structure J : E→ E is called a generalised
complex structure in E if the Nijenhuis tensor of J vanishes:

0 = NJ (e1, e2) := Je1, e2K− JJ (e1),J (e2)K + J
(
JJ (e1), e2K + Je1,J (e2)K

)
,

for all sections e1, e2 ∈ Γ(E).

A generalised complex structure in the standard Courant algebroid TM ⊕ T ∗M is simply
called a generalised complex structure on M .
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Example 2.3. Given an almost complex structure J : TM → TM the map J : TM → TM

JJ =
(
J 0
0 −J t

)
is a generalised almost complex structure. It is a generalised complex structure if and only if J
is a complex structure on M .

Equivalently, generalised complex structures J in E can be described by pairs of transversal,
complex conjugated Dirac structures in EC, given by the ±i-eigenbundles of J . In fact, this
was the original definition in [14], see also [9, 11].

2.2. The generalised tangent bundle of a vector bundle and Dorfman connections.
Let qE : E → M be a vector bundle. Then the tangent bundle TE has two vector bundle
structures; one as the tangent bundle of the manifold E, and the second as a vector bundle
over TM . The structure maps of TE → TM are the derivatives of the structure maps of
E →M . The space TE is a double vector bundle with core bundle E →M . Linear splittings
of TE are equivalent to linear horizontal subspaces H ⊆ TE, which in turn are equivalent to
linear TM -connections ∇ in E. For details on these double vector bundles, their core and
linear sections, on linear splittings and on connections, consult [26, 16].

Dualising TE as a vector bundle over E gives the cotangent bundle T ∗E, which is itself a
double vector bundle with sides E and E∗ and core T ∗M , see [26].

TE

TqE

��

pE // E

qE

��
TM

pM

// M

T ∗E
cE //

rE

��

E

qE

��
E∗

qE∗
// M

Consider the direct sum over E of these two double vector bundles,

TE ⊕ T ∗E πE //

ΦE

��

E

qE

��
TM ⊕ E∗

qT M⊕E∗
// M

with ΦE = TqE ⊕ rE . A subbundle L ⊆ TE ⊕ T ∗E that is closed under the addition of
TE⊕T ∗E → TM ⊕E∗, and complementary to T qE⊕ (T qE)◦, is called a linear horizontal
subspace in TE ⊕ T ∗E.

In the following, for any section (e, θ) of E⊕T ∗M , the vertical section (e, θ)↑ ∈ ΓE(T qEE⊕
(T qEE)◦) is the pair defined by

(e, θ)↑(e′m) =
(
d

dt


t=0

e′m + te(m), (Te′mqE)tθ(m)
)

for all e′m ∈ E. By construction this is a core section of TE ⊕ T ∗E → E. For any section
φ of Hom(E,E ⊕ T ∗M), the core-linear section φ̃ ∈ ΓlE(T qEE ⊕ (T qEE)◦ is defined by
φ̃(e(m)) = (φ(e))↑(e(m)) for all e ∈ Γ(E). The double vector bundle TE⊕T ∗E is described in
more detail in [16], where also an equivalence of linear splittings of TE ⊕ T ∗E with Dorfman
connections is established.
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A Dorfman TM ⊕ E∗-connection on E ⊕ T ∗M is an R-bilinear map

∆: Γ(TM ⊕ E∗)× Γ(E ⊕ T ∗M)→ Γ(E ⊕ T ∗M)

satisfying [16]

(1) ∆ν(f · τ) = f ·∆ντ + £prT M (ν)(f) · τ ,
(2) ∆f ·ντ = f ·∆ντ + 〈ν, τ〉 · (0,df), and
(3) ∆ν(0,df) = (0,d(£prT M νf))

for all ν ∈ Γ(TM ⊕ E∗), τ ∈ Γ(E ⊕ T ∗M) and f ∈ C∞(M). By the first axiom, ∆ defines a
map ∆: ν 7→ ∆ν ∈ Der(E ⊕ T ∗M). The dual of this map in the sense of derivations defines a
dull bracket on sections of TM ⊕ E∗, i.e. an R-bilinear map

J· , ·K∆ : Γ(TM ⊕ E∗)× Γ(TM ⊕ E∗)→ Γ(TM ⊕ E∗)

satisfying

(1) prTM Jν1, ν2K∆ = [prTM ν1,prTM ν2],
(2) Jf1ν1, f2ν2K = f1f2Jν1, ν2K∆ + f1£prT M ν1(f2)ν2 − f2£prT M ν2(f1)ν1

for all ν1, ν2 ∈ Γ(TM ⊕ E∗) and f1, f2 ∈ C∞(M).
Since the vector bundle TM ⊕ E∗ is anchored by the morphism prTM : TM ⊕ E∗ → TM ,

the TM -part of Jν1, ν2K∆ + Jν2, ν1K∆ is trivial and this sum can be seen as an element of Γ(E∗).
Let Jac∆ ∈ Ω3(TM ⊕ E∗, TM ⊕ E∗) be the Jacobiator of the dull bracket J·, ·K∆. Then

Jac∆(ν1, ν2, ν3) := JJν1, ν2K∆, ν3K∆ + cyclic permutations = R∆(ν1, ν2)t(ν3),

with R∆ ∈ Ω2(TM ⊕E∗,Hom(E⊕T ∗M,E)) the curvature of the Dorfman connection. Hence
a skew-symmetric dull bracket is a Lie algebroid bracket if and only if the corresponding
Dorfman connection is flat.

Linear splittings of TE ⊕ T ∗E are in bijection with dull brackets on sections of TM ⊕E∗,
or equivalently with Dorfman connections ∆: Γ(TM ⊕E∗)×Γ(E⊕T ∗M)→ Γ(E⊕T ∗M), see
[16]. Choose such a Dorfman connection. The horizontal lift σ := σ∆

TM⊕E∗ : Γ(TM ⊕ E∗)→
ΓlE(TE ⊕ T ∗E) is given by

(4) σ(X, ε)(e(m)) = (TmeX(m),d`ε(e(m)))−∆(X,ε)(e, 0)↑(e(m))

for e ∈ Γ(E) and any pair (X, ε) ∈ Γ(TM⊕E∗). The natural pairing on fibres of TE⊕T ∗E → E

is then given by [16] 〈σ(ν1), σ(ν2)〉 = `Jν1,ν2K∆+Jν2,ν1K∆ ,
〈
σ(ν), τ †

〉
= q∗E〈ν, τ〉, and

〈
τ †1 , τ

†
2

〉
= 0

for ν, ν1, ν2 ∈ Γ(TM ⊕ E∗) and τ, τ1, τ2 ∈ Γ(E ⊕ T ∗M). The following equations follow for
ϕ,ψ ∈ Γ(Hom(E,E ⊕ T ∗M)), ν ∈ Γ(TM ⊕ E∗) and τ ∈ Γ(E ⊕ T ∗M)

〈ϕ∼, σ∆(ν)〉 = `ϕ∗(ν), 〈ϕ∼, τ↑〉 = 0, 〈ϕ∼, ψ
∼
〉 = 0.(5)

The Courant-Dorfman bracket on sections of TE ⊕ T ∗E → E is given by [16]

(1) Jσ(ν1), σ(ν2)K = σJν1, ν2K∆ − ˜R∆(ν1, ν2) ◦ ιE ,
(2)

q
σ(ν), τ↑

y
= (∆ντ)↑, and

(3)
r
τ↑1 , τ

↑
2

z
= 0

for ν, ν1, ν2 ∈ Γ(TM ⊕ E∗) and τ, τ1, τ2 ∈ Γ(E ⊕ T ∗M). Here, ιE : E → E ⊕ T ∗M is the
canonical inclusion.
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The anchor Θ = prTE : TE⊕T ∗E → TE restricts to the map ∂E = prE : E⊕T ∗M → E on
the cores, and defines an anchor ρTM⊕E∗ = prTM : TM⊕E∗ → TM on the side. More precisely,
the anchor of (e, θ)↑ is e↑ ∈ Xc(E) and Θ(σ(ν)) = ∇̂∗ν ∈ X(E), where the linear connection
∇ : Γ(TM ⊕ E∗)× Γ(E)→ Γ(E) is defined by ∇ν = prE ◦∆ν ◦ ιE for all ν ∈ Γ(TM ⊕ E∗).

Example 2.4. Let q : E →M be a smooth vector bundle. Since a linear connection ∇ : X(M)×
Γ(E) → Γ(E) is equivalent to a linear horizontal space H∇ ⊆ TE, it also defines a linear
horizontal space H∇ ⊕H◦∇ ⊆ TE ⊕ T ∗E. The corresponding Dorfman connection

∆: Γ(TM ⊕ E∗)× Γ(E ⊕ T ∗M)→ Γ(E ⊕ T ∗M)

is given by
∆(X,ε)(e, θ) = (∇Xe,£Xθ + 〈∇∗ε, e〉)

for X ∈ X(M), θ ∈ Ω1(M), e ∈ Γ(E) and ε ∈ Γ(E∗). This is the standard Dorfman
connection defined by ∇. The corresponding dull bracket is

(6) J(X, ε), (Y, η)K∆ =
(

[X,Y ],∇∗Xη −∇∗Y ε
)

for X,Y ∈ X(M) and ε, η ∈ Γ(E∗).

The remainder of this section discusses changes of linear splittings of TE ⊕ T ∗E.

Definition 2.5. Given two (TM ⊕ E∗)-Dorfman connections ∆1 and ∆2 on E ⊕ T ∗M with
corresponding lifts σ1 and σ2, the change of splitting from ∆1 to ∆2 is Φ12 ∈ Γ

(
(TM ⊕

E∗)∗ ⊗Hom(E,E ⊕ T ∗M)
)
defined by the equation

Φ12(ν)
∼

:= σ2(ν)− σ1(ν) ,

for any ν ∈ Γ(TM ⊕E∗). The change of splitting is called skew-symmetric if Ψ12(ν1, ν2) :=
Φ12(ν1)t(ν2) is skew-symmetric, that is Ψ12 ∈ Ω2(TM ⊕ E∗, E∗). The form Ψ12 is also called
change of splittings.

Lemma 2.6. Given two Dorfman connections ∆1, ∆2 as above, their corresponding dull
brackets are related by

(7) Jν1, ν2K∆2 = Jν1, ν2K∆1 +
(
0,Ψ12(ν1, ν2)

)
.

Proof. The definition of the change of splittings together with the correspondence between
lifts and Dorfman connections as in (4) immediately gives that for any ν ∈ Γ(TM ⊕ E∗) and
τ ∈ Γ(E ⊕ T ∗M)

∆2
ντ = ∆1

ντ − Φ12(ν)
(
prE τ

)
.

Again dualising this equation gives the desired formula (7) for the change of splittings for the
corresponding dull brackets. �

An immediate consequence is the following corollary.

Corollary 2.7. If the Dorfman connection ∆1 is skew-symmetric, then ∆2 is skew-symmetric
if and only if the change of splitting is skew-symmetric.
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2.3. VB-Courant algebroids. The linear Courant algebroid on TE⊕T ∗E is a prototype of
a VB-Courant algebroid. This section gives the general definition of a VB-Courant algebroid.

A metric double vector bundle [16] is a double vector bundle (D;A,B;M) equipped
with a symmetric, non-degenerate fibrewise pairing D ×B D → R, such that the induced
map D → D∗B is an isomorphism of double vector bundles. In particular the core must be
isomorphic to A∗. A VB-Courant algebroid (E;Q,B;M) is a metric double vector bundle

E B

Q M

,

such that E→ B is a Courant algebroid, the anchor ρE : E→ TB is linear, i.e. a morphism of
double vector bundles over some morphism ρQ : Q→ TM and the Courant bracket is linear,
that is

JΓ`B(E),Γ`B(E)K ⊆ Γ`B(E), JΓ`B(E),ΓcB(E)K ⊆ ΓcB(E), and JΓcB(E),ΓcB(E)K = 0.

Given a VB-Courant algebroid (E;Q,B;M), a VB-Dirac structure in E is a sub-double
vector bundle (D;U,B;M) with U ⊆ Q such that D → B is a Dirac structure in E→ B.

Example 2.8. The standard Courant algebroid E = TE ⊕ T ∗E over a vector bundle E is
a VB-Courant algebroid with Q = TM ⊕ E∗ and B = E. The subspaces TE and T ∗E are
VB-Dirac structures in E.

Example 2.9. The tangent double of a Courant algebroid E →M is a VB-Courant algebroid,
where E = TE, Q = E and B = TM . The anchor of TE is given by I ◦ TρE : TE → T (TM),
where I : TTM → TTM is the canonical involution [32, 26], exchanging the two vector bundle
structures TpM and pTM of TTM → TM .

2.4. The generalised tangent bundle of a Lie algebroid. Let here A → M be a Lie
algebroid. Then for a ∈ Γ(A), the derivations La of Γ(TM ⊕ A∗) and of Γ(A ⊕ T ∗M) over
ρ(a) are defined by

La(X,α) :=
(
[ρ(a), X],Laα

)
, La(a′, θ) :=

(
[a, a′],Lρ(a)θ

)
for (X,α) ∈ Γ(TM⊕A∗) and (a′, θ) ∈ Γ(A⊕T ∗M). Fix a skew-symmetric Dorfman connection
∆: Γ(TM ⊕A∗)× Γ(A⊕ T ∗M)→ Γ(A⊕ T ∗M) and set [16]

Ω: Γ(TM ⊕A∗)× Γ(A)→ Γ(A⊕ T ∗M), Ω(X,α)a := ∆(X,α)(a, 0)− (0,d〈α, a〉).
Define then the basic connections associated to ∆ by

∇bas
a (X,α) := (ρ, ρt)

(
Ω(X,α)a

)
+ La(X,α) ,

∇bas
a (a′, θ) := Ω(ρ,ρt)(a′,θ)a+ La(a′, θ),

for a ∈ Γ(A), (X,α) ∈ Γ(TM ⊕ A∗) and (a′, θ) ∈ Γ(A ⊕ T ∗M). These are ordinary linear
A-connections on TM ⊕A∗ and A⊕ T ∗M , respectively, which are dual to each other [16].

The basic curvature Rbas
∆ ∈ Ω2(A,Hom(TM ⊕A∗, A⊕ T ∗M)) associated to ∆ is defined

by
(8) Rbas

∆ (a1, a2)ν := −Ων [a1, a2] + La1

(
Ωνa2

)
− La2

(
Ωνa1

)
+ Ω∇bas

a2 νa1 − Ω∇bas
a1 νa2

for a1, a2 ∈ Γ(A) and ν ∈ Γ(TM ⊕A∗). [16] shows that R∇bas = Rbas
∆ ◦ (ρ, ρt) and R∇bas =

(ρ, ρt) ◦Rbas
∆ .
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Theorem 2.10. [16] Let A→M be a Lie algebroid with anchor ρ and let ∆ a skew-symmetric
Dorfman TM ⊕A∗-connection on A⊕ T ∗M . Write Θ for the anchor of the Lie algebroid TA.
Then

(1) [σ∆
A (a1), σ∆

A (a2)] = σ∆
A

(
[a1, a2]

)
−Rbas

∆ (a1, a2)
∼

,
(2) [σ∆

A (a), τ †] =
(
∇bas
a τ

)† ,
(3) [τ †1 , τ

†
2 ] = 0 ,

(4) Θ
(
σ∆
A (a)

)
= ∇̂bas

a ∈ X`(TM ⊕A∗) ,
(5) Θ

(
τ †
)

=
(
(ρ, ρt)τ

)↑ ∈ Xc(TM ⊕A∗)

for a, a1, a2 ∈ Γ(A) and τ, τ1, τ2 ∈ Γ(A⊕ T ∗M).

That is [16], the complex (ρ, ρt) : (A⊕T ∗M)[0]→ (TM⊕A∗)[1], the basic connections ∇bas

and the basic curvature Rbas
∆ define the 2-representation corresponding to the VB-algebroid

(TA⊕A T ∗A→ TM ⊕A∗, A→M) [16] in the decomposition corresponding to ∆, see [7].

3. Holomorphic vector bundles and holomorphic Lie algebroids

This section proves that a holomorphic structure on a vector bundle is equivalent to a linear
complex structure on it. In particular, “adapted” connections are described in the language of
linear complex structures. Finally, a holomorphic Lie algebroid A with a choice of adapted
connection gives rise to infinitesimal ideal systems in AC.

3.1. Linear almost complex structures via connections. Let E be a vector bundle over
a manifoldM . A complex structure in the fibres of E is equivalent to a vector bundle morphism
jE : E → E over idM , such that j2

E = − idE . Given such jE , it defines a complex scalar
multiplication by (α + iβ) · e = αe + βj(e), and vice versa, if E is a C-vector bundle, then
multiplication by i defines such a morphism jE .

Consider now such a vector bundle E with fibrewise complex structure jE . Take any
connection ∇ : X(M)× Γ(E)→ Γ(E). Then the connection

∇̃ : X(M)× Γ(E)→ Γ(E), ∇̃Xe = 1
2(∇Xe− jE(∇X(jE(e))))

satisfies ∇̃jE = 0. Such a connection is called complex-linear connection on E, since it is
C-linear in its second argument.

Consider a holomorphic vector bundle E →M . Since E is locally generated as a C-vector
bundle by holomorphic sections e1, . . . , ek of qE : E →M , the real vector bundle E is locally
generated by the holomorphic sections e1, . . . , ek, f1 := i · e1, . . . , fk := i · ek. Then since these
sections are holomorphic, they satisfy
(9) JE ◦ Tel = Tel ◦ JM and JE ◦ Tfl = Tfl ◦ JM
for l = 1, . . . , k. The following lemma is proved in Appendix B.

Lemma 3.1. Let qE : E →M be a holomorphic vector bundle. If e ∈ E(U) is a holomorphic
section, then the vector field e↑ ∈ X(E) is holomorphic as well, and for any e ∈ Γ(E), the
complex structure JE sends e↑ to (jEe)↑.

That is, the complex structure JE : TE → TE is a double vector bundle morphism over
the identity on E, the complex structure JM : TM → TM of the base M , and with core
jE : E → E – as in (1).
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The goal of this section is the proof of the converse: if a linear almost complex structure
as in (1) is integrable, then the induced complex structures on E and on M make E →M a
holomorphic vector bundle. Consider therefore for the remainder of this section generally a
smooth vector bundle E →M with an almost complex structure TE → TE that is linear as
in (1) over an almost complex structure JM : TM → TM , with core morphism jE : E → E.

Definition 3.2. A linear connection ∇ : X(M) × Γ(E) → Γ(E) is adapted to JE if the
corresponding linear splitting Σ: TM ×M E → TE of TE satisfies JEΣ(v, e) = Σ(JMv, e) for
all (v, e) ∈ TM ×M E. Equivalently, the corresponding horizontal lift σ∇ : X(M) → X`(E)
lifts the almost complex structure on M to the one on E, that is σ∇(JMX) = JEσ

∇(X) for
all X ∈ X(M).

Consider a linear splitting of the double vector bundle TE

Σ: E ×M TM → TE,

corresponding to a linear connection ∇ : X(M)× Γ(E)→ Γ(E). Then for all X ∈ X(M), the
vector field JE(∇̂X) is q-related with JM (X) ∈ X(M). Hence

(10) JE(∇̂X) = ∇̂JMX + ψ̃(X)

for a section ψ(X) of End(E). It is easy to check that ψ(f ·X) = f ·ψ(X) for X ∈ X(M) and
f ∈ C∞(M). Hence (10) defines a form ψ ∈ Ω1(M,End(E)) with

−∇̂X = J2
E(∇̂X) = JE

(
∇̂JMX + ψ̃(X)

)
= ∇̂J2

M
X + ˜ψ(JMX) + ˜jE ◦ ψ(X)

for all X ∈ X(M), that is, with

(11) ψ(JMX) = −jE ◦ ψ(X)

for all X ∈ X(M). Consider Σ′ : E ×M TM → TE,

Σ′(em, vm) = Σ(em, vm) +TM

(
Tm0Evm +E

1
2jEψ(vm)(em)

)
.

Then a simple computation shows that Σ′ satisfies the condition of Definition 3.2, hence
showing the following proposition.

Proposition 3.3. Let E → M be a smooth vector bundle endowed with a linear almost
complex structure JE : TE → TE over JM : TM → TM , with core morphism jE : E → E.
Then there exists a linear TM -connection on E that is adapted to JE.

By definition, a linear connection ∇ : X(M)× Γ(E)→ Γ(E) is adapted if and only if the
following identity holds for all e ∈ Γ(E), X ∈ X(M):

JE(TmeXm)− d

dt


t=0

em + tjE(∇Xe)(m) = JE(∇̂X(e(m)) = ∇̂JMX(e(m))

= TmeJMXm −
d

dt


t=0

em + t(∇JMXe)(m).

In particular, if E →M is a holomorphic vector bundle, and e a holomorphic section, then
JE ◦ Te = Te ◦ JM . Hence, ∇ is adapted to JE if and only if

(12) jE∇Xe = ∇JMXe
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for all X ∈ X(M) and all holomorphic sections e ∈ Γ(E). This shows also that for any linear
TM -connection ∇ on E, the connection ∇′ : X(M)× Γ(E)→ Γ(E) defined by

(13) ∇′Xe = 1
2 (∇Xe− jE∇JMXe)

on X ∈ X(M) and holomorphic sections e ∈ Γ(E), is adapted to JE . Assume additionally
that ∇jE = 0, which due to the arguments above is always possible. Then

∇′X(jE(e)) = 1
2 (∇X(jE(e))− jE∇JMX(jE(e))) = 1

2
(
jE∇Xe− j2

E∇JMXe
)

= jE∇′Xe

for holomorphic sections of e ∈ Γ(E) and all X ∈ X(M). Since E has local (real) frames of
holomorphic sections, this shows that ∇′jE = 0 as well.

In general the following theorem shows that the existence of such a C-linear adapted
connection follows easily from the integrability of the linear almost complex structure JE .

Theorem 3.4. Let E →M be a smooth vector bundle endowed with a linear almost complex
structure JE : TE → TE over JM : TM → TM , with core morphism jE : E → E. Then JE is
integrable if and only if

(1) JM is integrable and
(2) there exists a C-linear connection ∇ : X(M)× Γ(E)→ Γ(E) that is adapted to JE,
(3) the form NR∇,jE

∈ Ω2(M,E) defined by
NR∇,jE

(X,Y ) := R∇(X,Y )−R∇(JMX,JMY ) + jER∇(JMX,Y ) + jER∇(X, JMY )
vanishes.

Remark 3.5. (1) In the setting above, a linear connection ∇ : X(M)× Γ(E)→ Γ(E) is
adapted to JE if and only if

JE(H∇) = H∇ .

It satisfies ∇jE = 0 if and only if
H∇ = TjE(H∇) .

(2) Let E → M be a holomorphic vector bundle and JE : TE → TE the linear complex
structure as in Lemma 3.1. Then by (12) and the C-linearity of ∇,

NR∇,jE
(X,Y )e = R∇(X,Y )e− j2

ER∇(X,Y )e+ j2
ER∇(X,Y )e+ j2

ER∇(X,Y )e = 0
for X,Y ∈ XU (M) and a holomorphic section e of E. Since NR∇,jE

is a tensor, it
vanishes then identically.

Proof of Theorem 3.4. Choose a linear connection ∇ : X(M)× Γ(E)→ Γ(E) that is adapted
to JE as in Definition 3.2 – the existence of such a connection is given by Proposition 3.3.
That is, the linear vector fields ∇̂X , for X ∈ X(M), all satisfy

JE ◦ ∇̂X = ∇̂JMX .

Then
NJE

(
∇̂X , ∇̂Y

)
=
[
∇̂X , ∇̂Y

]
−
[
JE∇̂X , JE∇̂Y

]
+ JE

[
JE∇̂X , ∇̂Y

]
+ JE

[
∇̂X , JE∇̂Y

]
= ̂∇NJM

(X,Y ) − ˜NR∇,jE
(X,Y ),

(14)

NJE

(
∇̂X , e↑

)
=
[
∇̂X , e↑

]
−
[
∇̂JMX , (jEe)↑

]
+ (jE∇JMXe)↑ + (jE∇XjEe)↑

= (∇Xe−∇JMXjEe+ jE∇JMXe+ jE∇XjEe)↑ .



LINEAR GENERALISED COMPLEX STRUCTURES 15

and
NJE

(
e↑1, e

↑
2

)
= 0

for all X,Y ∈ X(M) and e, e1, e2 ∈ Γ(E). Since X(E) is spanned as a C∞(E)-module by these
linear and core sections, NJE

vanishes if and only if NJM
(X,Y ) = 0 (by projecting (14) to

M), NR∇,jE
(X,Y ) = 0 and

(15) ∇Xe−∇JMXjEe+ jE∇JMXe+ jE∇XjEe = 0

for all X,Y ∈ X(M) and e ∈ Γ(E). Therefore, if NJM
= 0, NR∇,j = 0 and ∇jE = 0, the

almost complex structure JE is integrable.
Assume conversely that NJE

= 0. Then NJM
= 0 and JM is integrable. Define now

∇′ : X(M)× Γ(E)→ Γ(E) by

∇′Xe = 1
2∇Xe−

1
2jE∇XjEe .

Clearly ∇′jE = 0, so ∇′ is C-linear. Additionally, the difference between ∇ and ∇′ is the form
ω ∈ Ω1(M,End(E)), given for X ∈ X(M) and e ∈ Γ(E) by

ω(X)(e) = 1
2(∇Xe+ jE∇XjEe) .

By (15) jE ◦ (ω(X)) = ω(JMX) and hence

JE

(
∇̂′X

)
= JE

(
∇̂X − ω̃(X)

)
= ∇̂JMX − ˜jEω(X) = ∇̂JMX − ˜ω(JMX) = ∇̂′JMX ,

so ∇′ is still adapted to JE . Therefore, by (14), NR∇′ ,jE
= 0. �

In the situation of the previous theorem, consider a complex-linear connection ∇ : X(M)×
Γ(E)→ Γ(E), that is adapted to JE . Consider the complexificationD : Γ(TCM)×Γ(E)→ Γ(E)
of ∇ in the first argument. Then D is still C-linear and its curvature RD ∈ Ω2(TCM,EndC(E))
is the complexification of R∇ in the first two arguments.

Theorem 3.6. Let E →M be a smooth vector bundle endowed with a linear almost complex
structure JE : TE → TE over JM : TM → TM , with core morphism jE : E → E. Assume
that JM is integrable. Then a complex linear connection ∇ : X(M)× Γ(E)→ Γ(E) adapted to
JE satisfies NR∇,jE

= 0 if and only if the complexification D : Γ(TCM)× Γ(E)→ Γ(E) equals

(16) D = D1,0 +D0,1

with D1,0 : Γ(T 1,0M)×Γ(E)→ Γ(E) a linear connection and D0,1 : Γ(T 0,1M)×Γ(E)→ Γ(E)
a flat connection.

Remark 3.7. If E → M is holomorphic, this statement is again immediate since for all
X ∈ Γ(T 0,1U) and holomorphic sections e of E, (12) implies

i∇Xe = jE∇Xe
(12)= ∇JMXe = ∇−iXe = −i∇Xe,

which shows that ∇Xe = 0 = ∂̄Xe. The flat connection D0,1 is hence simply the ∂̄-operator.
The complexified connection D can then be in addition compatible with a Hermitian metric

on E. In that case, it is the Chern connection associated to the Hermitian holomorphic
bundle. In general, a connection as in Theorem 3.6 could be called a Chern connection of
the holomorphic vector bundle. In [1] such a connection is simply called adapted to the
holomorphic structure.
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Proof of Theorem 3.6. Assume that ∇ is C-linear and adapted to JE . Then for all X,Y ∈
Γ(T 0,1M):
NC
R∇,jE

(X,Y ) = NRD,jE
(X,Y )

= RD(X,Y )−RD(−iX,−iY ) + iRD(−iX, Y ) + iRD(X,−iY ) = 4RD(X,Y ).

Hence RD0,1 = 0 if and only if NC
R∇,jE

(X,Y ) = 0 for all X,Y ∈ Γ(T 0,1M). If NR∇,jE
= 0,

then obviously NC
R∇,jE

= 0 and so RD0,1 = 0. Conversely, assume that RD0,1 = 0 and consider
arbitrary vector fields X,Y ∈ X(M). Then X + iJM (X), Y + iJM (Y ) ∈ Γ(T 0,1M) and a
simple computation shows

0 = NC
R∇,jE

(
X + iJM (X), Y + iJM (Y )

)
= 4NR∇,jE

(X,Y ) .

That is, if D0,1 is flat then NR∇,jE
= 0. �

Remark 3.8. Let jC : EC → EC be the complexification of jE : E → E, and let E1,0 and E0,1 be
as usual the eigenspaces of jC to the eigenvalues i and −i, respectively. The complexification of
D in the second argument, or of ∇ in both arguments, written ∇C : Γ(TCM)×Γ(EC)→ Γ(EC)
clearly preserves jC. As a consequence, ∇C preserves E1,0 and E0,1 ⊆ EC. Denote by
θ : E → E1,0 the canonical isomorphism of C-vector bundles, given by θ(e) = 1

2 (e− ijE(e)).
Then the equality

∇C
Xθ(e) = θ(DXe)

is immediate for all e ∈ Γ(E) and X ∈ Γ(TCM). That is, modulo the isomorphism θ, the
restriction of ∇C to E1,0 coincides with D.

Theorems 3.4 and 3.6 and the following result yield together Theorem 1.1.

Theorem 3.9 ((3.5) and (3.7) in [22]). Let E →M be a complex vector bundle over a complex
manifold. Then E →M is a holomorphic vector bundle if and only if there exists a connection
D = D1,0 +D0,1 : Γ(TCM)× Γ(E)→ Γ(E) such that D0,1 : Γ(T 0,1M)× Γ(E)→ Γ(E) is flat.

In that case, D0,1 is the ∂̄-operator of the holomorphic vector bundle:
D0,1
X e = ∂̄Xe = 0

for all X ∈ Γ(T 0,1M) if and only if e is holomorphic.

Proof of Theorem 1.1. Assume first that E is holomorphic. Then by Lemma 3.1, JE is a
double vector bundle morphism with sides JM : TM → TM and idE : E → E, and with core
morphism the multiplication jE : E → E by the complex number i in the fibers of E. Since E
is a complex manifold, JE is integrable.

Conversely, consider a linear complex structure JE : TE → TE with side morphisms
JM : TM → TM and idE : E → E and with core morphism jE : E → E. Since j2 = − idE ,
it defines a complex structure in the fibers of E. By Theorem 3.4 and Theorem 3.6, M
is a complex manifold with complex structure JM , and there exists a C-linear connection
∇ : X(M)× Γ(E)→ Γ(E), the complexification D : Γ(TCM)× Γ(E)→ Γ(E) of which equals

D = D0,1 +D1,0

with D0,1 a flat T 0,1M -connection on E. By Theorem 3.9, the vector bundle E → M
carries a holomorphic structure over the complex manifold (M,JM ). It remains to show that
JE : TE → TE is the complex structure of the complex manifold E. In order to do that, it is
sufficient to prove that if e ∈ Γ(E) is D0,1-flat, i.e. if e is a holomorphic section on E, then[

ξ, e↑
]
C = 0
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for all ξ ∈ ΓE(T 0,1E). Here, e↑ ∈ X(E) is identified with e↑ ∈ Γ(T 1,0E) via the canonical
C-linear isomorphism TE ' T 1,0E as in Remark 3.8.

Consider therefore the complexification (TE)C of TE (as a vector bundle over E). It is a
double vector bundle with sides E and TCM , and with core EC. For X ∈ X(M), e ∈ Γ(E)
and z ∈ C the equality

(e⊗ z)↑ = e↑ ⊗ z
is immediate and it is easy to check that

∇̂C
X⊗z = ∇̂X ⊗ z.

Since ∇ is adapted to JE , the respective complexifications satisfy

JC
E ◦ ∇̂C

X = ∇̂C
JC

M
X

for all X ∈ Γ(TCM), and in particular ∇̂C
X ∈ ΓE(T 0,1E) for X ∈ Γ(T 0,1M). Since JE is

linear over JM , T 0,1E is a linear subbundle of TEC over T 0,1M and E, and with core E0,1.
It is spanned as a vector bundle over E by the sections ∇̂C

X and e↑ for X ∈ Γ(T 0,1M) and
e ∈ Γ(E0,1).

Since the Lie bracket of two core vector fields always vanishes, the only equality to check is[
∇̂C
X , θ(e)

↑
]
C

= 0

for all X ∈ Γ(T 0,1M) and e ∈ Γ(E) a D0,1-flat section. This bracket is easily seen to be[
∇̂C
X , θ(e)

↑
]
C

=
(
∇C
Xθ(e)

)↑ = θ(DXe)↑ = θ
(
D0,1
X e
)↑

= 0.(17)

using Remark 3.8. �

3.2. Holomorphic Lie algebroids and infinitesimal ideal systems. Given a complex
manifold M , let ΘM denote the sheaf of holomorphic vector fields on M .

Let A→M be a holomorphic vector bundle and let ρ : A→ TM be a holomorphic vector
bundle map, called the anchor. Assume that the sheaf A of holomorphic sections of A→M
is a sheaf of complex Lie algebras, the anchor map ρ induces a homorphism of sheaves of
complex Lie algebras from A to ΘM , and the Leibniz identity

[X, fY ] = £ρ(X)f · Y + f [X,Y ]

holds for all X,Y ∈ A(U), f ∈ OM (U), and all open subsets U of M . Then A is a holomorphic
Lie algebroid, see e.g. [23] and references therein.

Since the sheaf A locally generates the C∞(M)-module of all smooth sections of A, each
holomorphic Lie algebroid structure on a holomorphic vector bundle A → M determines a
unique smooth real Lie algebroid structure on A. Since ρ : A→ TM is holomorphic, it satisfies

JTM ◦ Tρ = Tρ ◦ JA .

Restricting this to the cores gives JM ◦ ρ = ρ ◦ jA, which implies ρC(A0,1) ⊆ T 0,1M .
Choose a TM -connection on A as in Theorem 3.4 and its complexification as in Remark

3.8. Denote by ∇0,1 the restriction

∇0,1 : Γ(T 0,1M)× Γ(A1,0)→ Γ(A1,0).
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Recall that by Remark 3.8 it is just D0,1 via the canonical C-isomorphism A ' A1,0. That is,
the ∇0,1-flat sections a ∈ Γ(A1,0) are exactly the holomorphic sections of A ' A1,0, hence the
elements of A via this isomorphism. If a, b ∈ ΓU (A1,0) are ∇0,1-flat (on U ⊆M open), then

(i) [a, b]C is again holomorphic so ∇0,1-flat,
(ii) ρ(a) ∈ ΘM (U) is a holomorphic vector field, so ∂̄-flat, where

∂̄ : Γ(T 0,1M)× Γ(T 1,0M)→ Γ(T 1,0M), ∂̄XY = prT 1,0M [X,Y ]C
is just the ∂̄-operator of the holomorphic vector bundle TM →M .

(iii) [a, ν]C ∈ Γ(A0,1) for all ν ∈ Γ(A0,1).

The first two assertions are immediate. For the third one, consider a ∈ AU . Then a defines
a1,0 = 1

2 (a− ij(a)) ∈ ΓU (A1,0) and a0,1 = 1
2 (a+ ij(a)) ∈ ΓU (A0,1). Further, A0,1

U is spanned
as a C∞(U)-module by sections b0,1 defined in this manner. Since for a, b ∈ A(U)

[a1,0, b0,1]C = 1
4[a− j(a)⊗ i, b+ j(b)⊗ i]C = 1

4 ([a, b] + j[a, b]⊗ i− j[a, b]⊗ i− [a, b]) = 0,

where [a, j(b)] = [a, ib] = i[a, b] = j[a, b] follows from the fact that A is a sheaf of complex Lie
algebras. Since A1,0 = AC/A

0,1, this shows that (T 0,1M,A0,1,∇0,1) is a complex infinitesimal
ideal system [20] in the complex Lie algebroid AC.

Theorem 3.10. Let A→M be a holomorphic vector bundle. If A→M is a holomorphic Lie
algebroid then the triple (T 0,1M,A0,1,∇0,1) defined as above is an infinitesimal ideal system
in the complex Lie algebroid AC.

4. Linear generalised complex structures and Dorfman connections

Let E be a vector bundle over a smooth manifold M . Fix a skew-symmetric Dorfman
connection
(18) ∆: Γ(TM ⊕ E∗)× Γ(E ⊕ T ∗M)→ Γ(E ⊕ T ∗M) ,
and therefore a horizontal lift σ∆ : Γ(TM ⊕ E∗)→ Γ`E(TE ⊕ T ∗E). Consider a double vector
bundle morphism J : TE ⊕ T ∗E → TE ⊕ T ∗E as in (2). This section gives conditions on j
and jC for the morphism J to be a generalised complex structure.

Lemma 4.1. Given a double vector bundle morphism J over j as in (2) and a skew-symmetric
Dorfman connection ∆ as in (18), there is a section Φ ∈ Γ((TM ⊕ E∗)∗ ⊗ E∗ ⊗ (E ⊕ T ∗M))
such that for any ν ∈ Γ(TM ⊕ E∗)

J
(
σ∆(ν)

)
= σ∆(j(ν)) + Φ(ν)
∼

.

Here, (TM ⊕E∗)∗ ⊗E∗ ⊗ (E ⊕ T ∗M) is identified with Hom(TM ⊕E∗,Hom(E,E ⊕ T ∗M)).

Proof. Since J is a vector bundle morphism over j, J
(
σ∆(ν)

)
is a linear section over j(ν).

Thus J
(
σ∆(ν)

)
− σ∆(j(ν)) is a core-linear section and this gives for every ν a section

Φ(ν) ∈ Γ(Hom(E,E ⊕ T ∗M)), such that

J
(
σ∆(ν)

)
= σ∆(j(ν)) + Φ(ν)
∼

.

Since J and j are vector bundle morphisms and σ∆ is a morphism of C∞(M)-modules,

Φ(fν)
∼

= J
(
σ∆(fν)

)
− σ∆(j(fν)) = J

(
q∗Efσ

∆(ν)
)
− σ∆(j(fν))

= q∗EfJ
(
σ∆(ν)

)
− q∗Efσ∆(j(ν)) = q∗EfΦ(ν)

∼
= fΦ(ν)
∼
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for f ∈ C∞(M) and ν ∈ Γ ∈ Γ(TM ⊕E∗). That is, Φ(fν) = fΦ(ν) and Φ ∈ Γ((TM ⊕E∗)∗⊗
E∗ ⊗ (E ⊕ T ∗M)). �

Remark 4.2. In the situation of Lemma 4.1, the following equations hold for τ ∈ Γ(E⊕T ∗M),
ν ∈ Γ(TM ⊕ E∗) and ϕ ∈ Γ(Hom(E,E ⊕ T ∗M)).

(1) J
(
τ↑
)

= jC(τ)↑. This follows directly from the definition of the core morphism jC .
(2) J (ϕ̃) = jC ◦ ϕ
∼

. This is an easy calculation using the first equation: For ε ∈ Γ(E∗)
and τ ∈ Γ(E ⊕ T ∗M), J (ε̃⊗ τ) = J (`ε · τ↑) = `ε · J (τ↑) = `ε · jC(τ)↑ = jC ◦ (ε⊗ τ)

∼
.

The map J is a generalised complex structure if and only if

(1) J 2 = − idTE⊕T∗E ,
(2) J is orthogonal, and
(3) the Nijenhuis tensor of J vanishes.

The following two lemmas give conditions on j, jC and Φ for the map J : TE ⊕ T ∗E →
TE⊕T ∗E to satisfy the first two properties. The third property is studied in the next section.

Lemma 4.3. In the situation of Lemma 4.1, J 2 = − idTE⊕T∗E if and only if

(1) j2 = − idTM⊕E∗ ,
(2) j2

C = − idE⊕T∗M ,
(3) Φ(j(ν)) = −jC ◦ (Φ(ν)) for all ν ∈ Γ(TM ⊕ E∗).

Proof. It is sufficient to check that J 2 = − idTE⊕T∗E on lifts σ∆(ν) for any ν ∈ Γ(TM ⊕E∗)
and on core sections τ↑ for any τ ∈ Γ(E ⊕ T ∗M), as those sections span ΓTM⊕E∗(TE ⊕ T ∗E)
as a C∞(TM ⊕E∗)-module. (2) is immediate by evaluating J on core sections, using Remark
4.2.

For linear sections, the definition of Φ and Remark 4.2 yield

J 2 (σ∆(ν)
)

= J
(
σ∆(j(ν)) + Φ(ν)
∼)

= σ∆(j2(ν)) + Φ(j(ν))
∼

+ jC ◦ (Φ(ν))
∼

.
(19)

If J 2 = − idTE⊕T∗E , then the side morphism j has to satisfy j2 = − idTM⊕E∗ . Now (19)
implies that

(20) Φ(j(ν)) = −jC ◦ (Φ(ν)) .

Conversely, if j2 = − idTM⊕E∗ and Φ(j(ν)) = −jC ◦ (Φ(ν)), then (19) yields immediately
J 2(σ∆(ν)) = −σ∆(ν) for all ν ∈ Γ(TM ⊕ E∗). �

Lemma 4.4. A double vector bundle morphism J as in (2) is orthogonal if and only if for
any skew-symmetric Dorfman connection ∆ as in (18):

(1) (jC)t = j−1 ,
(2) Φ(ν2)t(jν1) = −Φ(ν1)t(j(ν2)) for all ν1, ν2 ∈ Γ(TM ⊕ E∗).

Proof. Again it is sufficient to check the orthogonality of J on core sections and on horizontal
lifts. For core sections this is immediate, since the pairing of two core sections always vanishes.
For the pairing of a lift with a core section, use (5) to obtain that〈

J σ∆(ν),J (τ↑)
〉

=
〈
σ∆(ν), τ↑

〉
,
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if and only if 〈j(ν), jC(τ)〉 = 〈ν, τ〉. Since ν and τ are arbitrary, this is equivalent to (jC)t = j−1.
For the pairing of two lifts compute〈

J (σ∆(ν1)),J (σ∆(ν2))
〉

= `Φ(ν2)t(j(ν1)) + `Φ(ν1)t(j(ν2)) ,

and on the other hand 〈σ∆(ν1), σ∆(ν2)〉 = 0. Hence J is orthogonal if and only if additionally
Φ(ν2)t(j(ν1)) = −Φ(ν1)t(j(ν2)) . �

Define Ψ,Ψj , (j∗Ψ) ∈ Γ
(
(TM ⊕ E∗)∗ ⊗ (TM ⊕ E∗)∗ ⊗ E∗

)
by

Ψ(ν1, ν2) := Φ(ν1)t(ν2) , Ψj(ν1, ν2) := Φ(ν1)t(jν2) , (j∗Ψ)(ν1, ν2) := Ψ(jν1, jν2) .
Then Lemma 4.3 and Lemma 4.4 can be combined as follows

Proposition 4.5. A morphism J as in (2) is a generalised almost complex structure on E,
if and only if for every skew-symmetric Dorfman connection ∆ as in (18):

(1) j2 = −1 ,
(2) j = −(jC)t ,
(3) Ψ is skew-symmetric, i.e. Ψ ∈ Ω2(TM ⊕ E∗, E∗) ,
(4) Ψ(ν1, ν2) = −j∗Ψ(ν1, ν2) .

Proof. Under assumption of the properties j2 = −1 and jtC = j−1 the condition on Φ given in
Lemma 4.3 can be reformulated as Ψ(jν1, ν2) = Ψ(ν1, jν2), whereas the condition on Φ given
in Lemma 4.4 is then equivalent to Ψ(ν2, jν1) = −Ψ(ν1, jν2), in both cases for all sections
ν1, ν2 of TM ⊕ E∗. Applying the former equation on the latter and then replacing ν2 by
jν3 shows skew-symmetry of Ψ, again using j2 = −1. The former equation is shown to be
equivalent to Ψ = −j∗Ψ, again by replacing ν2 with jν3. �

4.1. Adapted Dorfman connections. This section shows that given a linear generalised
almost complex structure J on E →M , there is a Dorfman connection ∆ which is adapted
to J , i.e. such that σ∆ satisfies J (σ∆(ν)) = σ∆(jν) for all ν ∈ Γ(TM ⊕ E∗). Equivalently,
the corresponding tensor Φ defined by Lemma 4.1 vanishes. The choice of such an adapted
Dorfman connection vastly simplifies all the following computations in this paper.

Recall from Section 2 that a change of skew-symmetric Dorfman connection (from ∆1 to
∆2) is equivalent to a 2-form Ψ12 ∈ Ω2(TM ⊕ E∗, E∗).

Lemma 4.6. Let J be a linear generalised almost complex structure over E and choose two
skew-symmetric Dorfman connections ∆1 and ∆2 as above with change of splitting Ψ12. Then
(21) Ψ2(ν1, ν2) = Ψ1(ν1, ν2)−Ψ12(ν1, jν2)−Ψ12(jν1, ν2) ,
where Ψ1,Ψ2 are the 2-forms defined as in Proposition 4.5 by J and ∆1 and ∆2, respectively.

Proof. A computation yields

Φ2(ν)
∼

= J (σ2(ν))− σ2(jν) = Φ1(ν)
∼

+ jC ◦ Φ12(ν)
∼

− Φ12(jν)
∼

.

Dualising this equality leads to
Ψ2(ν1, ν2) = Ψ1(ν1, ν2)−Ψ12(ν1, jν2)−Ψ12(jν1, ν2) ,

using jtC = −j, see Proposition 4.5. �

Now (21) is used to find the existence of a Dorfman connection adapted to J .
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Proposition 4.7. For every linear generalised complex structure J on E there is a skew-
symmetric (TM ⊕ E∗)-Dorfman connection ∆ on E∗ ⊕ TM such that J (σ∆(ν)) = σ∆(jν)
for all ν ∈ Γ(TM ⊕ E∗).

Proof. Fix any skew-symmetric Dorfman connection TM ⊕ E∗-Dorfman connection ∆1 on
E∗ ⊕ TM and denote the corresponding lift by σ1. Proposition 4.5 defines a two-form
Ψ1 ∈ Ω2(TM ⊕ E∗, E∗) such that J (σ1(ν)) = σ1(jν) + Ψ1(ν, ·)

∼
. Let now Ψ12(ν1, ν2) :=

− 1
2Ψ1(ν1, jν2). By Proposition 4.5 this form is skew-symmetric and therefore the dull bracket

defined by (7) is skew-symmetric again. Now according to (21) and using the properties
from Proposition 4.5 the corresponding 2-form Ψ2 vanishes. Hence the Dorfman connection
Dorfman connection ∆ := ∆2 satisfies Ψ2 = 0. By definition of Ψ2, this is equivalent to
J ◦ σ∆ = σ∆ ◦ j. �

The remainder of this section characterises the set of Dorfman connections adapted to J .

Definition 4.8. Let E →M be a smooth vector bundle and let j : TM ⊕ E∗ → TM ⊕ E∗ be
an arbitrary vector bundle morphism. Two skew-symmetric (TM ⊕ E∗)-Dorfman connection
∆1 and ∆2 on E∗ ⊕ TM are j-equivalent, if their change of splittings Ψ12 defined by (7)
satisfies

Ψ12(ν1, ν2) = Ψ12(jν1, jν2)
for all ν1, ν2 ∈ Γ(TM ⊕ E∗).

The following lemma shows that if a Dorfman connection ∆1 is adapted to J , then a second
Dorfman connection ∆2 is adapted to J if and only if they are j-equivalent.

Lemma 4.9. Let J be a linear generalised almost complex structure J on a vector bundle
E →M and ∆1 and ∆2 be two skew-symmetric (TM⊕E∗)-Dorfman connections on E⊕T ∗M .
Denote the two-forms given by Proposition 4.5 corresponding to ∆1 and ∆2 by Ψ1 and Ψ2,
respectively. Then ∆1 and ∆2 are j-equivalent if and only if Ψ1 = Ψ2.

Proof. Denote the change of splittings again by Ψ12. ∆1 is j-equivalent to ∆2 if and only if
for all ν1, ν2 ∈ Γ(TM ⊕ E∗)

(22) Ψ12(ν1, jν2) = −Ψ12(j(jν1), jν2) = −Ψ12(jν1, ν2) .

By (21), Ψ1 and Ψ2 are related by

Ψ2(ν1, ν2) = Ψ1(ν1, ν2)−Ψ12(ν1, jν2)−Ψ12(jν1, ν2) .

So Ψ1 = Ψ2 if and only if (22) holds, that is, if and only if ∆1 and ∆2 are j-equivalent. �

4.2. Integrability. Consider a linear generalised almost complex structure J on E as in
(2) and fix a skew-symmetric Dorfman connection ∆ as in (18), which is adapted to J . In
particular j, jC satisfy the conditions of Proposition 4.5, and J

(
σ∆(ν)

)
= σ∆(jν) for all

ν ∈ Γ(TM ⊕ E∗). Evaluated at two core sections the Nijenhuis tensor of J vanishes trivially,
since the Courant-Dorfman bracket of two core sections vanishes and the double vector bundle
morphism J sends core sections to core sections.

For the Nijenhuis tensor of J evaluated at a horizontal lift σ∆(ν) for ν ∈ Γ(TM ⊕E∗) and
a core section τ↑ for τ ∈ Γ(E ⊕ T ∗M), compute

NJ
(
σ∆(ν), τ↑

)
=
(
∆ντ

)↑ − (∆j(ν)jC(τ)
)↑ +

(
jC(∆j(ν)τ)

)↑ +
(
jC(∆νjC(τ))

)↑
.
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Thus the Nijenhuis tensor of J vanishes for any such pair of a lift σ∆(ν) and a core section τ↑
if and only if for all ν ∈ Γ(TM ⊕ E∗) and τ ∈ Γ(E ⊕ T ∗M)

(23) ∆ντ −∆j(ν)jC(τ) + jC
(
∆j(ν)τ

)
+ jC

(
∆νjC(τ)

)
= 0 .

As the pairing is non-degenerate, this condition can be dualised by pairing it with a second
section ν2 ∈ Γ(TM ⊕ E∗). Recall that ∆ is dual to a dull bracket J·, ·K∆. Then the properties
of j and jC obtained in Proposition 4.5 lead to〈

∆ν1τ −∆j(ν1)jC(τ) + jC
(
∆j(ν1)τ

)
+ jC

(
∆ν1jC(τ)

)
, ν2

〉
=
〈
τ,−Nj,J·,·K∆(ν1, ν2)

〉
.

Thus the Nijenhuis tensor of a generalised almost complex structure J vanishes when
evaluated at a pair of any lift σ∆(ν) and any core section τ↑ if and only if the Nijenhuis tensor
of j with respect to the dull bracket J·, ·K∆ vanishes.

Finally, compute for ν1, ν2 ∈ Γ(TM ⊕ E∗):

NJ
(
σ∆(ν1), σ∆(ν2)

)
= σ∆(Nj,J·,·K∆(ν1, ν2)) +R∆(j(ν1), j(ν2))(·, 0)
∼

−R∆(ν1, ν2)(·, 0)
∼

− jC ◦R∆(j(ν1), ν2)(·, 0)
∼

− jC ◦R∆(ν1, j(ν2))(·, 0)
∼

.

Recall that since the dull bracket on TM ⊕ E∗ is anchored by prTM and ∆(X,ε)(0, θ) =
(0,LXθ) the curvature R∆(ν1, ν2)(0, θ) for θ ∈ Γ(T ∗M) always vanishes. Therefore the terms
with R∆ above evaluated at (e, 0) vanish if and only if the corresponding terms vanish evaluated
at (e, θ) for any θ ∈ Γ(T ∗M). Thus the Nijenhuis tensor of J vanishes for all sections if and
only if the Nijenhuis tensor of j with respect to J·, ·K∆ vanishes and additionally the curvature
of the adapted ∆ satisfies

0 = R∆
(
j(ν1), j(ν2)

)
(τ)−R∆(ν1, ν2)(τ)− jC

(
R∆(j(ν1), ν2)(τ)

)
− jC

(
R∆(ν1, j(ν2))(τ)

)
,

for all ν1, ν2 ∈ Γ(TM ⊕ E∗) and τ ∈ Γ(E ⊕ T ∗M). By pairing the right hand side of this
equation with a third section ν3 of TM ⊕ E, obtain equivalently

0 = Jac∆(jν1, jν2, ν3) + Jac∆(jν1, ν2, jν3) + Jac∆(ν1, jν2, jν3)− Jac∆(ν1, ν2, ν3)
= Jν1, Jν2, ν3K∆K∆ − Jjν1, Jjν2, ν3K∆K∆ − Jjν1, Jν2, jν3K∆K∆ − Jν1, Jjν2, jν3K∆K∆

+ cyclic permutations in 1,2,3
= Jν1, Jν2, ν3K∆ − Jjν2, jν3K∆K∆ + Jjν1,−Jν2, jν3K∆ − Jjν2, ν3K∆K∆

+ cyclic permutations in 1,2,3 .

(24)

Define a bracket A on Γ(TM ⊕ E∗) by

(25) A(ν1, ν2) := 1
2

(
Jν1, ν2K∆ − Jjν1, jν2K∆

)
.

Then Nj,J·,·K∆ vanishes if and only if A satisfies

(26) A(ν1, jν2) = jA(ν1, ν2) .

Furthermore, (24) is equivalent to the Jacobi identity of this bracket A.
Note that the bracket A does not admit a TM -valued anchor on TM ⊕E∗, and is thus not

a (real) Lie algebroid bracket on TM ⊕ E∗, since

A(ν1, fν2) = fA(ν1, ν2)− 1
2 prTM (jν1)(f)jν2 + 1

2 prTM (ν1)(f)ν2
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for f ∈ C∞(M) and ν1, ν2 ∈ Γ(TM ⊕ E∗). However, the map j is a fibre-wise complex
structure in TM ⊕ E∗, with respect to which A is C-bilinear by (26) and skew-symmetric.
And the equation above shows that with the complex anchor ρ : TM ⊕E∗ → TCM defined by

(27) ρ(ν) := prTCM

(
1
2(ν ⊗ 1− (jν)⊗ i)

)
,

(TM ⊕E∗, ρ,A) is a complex Lie algebroid as defined in [34]. Furthermore, it is easy to check
that A is independent of the choice of adapted Dorfman connection ∆.

Theorem 4.10. Let E →M be a smooth vector bundle. A linear generalised complex structure
on E is equivalent to

(1) A vector bundle morphism j : TM ⊕E∗ → TM ⊕E∗ such that j2 = − idTM⊕E∗ , i.e. a
complex structure in the fibers of TM ⊕ E∗, and

(2) a choice of j-equivalence class of Dorfman TM ⊕ E∗-connections on E ⊕ T ∗M such
that TM ⊕E∗ →M , equipped with the bracket A defined in (25) by the corresponding
dull brackets and the anchor ρ in (27) becomes a complex Lie algebroid.

Proof. Given a linear generalised almost complex structure J on E as in (2), Proposition 4.5
and Proposition 4.7 define the vector bundle morphism j and an adapted Dorfman connection
∆, in turn uniquely defining the bracket A on Γ(TM ⊕ E∗) by (25). By the arguments above,
integrability of J implies that A is a complex Lie algebroid bracket with anchor given by (27).

Conversely, given j and a complex Lie algebroid structure where the bracket A comes from
a Dorfman connection ∆ as above, define a double vector bundle morphism J : TE ⊕ T ∗E →
TE ⊕ T ∗E by

J (τ↑) := (−jt(τ))↑ , J (σ∆(ν)) := σ∆(j(ν))

for τ ∈ Γ(E ⊕ T ∗M) and ν ∈ Γ(TM ⊕E∗). Again by Proposition 4.5 and the computations
above of the Nijenhuis tensor of J on linear and core sections, this defines a linear generalised
complex structure on E.

These two constructions are inverse to each other since neither J nor A depend on the
choice of the Dorfman connection in the j-equivalence class of ∆. �

4.3. Generalised Kähler structures on vector bundles. Generalised Kähler structures
were introduced in [9, 12]. Any automorphism G of TM ⊕ T ∗M which is symmetric Gt = G,
and squares to id defines a symmetric metric on TM ⊕ T ∗M . Such an automorphism is
therefore called a metric.

Definition 4.11. A generalised Kähler structure on a manifold is a pair of commuting
generalised complex structures J1 and J2 such that the symmetric non-degenerate metric
G := −J1 ◦ J2 is positive definite.

This section shows that in the case of a generalised Kähler structure on a vector bundle E
there exists a Dorfman connection which is adapted in the sense of Proposition 4.7 to both
generalised complex structures simultaneously. Take a vector bundle E →M equipped with a
linear generalised Kähler structure, i.e. J1 and J2 are both linear. Denote the side morphisms
on TM ⊕ E∗ by j1 and j2, respectively. Take now any skew-symmetric TM ⊕ E∗-Dorfman
connection ∆ on E ⊕ T ∗M . This gives rise to the corresponding 2-forms Ψ1 and Ψ2 as in
Proposition 4.5.
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Lemma 4.12. In the setting above, for all ν1, ν2 ∈ TM ⊕ E∗

Ψ2(j1ν1, ν2) + Ψ2(ν1, j1ν2) = Ψ1(j2ν1, ν2) + Ψ1(ν1, j2ν2) .

Proof. Since J1 and J2 commute, so do their side morphisms j1 and j2. Thus σ∆(j1j2ν) =
σ∆(j2j1ν) and with the definition of Φ1 and Φ2 in Lemma 4.1 this leads by straightforward
computation to the equality jt1 ◦ Φ2(ν)− Φ1(j2ν) = jt2 ◦ Φ1(ν)− Φ2(j1ν). Pairing this with a
second arbitrary section ν2 ∈ Γ(TM ⊕ E∗) and dualising then gives the desired equality. �

This lemma easily yields the existence of a Dorfman connection adapted to both generalised
complex structures.

Proposition 4.13. Given two commuting linear generalised complex structures J1 and J2
on a vector bundle E →M , there is a TM ⊕ E∗-Dorfman connection ∆ on E ⊕ T ∗M which
is adapted to both J1 and J2.

Proof. Take a skew-symmetric Dorfman connection ∆1, which is adapted to J1 as constructed
in Proposition 4.7. Thus the 2-form Ψ1 vanishes. The previous Lemma 4.12 then shows
that Ψ2(ν1, ν2) = Ψ2(j1ν1, jν2) for all ν1, ν2 ∈ Γ(TM ⊕ E∗). In order to obtain a Dorfman
connection ∆2 adapted to J2, use as change of splitting the form Ψ12 := − 1

2Ψ2(·, j2·) as shown
in the proof of Proposition 4.7. But since j1 and j2 commute, also this change of splittings
satisfies Ψ12(j1ν1, j1ν2) = Ψ12(ν1, ν2) for all ν1, ν2 ∈ TM ⊕ E∗. Thus ∆2 is j1-equivalent to
∆1 as in Definition 4.8. Now Lemma 4.9 shows that ∆2 is still adapted to J1 and therefore to
both generalised complex structures simultaneously. �

4.4. Complex VB-Dirac structures. This section shows that a linear generalised complex
structure on a vector bundle E is equivalent to a pair of complex conjugated VB-Dirac
structures. Consider the complexification of TE as a vector bundle over E. This is again a
double vector bundle TCE ∼= TCE ⊕ T ∗CE with complexified core and side bundle.

TCE ⊕ T ∗CE E

EC ⊕ T ∗CM

TCM ⊕ E∗C M

(πT M⊕E∗ )C .

It is straightforward to extend the results of [16] complex linearly to characterize linear
splittings of the double vector bundle TCE which are additionally C-linear over E, giving a
correspondence between such splittings and complex (TCM ⊕ E∗C)-Dorfman connections on
EC ⊕ T ∗CM .

Furthermore, the splitting corresponding to the complexification ∆C of a real Dorfman
connection ∆ is the complexification of the splitting Σ∆, i.e. the complex linear extension in
TM ⊕ E∗.

Let J : TE → TE be a linear generalised complex structure on E over j : TM ⊕ E∗ →
TM ⊕ E∗ and with core morphism jC as in Definition 1.2. The ±i-eigenbundles of the
complexification JC : TCE → TCE of J build a pair of complex conjugated complex Dirac
structures D± ⊂ TCE:

D+ = {ξ − iJ (ξ)| ξ ∈ TE} D− = {ξ + iJ (ξ)| ξ ∈ TE} .
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It is easy to see that these are two sub-double vector bundles of TCE

D± E

U± M

(πT M⊕E∗ )C|D± qE ,

where U± is the ±i-eigenbundle of the complexification jC : (TM ⊕ E∗)C → (TM ⊕ E∗)C of
j. The core of this double vector bundle is K± ⊆ (E ⊕ T ∗M)C, the ±i-eigenbundle of the
complexification jC,C of jC .

Lemma 4.14. In the situation above,
U◦± = K± ,

where U◦± denotes the annihilator of U± in (TM ⊕ E∗)∗ ∼= E ⊕ T ∗M .

Proof. This follows directly from the property jt = −jC of Proposition 4.5. �

Now consider the complex linear extension AC of A defined in (25).

Proposition 4.15. The restriction to U± of the complexified bracket AC coincides with the
restriction of the dull bracket J·, ·K∆C corresponding to the complexification of an adapted
Dorfman connection ∆ and defines a C-Lie algebroid structure on U± with anchor prTCM |U± .

It isomorphic as complex Lie algebroid to (TM⊕E∗, ρ,A) of Theorem 4.10 via the canonical
isomorphism ν 7→ ν∓ijν

2 .

Proof. By (26) the complexified bracket AC restricts to the two eigenbundles U± of jC.
It follows directly from the definition of A in (25) that the restriction of AC to U± coincides

with the complexification of J·, ·K∆ for any adapted Dorfman connection ∆. Therefore it is
anchored by the restriction of prTCM and satisfies the Leibniz identity. Skew-symmetry and
Jacobi identity follow from the corresponding properties for A.

It is easy to check that TM ⊕E∗ → U±, ν 7→ ν ∓ ijν is indeed an isomorphism of complex
Lie algebroids, where the fibre-wise complex structures are j on one side and induced from
the complexification on the other. �

Proposition 4.15 and Theorem 4.10 now imply Theorem 1.4.

Proof of Theorem 1.4. The complex Lie algebroid in induced as in Theorem 4.10 by a linear
generalised complex structure is quasi-real by Proposition 4.15.

Conversely, let E →M be a smooth vector bundle with a vector bundle morphism j : TM ⊕
E∗ → TM ⊕E∗ such that j2 = − idTM⊕E∗ . Assume that (TM ⊕E∗,prTM , j, [· , ·]) is a quasi-
real complex Lie algebroid as in Definition 1.3. Then there is a dull bracket J· , ·K on sections
of TM ⊕E∗, that is anchored by prTM and such that the canonical isomorphism TM ⊕E∗ →
(TM⊕E∗)1,0 is an isomorphism of the complex Lie algebroids ((TM⊕E∗)1,0,pr1,0

TM , jC, J· , ·K1,0)
and (TM ⊕ E∗,prTM , j, [· , ·]). The compatibility of the anchors is immediate by definition of
prTM,j .

Then for all ν1, ν2 ∈ Γ(TM ⊕ E∗),

(28) 1
2 ([ν1, ν2]⊗ 1− j[ν1, ν2]⊗ i) = 1

4Jν1 ⊗ 1− j(ν1)⊗ i, ν2 ⊗ 1− j(ν2)⊗ iK.
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The right-hand side of this equation is
1
2

(
Jν1, ν2K− Jjν1, jν2K

2 ⊗ 1− Jjν1, ν2K + Jν1, jν2K
2 ⊗ i

)
,

which, compared with its left-hand side, gives{
[ν1, ν2] = Jν1,ν2K−Jjν1,jν2K

2

j[ν1, ν2] = Jjν1,ν2K+Jν1,jν2K
2

.

Since ν1, ν2 ∈ Γ(TM ⊕ E∗) were arbitrary, these equations yield that J· , ·K has vanishing
Nijenhuis tensor with respect to j: Nj,J· ,·K=0 and [· , ·] is defined by J· , ·K and j as in (25).

Finally, assume that J· , ·K and J· , ·K′ both satisfy (28) and consider the form Ψ ∈ Ω2(TM ⊕
E∗, E∗) defined by

Jν1, ν2K′ = Jν1, ν2K + (0,Ψ(ν1, ν2))
for all ν1, ν2 ∈ Γ(TM ⊕ E∗), see (7). Then

Jν1, ν2K′ − Jjν1, jν2K′

2 = [ν1, ν2] = Jν1, ν2K− Jjν1, jν2K
2

and so
Jν1, ν2K− Jjν1, jν2K = Jν1, ν2K′ − Jjν1, jν2K′

= Jν1, ν2K + (0,Ψ(ν1, ν2))− Jjν1, jν2K− (0,Ψ(jν1, jν2)),
which implies Ψ(ν1, ν2) = Ψ(jν1, jν2) for all ν1, ν2 ∈ Γ(TM ⊕ E∗). Hence, the Dorfman
connections defined by the two dull brackets are j-equivalent as in Defintion 4.8.

By Theorem 4.10, E is thus equipped with a linear generalised complex structure J with
core j and such that J· , ·K is adapted to J . �

The following example discusses how Theorem 1.4 specialises in the case of holomorphic
vector bundles.

Example 4.16. Let E → M be a holomorphic vector bundle. As shown in Section 3 this
corresponds to a linear complex structure JE on E over JM : TM → TM with core morphism
jE : E → E. The corresponding generalised complex structure J , its side morphism j and core
morphism jC are

(29) J =
(
JE 0
0 −J tE

)
, j =

(
JM 0
0 −jtE

)
, jC =

(
jE 0
0 −J tM

)
.

The equality j = −jtC is immediate.
The eigenbundles of the complexified morphisms are given by

U+ = T 1,0M ⊕ (E0,1)∗ , K+ = E1,0 ⊕ (T 0,1M)∗ ,
U− = T 0,1M ⊕ (E1,0)∗ , K− = E0,1 ⊕ (T 1,0M)∗ ,

(30)

where T 1,0M , T 0,1M , E1,0 and E0,1 are the ±i-eigenbundles of JM and jE, respectively.
A linear generalised complex structure on E is simply a holomorphic structure on E if and

only if the generalised complex structure is of the form above, see Section 3. In that case the
complex Lie algebroid structure on TM ⊕ E∗ with fibrewise complex structure j = (JM ,−jtE)
is given by the anchor

ρ : TM ⊕ E∗ → T 1,0M ⊆ TCM, ρ(X, ε) = 1
2(X ⊗ 1− (JMX)⊗ i) ,
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and, by (6), the bracket

A
(
(X1, ε1), (X2, ε2)

)
= 1

2

(
[X1, X2]−[JMX1, JMX2],∇∗X1

ε2−∇∗X2
ε1+∇∗JMX1

j∗Eε2−∇∗JMX2
j∗Eε1

)
where ∇∗ is a flat TM -connection on E∗, dual to a TM -connection ∇ on E which is adapted
to the linear complex structure JE, see Section 3.

Now TM is C-isomorphic to T 1,0M and E∗ is C-isomorphic to (E0,1)∗, since the complex
structure on E∗ is taken to be −jtE. After these identifications, ∇∗ is dual to the T 1,0M-
connection ∇ on E0,1, defined as complex conjugate to the flat T 0,1M -connection ∂̄ on E1,0 ∼= E
corresponding to the holomorphic structure. That is for X ∈ Γ(T 1,0M) and e ∈ Γ(E0,1),

∇Xe := ∂̄Xe .

Hence TM ⊕E∗ is isomorphic as a complex Lie algebroid to the Lie algebroid T 1,0M ⊕ (E0,1)∗
which is induced by this connection, with bracket ([X1, X2],∇∗X1

ε2 − ∇∗X2
ε1) for X1, X2 ∈

Γ(T 1,0) and ε1, ε2 ∈ Γ((E0,1)∗). Complexification of A and restriction to these eigenbundles
gives precisely this bracket.

Example 4.17. In the case where the generalised complex structure is induced by a linear
symplectic structure ω[ : TE → T ∗E, the side morphism is coming from an isomorphism
τ : TM → E∗. The fibrewise complex structure j on TM ⊕ E∗ is after identification of E∗
with TM via τ simply the complex structure of TCM , the anchor is then given by ρ = 1

2 idTCM

and the bracket A is given by 1
2 [·, ·]C. This follows from the fact that TM ⊕ E∗ is isomorphic

as complex Lie algebroid to U+ = graph(−τC) according to Proposition 4.15, and the bracket
of graph(−τ) is shown in [16] to be the Lie bracket of vector fields. The factor of 1

2 comes
here from the isomorphism TM ⊕ E∗ → U+.

The description of VB-Dirac structures in TE via adapted Dorfman connections of [16]
can directly be extended to complex VB-Dirac structures and adapted complex Dorfman
connections, by simply demanding complex linearity where appropriate. This leads to the
following adaptation of a theorem in [16].

Theorem 4.18. Let D be a sub-double vector bundle of TCE over E and U ⊆ TCM ⊕ E∗C,
with core K ⊆ EC ⊕ T ∗CM such that D is a complex subbundle of TCE → E. Let ∆ be a
complex (TCM ⊕E∗C)-Dorfman connection on EC ⊕ T ∗CM which is adapted to D. Then D is a
complex VB-Dirac structure if and only if U = K◦ and (U,prTCM |U , J·, ·K∆|U ) is a complex
Lie algebroid.

This description of complex VB-Dirac structures together with Theorem 4.10 then leads to
the following description of linear generalised complex structures.

Corollary 4.19. A linear generalised complex structure J on a vector bundle E is equivalent
to a pair of transverse, complex conjugated complex VB-Dirac structures D± in TCE.

5. Generalised complex structures on Lie algebroids

Let A → M be a Lie algebroid with anchor ρ : A → TM . In this case the generalised
tangent bundle TA is itself a Lie algebroid over the side TM ⊕A∗, as described for example
in [24] and [16]. This section considers a linear generalised complex structure on A, that is
also compatible with the Lie algebroid structure on TA.
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Definition 5.1. [21] A generalised complex Lie algebroid is a Lie algebroid A → M
equipped with a linear generalised complex structure J : TA→ TA which is also a Lie algebroid
morphism over the side morphism j : TM ⊕A∗ → TM ⊕A∗.

In the situation of the last definition, choose a Dorfman connection ∆: Γ(TM ⊕ A∗) ×
Γ(A⊕ T ∗M)→ Γ(A⊕ T ∗M) that is adapted to J . It follows directly from the symmetry of
the linear splitting that also the lift σ∆ : Γ(A)→ Γ`TM⊕A∗(TA) is compatible with J , that is

J
(
σ∆(a)

)
= σ∆(a) ◦ j

for all a ∈ Γ(A).
Hence, by the results in [6], J is a Lie algebroid morphism if and only if (j,−jt, 0) is

an automorphism of the 2-representation
(
(ρ, ρt),∇bas,∇bas, Rbas

∆
)
corresponding to the VB-

algebroid structure on TA⊕T ∗A in the linear splitting defined by the adapted skew-symmetric
Dorfman connection ∆, see Theorem 2.10. That is,

(1) j ◦ (ρ, ρt) = −(ρ, ρt) ◦ jt,
(2) ∇bas,Hom

a (j,−jt) = 0 for all a ∈ Γ(A), and
(3) −jt ◦Rbas

∆ = Rbas
∆ ◦ j.

Since the basic connections defined by a skew-symmetric Dorfman connection are dual to each
other, the second equality reduces to ∇bas

a ◦ j = j ◦ ∇bas
a for all a ∈ Γ(A). As observed before,

j and jC = −jt are fibrewise complex structures on TM ⊕A∗ and A⊕T ∗M , respectively. The
properties above simply state that (ρ, ρt), ∇bas

a and Rbas
∆ are all complex linear. Together with

Theorem 4.10 this immediately give the following characterisation of a generalised complex
Lie algebroid.
Theorem 5.2. Let A be a Lie algebroid over M with anchor ρ. A linear generalised complex
structure (j, [∆]) on A (see Thm 4.10) is compatible with the Lie algebroid structure in the
sense of Definition 5.1 if and only if the basic connections and basic curvature induced by
any representative ∆ in [∆], as well as the map (ρ, ρt) are complex linear with respect to the
complex structures j on TM ⊕A∗ and −jt on A⊕ T ∗M .

A straightforward complex extension of the corresponding result in [17] yields the following
description of complex LA-Dirac structures in terms of an adapted splitting.
Corollary 5.3. A complex VB-Dirac structure D ⊆ TCA with side U ⊆ TCM ⊕A∗C and core
K ⊆ AC ⊕ T ∗CM is additionally a Lie subalgebroid of TCA → TCM ⊕ A∗C if and only for an
adapted complex (TCM ⊕A∗C)-Dorfman connection ∆ on AC ⊕ T ∗CM the following conditions
are satisfied for all a, b ∈ Γ(A), u ∈ Γ(U):

(1) (ρ, ρt)C(K) ⊆ U ,
(2) ∇bas

a u ∈ Γ(U),
(3) Rbas

∆ (a, b)u ∈ Γ(K).

Note that here ∇bas and Rbas
∆ denote the complex basic connection and complex basic curvature

defined by complex linear extension of the formulas in the real case.

The following description of generalised complex Lie algebroids in terms of LA-Dirac
structures is an immediate consequence of this description of complex LA-Dirac structures,
together with Theorem 5.3 and Corollary 4.19.
Corollary 5.4. A generalised complex structure on a Lie algebroid is equivalent to a pair of
transverse, complex LA-Dirac structures in TCA.
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Proof. According to Corollary 4.19 a linear generalised complex structure J on A is equivalent
to a pair of transversal, complex VB-Dirac structures D±. Choose a Dorfman connection
adapted to J as in Proposition 4.7. Then the complexification of ∆ is adapted to D+ and to
D− simultaneously. According to the considerations above, J is a Lie algebroid morphism if
and only if

(1) (ρ, ρt) ◦ jC = j ◦ (ρ, ρt) ,
(2) ∇bas

a ◦ j = j ◦ ∇bas
a ,

(3) jC ◦Rbas
∆ (a, b) = Rbas

∆ (a, b) ◦ j .

The first condition is equivalent to (ρ, ρt)(K±) ⊆ U±, the second condition is equivalent to
∇bas
a u± ∈ Γ(U±) for any a ∈ Γ(A) and u± ∈ Γ(U±) and the third condition is equivalent to

Rbas
∆ (a, b)(u±) ∈ Γ(K±) for all a, b ∈ Γ(A) and u± ∈ Γ(U±). According to Theorem 4.18 these

conditions are equivalent to D± being complex LA-Dirac structures. �

5.1. The degenerate generalised complex structure on A⊕T ∗M . Recall that the vector
bundle A⊕ T ∗M can be equipped with the structure of a degenerate Courant algebroid as
described in [17]. The anchor is given by ρ ◦ prA : A⊕ T ∗M → TM , the (possibly degenerate)
pairing and the bracket are given by〈

(a, θ), (b, η)
〉
d

:=〈ρ(a), η〉+ 〈ρ(b), θ〉 ,
q
(a, θ), (b, η)

y
d

:=
(
[a, b],Lρ(a)η − iρ(b)dθ

)
.

(31)

where a, b ∈ Γ(A) and θ, η ∈ Γ(T ∗M).
This anchor, bracket and pairing satisfy all properties of a Courant algebroid except for the

non-degeneracy of the pairing. As shown in [17], the bracket can equivalently be described in
terms of the Dorfman connection ∆:
(32) Jτ1, τ2Kd = ∆(ρ,ρt)τ1τ2 −∇

bas
prA τ2τ1

for τ1, τ2 ∈ Γ(A⊕ T ∗M).

Proposition 5.5. The core morphism jC : A⊕T ∗M → A⊕T ∗M of J satisfies j2
C = − id, is

orthogonal with respect to 〈·, ·〉d and the Nijenhuis torsion of jC with respect to J·, ·Kd vanishes.
Hence, jC is a degenerate generalised complex structure in the degenerate Courant
algebroid A⊕ T ∗M .

Proof. Recall from Proposition 4.5 that j2
C = − id and j = −jtC . Together with the property

j ◦ (ρ, ρt) = −(ρ, ρt)◦jt = (ρ, ρt)◦jC , see Theorem 5.2, it is easy to check that jC is orthogonal
with respect to the degenerate pairing.

Theorem 5.2 gives as well the equality ∇bas
a ◦ jC = jC ◦ ∇bas

a . Using the formula (32) it is
then easy to compute the Nijenhuis torsion of jC :

NjC ,J·,·Kd
(τ1, τ2) = ∆(ρ,ρt)τ1τ2 −∆(ρ,ρt)jCτ1jCτ2 + jC∆(ρ,ρt)jCτ1τ2 + jC∆(ρ,ρt)τ1jCτ2 ,

which vanishes for any linear generalised complex structure according to (23) with ν = (ρ, ρt)τ1
and τ = τ2. �

Proposition 5.6. Let A→M be a Lie algebroid. The restriction of the degenerate Courant
algebroid structure on AC ⊕ T ∗CM induces a complex Lie algebroid structure on K±.

Proof. According to Proposition 5.5 the morphism jC is a generalised complex structure
in A ⊕ T ∗M . The vanishing of the Nijenhuis tensor and C-linearity of the complexified
bracket imply that the bracket restricts to the ±i-eigenbundle K± of jC,C. Since (ρ, ρt)C sends
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K± to U± = K◦±, the pairing restricted to K± vanishes and thus the restricted bracket is
skew-symmetric and defines a Lie algebroid structure on K±. �

5.2. The complex A-Manin pair. [17] defines A-Manin pairs for a given Lie algebroid A
over M and constructs an equivalence between A-Manin pairs and Dirac bialgebroids over A.
Again, the complex linear extension of these results is straightforward.

Definition 5.7. Let A → M be a Lie algebroid. A complex A-Manin pair consists of
a complex Courant algebroid C over M , a complex Dirac structure U → M in C, with a
morphism ι : U ↪→ TCM ⊕ A∗C such that ρU = prTCM ◦ι and a morphism of (degenerate)
complex Courant algebroids Φ: AC ⊕ T ∗CM → C such that

Φ(AC ⊕ T ∗CM) + U = C

and 〈u,Φ(τ)〉C = 〈ι(u), τ〉 for all (u, τ) ∈ U ×M (AC ⊕ T ∗CM).

[17] shows that the Courant algebroid structure on C and the morphism Φ can be recovered
from the Lie algebroid structures on A, U and ι. All the arguments can be extended complex
linearly to obtain the following straightforward consequence.

Proposition 5.8. Let U± be the ±i-eigenbundles of the side morphism j of a generalised
complex structure J on a Lie algebroid A→M , and let K± = U◦∓. Define

C± := U± ⊕ (AC ⊕ T ∗CM)
graph

(
−(ρ, ρt)C|K±

) ,
and define an anchor map, a C-bilinear pairing and a bracket as follows. For u, u1, u2 ∈ Γ(U±),
τ, τ1, τ2 ∈ Γ(AC ⊕ T ∗CM) define the anchor by

c±(u⊕ τ) := ρU±(u) + (ρA)C ◦ prAC
τ ,

the pairing by

(33) 〈u1 ⊕ τ1, u2 ⊕ τ2〉C± := 〈u1, τ2〉+ 〈u2, τ1〉+ 〈τ1, (ρ, ρt)C(τ2)〉 ,

and the bracket by

Ju1 ⊕ τ1, u2 ⊕ τ2KC± :=
(

[u1, u2]U± +∇bas,C
prAC

τ1u2 −∇bas,C
prAC

τ2u1

)
⊕
(
Jτ1, τ2Kd,C + ∆C

u1
τ2 −∆C

u2
τ1 +

(
0,dC〈τ1, u2〉

))
.

(34)

Then C± are both complex Courant algebroids and (C±, U±) together with ι : U± ↪→ TCM ⊕A∗C
and Φ: AC ⊕ T ∗CM → C the canonical inclusions are complex A-Manin pairs.

Recall that U+ with its complex Lie algebroid structure is isomorphic to the complex Lie
algebroid (TM ⊕A∗, j, ρj ,A) (see Proposition 4.15). Hence the result above realises the latter
Courant algebroid as a Dirac structure in the complex Courant algebroid C+.

Next, the generalised complex structure on A induces generalised complex structures J± in
the Courant algebroids C± defined by Proposition 5.8.

Proposition 5.9. Let u⊕ τ ∈ Γ(C±). Then

J±(u⊕ τ) := jCu⊕ jC,Cτ

is well-defined and a generalised complex structure in C±.
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Proof. Take any element (−(ρ, ρt)Ck)⊕ k of graph
(
−(ρ, ρt)C|K±

)
. Then

J±
(
(−(ρ, ρt)Ck)⊕ k

)
= ±i

(
(−(ρ, ρt)Ck)⊕ k

)
,

which is again an element of graph(−(ρ, ρt)|K±). Thus the map J± is well-defined on C±.
It is clear that J2

± = −1. Orthogonality follows from an easy computation using j2 = −1,
jtC = −jC,C and (ρ, ρt)C ◦ jC,C = jC ◦ (ρ, ρt)C.

The last remaining condition is the vanishing of the Nijenhuis torsion of J± with respect to
the bracket on C±. Lengthy, but straightforward computations making use of the previously
proven facts that ∇bas,C preserves U±, ∆C

u preserves K± and that the Nijenhuis torsion of jC
with respect to J·, ·Kd vanishes (Proposition 5.5), establish this condition. Hence J± defines a
generalised complex structure in C±. �

5.3. The Lie bialgebroid (U±,K∓); proof of Theorem 1.5. This section shows that the
pair (U±,K∓) forms a Lie bialgebroid with Drinfeld double Courant algebroid isomorphic to
C±. First, observe that the identity U◦± = K± induces isomorphisms U∗± ∼= K∓ and K∗± ∼= U∓.
The following theorem establishes then Theorem 1.5, since U+ with its complex Lie algebroid
structure is isomorphic to the complex Lie algebroid (TM ⊕A∗, j, ρj ,A) (see Proposition 4.15).

Theorem 5.10. Let (A → M,J ) be a generalised complex Lie algebroid. There is an
isomorphism of vector bundles

F : U± ⊕K∓ → C±, (u, k) 7→ u⊕ k.(35)

This equips U± ⊕ K∓ with the structure of a Courant algebroid, in which the complex Lie
algebroids U± and K∓ are transversal Dirac structures. Thus the pair (U±,K∓) is a complex
Lie bialgebroid. F is an isomorphism of Courant algebroids where U± ⊕K∓ is the Drinfeld
double Courant algebroid of this Lie bialgebroid.

Proof. It is easy to verify that

u⊕ τ 7→
(
u+ 1

2(ρ, ρt)C
(
τ ∓ ijCτ

)
,

1
2(τ ± ijCτ)

)
.

is well-defined and defines an inverse to F .
The Courant algebroid structure of C± induces via this isomorphism a Courant algebroid

structure on the bundle U± ⊕K∓. The following shows that the Lie algebroids U± and K∓
are Dirac structures in C±. Liu, Weinstein and Xu showed in [25] that two transversal Dirac
structures in a Courant algebroid are equivalent to a Lie bialgebroid. Thus (U±,K∓) is a Lie
bialgebroid, which induces the Drinfeld double Courant algebroid on U± ⊕K∓. It remains
then to show that the pairing and bracket of C± are equal to the pairing and bracket of this
Drinfeld double and that they are thus isomorphic as Courant algebroids with the isomorphism
given by the map F defined in (35).

With the definition of the bracket in C± in (34), it follows for k1, k2 ∈ Γ(K∓) directly that

J(0⊕ k1), (0⊕ k2)KC± = 0⊕ Jk1, k2Kd,C .

Similarly, for two sections u1, u2 ∈ Γ(U±), the bracket is J(u1⊕0), (u2⊕0)KC± = [u1, u2]U±⊕0.
From the definition of the pairing in C± in (33) it is easy to see that both U± ⊕ 0 and

0⊕K∓ are maximally isotropic with respect to this pairing and thus Dirac structures in C±.
Thus by the argument in [25] (U±,K∓) form complex Lie bialgebroids.
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The anchor and pairing are easily seen to be equal to the anchor and the pairing in
the Drinfeld double Courant algebroid. The bracket in the Drinfeld double is defined for
u1, u2 ∈ Γ(U±) and k1, k2 ∈ Γ(K∓) by

J(u1, k1), (u2, k2)K =
(

[u1, u2] + LKk1
u2 − ιk2dKu1, [k1, k2] + LUu1

k2 − ιu2dUk1

)
.

It only remains to be shown that the brackets of elements of the form (u, 0) with (0, k) coincide,
the rest follows by bilinearity, since the brackets on U± and K∓ were already shown to be
inherited from the bracket in C±. A straightforward computation using (32) shows

Ju⊕ 0, 0⊕ kKC± = −∇bas,C
prAC

ku⊕∆C
uk = −ιkdKu⊕ LUu k ,

see also [13] for details. Hence F defines indeed an isomorphism of Courant algebroids from
C± to the Drinfeld double U± ⊕K∓. �

Example 5.11. In the situation of Example 4.16, if A→M is equipped with a Lie algebroid
structure and a compatible linear complex structure, then the eigenbundles are Lie algebroids
and thus also define Drinfeld double Courant algebroids

C1,0
T = T 1,0M ⊕ (T 1,0M)∗ , C1,0

A = A1,0 ⊕ (A1,0)∗ ,

C0,1
T = T 0,1M ⊕ (T 0,1M)∗ , C0,1

A = A0,1 ⊕ (A0,1)∗ ,

induced by the Lie bialgebroid structure where T ∗CM and A∗C are endowed with trivial Lie
algebroid structures. That is, the brackets on C1,0

T and C0,1
T are given by

J(X, θ), (Y, η)K = ([X,Y ],LXη − ιY dθ) ,

and analogously on C1,0
A and C0,1

A . (30) shows that as vector bundles C+ = C1,0
T ⊕ C

0,1
A and

C− = C0,1
T ⊕ C

1,0
A . The computations in [13] show that these are orthogonal decompositions

with respect to the pairings in C± and that the brackets in C1,0
T , C0,1

T , C1,0
A and C0,1

A coincide
with the respective restrictions of the brackets in C±. In other words, they form matched pairs
of Courant algebroids, a notion introduced in [8].

6. Generalised complex structures in VB-Courant algebroids

In this section the results of Section 4 are extended to general VB-Courant algebroids
(E;Q,B;M). This leads to a definition of generalised complex structures in split Lie 2-
algebroids.

A linear splitting Σ of the double vector bundle E is called Lagrangian if the image of Σ
is isotropic in E. The paper [18] shows that a change of Lagrangian splittings corresponds to
a skew-symmetric element Φ12 ∈ Γ(Q∗ ⊗B∗ ⊗Q∗).

Only the description of linear splittings with Dorfman connections relies on the special case
of TE⊕T ∗E. The other results of Section 4 only use the abstract structure of a metric double
vector bundle and Lagrangian lifts. They therefore generalise to VB-Courant algebroids in the
following way.

Fix a Lagrangian splitting Σ of E and denote the corresponding lift by σ : Γ(Q)→ Γ`B(E).
Consider a double vector bundle morphism J : E → E over idB and j : Q → Q with core
morphism jC : Q∗ → Q∗. As in Lemma 4.1, the following definition of Φ depends on the choice
of the splitting.
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Lemma 6.1. Given a double vector bundle morphism J : E → E over j and idB there is
Φ ∈ Γ(Q∗ ⊗B∗ ⊗Q∗) defined by setting for any q ∈ Γ(Q)

J (σ(q)) = σ(jq) + Φ(q)
∼

.

Furthermore, the following lemmas generalise the description of generalised almost complex
structures on a vector bundle in Section 4.

Lemma 6.2. A double vector bundle morphism J : E→ E satisfies J 2 = − idTE⊕T∗E if and
only if for any Lagrangian splitting and corresponding Φ, and for any q ∈ Γ(Q):

(1) j2 = − idQ ,
(2) j2

C = − idQ∗ ,
(3) Φ(j(q)) = −jC ◦ (Φ(q)) .

Lemma 6.3. A double vector bundle morphism J : E→ E such that additionally J 2 = −1,
is orthogonal if and only if for any Lagrangian splitting

(1) j = −(jC)t ,
(2) 〈j(q1),Φ(q2)(b)〉 = −〈j(q2),Φ(q1)(b)〉

for all b ∈ Γ(B) and q1, q2 ∈ Γ(Q).

Now define a 2-form Ψ ∈ Ω2(Q,B∗) by setting Ψ(q1, q2) := Φ(q1)t(q2). This definition
yields the following, as in Proposition 4.5.

Proposition 6.4. A morphism J : E→ E is a generalised almost complex structure in E, if
and only if for any Lagrangian splitting

(1) j2 = −1 ,
(2) j = −(jC)t ,
(3) Ψ is skew-symmetric, that is Ψ ∈ Ω2(Q,B∗) ,
(4) Ψ(q1, q2) = −j∗Ψ(q1, q2) for q1, q2 ∈ Γ(Q).

Also in this case, a Lagrangian splitting can be adapted to the generalised almost complex
structure. As mentioned before it was shown in [18] that such a change of splittings corresponds
to a skew-symmetric element Φ12 ∈ Γ(Q∗ ⊗B∗ ⊗Q∗).

Proposition 6.5. Given a generalised almost complex structure J in a VB-Courant algebroid
(E;Q,B;M) with side morphism j : Q→ Q, there is a Lagrangian lift σ : Γ(Q)→ Γ`B(E), such
that for any q ∈ Γ(Q)

J (σ(q)) = σ(jq) .

Proof. Fix any Lagrangian lift σ1 of E. This defines by Lemma 6.1 a tensor Φ1 ∈ Γ(Q∗⊗B∗⊗
Q∗). Define another tensor Φ12 ∈ Γ(Q∗ ⊗B∗ ⊗Q∗) by setting for any q ∈ Γ(Q) and b ∈ Γ(B)

Φ12(q)(b) := 1
2jC(Φ1(q)(b)) .

By Lemma 6.2 and Lemma 6.3, Φ12 is skew-symmetric. Define a new Lagrangian lift by
σ2(q) := σ1(q)− Φ12(q)
∼

. This lift satisfies the desired property. �

Using this existence of an adapted Lagrangian splitting, use the correspondence of VB-
Courant algebroid structures to split Lie 2-algebroids proved in [18]. Fix such an adapted
Lagrangian splitting as in Proposition 6.5. Then the VB-Courant algebroid structure is
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equivalent to a split Lie 2-algebroid structure (ρQ, ∂tB , J·, ·K∆,∇, ω) on Q ⊕ B∗, where the
bracket in E is described by the dull bracket on Q and the dual Dorfman connection as follows.

Jσ(q1), σ(q2)K = σ(Jq1, q2K∆)−Rω(q1, q2)
∼

Jσ(q), τ †K = (∆qτ)† and Jτ †1 , τ
†
2 K = 0 .

Here Rω(q1, q2) := ω(q1, q2, ·)t ∈ Γ(Hom(B,Q∗))
This description of the Courant algebroid bracket yields similar computations and results

for the Nijenhuis tensor of core sections and lifts for a linear generalised almost complex
structure in the VB-Courant algebroid E as in Section 4.2 in the special case of TE ⊕ T ∗E.

First, analogously to the computations in Section 4.2, the section NJ (σ(q), τ †) vanishes
for any q ∈ Γ(Q) and τ ∈ Γ(Q∗) if and only if Nj,J·,·K∆ vanishes. Second, the analogous
computation for the Nijenhuis tensor of two lifts gives

NJ (σ(q1), σ(q2)) = σ∆(Nj,J·,·KQ
(q1, q2)) +Rω(j(q1), j(q2))
∼

−Rω(q1, q2)
∼

− jC ◦Rω(j(q1), q2)
∼

− jC ◦Rω(q1, j(q2))
∼

Dualising the property
Rω(j(q1), j(q2))−Rω(q1, q2)− jC ◦Rω(j(q1), q2)− jC ◦Rω(q1, j(q2)) = 0 ,

by evaluating at any b ∈ Γ(B) and then pairing with q3 gives as an equivalent condition on
ω ∈ Ω3(Q,B∗) the following:

ω(q1, q2, q3)− ω(jq1, jq2, q3)− ω(jq1, q2, jq3)− ω(q1, jq2, jq3) = 0 .
This yields the following proposition.

Proposition 6.6. A linear generalised almost complex structure J in E over j : Q → Q is
integrable if and only if for any adapted Lagrangian splitting of the corresponding split Lie
2-algebroid,

(1) Nj,J·,·K∆(q1, q2) = 0 ,
(2) ω(q1, q2, q3)− ω(jq1, jq2, q3)− ω(jq1, q2, jq3)− ω(q1, jq2, jq3) = 0

for any q1, q2, q3 ∈ Γ(Q).

As before the vector bundle morphism j : Q → Q defines an equivalence relation on the
Lagrangian splittings.

Definition 6.7. Given a VB-Courant algebroid (E;Q,B;M) and a vector bundle morphism
j : Q→ Q, two Lagrangian splittings Σ1 and Σ2 are j-equivalent if the corresponding change
of splittings Ψ ∈ Ω2(Q,B∗) satisfies Ψ(q1, q2) = Ψ(jq1, jq2) for any q1, q2 ∈ Γ(Q).

Analogously to Lemma 4.9, given a splitting Σ1 which is adapted to a linear generalised
almost complex structure (J , j), then a second splitting Σ2 is also adapted to (J , j) if and
only if Σ1 and Σ2 are j-equivalent. This allows a formulation of the analogue of Theorem 4.10
in the general case.

Theorem 6.8. A linear generalised complex structure J in a VB-Courant algebroid E is
equivalent to a vector bundle morphism j : Q→ Q and a j-equivalence class of linear splittings
such that in the corresponding split Lie 2-algebroid (ρQ, ∂tB , J·, ·K∆,∇, ω) over Q⊕B∗

(1) j2 = − idQ ,
(2) Nj,J·,·K∆ = 0 ,
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(3) ω(q1, q2, q3)− ω(jq1, jq2, q3)− ω(jq1, q2, jq3)− ω(q1, jq2, jq3) = 0

for any q1, q2, q3 ∈ Γ(Q).

Analogously to the case of TE ⊕ T ∗E, a bracket A on Γ(Q) can be defined by A(q1, q2) =
1
2
(
Jq1, q2K∆ − Jjq1, jq2K∆

)
. The vanishing of Nj,J·,·K∆ is equivalent to complex bilinearity of

A and the condition on ω in Theorem 6.8 implies the Jacobi identity for A. This defines a
complex Lie algebroid (Q, ρ,A with the complex anchor ρ : Q→ TCM given by

ρ(q) = 1
2
(
ρQ(q)− ijρQ(q)

)
.

But if the core-anchor ∂B is not surjective, then the condition on ω in Theorem 6.8 is stronger
than the Jacobi identity of this bracket, since JacJ·,·K∆ = ∂tB ◦ ω. Therefore – unlike in the
special case of TE⊕T ∗E – here the complex Lie algebroid structure is not sufficient to describe
the conditions on the linear generalised complex structure.

Theorem 6.8 suggests that a generalised complex structure in a split Lie 2-algebroid should
be defined as a tuple of maps (ρQ, ∂tB , J·, ·K,∇, ω) over Q⊕B∗ is a vector bundle morphism
j : Q→ Q, such that for any q1, q2, q3 ∈ Γ(Q)

(1) j2 = − idQ ,
(2) Nj,J·,·K = 0 ,
(3) ω(q1, q2, q3)− ω(jq1, jq2, q3)− ω(jq1, q2, jq3)− ω(q1, jq2, jq3) = 0 .

Appendix A. Relation with the adapted generalised connections in [4]

The equality J (σ∆(ν)) = σ∆(jν) in Proposition 4.7 for ν ∈ Γ(TM ⊕ E∗) is equivalent to

(36) J (L∆) = L∆

for the horizontal space L∆ ⊆ TE ⊕ T ∗E corresponding to ∆.
Let E → M be an arbitrary Courant algebroid. A generalised connection on E is a

linear connection ∇ : Γ(E)× Γ(E)→ Γ(E), which is compatible with the pairing in E ([10]).
For instance, if ∇ : X(M) × Γ(E) → Γ(E) is an ordinary metric linear connection, then
∇ρ : Γ(E)×Γ(E)→ Γ(E) defined by ∇ρee′ = ∇ρ(e)e′ for e, e′ ∈ Γ(E), is a generalised connection.

Let J : E→ E be a generalised almost complex structure. The paper [4] shows that there
exists a metric linear connection ∇ : X(M)× Γ(E)→ Γ(E) that is adapted to J :

(37) ∇·J = 0.

The pullback ∇ρ is then a generalised connection adapted to J and its intrinsic torsion relative
to the connection is studied in [4] in relation with the integrability of J – generalising the
fact that an almost complex structure J : TM → TM on a smooth manifold M is integrable
if and only if there exists a complex-linear torsion-free connection ∇ : X(M)×X(M)→ X(M).
The condition (37) is equivalent to the generalised complex structure TJ : TE → TE over
TM preserving the horizontal space H∇ ⊆ TE defined by ∇:

(38) TJ (H∇) = H∇.

The notion of adapted generalised connection in [4] seems in general different from the
notion of adapted Dorfman connection in Proposition 4.7. However, as the similarity of (36)
with (38) suggests, they are equivalent at least in a special situation, which is explained in the
remainder of this section.
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Let E→M be a Courant algebroid and denote the co-anchor of E by ρ∗, which is defined by
composing ρt with the isomorphism between E and E∗ induced by the pairing in E. Consider
a generalised connection ∇ : Γ(E)× Γ(E)→ Γ(E) such that ∇ρ∗θ = 0 for all θ ∈ Ω1(M). It is
easy to see that

(39) ∆e1e2 = Je1, e2K +∇e2e1

for all e1, e2 ∈ Γ(E), defines a Dorfman connection ∆: Γ(E) × Γ(E) → Γ(E), see also [19].
Conversely a Dorfman E-connection on E defines a generalised connection by (39), that must
satisfy

(40) ∇ρ∗θe = −Je, ρ∗θK + ∆eρ
∗θ = ρ∗(−£ρ(e)θ + £ρ(e)θ) = 0

for all e ∈ Γ(E) and all θ ∈ Ω1(M). Hence Dorfman E-connections on E are equivalent
with linear E-connections on E satisfying (40). In particular, since ρ ◦ ρ∗ = 0 (see [31]), the
pullbacks of TM -connections are equivalent to a class of Dorfman E-connections on E. A
metric TM -connection on E is equivalent to a Lagrangian splitting of the tangent prolongation
of E, which is a VB-Courant algebroid. The induced dull bracket on Γ(E) is the degree 1 part
of the splitting of the corresponding Lie 2-algebroid, see [18].

Equations (36) and (38) can in fact be related in the case of the standard Courant algebroid
TM ⊕ T ∗M over a smooth manifold M . A computation shows that the canonical isomorphim

(41)

T (T M ⊕ T ∗M) T (T M)⊕ T ∗(T M)

T M T M

T M ⊕ T ∗M T M ⊕ T ∗M

M M

I

id

id

id

arising from the canonical involution I : TTM → TTM (see e.g. [21] and references therein)
sends H∇ ⊆ T (TM ⊕ T ∗M) to L∆ ⊆ T (TM)⊕ T ∗(TM), if and only if ∆ and ∇ρ are related
by (39).

Consider an almost complex structure J : TM → TM , as well as a torsion-free linear
connection ∇ : X(M)× X(M)→ X(M). Consider the TM -connection ∇̃ : X(M)× Γ(TM ⊕
T ∗M)→ Γ(TM ⊕T ∗M), ∇̃X(Y, θ) = (∇XY,∇∗Xθ). Let JJ be the generalised almost complex
structure defined as in Example 2.3. The generalised connection ∇̃ρ satisfies

∇̃ρ· JJ = 0, or in other words TJJ(H∇̃) = H∇̃,

if and only if ∇·J = 0, i.e. if and only if TJ(H∇) = H∇.
Here, an easy computation shows that ∆ and ∇̃ρ are related by (39) if and only if ∆ is the

standard Dorfman connection defined by ∇ as in Example 2.4. As a consequence

I(H∇̃) = L∆.

The canonical isomorphism I also transforms TJJ into the linear generalised almost complex
structure JJT

, where JT is the almost complex structure I ◦ TJ ◦ I on the vector bundle TM
seen as a manifold. Then ∇̃·JJ = 0 if and only if

JJT
(L∆) = L∆,
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where ∆: Γ(TM ⊕ T ∗M) × Γ(TM ⊕ T ∗M) → Γ(TM ⊕ T ∗M) is the standard Dorfman
connection defined by ∇ as in Example 2.4. That is,

TJJ(H∇̃) = H∇̃ if and only if JJT
(L∆) = L∆.

In other words, ∇̃ is adapted to JJ in the sense of [4] if and only if ∆ is adapted to JI◦TJ◦I
in the sense of Proposition 4.7.

More generally, let J : TM⊕T ∗M → TM⊕T ∗M be a generalised almost complex structure
and let ∇ : Γ(TM) × Γ(TM ⊕ T ∗M) → Γ(TM ⊕ T ∗M) be a linear connection adapted to
J . As before TJ : T (TM ⊕ T ∗M)→ T (TM ⊕ T ∗M) is a linear generalised almost complex
structure over the identity on the base TM , and J : TM ⊕ T ∗M → TM ⊕ T ∗M on the side.
The isomorphism I in (41) tranforms TJ into a linear generalised almost complex structure
JTM : T (TM)⊕ T ∗(TM)→ T (TM)⊕ T ∗(TM) in the standard VB-Courant algebroid over
TM . Then since ∇ is adapted to J :

TJ (H∇) = H∇,

which is again equivalent to
JTM (L∆) = L∆,

where ∇ρ and ∆ are equivalent via (39).

Appendix B. Proof of Lemma 3.1

Since E → M is a holomorphic vector bundle, it has local holomorphic frames. Let
p ∈ M . Then there exists U ⊆ M open with p ∈ U and holomorphic sections e1, . . . , ek of
E|U → U such that e1(q), . . . , ek(q) span E(q) as a C-vector space for each q ∈ U . Then, if
ϕ : U → Ũ ⊆ Cm is a holomorphic chart for M , the smooth map

ϕ̃ : E|U → Ũ × Ck ⊆ Cm+k, eq =
k∑
j=1

αjej(q) 7→ (ϕ(q), α1, . . . , αk)

is a linear holomorphic chart for E. A section e ∈ ΓU (E) is holomorphic if and only if
e =

∑k
j=1 fjej with fj holomorphic functions on U . In the coordinates E|U ' Ũ × Ck

and T (E|U ) ' Ũ × Cm × Ck × Ck, the vector field e↑ ∈ X(E|U ) is defined by Ũ × Ck →
Ũ × Cm × Ck × Ck,

(q, z1, . . . , zk) 7→ (q, 0, z1, . . . , zk, (f1 ◦ ϕ−1)(q), . . . , (fk ◦ ϕ−1)(q)).

This map is clearly holomorphic. The map JE : TE → TE is, modulo the isomorphism ϕ̃, just
the multiplication by i in the fibers of T (Ũ × Ck)→ Ũ × Ck:

(q, w1, . . . , wm, z1, . . . , zk, ζ1, . . . , ζk) 7→ (q, iw1, . . . , iwm, z1, . . . , zk, iζ1, . . . , iζk)

Let e =
∑k
j=1 fjej with fj ∈ C∞(U,C) – hence e is a section of E|U → U , not necessarily

holomorphic. Then, again in the chart,

JE(e↑(q, z)) = (q, i · 0, z1, . . . , zk, i(f1 ◦ϕ−1)(q), . . . , i(fk ◦ϕ−1)(q)) = (i · e)↑(q, z) = (je)↑(q, z)

for any (q, z) ∈ Ũ × Ck.
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