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Abstract. This paper reformulates Li-Bland’s definition for LA-Courant al-

gebroids, or Poisson Lie 2-algebroids, in terms of split Lie 2-algebroids and
self-dual 2-representations. This definition generalises in a precise sense the

characterisation of (decomposed) double Lie algebroids via matched pairs of

2-representations. We use the known geometric examples of LA-Courant alge-
broids in order to provide new examples of Poisson Lie 2-algebroids, and we

explain in this general context Roytenberg’s equivalence of Courant algebroids
with symplectic Lie 2-algebroids.

We study further the core of an LA-Courant algebroid and we prove that

it carries an induced degenerate Courant algebroid structure. In the nonde-
generate case, this gives a new construction of a Courant algebroid from the
corresponding symplectic Lie 2-algebroid. Finally we completely characterise

VB-Dirac and LA-Dirac structures via simpler objects, that we compare to
Li-Bland’s pseudo-Dirac structures.
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1. Introduction

In the early nineties Courant algebroids appeared in Poisson geometry as a
convenient framework for the study of constrained Hamiltonian systems [1]. They
are now also at the base of the definition of generalised complex geometry [7, 6]. The
graded geometric description of Courant algebroids as symplectic Lie 2-algebroids
are due to Roytenberg [25] and Severa [26]. This description is the key to the
attempts made so far to find the global geometric objects ‘integrating’ Courant
algebroids (see e.g. [22, 21, 27, 16, 29]). Our goal in [10, 12] and this paper is to
explain Roytenberg and Severa’s description from the more general point of view
of VB-Courant algebroids versus Lie 2-algebroids. We show that the symplectic
structure of the symplectic Lie 2-algebroid that corresponds to a Courant algebroid
could rather be understood as a structure of tangent space, just like the canonical
symplectic structure on a cotangent bundle T ∗M is just the dual Poisson structure to
the standard tangent Lie algebroid TM →M , which happens to be nondegenerate.
In order to do that, our main goal here is to understand in detail the equivalence
between Poisson Lie 2-algebroids and LA-Courant algebroids [14].

This paper surveys the author’s recent equivalences of graded manifolds of degree
2 with metric double vector bundles [10] (see also [2]), of self-dual 2-representations
with decomposed metric VB-algebroids [10] (using [5]), and of split Lie 2-algebroids
with decomposed VB-Courant algebroids [12], [14]. We combine all those results
to provide an alternative definition for Li-Bland’s LA-Courant algebroids, which
are equivalent to Poisson Lie 2-algebroids [14]; i.e. Lie 2-algebroids endowed with a
Poisson structure of degree −2 that makes the homological vector field a Poisson
vector field.

We prove on the one hand that a split Poisson Lie 2-algebroid is equivalent to
the matched pair of a self-dual 2-representation with a split Lie 2-algebroid. Here,
the self-dual 2-representation is the one that is equivalent to the Poisson structure
of degree −2.

On the other hand, given a Poisson Lie 2-algebroid, a splitting of the underlying
[2]-manifold is equivalent to a decomposition of the corresponding metric double
vector bundle [10]. The underlying split Lie 2-algebroid is then equivalent to a
VB-Courant algebroid structure in this decomposition [12] and the underlying split
Poisson structure of degree −2 is equivalent to the decomposition of a (metric)
VB-algebroid structure on the other side of the metric double vector bundle [10].
The compatibility of the graded Poisson structure and the Lie 2-algebroid structure
is equivalent to the VB-Courant algebroid and the metric VB-algebroid defining
together an LA-Courant algebroid (short for Lie algebroid Courant algebroid) [14].
Hence, since LA-Courant algebroids are equivalent to Poisson Lie 2-algebroids [14],
we find that a metric double vector bundle with a VB-Courant algebroid structure
and a metric VB-algebroid structure define together an LA-Courant algebroid if
and only if, in any decomposition, the induced split Lie 2-algebroid and the induced
self-dual 2-representation build a matched pair.

The original definition of an LA-Courant algebroid in [14] is inspired from and
as technical as Mackenzie’s first definition of a double Lie algebroid [20]. In short,
a VB-Courant algebroid with a linear Lie algebroid on its other side is an LA-
Courant algebroid if a relation defined by the Lie algebroid structure in the tangent
prolongation of the VB-Courant algebroid – the underlying geometric structure
is a triple vector bundle – is a Dirac structure in this tangent prolongation. In
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an earlier version of this work [8], we deduced from this definition our equations
in the definition of the matched pair of a split Lie 2-algebroid with a self-dual
2-representation. Then we found easily that those equations were also equivalent to
the homological vector field defining the Lie 2-algebroid to be a Poisson vector field.

However, working out the equations directly from Li-Bland’s LA-Courant al-
gebroid condition is very long and technical (see the Appendix B of [8]). In this
paper, we prefer therefore using Li-Bland’s equivalence [14] in order to prove our
characterisation of an LA-Courant algebroid via the matched pair. We complement
therefore, with explicit equations, Li-Bland’s definition of LA-Courant algebroids.
We explain again along the way the parallels between the theory of Lie algebroids,
double Lie algebroids and 2-representations on the one hand, and Courant alge-
broids, LA-Courant algebroids and Lie 2-algebroids on the other hand. We find
in particular that a matched pair of 2-representations [4] not only defines a split
Lie 2-algebroid [12], but also a split Poisson Lie 2-algebroid – this is in general a
different construction. Note here that the five equations that we find show that in
the chosen splitting of the underlying Lie 2-algebroid, the Poisson structure defines
a morphism from the coadjoint to the adjoint representation up to homotopy of the
Lie 2-algebroid [13].

We prove further that the core of an LA-Courant algebroid has an induced
degenerate Courant algebroid structure – just like the core of a double Lie algebroid
has an induced Lie algebroid structure [20, 4]. This allows us to find a new
constructive manner to define the Courant algebroid corresponding to a given
symplectic Lie 2-algebroid [25].

Finally, we study VB- and LA-Dirac structures in VB- and LA-Courant algebroids,
and in particular, we prove that LA-Dirac structures are double Lie algebroids. More
precisely, any double Lie algebroid can be understood as an LA-Dirac structure
in an appropriate LA-Courant algebroid; just like any Lie algebroid can be seen
as a Dirac structure in the induced Courant algebroid. This shows that the seven
equations defining a matched pair of 2-representations [4] can in fact be deduced
from the 5 equations defining the matched pair of a split Lie 2-algebroid with a
self-dual 2-representation. For completeness, we explain as well how Li-Bland’s
pseudo-Dirac structures [15] fit in our description of LA-Dirac structures in the
tangent prolongation of a Courant algebroid. Finally, we show how a special Manin
pair is associated to any LA-Dirac structure; the study of the geometric meaning of
this Manin pair will be the subject of future investigations by the author.

Outline of the paper. In Section 2, we recall some general notions and conventions
around dull brackets, Dorfman connections, Courant algebroids, graded manifolds
and double Lie algebroids. In Section 2.5 we recall the equivalence of metric
double vector bundles with [2]–manifolds, of metric VB-algebroids with Poisson
[2]-manifolds and with self-dual 2-representations when decomposed. We recall
also the equivalence of decompositions of VB-Courant algebroids with split Lie
2-algebroids. In Section 3 we give the definition of the matched pair of a split Lie
2-algebroid with a self-dual 2-representation, and we prove our main theorem, giving
a new definition of an LA-Courant algebroid. In Section 4 we study the core of an
LA-Courant algebroid and in Section 5 we describe VB- and LA-Dirac structures in
decompositions. The text is illustrated with several examples that were prepared in
[9, 12].
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2. Prerequisites, notation and conventions

We recall in this section some necessary background, and we set our notation
convention.

2.1. General conventions. We write pM : TM → M , qE : E → M for vector
bundle maps. For a vector bundle Q → M we often identify without further
mentioning the vector bundle (Q∗)∗ with Q via the canonical isomorphism. We write
〈· , ·〉 for the canonical pairing of a vector bundle with its dual; i.e. 〈qm, τm〉 = τm(qm)
for qm ∈ Q and τm ∈ Q∗. We use several different pairings; in general, which pairing
is used is clear from its arguments. Given a section ε of E∗, we always write
`ε : E → R for the linear function associated to it, i.e. the function defined by
em 7→ 〈ε(m), em〉 for all em ∈ E.

Let M be a smooth manifold. We denote by X(M) and Ω1(M) the sheaves of
local smooth sections of the tangent and the cotangent bundle, respectively. For
an arbitrary vector bundle E →M , the sheaf of local sections of E will be written
Γ(E).

2.2. Dull brackets, Dorfman connections, Courant algebroids. Let qQ : Q→
M be an anchored vector bundle, with anchor ρQ : Q→ TM . A dull bracket on sec-
tions of Q is here an R-bilinear, skew-symmetric bracket J· , ·K : Γ(Q)×Γ(Q)→ Γ(Q)
that is compatible with the anchor, ρQJq1, q2K = [ρQ(q1), ρQ(q2)] and that satisfies
the Leibniz identity

(1) Jq1, fq2K = ρQ(q1)(f)q2 + fJq1, q2K

for all f ∈ C∞(M) and q1, q2 ∈ Γ(Q).
Dualising the dull bracket in the sense of derivations, we get a Dorfman con-

nection ∆: Γ(Q)× Γ(Q∗)→ Γ(Q∗):

(2) ρQ(q)〈q′, τ〉 = 〈Jq, q′K, τ〉+ 〈q′,∆qτ〉
for all q, q′ ∈ Γ(Q) and τ ∈ Γ(Q∗). The Leibniz identities in the two entries of the
dull bracket give ∆q(fτ) = f∆qτ + ρQ(q)(f)τ and ∆fqτ = f∆qτ + 〈q, τ〉ρ∗Qdf for

q ∈ Γ(Q), τ ∈ Γ(Q∗) and f ∈ C∞(M). The compatibility of the bracket with the
anchor reads

(3) ∆q(ρ
∗
Qdf) = ρ∗Qd(ρQ(q)(f))

q ∈ Γ(Q) and f ∈ C∞(M).
Given an R-bilinear skew-symmetric bracket [· , ·] on sections of a vector bundle

E →M , its Jacobiator is the map Jac[· ,·] : Γ(E)× Γ(E)× Γ(E)→ Γ(E),

Jac[· ,·](e1, e2, e3) = [[e1, e2], e3] + [[e2, e3], e1] + [[e3, e1], e2].

The Jacobiator of a dull bracket satisfies

(4) JacJ· ,·K(q1, q2, q3) = R∆(q1, q2)∗q3,

where R∆ ∈ Ω2(Q,End(Q∗)) is the curvature of the dual Dorfman connection:
R∆(q1, q2)τ = ∆q1∆q2τ −∆q2∆q1τ −∆Jq1,q2Kτ .

A dull algebroid (Q, ρQ, J· , ·K) as above defines as usual a Koszul differential

operator dQ : Ω•(Q) → Ω•+1(Q) with dQ(ω ∧ η) = dQω ∧ η + (−1)|η|ω ∧ dQη for
all ω, η ∈ Ω•(Q).

Let E be a vector bundle over the same base manifold M . A linear Q-
connection on E is a linear connection ∇ : Γ(Q)× Γ(E)→ Γ(E). The curvature
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R∇ ∈ Ω2(Q,End(E)) of ∇ is defined as usual. The dull bracket and the connection
define together a differential operator d∇ : Ω•(Q,E) → Ω•+1(Q,E): d∇e = ∇·e
for e ∈ Γ(E), and d∇(ω ∧ η) = dQω ∧ η + (−1)|η|ω ∧ d∇η for ω ∈ Ω•(Q) and
η ∈ Ω•(Q,E).

Consider an anchored vector bundle (E→M,ρ). Assume that E is paired with
itself via a pairing 〈· , ·〉 : E×ME→ R and that there exists a map D : C∞(M)→ Γ(E)
such that 〈Df, e〉 = ρ(e)(f) for all f ∈ C∞(M). Then E → M is a degenerate
Courant algebroid over the manifold M if E is in addition equipped with an R-
bilinear bracket J· , ·K on the smooth sections Γ(E) such that the following conditions
are satisfied:

(CA1) Je1, Je2, e3KK = JJe1, e2K, e3K + Je2, Je1, e3KK,
(CA2) ρ(e1)〈e2, e3〉 = 〈Je1, e2K, e3〉+ 〈e2, Je1, e3K〉,
(CA3) Je1, e2K + Je2, e1K = D〈e1, e2〉,
(CA4) ρJe1, e2K = [ρ(e1), ρ(e2)],
(CA5) Je1, fe2K = fJe1, e2K + (ρ(e1)f)e2

for all e1, e2, e3 ∈ Γ(E) and f ∈ C∞(M). If the pairing 〈· , ·〉 is nondegenerate, then
(E→M,ρ, 〈· , ·〉, J· , ·K) is a Courant algebroid [17, 24] and Conditions (CA4) and
(CA5) follow then from (CA1), (CA2) and (CA3) (see [28] and also [9] for a quicker
proof).

2.3. N-Manifolds of degree 2. An N-manifold M of degree 2 and dimension
(p; r1, r2) is a smooth manifold M of dimension p together a sheaf C∞(M) of N-
graded, graded commutative, associative, unital C∞(M)-algebras over M , that is

locally freely generated by r1 + r2 elements ξ1
1 , . . . , ξ

r1
1 , ξ1

2 , . . . , ξ
r2
2 with ξji of degree

i for i = 1, 2 and j ∈ {1, . . . , ri}. We write “[2]-manifold” for “N-manifold of degree
2”. A morphism of N-manifolds µ : N →M over a smooth map µ0 : N →M of the
underlying smooth manifolds is a morphism µ? : C∞(M)→ C∞(N ) of sheaves of
graded algebras over µ∗0 : C∞(M)→ C∞(N).

Let E1 and E2 be smooth vector bundles of finite ranks r1, r2 over M and assign
the degree i to the fiber coordinates of Ei, for each i = 1, . . . , n. The direct sum
E = E1 ⊕ E2 is a graded vector bundle with grading concentrated in degrees 1 and
2. The [2]-manifold E1[−1]⊕E2[−2] has the elements of local frames of E∗i as local
generators of degree i, for i = 1, 2, and so dimension (p; r1, r2). A [2]-manifoldM =
E1[−1]⊕ E2[−2] defined in this manner by a graded vector bundle is called a split
[2]-manifold. In other words, we have C∞(M)0 = C∞(M), C∞(M)1 = Γ(E∗1 ) and
C∞(M)2 = Γ(E∗2 ⊕ ∧2E∗1). A morphism µ : F1[−1] ⊕ F2[−2] → E1[−1] ⊕ E2[−2]
of split [2]-manifolds over the bases M and N , respectively, consists of a smooth
map µ0 : N →M , three vector bundle morphisms µ1 : F1 → E1, µ2 : F2 → E2 and
µ12 : ∧2 F1 → E2 over µ0. The map µ? sends a degree 1 function ξ ∈ Γ(E∗1) to1

µ1
?ξ ∈ Γ(F ∗1 ) and a degree 2-function ξ ∈ Γ(E∗2 ) to µ2

?ξ + µ?12ξ ∈ Γ(F ∗2 ⊕ ∧2F ∗1 ).

2.4. Double Lie algebroids and matched pairs of 2-representations. We
refer to Section 2.2 of [10] for the definition of a double vector bundle, and for the
necessary background on their linear and core sections, and on their linear splittings
and dualisations. Sections 2.3–2.5 of [10] recall the definition of a VB-algebroid,
and also the equivalence of 2-term representations up to homotopy (called here
“2-representations” for short) with linear decompositions of VB-algebroids [5]. The

1µ?1ξ ∈ Γ(F ∗1 ) is defined by 〈(µ?1ξ)p, ep〉 = 〈ξ(µ0(p)), µ1(ep)〉 for all ep ∈ F1.
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notation that we use here is the same as in [10]. Of course, we also refer to [23, 19, 5]
for more details on double vector bundles and VB-algebroids.

In this section we only recall the correspondence of decompositions of double Lie
algebroids with matched pairs of 2-representations.

If (D,A,B,M) is a VB-algebroid with Lie algebroid structures on D → B and
A → M , then the dual vector bundle D∗B → B has a Lie-Poisson structure (a
linear Poisson structure), and the structure on D∗B is also Lie-Poisson with respect
to D∗B → C∗ [20, 3.4]. Dualising this bundle gives a Lie algebroid structure on
(D∗B)∗C∗ → C∗. This equips the double vector bundle ((D∗B)∗C∗ ;C

∗, A;M) with
a VB-algebroid structure. Using the isomorphism defined by the non-degenerate
pairing −〈〈〈〈〈〈〈·, ·〉〉〉〉〉〉〉 : D∗A ×C∗ D∗B → R, (see [19] and [10, §2.2.4] for a summary and
our sign convention), the double vector bundle (D∗A → C∗;A → M) is also a
VB-algebroid. In the same manner, if (D → A,B → M) is a VB-algebroid then
we use the non-degenerate pairing 〈〈〈〈〈〈〈·, ·〉〉〉〉〉〉〉 : D∗A ×C∗ D∗B → R to get a VB-algebroid
structure on (D∗B → C∗;B →M).

Let Σ: A ×M B → D be a linear splitting of D and denote by (∇B ,∇C , RA)
the induced 2-representation of the Lie algebroid A on ∂B : C → B (see [5]; this is
also recalled in Section 2.5 of [10]). The linear splitting Σ induces a linear splitting
Σ? : A ×M C∗ → D∗A of D∗A. The 2-representation of A that is associated to this

splitting is then (∇C∗,∇B∗,−R∗A) on the complex ∂∗B : B∗ → C∗. This is proved in
the appendix of [3].

A double Lie algebroid [20] is a double vector bundle (D,A,B,M) with core
C, and with Lie algebroid structures on each of A → M , B → M , D → A and
D → B such that each pair of parallel Lie algebroids gives D the structure of a
VB-algebroid, and such that the pair (D∗A, D

∗
B) with the induced Lie algebroid

structures on base C∗ and the pairing 〈〈〈〈〈〈〈·, ·〉〉〉〉〉〉〉, is a Lie bialgebroid.
Consider a double vector bundle (D;A,B;M) with core C and a VB-Lie algebroid

structure on each of its sides. After the choice of a splitting Σ: A×M B → D, the
Lie algebroid structures on the two sides of D are described by two 2-representations
[5]. We prove in [4] that (D∗A, D

∗
B) is a Lie bialgebroid over C∗ if and only if, for

any splitting of D, the two induced 2-representations form a matched pair as in the
following definition [4].

Definition 2.1. Let (A→M,ρA, [· , ·]) and (B →M,ρB , [· , ·]) be two Lie algebroids
and assume that A acts on ∂B : C → B up to homotopy via (∇B ,∇C , RA) and B
acts on ∂A : C → A up to homotopy via (∇A,∇C , RB)2. Then we say that the two
representations up to homotopy form a matched pair if

(m1) ∇∂Ac1c2 −∇∂Bc2c1 = −(∇∂Ac2c1 −∇∂Bc1c2),
(m2) [a, ∂Ac] = ∂A(∇ac)−∇∂Bca,
(m3) [b, ∂Bc] = ∂B(∇bc)−∇∂Acb,
(m4) ∇b∇ac−∇a∇bc−∇∇bac+∇∇abc = RB(b, ∂Bc)a−RA(a, ∂Ac)b,
(m5) ∂A(RA(a1, a2)b) = −∇b[a1, a2]+[∇ba1, a2]+[a1,∇ba2]+∇∇a2ba1−∇∇a1ba2,

(m6) ∂B(RB(b1, b2)a) = −∇a[b1, b2]+[∇ab1, b2]+[b1,∇ab2]+∇∇b2ab1−∇∇b1ab2,

for all a, a1, a2 ∈ Γ(A), b, b1, b2 ∈ Γ(B) and c, c1, c2 ∈ Γ(C), and

2For the sake of simplicity, we write in this definition ∇ for all the four connections. It will
always be clear from the indexes which connection is meant. We write ∇A for the A-connection
induced by ∇AB and ∇AC on ∧2B∗ ⊗ C and ∇B for the B-connection induced on ∧2A∗ ⊗ C.
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(m7) d∇ARB = d∇BRA ∈ Ω2(A,∧2B∗⊗C) = Ω2(B,∧2A∗⊗C), where RB is seen
as an element of Ω1(A,∧2B∗⊗C) and RA as an element of Ω1(B,∧2A∗⊗C).

2.5. The equivalence of [2]-manifolds with metric double vector bundles.
We begin by summarising the correspondence found in [10] between double vector
bundles endowed with a linear metric, and N-manifolds of degree 2.

A metric double vector bundle is a double vector bundle (E, Q,B,M) with
core Q∗, equipped with a linear symmetric non-degenerate pairing E×B E→
R, i.e. such that

(1) 〈τ †1 , τ
†
2 〉 = 0 for τ1, τ2 ∈ Γ(Q∗),

(2) 〈χ, τ †〉 = q∗B〈q, τ〉 for χ ∈ ΓlB(E) linear over q ∈ Γ(Q) and τ ∈ Γ(Q∗) and
(3) 〈χ1, χ2〉 is a linear function on B for χ1, χ2 ∈ ΓlB(E).

Note that the opposite (E, Q,B,M) of a metric double vector bundle (E, B,Q,M)
is the metric double vector bundle with 〈· , ·〉E = −〈· , ·〉E.

A linear splitting Σ: Q ×M B → E is said to be Lagrangian if its image is
maximal isotropic in E→ B. The corresponding horizontal lifts σQ : Γ(Q)→ ΓlB(E)
and σB : Γ(B) → ΓlQ(E) are then also said to be Lagrangian. By definition, a

horizontal lift σQ : Γ(Q)→ ΓlB(E) is Lagrangian if and only if 〈σQ(q1), σQ(q2)〉 = 0
for all q1, q2 ∈ Γ(Q). Showing the existence of a Lagrangian splitting of E is relatively
easy [10]: Note that a general linear decomposition Σ of a metric double vector
bundle defines as follows a section Λ of S2(Q)⊗B∗:

(5) 〈σQ(q1), σQ(q2)〉 = `Λ(q1,q2)

for all q1, q2 ∈ Γ(Q). In particular, Λ(q, ·) : Q→ B∗ is a morphism of vector bundles
for each q ∈ Γ(Q). Define a new horizontal lift σ′Q : Γ(Q)→ ΓlB(E) by

(6) σ′Q(q) = σQ(q)− 1

2
Λ̃(q, ·)∗

for all q ∈ Γ(Q). It is easy to check that the corresponding linear decomposition Σ′

is Lagrangian.
Further, if Σ1 and Σ2 : Q×M B → E are Lagrangian, then the change of splitting

φ12 ∈ Γ(Q∗⊗Q∗⊗B∗) defined by Σ2(q, b) = Σ1(q, b)+φ̃(q, b) for all (q, b) ∈ Q×MB,
is a section of Q∗ ∧Q∗ ⊗B∗.

Example 2.2. Let E → M be a vector bundle endowed with a symmetric non-
degenerate pairing 〈· , ·〉 : E ×M E → R (a metric vector bundle). Then E ' E∗ and
the tangent prolongation TE is a metric double vector bundle (TE,E, TM,M) with
pairing TE ×TM TE → R the tangent of the pairing E ×M E → R. In particular,

we have 〈Te1, T e2〉TE = `d〈e1,e2〉, 〈Te1, e
†
2〉TE = p∗M 〈e1, e2〉 and 〈e†1, e

†
2〉TE = 0 for

e1, e2 ∈ Γ(E).
Recall from [10, Example 3.11] that linear splittings of TE are equivalent to linear

connections ∇ : X(M)×Γ(E)→ Γ(E). The Lagrangian splittings of TE are exactly
the linear splittings that correspond to metric connections, i.e. linear connections
∇ : X(M)×Γ(E)→ Γ(E) that preserve the metric: 〈∇·e1, e2〉+〈e1,∇·e2〉 = d〈e1, e2〉
for e1, e2 ∈ Γ(E).

Let (E, B,Q,M) be a metric double vector bundle. Define C(E) ⊆ ΓlQ(E) as the

C∞(M)-submodule of linear sections with isotropic image in E. After the choice of a
Lagrangian splitting Σ: Q×M B → E, C(E) can be written C(E) := σB(Γ(B))+{ω̃ |
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ω ∈ Γ(Q∗ ∧Q∗)}. This shows that C(E) together with ΓcQ(E) ' Γ(Q∗) span E as a
vector bundle over Q.

We define3 a morphism Ω: F → E of metric double vector bundles as a pair
of maps ω? : C(E) → C(F), ω?P : Γ(Q∗) → Γ(P ∗) together with a smooth map
ω0 : N →M such that

(1) ω?
(
τ̃1 ∧ τ2

)
= ˜ω?P τ1 ∧ ω?P τ2,

(2) ω?(q∗Qf · χ) = q∗P (ω∗0f) · ω?(χ) and

(3) ω?P (f · τ) = ω∗0f · ω?P τ
for all τ, τ1, τ2 ∈ Γ(Q∗), f ∈ C∞(M) and χ ∈ C(E). A morphism Ω: Q1×M1Q1×M1

B∗1 → Q2 ×M2 Q2 ×M2 B
∗
2 of decomposed metric double vector bundles is then

described by ωQ : Q1 → Q2, ωB∗ : B∗1 → B∗2 and ω12 : Q1∧Q1 → B∗2 , all morphisms
of vector bundles over a smooth map ω0 : M1 → M2. For b ∈ Γ(B1) the isotropic

section bl ∈ ΓlQ2
(B2×M2

Q2×M2
Q∗2), bl(qm) = (b(m), qm, 0

Q∗2
m ), is sent by ω? to the

isotropic section (ω?B(b))l + ω̃?12(b) ∈ ΓlQ1
(B1 ×M1 Q1 ×M1 Q

∗
1).

We write MDVB for the obtained category of metric double vector bundles. In
[10] we established an equivalence between the category of involutive double vector
bundles and the category of [2]-manifolds. We also proved there that there is a
(contravariant) dualisation equivalence of the categry of involutive double vector
bundles with MDVB. This yields the following theorem.

Theorem 2.3 ([10]). There is a (contravariant) equivalence between the category
of [2]-manifolds and the category of metric double vector bundles.

This equivalence establishes in particular an equivalence between split [2]-manifold
M = Q[−1] ⊕ B∗[−2] and the decomposed metric double vector bundle (Q ×M
B ×M Q∗, B,Q,M) with the obvious linear metric over B.

We quickly describe the functors between the two categories. To construct the
geometrisation functor G : [2]−Man→ MDVB, take a [2]-manifold and considers its
local trivialisations. Changes of local trivialisation define a set of cocycle conditions,
that correspond exactly to cocycle conditions for a double vector bundle atlas. The
local trivialisations can hence be collated to a double vector bundle, which naturally
inherits an involution. See [10] for more details, and remark that this construction
is as simple as the construction of a vector bundle from a locally free and finitely
generated sheaf of C∞(M)-modules. Conversely, the algebraisation functor A sends
a metric double vector bundle E to the [2]-manifold defined as follows: the functions
of degree 1 are the sections of ΓcQ(E) ' Γ(Q∗), and the functions of degree 2 are

the elements of C(E). The multiplication of two core sections τ1, τ2 ∈ Γ(Q∗) is the

core-linear section τ̃1 ∧ τ2 ∈ C(E).

2.5.1. Metric VB-algebroids and Poisson [2]-manifolds. The correspondence above
of split 2-manifolds with decomposed metric double vector bundles induces a cor-
respondence of split Poisson [2]-manifolds with decomposed metric VB-algebroids.
This bijection extends to an equivalence of Poisson [2]-manifolds with metric VB-
algebroids [10], but we only need the split objects here.

3A metric double vector bundle (E, B,Q,M) is dual (over Q) to an involutive double vector
bundle [10]. A morphism Ω: F → E of metric double vector bundles is defined as a relation

Ω ⊆ F× E that is the dual of a morphism of involutive double vector bundles ω : F∗P → E∗Q [10].

The characterisation given here is proved in [10].
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Consider a metric double vector bundle (E, B,Q,M) with a linear Lie algebroid
on E → Q over a Lie algebroid structure on B → M . Then E is a metric VB-
algebroid [10] if the bijection

(7) E πB //

πQ

��

B

qB

��

E∗B //

��

B

��

Q∗

  

β // Q∗

  
Q

qQ
// M Q∗∗ ' Q // M

defined by the pairing is a morphism of VB-algebroids, where E∗B → Q∗∗ is equipped
with the dual Lie algebroid structure to the one on E→ Q [10].

Take a decomposed metric double vector bundle E = Q ×M B ×M Q∗ with a
linear Lie algebroid structure on Q×M B ×M Q∗ → Q over a Lie algebroid B →M .
Let (∇Q,∇Q∗ , R) be the corresponding 2-representation of the Lie algebroid B on
∂Q : Q∗ → Q. Then Q×M B ×M Q∗ is a decomposed metric VB-algebroid if
and only if the 2-representation is dual to itself [10]:(

∇Q
)∗

= ∇Q
∗

∂∗Q = ∂Q, R(b1, b2)∗ = −R(b1, b2) ∀b1, b2 ∈ Γ(B).

That is, the dual decomposed VB-algebroid E∗B = Q∗∗ ×M B ×M Q∗ → Q∗∗

is canonically isomorphic to E → Q via the canonical isomorphism of Q with
Q∗∗ [10]. Note that R(b1, b2)∗ = −R(b1, b2) for all b1, b2 ∈ Γ(B) is equivalent to
R ∈ Ω2(B,Q∗ ∧Q∗).

Note that a Poisson bracket of degree −2 on a [2]-manifoldM is an R-bilinear map
{· , ·} : C∞(M)× C∞(M)→ C∞(M) of the graded sheaves of functions, such that
|{ξ, η}| = |ξ| + |η| − 2 for homogeneous elements ξ, η ∈ C∞M(U). The bracket is

graded skew-symmetric; {ξ, η} = −(−1)|ξ| |η|{η, ξ} and satisfies the graded Leibniz
and Jacobi identities

(8) {ξ1, ξ2 · ξ3} = {ξ1, ξ2} · ξ3 + (−1)|ξ1| |ξ2|ξ2 · {ξ1, ξ3}

and

(9) {ξ1, {ξ2, ξ3}} = {{ξ1, ξ2}, ξ3}+ (−1)|ξ1| |ξ2|{ξ2, {ξ1, ξ3}}

for homogeneous ξ1, ξ2, ξ3 ∈ C∞M(U). A morphism µ : N → M of Poisson [2]-
manifolds satisfies µ?{ξ1, ξ2} = {µ?ξ1, µ?ξ2} for all ξ1, ξ2 ∈ C∞M(U), U open in
M .

Via the identification of the underlying metric double vector bundle E = Q×M
B ×M Q∗ with the [2]-manifold Q[−1]⊕B∗[−2], the metric VB-algebroid structure
is equivalent to a degree −2 Poisson structure on Q[−1]⊕B∗[−2] (see [10]):

{f1, f2} = 0, {τ, f} = 0, {τ1, τ2} = 〈∂Qτ1, τ2〉,
{b, f} = ρB(b)(f), {b, τ} = ∇∗bτ, {b1, b2} = [b1, b2]−R(b1, b2).

(10)

This identification is compatible with changes of splittings of the [2]-manifolds
and changes of decomposition of metric VB-algebroids: The category of Poisson
[2]-manifolds is equivalent to the category of metric VB-algebroids [10].
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Example 2.4. Consider a metric vector bundle E →M and a metric connection
∇ : X(M) × Γ(E) → Γ(E). Since ∇ = ∇∗ when E∗ is identified with E via the
non-degenerate pairing, the 2-representation (IdE : E → E,∇,∇, R∇) is self-dual.
The metric VB-algebroid structure on TE → E is just the standard Lie algebroid
structure on the tangent bundle of E. See [10] for more details.

2.5.2. VB-Courant algebroids and Lie 2-algebroids. A VB-Courant algebroid [14]
is a metric double vector bundle (E→ B, 〈· , ·〉) with side Q and core Q∗, together
with a linear anchor Θ: E→ TB and a linear Courant algebroid bracket on sections
of E→ B.

A decomposed VB-Courant algebroid can be described as [12] a decomposed
metric VB-algebroid E = Q×MB×MQ∗ → B together with an anchor ρQ : Q→M ,
a vector bundle map ∂B : Q∗ → B, a dull bracket J· , ·K : Γ(Q) × Γ(Q) → Γ(Q), a
linear connection∇ : Γ(Q)×Γ(B)→ Γ(B) and a vector valued 3-form ω ∈ Ω3(Q,B∗),
such that [12]

(i) ∇∗∂∗Bβ1
β2 +∇∗∂∗Bβ2

β1 = 0 for all β1, β2 ∈ Γ(B∗),

(ii) Jq, ∂∗BβK = ∂∗B(∇∗qβ) for q ∈ Γ(Q) and β ∈ Γ(B∗),

(iii) JacJ·,·K = ∂∗B ◦ ω ∈ Ω3(Q,Q),
(iv) R∇(q1, q2)b = ∂B〈iq2 iq1ω, b〉 for q ∈ Γ(Q) and β ∈ Γ(B∗), and
(v) d∇∗ω = 0.

The equation

(11) ρQ ◦ ∂∗B = 0

follows easily from (1) and (ii), and (ii) is equivalent to

(12) ∂B(∆qτ) = ∇q(∂Bτ)

for all q ∈ Γ(Q) and τ ∈ Γ(Q∗). Further, (4) and (iii) yield together

(13) 〈iq2 iq2ω, ∂Bτ〉 = R∆(q1, q2)τ

for q1, q2 ∈ Γ(Q) and τ ∈ Γ(Q∗). The linear Courant algebroid structure on
Q×M B ×M Q∗ → B is given by the anchor Θ: E→ TB defined by

Θ(q, 0) = ∇̂q ∈ Xl(B), Θ(τ †) = (∂Bτ)↑ ∈ Xc(B),

and the bracket defined by
r
τ †1 , τ

†
2

z
= 0,

q
(q, 0), τ †

y
= ∆qτ

† where ∆ is the Dorfman

connection that is dual to the dull bracket, and J(q1, 0), (q2, 0)K = (Jq1, q2K,−iq2 iq1ω).
for all q, q1, q2 ∈ Γ(Q) and all τ, τ1, τ2 ∈ Γ(Q∗).

Example 2.5. [12] We consider here a Courant algebroid (E→M,ρ, J· , ·K, 〈· , ·〉).
We use the pairing to identify E with E∗. After the choice of a metric connection on
E and so of a Lagrangian decomposition I∇ : TE→ E×M TM ×M E (see Example
2.2), the VB-Courant algebroid structure on (TE→ TM,E→M) is described by
∂TM = ρ : E→ TM , the Dorfman connection ∆bas : Γ(E)× Γ(E)→ Γ(E),

∆bas
e e′ = Je, e′K +∇ρ(e′)e,

which we call the basic Dorfman connection associated to ∇. The dual dull bracket
is given by

(14) Je, e′K∆bas = Je, e′K− ρ∗〈∇·e, e′〉
for all e, e′ ∈ Γ(E). The linear connection is ∇bas : Γ(E)× X(M)→ X(M),

∇bas
e X = [ρ(e), X] + ρ(∇Xe).
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The basic curvature ωbas
∆ ∈ Ω3(E, T ∗M) is defined by

ωbas
∆ (e1, e2, ·)X =−∇XJe1, e2K + J∇Xe1, e2K + Je1,∇Xe2K(15)

+∇∇bas
e2
Xe1 −∇∇bas

e1
Xe2 − β−1〈∇∇bas

· Xe1, e2〉 ∈ Γ(E)

for all e1, e2 ∈ Γ(E) and X ∈ X(M).

A homological vector field Q on a positively graded manifold M is a derivation
of degree 1 of C∞(M) such that Q2 = 1

2 [Q,Q] vanishes [24]. If the graded manifold
is a [2]-manifold, then the pair (M,Q) is a Lie 2-algebroid [27].

Consider the split [2]-manifold Q[−1]⊕B∗[−2] corresponding to the underlying
decomposed metric double vector bundle Q ×M B ×M Q∗. The linear Courant
algebroid structure defines as follows a homological vector field Q on C∞(Q[−1| ⊕
B∗[−2]) (see [12]):

(16) Q(f) = ρ∗Qdf ∈ Γ(Q∗)

for f ∈ C∞(M),

(17) Q(τ) = dQτ + ∂Bτ ∈ Ω2(Q)⊕ Γ(B)

for τ ∈ Γ(Q∗) and

(18) Q(b) = d∇b− 〈ω, b〉 ∈ Ω1(Q,B)⊕ Ω3(Q).

for b ∈ Γ(B). The tuple (∂∗B : B∗ → Q, ρQ, J· , ·K,∇, ω), is a split Lie 2-algebroid
[27, 12]. Note that conversely any homological vector field on M = Q[−1]⊕B∗[−2]
defines as in (16), (17) and (18) a split Lie 2-algebroid

The category of Lie 2-algebroid is equivalent via the correspondence described
above to the category of VB-Courant algebroids [14, 12]. Note that a morphism
µ : (M1,Q1) → (M2,Q2) of Lie 2-algebroids is a morphism µ : M1 →M2 of the
underlying [2]-manifolds, such that

(19) µ? ◦ Q2 = Q1 ◦ µ? : C∞(M2)→ C∞(M1).

We refer to §3.5 of [12] for the characterisation of a morphism of split Lie 2-algebroids
in terms of its components (∂∗B : B∗ → Q, ρQ, J· , ·K,∇, ω).

3. LA-Courant algebroids vs Poisson Lie 2-algebroids

In this section, we prove that a split Poisson Lie 2-algebroid is equivalent to the
matched pair of a split Lie 2-algebroid with a self-dual 2-representation.

Take a double vector bundle (E, B,Q,M) with core Q∗, with a VB-Lie algebroid
structure on (E → Q,B → M) and a VB-Courant algebroid structure on (E →
B,Q → M). In this section we show that the double vector bundle is an LA-
Courant algebroid [14] if and only if the VB-algebroid is metric and the self-dual
2-representation defined by any Lagrangian decomposition of E and the VB-algebroid
side forms a matched pair with the split Lie 2-algebroid describing the Courant
algebroid side.

We begin with the following definition.

Definition 3.1. Let (B →M,ρB , [· , ·]) be a Lie algebroid and let (Q→M,ρQ) be
an anchored vector bundle. Assume that B acts on ∂Q : Q∗ → Q up to homotopy via
a self-dual 2-representation (∇,∇∗, R), and let (∂B : Q∗ → B, J· , ·K,∇, ω)4 be a split

4For the sake of simplicity, we write in this definition ∇ for two different connections, unless it

is not clear from the indexes which connection is meant.
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Lie 2-algebroid. Then we say that the 2-representation and the split Lie 2-algebroid
form a matched pair if

(M1) ∂Q(∆qτ) = ∇∂Bτq + Jq, ∂QτK + ∂∗B〈τ,∇·q〉,
(M2) ∂B(∇∗bτ) = [b, ∂Bτ ] +∇∂Qτ b,
(M3) ∂BR(b1, b2)q = −∇q[b1, b2] + [∇qb1, b2] + [b1,∇qb2] +∇∇b2qb1 −∇∇b1qb2,

(M4) ∂Q〈iq2 iq1ω, b〉 = −∇bJq1, q2K+Jq1,∇bq2K+J∇bq1, q2K+∇∇q2bq1−∇∇q1bq2 +

∂∗B〈R(·, b)q1, q2〉.
(M5) d∇Qω = d∇BR ∈ Ω2(B,∧3Q∗) ' Ω3(Q,∧2B∗), where ω is seen as an

element of Ω1(B,∧3Q∗) and R is understood as an element of Ω2(Q,∧2B∗).

Remark 3.2. (1) (M5) is

∇∗b2〈iq2 iq1ω, b1〉 − ∇
∗
b1〈iq2 iq1ω, b2〉+ 〈iq2 iq1ω, [b1, b2]〉

+ 〈iq2 i∇b1q1ω, b2〉+ 〈i∇b1q2 iq1ω, b2〉 − 〈iq2 i∇b2q1ω, b1〉 − 〈i∇b2q2 iq1ω, b1〉
+ ∆q1R(b1, b2)q2 −∆q2R(b1, b2)q1 −R(b1, b2)Jq1, q2K
−R(∇q1b1, b2)q2 −R(b1,∇q1b2)q2 +R(∇q2b1, b2)q1 +R(b1,∇q2b2)q1

= 〈(R(b1,∇·b2) +R(∇·b1, b2))q1, q2〉 − ρ∗Qd〈R(b1, b2)q1, q2〉
for all q1, q2 ∈ Γ(Q) and b1, b2 ∈ Γ(B).

(2) The equality ρQ ◦ ∂Q = ρB ◦ ∂B follows from (M1) if Q has positive rank,
and from (M2) if B has positive rank. If both Q and B have rank zero,
then ρQ ◦ ∂Q = ρB ◦ ∂B is trivially satisfied.

(3) The equation

(20) [ρQ(q), ρB(b)] = ρB(∇qb)− ρQ(∇bq)
follows from (M3) if B has positive rank, and from (M4) if Q has positive
rank. If both Q and B have rank zero, then it is trivially satisfied.

(4) If ρQ ◦ ∂Q = ρB ◦ ∂B , then (M1) is equivalent to

(21)
(
∆∂Qτ1τ2 −∇∗∂Bτ2τ1

)
+
(
∆∂Qτ2τ1 −∇∗∂Bτ1τ2

)
= ρ∗Qd〈τ1, ∂Qτ2〉

for all τ1, τ2 ∈ Γ(Q∗).
(5) Assuming [ρQ(q), ρB(b)] = ρB(∇qb)−ρQ(∇bq) for all b ∈ Γ(B) and q ∈ Γ(Q),

(M4) is equivalent to

(22) 〈i∂Qτ iqω, b〉 −R(b, ∂Bτ)q = ∆q∇∗bτ −∇∗b∆qτ + ∆∇bqτ −∇∗∇qbτ − 〈∇∇·bq, τ〉

for all b ∈ Γ(B), q ∈ Γ(Q) and τ ∈ Γ(Q∗).

3.1. Poisson Lie 2-algebroids via matched pairs. We begin this subsection
with the definition of a Poisson Lie 2-algebroid.

Definition 3.3. Let M be a Poisson [2]-manifold with algebra of functions C∞(M)
and degree −2 Poisson bracket {· , ·}. Assume that M has in addition a Lie 2-
algebroid structure, i.e. that it is endowed with a homological vector field Q. Then
(M,Q, {· , ·}) is a Poisson Lie 2-algebroid if the homological vector field preserves
the Poisson structure, i.e. if

(23) Q{ξ1, ξ2} = {Q(ξ1), ξ2}+ (−1)deg ξ1{ξ1,Q(ξ2)}
for all ξ1, ξ2 ∈ A.

A morphism of Poisson Lie 2-algebroids is a morphism of the underlying [2]-
manifold that is a morphism of Poisson [2]-manifolds and a morphism of Lie
2-algebroids.
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The main theorem of this section shows that matched pairs as in Definition 3.1
are equivalent to split Poisson Lie 2-algebroids.

Theorem 3.4. Let M = Q[−1] ⊕ B∗[−2] be a split [2]-manifold endowed with a
homological vector field Q and a Poisson bracket {· , ·} of degree −2. Let (∂B : Q∗ →
B, J· , ·K,∇, ω) be the components of Q, and let (∂Q : Q∗ → Q,∇∗,∇, R) be the
self-dual 2-representation of B that is equivalent to the Poisson bracket.

Then (M,Q, {· , ·}) is a Poisson Lie 2-algebroid if and only if the self dual
2-representation and the split Lie 2-algebroid form a matched pair.

Proof. The idea of this proof is very simple, but requires rather long computations.
We will leave some of the detailed verifications to the reader. We check (23) in
coordinates, by using the formulae found in (16), (17), (18) and (10) for Q and
{· , ·}, respectively.

First we have Q(f) = ρ∗Qdf ∈ Γ(Q∗) and {f, g} = 0 for f, g ∈ C∞(M). This

yields {Q(f), g}+ {f,Q(g)} =
{
ρ∗Qdf, g

}
+
{
f, ρ∗Qdg

}
= 0 = Q{f, g} by the graded

skew-symmetry and {τ, f} = 0 for τ ∈ Γ(Q∗). Then we have for τ ∈ Γ(Q∗):

{Q(τ), f} − {τ,Q(f)} = {dQτ + ∂Bτ, f} − {τ, ρ∗Qdf}
= 0 + ρB(∂Bτ)(f)− ρQ(∂Qτ)(f).

But we also have Q{τ, f} = Q(0) = 0. Hence, {Q(τ), f} − {τ,Q(f)} = Q{τ, f} is
equivalent to ρB(∂Bτ)(f) = ρQ(∂Qτ)(f).

In a similar manner, we have Q{b, f} = ρ∗Qd(ρB(b)(f)) for b ∈ Γ(B) and

{Q(b), f}+ {b,Q(f)} is

{d∇b− 〈ω, b〉, f}+ {b, ρ∗Qdf} = {d∇b, f}+∇∗b(ρ∗Qdf)

= {∇·b, f}+∇∗b(ρ∗Qdf) = ρB(∇·b)(f) +∇∗b(ρ∗Qdf) ∈ Ω1(Q).

Hence, Q{b, f} = {Q(b), f}+ {b,Q(f)} if and only if

ρQ(q)ρB(b)(f) = ρB(∇qb)(f) + ρB(b)ρQ(q)(f)− ρQ(∇bq)(f)

for all q ∈ Γ(Q). Since f was arbitrary, this is (20): [ρQ(q), ρB(b)] = ρB(∇qb) −
ρQ(∇bq). Then we have Q{b, τ} = Q(∇∗bτ) = ∂B(∇∗bτ) + dQ(∇∗bτ) ∈ Γ(B)⊕Ω2(Q).
The Poisson bracket {Q(b), τ} is {d∇b − 〈ω, b〉, τ}. A simple computation shows
that {η, τ} = (−1)k+1i∂Qτη for η ∈ Ωk(Q). Hence, {〈ω, b〉, τ} = (−1)4i∂Qτ 〈ω, b〉 =

i∂Qτ 〈ω, b〉. The bracket {d∇b, τ} equals ∇∂Qτ b+ ψb,τ , with ψb,τ ∈ Ω2(Q) the form
defined by

ψb,τ (q1, q2) = 〈∇∗∇q1bτ, q2〉 − 〈∇∗∇q2bτ, q1〉

for q1, q2 ∈ Γ(Q). The Poisson bracket {b,Q(τ)} = {b,dQτ + ∂Bτ} = {b,dQτ} +
[b, ∂Bτ ]−R(b, ∂Bτ) simplifies to ∇∗b(dQτ) + [b, ∂Bτ ]−R(∂Bτ, b) because {b, η} =
∇bη ∈ Ωk(Q) for all η ∈ Ωk(Q). By comparing the Γ(B) and the Ω2(Q)-terms, we
find that

Q{b, τ} = {Q(b), τ}+ {b,Q(τ)}

if and only if ∂B∇∗bτ = ∇∂Qτ b+ [b, ∂Bτ ], which is (M2) and

(24) dQ(∇∗bτ) = −i∂Qτ 〈ω, b〉+ ψb,τ +∇∗b(dQτ) +R(∂Bτ, b).
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On q1, q2 ∈ Γ(Q), the 2-form dQ(∇∗bτ) + i∂Qτ 〈ω, b〉 −ψb,τ −∇∗b(dQτ)−R(∂Bτ, b) is

([ρQ(q1), ρB(b)]− ρB(∇q1b) + ρQ(∇bq1)) 〈τ, q2〉
+ ([ρB(b), ρQ(q2)] + ρB(∇q2b)− ρQ(∇bq2)) 〈τ, q1〉
+
〈
τ, ∂∗Q〈iq2 iq1ω, b〉+∇bJq1, q2K +∇∇q1bq2 −∇∇q2bq1

〉
− 〈τ, J∇bq1, q2K + Jq1,∇bq2K + ∂∗B〈R(·, b)q1, q2〉〉 .

Hence if (20) holds, then (24) is (M4). Next we study the equation Q{τ1, τ2} =
{Q(τ1), τ2} − {τ1,Q(τ2)} for τ1, τ2 ∈ Γ(Q∗). The left hand side is ρ∗Qd〈τ1, ∂Qτ2〉.
The right-hand side is {Q(τ1), τ2}+ {Q(τ2), τ1}. The equality

{Q(τ1), τ2} = {dQτ1 + ∂Bτ1, τ2} = −i∂Qτ2dQτ1 +∇∗∂Bτ1τ2
= ρ∗Qd〈τ1, ∂Qτ2〉 −∆∂Qτ2τ1 +∇∗∂Bτ1τ2

shows hence that Q{τ1, τ2} = {Q(τ1), τ2}+ {Q(τ2), τ1} if and only if (21). Recall
from Remark 3.2 that together with ρB ◦ ∂B = ρQ ◦ ∂Q, this is equivalent to (M1).

Finally, we choose b1, b2 ∈ Γ(B) and we study the equationQ{b1, b2} = {Q(b1), b2}+
{b1,Q(b2)} = {Q(b1), b2} − {Q(b2), b1}. The left-hand side is

Q([b1, b2]−R(b1, b2)) = d∇[b1, b2]︸ ︷︷ ︸
∈Ω1(Q,B)

− 〈ω, [b1, b2]〉 − dQ(R(b1, b2))︸ ︷︷ ︸
∈Ω3(Q)

+ ∂BR(b1, b2)︸ ︷︷ ︸
∈Ω1(Q,B)

.

Note that in the expression dQ(R(b1, b2)), the object R(b1, b2) is understood as an
element of Ω2(Q), and in the expression ∂BR(b1, b2), it is understood as a morphism
Q→ Q∗. The Poisson bracket {Q(b1), b2} is

{d∇b1 − 〈ω, b1〉, b2} = ∇∇b2 ·b1 + [∇·b1, b2]︸ ︷︷ ︸
∈Ω1(Q,B)

−R(∇·b1, b2) +∇b2〈ω, b1〉︸ ︷︷ ︸
∈Ω3(Q)

The projection to Ω1(Q,B) of Q{b1, b2} = {Q(b1), b2} − {Q(b2), b1} is

d∇[b1, b2] + ∂BR(b1, b2) = ∇∇b2 ·b1 + [∇·b1, b2]−∇∇b1 ·b2 − [∇·b2, b1],

which is (M3). The projection to Ω3(Q) of Q{b1, b2} = {Q(b1), b2} − {Q(b2), b1} is

−〈ω, [b1, b2]〉−dQ(R(b1, b2)) = −R(∇·b1, b2)+∇b2〈ω, b1〉+R(∇·b2, b1)−∇b1〈ω, b2〉,
that is,

(d∇ω)(b1, b2) = dQ(R(b1, b2))−R(∇·b1, b2) +R(∇·b2, b1).

The right-hand side of this equation is easily calculated to be the pairing of
(d∇BR) ∈ Ω3(Q,∧2B∗) with (b1, b2). Hence, the projection to Ω3(Q) of Q{b1, b2} =
{Q(b1), b2} − {Q(b2), b1} is (M5). �

3.2. LA-Courant algebroids and equivalence of categories. Li-Bland’s defi-
nition of an LA-Courant algebroid [14] requires the consideration of triple vector
bundles [18]. This is explained in this section.

3.2.1. The LA-Courant algebroid condition. A Dirac structure with support in a
Courant algebroid E→M is a subbundle D → S over a sub-manifold S of M , such
that D(s) is maximal isotropic in E(s) for all s ∈ S and

e1|S ∈ ΓS(D), e2|S ∈ ΓS(D) ⇒ Je1, e2K|S ∈ ΓS(D)

for all e1, e2 ∈ Γ(E).
Later we will need the following lemma in Section 5. We leave the proof to the

reader.
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Lemma 3.5. Let E→M be a Courant algebroid and D → S a subbundle with S a
sub-manifold of M . Assume that D → S is spanned by the restrictions to S of a
family S ⊆ Γ(E) of sections of E. Then D is a Dirac structure with support S if
and only if

(1) ρE(e)(s) ∈ TsS for all e ∈ S and s ∈ S,
(2) Ds is Lagrangian in Es for all s ∈ S and
(3) Je1, e2K|S ∈ ΓS(D) for all e1, e2 ∈ S.

Consider a Lie algebroid (qA : A → M,ρA, [· , ·]). In [14] Li-Bland defines a
relation ΠA ⊆ TA× TA by

TmbρA(a)(m) +A
d

dt


t=0

b(m) + t([b, a] + c)(m)

∼ΠA TmaρA(b)(m) +A
d

dt


t=0

a(m) + tc(m)

for all a, b, c ∈ Γ(A). (Note that in [14], the relation is defined in a different manner.
Checking that this alternative definition is correct is rather long. Details can be
obtained in the appendix of [8]).

Now consider a double vector bundle (E, B,Q,M) endowed with a VB-Lie alge-
broid structure (b, [· , ·]) on E→ Q and a linear metric 〈· , ·〉 on E→ B (hence, E has
core Q∗). Let ρB : B → TM be the anchor of the induced Lie algebroid structure
on B.

The relation ΠE defined as above by the Lie algebroid structure on E over Q is
then a relation ΠE of the triple vector bundles [14]

TE //

��

  

TQ

��

!!
E

��

// Q

��

TB

!!

// TM

""
B // M

and TE //

��

""

E

��

  
TQ

��

// Q

��

TB

""

// B

  
TM // M

Li-Bland’s definition [14] is the following.

Definition 3.6. Let (E, Q,B,M) be a double vector bundle with a VB-Courant
algebroid structure (over B) and a VB-algebroid structure (E→ Q,B →M). Then
(E, B,Q,M) is an LA-Courant algebroid if ΠE is a Dirac structure with support of
the Courant algebroid TE× TE.

We have the following theorem.

Theorem 3.7. Let (E, Q,B,M) be a double vector bundle with a VB-Courant
algebroid structure on (E → B,Q → M) and a VB-Lie algebroid structure on
(E → Q,B → M). Then in particular, E is a metric double vector bundle with
the linear metric underlying the linear Courant algebroid structure on E → B.
Choose a Lagrangian decomposition Σ: B ×M Q → E of E. Then (E, Q,B,M) is
an LA-Courant algebroid if and only if
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(1) the linear Lie algebroid structure on E→ Q is compatible in the sense of
§2.5.1 with the linear metric, and

(2) the self-dual 2-representation and the split Lie 2-algebroid obtained from the
Lagrangian splitting form a matched pair as in Definition 3.1.

The proof of this theorem is very long and technical (see the appendix of [8]),
showing that Li-Bland’s definition of an LA-Courant algebroid is, although very
elegant, rather hard to handle in practice. Hence our result provides a new definition
of LA-Courant algebroids, that is easier to use for computations.

Further, we now explain how this theorem shows that LA-Courant algebroids are
equivalent to Poisson Lie 2-algebroids. This has already been found by Li-Bland in
[14]. First, morphisms of LA-Courant algebroids are morphisms of metric double
vector bundles that preserve the Courant algebroid structure and the Lie algebroid
structure [14]. Hence, the category of LA-Courant algebroids is a full subcategory
of the intersection of the category of metric VB-algebroids and the category of
VB-Courant algebroids.

On the other hand, Definition 3.3 shows that the category of Poisson Lie 2-
algebroids is a full subcategory of the intersection of the categories of Poisson
[2]-manifolds and of Lie 2-algebroids.

This, Theorem 3.4, and Theorem 3.7 show that the equivalences of the categories
of metric VB-algebroids and of Poisson [2]-manifolds and of the categories of VB-
Courant algebroids and Lie 2-algebroids restrict to an equivalence of the category of
LA-Courant algebroids with the category of Poisson Lie 2-algebroids.

3.3. Examples of LA-Courant algebroids and Poisson Lie 2-algebroids.
Next we discuss some classes of Examples of LA-Courant algebroids, and the
corresponding Poisson Lie 2-algebroids.

3.3.1. The tangent double of a Courant algebroid. Let E→M be a Courant algebroid
and choose a metric connection ∇ : X(M)×Γ(E)→ Γ(E). We have seen in Examples
2.2 and 2.4 that the triple (∇,∇, R∇) is then the self dual TM -representation up
to homotopy describing (TE → E, TM → M) after the choice of the Lagrangian
decomposition Σ∇ : E×M M ×M E→ TE. We have also seen in Example 2.5 that
the split Lie 2-algebroid encoding the Courant algebroid side (TE→ TM,E→ TM)
is (ρE : E→ TM, J· , ·K∆bas ,∇bas, ωbas

∆ ).
A straightforward computation resembling the one in [4, Section 3.2] for the

tangent double of a Lie algebroid shows that this 2-representation and this split Lie
2-algebroid are matched, and so that TE is an LA-Courant algebroid (see also [14]).

The Poisson structure on the [2]-manifold corresponding to TE is, via the equiva-
lence of [2]-manifolds with metric double vector bundles, just the Poisson structure
that is dual to the Lie algebroid TE → E. Hence, it is symplectic (see [10], in
particular §4.5.1).

Hence, the class of LA-Courant algebroids that is equivalent to the symplectic
Lie 2-algebroids is just the class of tangent prolongations of Courant algebroids.

3.3.2. The standard Courant algebroid over a Lie algebroid. Let A be a Lie algebroid.
Then TA⊕T ∗A is a double vector bundle with sides A and TM ⊕A∗ and with core
A⊕T ∗M . It has a linear Courant algebroid structure on TA⊕A T ∗A→ A (see [12])
and a metric VB-algebroid structure (TA⊕A T ∗A→ TM ⊕A∗, A→M) (see [10]).
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Set ∂A = prA : A⊕ T ∗M → A, consider a skew-symmetric dull bracket J· , ·K on
Γ(TM ⊕A∗), with TM ⊕A∗ anchored by prTM , and let ∆: Γ(TM ⊕E∗)× Γ(A⊕
T ∗M)→ Γ(A⊕ T ∗M) be the dual Dorfman connection. This Dorfman connection
is equivalent to a Lagrangian splitting of the metric double vector bundle TA⊕T ∗A
[9, 10]. It also defines as follows a split Lie 2-algebroid structure on the vector
bundles (TM ⊕A∗,prTM ) and A∗ [12].

Let ∇ : Γ(TM ⊕A∗)×Γ(A)→ Γ(A) be the ordinary linear connection defined by
∇ = prA ◦∆◦ ιA. The vector bundle map l = pr∗A : A∗ → TM⊕A∗ is just the canon-
ical inclusion. Define ω ∈ Ω3(TM ⊕A∗, A∗) by ω(ν1, ν2, ν3) = JacJ· ,·K(ν1, ν2, ν3).

The objects l, J· , ·K, ∇∗, ω define a split Lie 2-algebroid; the standard split
Lie 2-algebroid defined by the dull bracket (or equivalently by the dual Dorfman
connection).

We give in [9, 10] the self-dual 2-representation ((ρ, ρ∗) : A ⊕ T ∗M → TM ⊕
A∗,∇bas,∇bas, Rbas

∆ ) of A that is defined by the VB-algebroid (TA ⊕ T ∗A →
TM⊕A∗, A→M) and any such Dorfman connection: The connections∇bas : Γ(A)×
Γ(A⊕ T ∗M)→ Γ(A⊕ T ∗M) and ∇bas : Γ(A)× Γ(TM ⊕A∗)→ Γ(TM ⊕A∗) are

∇bas
a (X,α) = (ρ, ρ∗)(Ω(X,α)a)+£a(X,α) and ∇bas

a (b, θ) = Ω(ρ,ρ∗)(b,θ)a+£a(b, θ),

where Ω: Γ(TM ⊕A∗)× Γ(A)→ Γ(A⊕ T ∗M) is defined by

Ω(X,α)a = ∆(X,α)(a, 0)− (0,d〈α, a〉)
and for a ∈ Γ(A), the derivations £a over ρ(a) are defined by:

£a : Γ(A⊕ T ∗M)→ Γ(A⊕ T ∗M), £a(b, θ) = ([a, b],£ρ(a)θ)

and
£a : Γ(TM ⊕A∗)→ Γ(TM ⊕A∗), £a(X,α) = ([ρ(a), X],£aα).

The basic curvature Rbas
∆ : Γ(A)× Γ(A)× Γ(TM ⊕A∗)→ Γ(A⊕ T ∗M) is given by

Rbas
∆ (a, b)(X, ξ) =− Ω(X,ξ)[a, b] + £a

(
Ω(X,ξ)b

)
−£b

(
Ω(X,ξ)a

)
+ Ω∇bas

b (X,ξ)a− Ω∇bas
a (X,ξ)b.

A straightforward computation, that also resembles much the one in [4, Section 3.2]
for the tangent double of a Lie algebroid, shows that the Dorfman 2-representation
and the self-dual 2-representation form a matched pair. Hence, TA⊕A T ∗A is an
LA-Courant algebroid.

3.3.3. The LA-Courant algebroid defined by a double Lie algebroid. More generally,
let

D
πB //

πA

��

B

qB

��
A

qA
// M

(with core C) be a double Lie algebroid. Then the pair (D,D∗B) of vector bundles
over B is a Lie bialgebroid, with D∗B endowed with the trivial Lie algebroid structure.
We get a linear Courant algebroid D ⊕B (D∗B) over B with side A⊕ C∗

D ⊕B (D∗B) //

��

B

��
A⊕ C∗ // M
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and core C ⊕A∗. The Courant algebroid structure is linear, see [12], §4.4.2. Recall
also from there that a linear decomposition Σ: A ×M B ×M C → D defines a

Lagrangian decomposition Σ̃ of the metric double vector bundle D⊕B (D∗B). Further,
the linear decomposition Σ of D yields a matched pair of 2-representations as in
§2.4.

In the Lagrangian decomposition, the linear Courant algebroid structure is
equivalent to the split Lie 2-algebroid (∂B ◦ prC : C ⊕A∗ → B,∆,∇, R) defined by

∆: Γ(A⊕ C∗)× Γ(C ⊕A∗)→ Γ(C ⊕A∗)
∆(a,γ)(c, α) = (∇ac,£aα+ 〈∇∗· γ, c〉),

(25)

∇ : Γ(A⊕ C∗)× Γ(B)→ Γ(B), ∇(a,γ)b = ∇ab(26)

with A⊕ C∗ anchored by ρA, and ω ∈ Ω3(A⊕ C∗, B∗) defined by

(27) i(a2,γ2)i(a1,γ1)ω = (R(a1, a2), 〈γ2, R(a1, ·)〉+ 〈γ1, R(·, a2)〉)

as a section of Hom(B,C ⊕A∗).
The direct sum D⊕BD∗B over B has also a VB-algebroid structure (D⊕BD∗B →

A⊕C∗, B →M) with core C⊕A∗. The linear decomposition Σ̃ : B×M (A⊕C∗)×M
(C ⊕A∗)→ D ⊕B (D∗B) defines the 2-representation of B

(28) (∂A ⊕ ∂∗A : C ⊕A∗ → A⊕ C∗,∇A ⊕∇C∗,∇C ⊕∇A∗, R⊕ (−R∗)),

see [10], §4.5.2.
A straightforward computation shows that the matched pair conditions for the

2-representations describing the sides of D imply that the 2-representation (28) and
the split Lie 2-algebroid (25)–(27) form a matched pair. Hence, (D ⊕B (D∗B), A⊕
C∗, B,M) has a natural LA-Courant algebroid structure. In the same manner,
(D ⊕A (D∗A), B ⊕ C∗, A,M) has a natural LA-Courant algebroid structure. Hence,
we get the following theorem.

Theorem 3.8. Consider a matched pair of 2-representations with the usual notation.
Then the split [2]-manifold (A⊕C∗)[−1]⊕B∗[−2] endowed with the semi-direct Lie
2-algebroid structure in (25)–(27) and the Poisson bracket defined by (28), is a split
Poisson Lie 2-algebroid.

By symmetry, the split [2]-manifold (B ⊕ C∗)[−1]⊕A∗[−2] also inherits a split
Poisson Lie 2-algebroid structure.

In the case of the double Lie algebroid TA, for A→M a Lie algebroid, the two
LA-Courant algebroids obtained in this manner are TA⊕A T ∗A described in Section
3.3.2, and the tangent prolongation as in Section 3.3.1 of the Courant algebroid
A⊕A∗ →M ; J(a1, α1), (a2, α2)K = ([a1, a2],£a1α2 − ia2dα1) for a1, a2 ∈ Γ(A) and
α1, α2 ∈ Γ(A∗).

4. The core of an LA-Courant algebroid

We prove in this section that the core of an LA-Courant algebroid inherits a
natural structure of degenerate Courant algebroid. We discuss some examples and
we deduce a new way of describing the equivalence between Courant algebroids and
symplectic Lie 2-algebroids.
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Theorem 4.1. Let (E, B,Q,M) be an LA-Courant algebroid and choose a La-
grangian splitting. Then the core Q∗ inherits the structure of a degenerate Courant al-
gebroid over M , with the anchor ρQ∗ = ρQ∂Q, the map D = ρ∗Qd : C∞(M)→ Γ(Q∗),

the pairing defined by 〈τ1, τ2〉Q∗ = 〈τ1, ∂Qτ2〉 and the bracket defined by

Jτ1, τ2KQ∗ = ∆∂Qτ1τ2 −∇∗∂Bτ2τ1
for all τ1, τ2 ∈ Γ(Q∗). This structure does not depend on the choice of the Lagrangian
splitting, and the map ∂B : Q∗ → B is compatible with the brackets and the anchors:
ρB∂B = ρQ∗ and

(29) ∂BJτ1, τ2KQ∗ = [∂Bτ1, ∂Bτ2]

for all τ1, τ2 ∈ Γ(Q∗).

Proof. Theorem 3.7 states that the 2-representation is self-dual and that the 2-
representation and the split Lie 2-algebroid defined by a Lagrangian splitting form
a matched pair. Hence, by §2.5.1, the pairing 〈· , ·〉Q∗ is symmetric. The map
ρ∗Qd : C∞(M) → Γ(Q∗) satisfies 〈τ, ρ∗Qdf〉Q∗ = 〈∂Qτ, ρ∗Qdf〉 = 〈ρQ∂Qτ,df〉 =

(ρQ ◦ ∂Q)(τ)(f) for all τ ∈ Γ(Q∗) and f ∈ C∞(M). We check (CA1)–(CA5) in
the definition of a degenerate Courant algebroid (see Page 5). Condition (CA5) is
immediate by definition of the bracket. Condition (CA3) is exactly (21). Note that
(M2) and (12) imply

∂BJτ1, τ2KQ∗ = ∂B(∆∂Qτ1τ2 −∇∗∂Bτ2τ1)

= ∇∂Qτ1∂Bτ2 − [∂Bτ2, ∂Bτ1]−∇∂Qτ1∂Bτ2 = [∂Bτ1, ∂Bτ2].

This and ρQ ◦ ∂Q = ρB ◦ ∂B (see Remark 3.2) imply the last claim of the theorem.
In the same manner (M1) and ∇◦∂Q = ∂Q ◦∇∗ (by Definition of a 2-representation)
imply the equation

∂QJτ1, τ2KQ∗ = J∂Qτ1, ∂Qτ2K∆ + ∂∗B〈τ2,∇·∂Qτ1〉.(30)

The compatibility of the bracket with the anchor (CA4) follows then immediately
from (30) with (11), or from (29) with ρQ ◦ ∂Q = ρB ◦ ∂B. Next we check (CA2)
using (30) and ∇ ◦ ∂Q = ∂Q ◦ ∇∗. We have

ρQ∂Q(τ1)〈τ2, τ3〉Q∗ − 〈Jτ1, τ2KQ∗ , τ3〉Q∗ − 〈τ2, Jτ1, τ3KQ∗〉Q∗
= 〈τ2, J∂Qτ1, ∂Qτ3K∆〉+ 〈∇∗∂Bτ2τ1, ∂Qτ3〉 − 〈τ2, ∂QJτ1, τ3KQ∗〉 = 0

since 〈∇∗∂Bτ2τ1, ∂Qτ3〉 = 〈∂Q∇∗∂Bτ2τ1, τ3〉 = 〈∇∗∂Bτ2(∂Qτ1), τ3〉. Finally we check the
Jacobi identity (CA1). Using (29) and (30), we have for τ1, τ2, τ3 ∈ Γ(Q∗):

JJτ1, τ2KQ∗ , τ3KQ∗ + Jτ2, Jτ1, τ3KQ∗KQ∗ − Jτ1, Jτ2, τ3KQ∗KQ∗

= ∆J∂Qτ1,∂Qτ2K+∂∗B〈τ2,∇·∂Qτ1〉τ3 −∇
∗
∂Bτ3(∆∂Qτ1τ2 −∇∗∂Bτ2τ1)

+ ∆∂Qτ2(∆∂Qτ1τ3 −∇∗∂Bτ3τ1)−∇∗[∂Bτ1,∂Bτ3]τ2

−∆∂Qτ1(∆∂Qτ2τ3 −∇∗∂Bτ3τ2) +∇∗[∂Bτ2,∂Bτ3]τ1

= R∇(∂Bτ3, ∂Bτ2)τ1 +∇∗∂Bτ2∇
∗
∂Bτ3τ1 −R∆(∂Qτ1, ∂Qτ2)τ3 + ∆∂∗B〈τ2,∇·∂Qτ1〉τ3

−∇∗∂Bτ3∆∂Qτ1τ2 + ∆∂Qτ1∇∗∂Bτ3τ2 −∆∂Qτ2∇∗∂Bτ3τ1 −∇
∗
[∂Bτ1,∂Bτ3]τ2.

Using the equalitiesR∆(∂Qτ1, ∂Qτ2)τ3 = 〈i∂Qτ2 i∂Qτ1ω, ∂Bτ3〉 by (13), R∇(∂Bτ3, ∂Bτ2)τ1 =
R(∂Bτ3, ∂Bτ2)∂Qτ1 by the definition of a 2-representation, and (22), this is

−∆∇∂Bτ3∂Qτ1τ2 +∇∗∇∂Qτ1∂Bτ3τ2 + 〈∇∇·∂Bτ3∂Qτ1, τ2〉

+∇∗∂Bτ2∇
∗
∂Bτ3τ1 + ∆∂∗B〈τ2,∇·∂Qτ1〉τ3 −∇

∗
[∂Bτ1,∂Bτ3]τ2 −∆∂Qτ2∇∗∂Bτ3τ1.
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By (21), we can replace

−∆∇∂Bτ3∂Qτ1τ2 +∇∗∂Bτ2∇
∗
∂Bτ3τ1 −∆∂Qτ2∇∗∂Bτ3τ1

=−∆∂Q(∇∗∂Bτ3τ1)τ2 +∇∗∂Bτ2(∇∗∂Bτ3τ1)−∆∂Qτ2(∇∗∂Bτ3τ1)

by
−∇∗∂B(∇∗∂Bτ3τ1)τ2 − ρ

∗
Qd〈τ2, ∂Q∇∗∂Bτ3τ1〉

and we get

∇∗∇∂Qτ1∂Bτ3−[∂Bτ1,∂Bτ3]−∂B(∇∂Bτ3τ1)τ2 + 〈∇∇·∂Bτ3∂Qτ1, τ2〉

+ ∆∂∗B〈τ2,∇·∂Qτ1〉τ3 − ρ
∗
Qd〈τ2, ∂Q∇∗∂Bτ3τ1〉

Since ∇∂Qτ1∂Bτ3 − [∂Bτ1, ∂Bτ3]− ∂B(∇∂Bτ3τ1) = 0 by (M2), we finally get

〈∇∇·∂Bτ3∂Qτ1, τ2〉+ ∆∂∗B〈τ2,∇·∂Qτ1〉τ3 − ρ
∗
Qd〈τ2, ∂Q∇∂Bτ3τ1〉.(31)

We write β := 〈∇·∂Qτ1, τ2〉 ∈ Γ(B∗). Since ρQ ◦ ∂Q = ρB ◦ ∂B and ∇◦ ∂Q = ∂Q ◦∇,
we find β = 〈∂Q∇∗· τ1, τ2〉 = 〈∇∗· τ1, ∂Qτ2〉 ∈ Γ(B∗). To see that (31), which is a
section of Q∗, vanishes, we evaluate it on an arbitrary q ∈ Γ(Q). We use (12) and
the definition of a 2-representation and we get

〈∇∇q∂Bτ3∂Qτ1, τ2〉+ 〈∆∂∗Bβ
τ3, q〉 − ρQ(q)〈τ2, ∂Q∇∗∂Bτ3τ1〉

=〈∇∂B∆qτ3∂Qτ1, τ2〉+ 〈∆∂∗Bβ
τ3, q〉 − ρQ(q)〈τ2, ∂Q∇∗∂Bτ3τ1〉

=〈β, ∂B∆qτ3〉+ 〈∆∂∗Bβ
τ3, q〉 − ρQ(q)〈β, ∂Bτ3〉 = −〈Jq, ∂∗BβK∆, τ3〉+ 〈∆∂∗Bβ

τ3, q〉.
Since the Dorfman connection ∆ is dual to the skew-symmetric dull bracket J· , ·K∆,
this is ρQ(∂∗Bβ)〈q, τ3〉. Because ρQ ◦ ∂∗B = 0 by (11), we can conclude.

We finally prove that the degenerate Courant algebroid structure does not depend
on the choice of the Lagrangian splitting. Clearly the pairing and anchor are
independent of the splitting, so we only need to check that the bracket remains the
same if we choose a different Lagrangian splitting. Assume that Σ1,Σ2 : B×MQ×M
Q∗ → E are two Lagrangian decompositions. Then there is φ ∈ Γ(B∗⊗Q∗∧Q∗) such
that for all (bm, qm, τm) ∈ B ×M Q ×M Q∗, Σ1(bm, qm, τm) = Σ2(bm, qm, τm) +B

(0E
bm

+Q φ(bm, qm)). Then by Remark 2.12 of [4], we have ∇2
bτ = ∇1

bτ + φ(b, ∂Qτ)

for all b ∈ Γ(B) and τ ∈ Γ(Q∗). By Proposition 4.7 in [12], we have ∆2
qτ =

∆1
qτ + φ(∂Bτ, q) for all q ∈ Γ(Q) and τ ∈ Γ(Q∗). Then ∆2

∂Qτ1
τ2 − ∇2

∂Bτ2
τ1 =

∆1
∂Qτ1

τ2 + φ(∂Bτ2, ∂Qτ1)−∇1
∂Bτ2

τ1 − φ(∂Bτ2, ∂Qτ1) = ∆1
∂Qτ1

τ2 −∇1
∂Bτ2

τ1. �

Example 4.2 (Tangent Courant algebroid). Consider the example described in
§3.3.1. The degenerate Courant algebroid structure on the core E of TE is just
the initial Courant algebroid structure on E since ∆e1e2 = Je1, e2K +∇ρ(e2)e1 by
definition and so

∆e1e2 −∇ρ(e2)e1 = Je1, e2K.

We have hence proved that the Courant algebroid associated to a symplectic Lie
2-algebroid can be defined directly from any of the splittings of the Lie 2-algebroid,
and so does not need to be obtained as a derived bracket.

Theorem 4.3. Let M be a symplectic Lie 2-algebroid over a base manifold M .
Then the corresponding Courant algebroid is defined as follows. Choose any splitting
M ' Q[−1]⊕ T ∗M [−2] of the underlying symplectic [2]-manifold. Then Q ' Q∗

via ∂Q and Q∗ inherits a nondegenerate pairing given by 〈τ1, ∂Qτ2〉 for τ1, τ2 ∈
Γ(Q∗). The morphism ∂TM : Q∗ → TM of the split Lie 2-algebroid structure on
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Q[−1] ⊕ T ∗M [−2] defines an anchor on Q∗. We have further a bracket J· , ·KQ∗
defined on Γ(Q∗) by Jτ1, τ2KQ∗ = ∆∂Qτ1τ2 − {∂TMτ2, τ1} and that does not depend
on the choice of the splitting. This anchor, pairing and bracket define a Courant
algebroid structure on Q∗.

Note that the Courant algebroid structure is transported to Q by β = ∂Q : Q∗ →
Q for our result to be consistent with the construction in §3.3.1.

Example 4.4 (Core of the standard Courant algebroid over a Lie algebroid).
Consider now the example discussed in §3.3.2; namely the standard LA-Courant
algebroid

TA⊕A T ∗A

��

// TM ⊕A∗

��
A // M

over a Lie algebroid A. The degenerate Courant algebroid structure on the core
A⊕ T ∗M of TA⊕ T ∗A is here given by ρA⊕T∗M (a, θ) = ρA(a),

〈(a1, θ1), (a2, θ2)〉A⊕T∗M = 〈(a1, θ1), (ρA, ρ
∗
A)(a2, θ2)〉

and the bracket defined by

J(a1, θ1), (a2, θ2)KA⊕T∗M = ([a1, a2],£ρA(a1)θ2 − iρA(a2)dθ1)

for all a, a1, a2 ∈ Γ(A) and θ, θ1, θ2 ∈ Ω1(M). To see this, use Lemma 5.16 in
[9] or the next example; this degenerate Courant algebroid plays a crucial role in
the infinitesimal description of Dirac groupoids [11], i.e. in the definition of Dirac
bialgebroids.

Example 4.5 (LA-Courant algebroid associated to a double Lie algebroid). More
generally, the LA-Courant algebroids (and the corresponding Poisson Lie 2-algebroids)
considered in §3.3.3 and Theorem 4.1 yield the following application.

A matched pair of 2-representations as in §2.4 defines two degenerate Courant
algebroids. The first one is C ⊕A∗ →M with the anchor ρC⊕A∗ : C ⊕A∗ → TM
defined by ρC⊕A∗ = ρA ◦ prA ◦(∂A ⊕ ∂∗A) = ρB ◦ ∂B ◦ prC . The pairing is defined by

〈(c1, α1), (c2, α2)〉C⊕A∗ = 〈α1, ∂Ac2〉+ 〈α2, ∂Ac1〉
for all α1, α2 ∈ Γ(A∗) and c1, c2 ∈ Γ(C), and the bracket by

J(c1, α1), (c2, α2)KC⊕A∗ = ∆(∂Ac1,∂∗Aα1)(c2, α2)−∇∂Bc2(c1, α1)

= (∇∂Ac1c2 −∇∂Bc2c1,£∂Ac1α2 + 〈∇∗· ∂∗Aα1, c2〉 − ∇∗∂Bc2α1)

= ([c1, c2],£∂Ac1α2 − i∂Ac2dAα1).

Note that the restriction to Γ(C) of the Courant bracket is the Lie algebroid bracket
induced on C by the matched pair, see §2.4.

The second degenerate Courant algebroid is C ⊕ B∗ → M with the anchor
ρC⊕B∗ : C ⊕B∗ → TM defined by ρB ◦prB ◦(∂B ⊕ ∂∗B) = ρB ◦ ∂B ◦prC , the pairing
defined by

〈(c1, β1), (c2, β2)〉C⊕B∗ = 〈β1, ∂Bc2〉+ 〈β2, ∂Bc1〉
for all β1, β2 ∈ Γ(B∗) and c1, c2 ∈ Γ(C), and the bracket

J(c1, β1), (c2, β2)KC⊕B∗ = (∇∂Bc1c2 −∇∂Ac2c1,£∂Bc1β2 − i∂Bc2dBβ1).

Here again, by (m1), the restriction to Γ(C) of the Courant bracket is the Lie
algebroid bracket induced on C by the matched pair, as in §2.4.
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5. VB-Dirac structures, LA-Dirac structures and pseudo Dirac
structures

In this section, we study isotropic subalgebroids of metric VB-algebroids and
Dirac structures in VB- and LA-Courant algebroids. While we paid attention
in the preceding sections to bridge [2]-geometric objects to geometric structures
on metric double vector bundles, we are here more interested in classifications of
VB-Dirac structures via the simple geometric descriptions that we found before for
VB-Courant algebroids and LA-Courant algebroids.

5.1. VB-Dirac structures. Let (E, B,Q,M) be a VB-Courant algebroid with
core Q∗ and anchor Θ: E→ TB. Let D be a double vector subbundle structure over
B′ ⊆ B and U ⊆ Q and with core K. Choose a linear splitting Σ: B ×M Q → E
that is adapted5 to D, i.e. such that Σ(B′ ×M U) ⊆ D. Then D is spanned as a
vector bundle over B′ by the sections σQ(u)|B′ for all u ∈ Γ(U) and τ †|B′ for all
τ ∈ Γ(K).

We get immediately the following proposition.

Proposition 5.1. In the situation described above, the double subbundle D ⊆ E
over B′ is isotropic if and only if K ⊆ U◦ and Λ as in (5) sends U ⊗ U to B′

◦
.

Proposition 5.2. In the situation described above, D is maximal isotropic if and
only if U = K◦ and Λ sends U ⊗ U to B′

◦
.

Now we can prove that if D is maximal isotropic, then there exists a Lagrangian
splitting of E that is adapted to D.

Corollary 5.3. Let (E, B,Q,M) be a metric double vector bundle and D ⊆ E a
maximal isotropic double subbundle. Then there exists a Lagrangian splitting that is
adapted to D.

Proof. As before, let U ⊆ Q and B′ ⊆ B be the sides of D. Then by Proposition 5.2
the core ofD is the vector bundle U◦ ⊆ Q∗. Choose a linear splitting Σ: Q×MB → E
that is adapted to D. Then D is spanned as a vector bundle over B′ by the sections
σQ(u)|B′ for all u ∈ Γ(U) and τ †|B′ for all τ ∈ Γ(U◦). As in (6), transform Σ into
a new Lagrangian linear splitting Σ′. We need to show that σ′Q(u)|B′ − σQ(u)|B′ is

equivalent to a section of B′
∗ ⊗ U◦ for all u ∈ Γ(U). But σ′Q(u)− σQ(u) = ˜1

2Λ(u, ·)
by construction and, since D is isotropic, we have Λ(u, u′)|B′ = 0 for all u, u′ ∈
Γ(U). �

Remark 5.4. Consider a Courant algebroid E → M and its tangent double TE.
Recall from Example 2.2 that Lagrangian splittings of TE are equivalent to metric

5Since D and E are both double vector bundles, there exist two decompositions ID : B′ ×M

U ×M K → D and I : B ×M Q ×M Q∗ → E. Let ι : D → E be the double vector bundle

inclusion, over ιU : U → Q and ιB′ : B
′ → B, and with core morphism ιK : K → Q∗. Then

the map I−1 ◦ ι ◦ ID : B′ ×M U ×M K → B ×M Q ×M Q∗ defines a morphism φ ∈ Γ(B′∗ ⊗
U∗ ⊗ Q∗) by (I−1 ◦ ι ◦ ID)(bm, um, km) = (ιB(bm), ιU (um), ιK(km) + φ(bm, um)). Using local

basis sections of B and Q adapted to B′ and U and a partition of unity on M , extend φ

to φ̂ ∈ Γ(B∗ ⊗ Q ⊗ Q∗). Then define a new decomposition Ĩ−1 : E → B ×M Q ×M Q∗ by

Ĩ−1(e) = I−1(e) +B (bm, 0
Q
m,−φ̂(bm, qm)) = I−1(e) +Q (0Bm, qm,−φ̂(bm, qm)) for e ∈ E with

πB(e) = bm and πQ(e) = qm. Then (̃I−1 ◦ ι ◦ ID)(bm, um, km) = (ιB(bm), ιU (um), ιK(km))

for all (bm, um, km) ∈ B′ ×M U ×M K. The corresponding linear splitting Σ̃ : B ×M Q → E,

Σ̃(bm, qm) = Ĩ(bm, qm, 0Q
∗

m ) sends (ιB′ (bm), ιU (um)) to ι(ID(bm, um, 0Km) ∈ ι(D).
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connections X(M) × Γ(E) → Γ(E). Let ∇ be such a metric connection, that is
adapted to a maximally isotropic double subbundle D over the sides TM and
U ⊆ E. Define [∇] : X(M) × Γ(U) → Γ(E/U⊥) by [∇]Xu = ∇Xu ∈ Γ(E/U⊥). A
second metric connection ∇′ : X(M)× Γ(E)→ Γ(E) is adapted to D if and only if
∇Xu−∇′Xu ∈ Γ(U⊥) for all X ∈ X(M) and for all u ∈ Γ(U). Hence, if and only if
[∇] = [∇′]. We call [∇] the invariant part of the metric connection adapted
to D.

The existence of Lagrangian splittings of E adapted to maximal isotropic double
subbundles D will now be used to study the involutivity of D.

Note that in a very early version of this work, we studied VB-Courant algebroids
via general (not necessarily Lagrangian) linear splittings. We found some more
general objects than split Lie 2-algebroids; involving also Λ ∈ S2(Q,B∗) defined
in (5). The study of the involutivity of general (not necessarily isotropic) double
subbundles D of E is therefore also possible in this more general framework, and
yields very similar results.

Proposition 5.5. Let (E, B,Q,M) be a VB-Courant algebroid and D ⊆ E a
maximal isotropic double subbundle. Choose a Lagrangian splitting of E that is
adapted to D and consider the corresponding split Lie 2-algebroid, denoted as usual.
Then D is a Dirac structure in E with support B′ if and only if

(1) ∂B(U◦) ⊆ B′,
(2) ∇ub ∈ Γ(B′) for all u ∈ Γ(U) and b ∈ Γ(B′),
(3) Ju1, u2K ∈ Γ(U) for all u1, u2 ∈ Γ(U),
(4) iu2

iu1
ω restricts to a section of Γ(Hom(B′, U◦)) for all u1, u2 ∈ Γ(U).

A Dirac double subbundle D of a VB-Courant algebroid E as in the proposition
is called a VB-Dirac structure.

Proof. This is easy to prove using Lemma 3.5 on sections σQ(u) and τ †, for u ∈ Γ(U)
and τ ∈ Γ(U◦). Their anchors and Courant brackets can be described by

Θ(σQ(u)) = ∇̂u ∈ Xl(B), Θ(τ †) = (∂Bτ)↑ ∈ Xc(B),

JσQ(u1), σQ(u2)K = σQ(Ju1, u2K)− ˜iu2
iu1
ω,

JσQ(u), τ †K = (∆uτ)†, Jτ †1 , τ
†
2 K = 0

(32)

for all u, u1, u2 ∈ Γ(U) and τ, τ1, τ2 ∈ Γ(U◦). The vector field ∇̂u is tangent to B′

on B′ if and only if for all β ∈ Γ((B′)◦), ∇̂u(`β) = `∇∗uβ vanishes on B′. That is, if
and only if, for all β ∈ Γ((B′)◦), ∇∗uβ is again a section of (B′)◦. This yields (2).
The vector field (∂Bτ)↑ is tangent to B′ if and only if ∂Bτ ∈ Γ(B′). This yields (1).
Next, JσQ(u), τ †K = (∆uτ)† is a section of D over B′ if and only if ∆uτ ∈ Γ(U◦).
Since ∆uτ ∈ Γ(U◦) for all u ∈ Γ(U) and τ ∈ Γ(U◦) if and only if Ju1, u2K ∈ Γ(U)
for all u1, u2 ∈ Γ(U), this is (3). Further, σQ(Ju1, u2K) takes then values in D over
B′, and so JσQ(u1), σQ(u2)K takes values in D over B′ if and only if iu2 iu1ω restricts
to a morphism B′ → U◦. This is (4). �

We get the following result for VB-Dirac structures (with support B) in E.

Corollary 5.6. Let (E, B,Q,M) be a VB-Courant algebroid and (D,B,U,M) ⊆ E
a maximal isotropic double subbundle. Choose a Lagrangian splitting of E that
is adapted to D and consider the corresponding split Lie 2-algebroid, denoted as
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usual. If D is a Dirac structure in E→ B, then U inherits a Lie algebroid structure
with bracket J· , ·K|Γ(U)×Γ(U) and anchor ρQ|U . This Lie algebroid structure does not
depend on the choice of Lagrangian splitting.

Proof. By (3) in Proposition 5.5, J· , ·K restricts to a bracket on sections of U . For
u1, u2, u3, JacJ· ,·K(u1, u2, u3) = ∂∗Bω(u1, u2, u3) = 0 since ω(u1, u2, u3) = 0 ∈ Γ(B∗)
by (4) in Proposition 5.5. Hence, U with the bracket J· , ·K|Γ(U)×Γ(U) and the anchor
ρQ|U is a Lie algebroid.

If φ ∈ Γ(Q∗ ∧Q∗ ⊗B∗) is the tensor defined as in the proof of Theorem 4.1 by a
change of Lagrangian splitting adapted to D, then, by Proposition 4.7 in [12],

Ju, u′K1 = Ju, u′K2 + ∂∗Bφ(u, u′)

for all u, u′. But since both splittings Σ1,Σ2 : B ×M Q→ E are adapted to D, we
know that σ1

Q(u) and σ2
Q(u) have values in D, and their difference σ1

Q(u)− σ2
Q(u) =

φ̃(u) is a core-linear section of D → B. Hence it must takes values in U◦, and φ(u, u′)
must so vanish for all u, u′ ∈ Γ(U). As a consequence, Ju, u′K1 = Ju, u′K2. �

The following two corollaries are now easy to prove. The first one was already
given in [14].

Corollary 5.7. Let (M,Q) be a Lie 2-algebroid, and (E → B,Q → M) the
corresponding VB-Courant algebroid. Then VB-Dirac structures in E are equivalent
to wide Lie 1-subalgebroids of (M,Q).

Proof. A wide Lie subalgebroid of (M,Q) is a wide [1]-submanifold U [−1] of M
such that QU (µ?ξ) = µ?(Q(ξ)), ξ ∈ C∞(M), defines a Lie algebroid structure QU
on U . Here, µ : U [−1]→M is the submanifold inclusion.

In a splitting Q[−1]⊕B∗[−2] of M, the homological vector field Q is given by
(16)–(18). Choose an open subset V of M with a local frame (u1, . . . , ur, qr+1, . . . , ql)
of Q over V such that (u1, . . . , ur) is a local frame for U over V . Let (τ1, . . . , τl)
be the dual smooth frame for Q∗ over V . Then we have QU (f) = µ?(ρ∗Qdf) =

ρ∗Qdf + U◦ for all f ∈ C∞(M). This translates easily to ρU = ρQ|U . Then we have

QU (τi + U◦) = QU (µ?τi) = µ?(Q(τk)) = −
∑r
i<j〈Jui, ujK, τk〉τ̄iτ̄j for k = 1, . . . , r.

This shows that the bracket on U must be the restriction to Γ(U) of the dull bracket
on Γ(Q). Finally 0 = QU (µ?b) = µ?(Q(b)) = −

∑
i<j<k<r ω(ui, uj , uk)(b)τ̄iτ̄j τ̄k for

all b ∈ Γ(B) shows that ω(u1, u2, u3) must be zero for all u1, u2, u3 ∈ Γ(U). This
is equivalent to (3) in Proposition 5.5 (with B′ = B). Note that since B′ = B, (1)
and (2) in Proposition 5.5 are trivially satisfied. Hence we can conclude. �

The Lie algebroid structure on U is the base Lie algebroid from the VB-algebroid
D → B in the following corollary. The proof is immediate.

Corollary 5.8. A VB-Dirac structure (D,B,U,M) in a VB-Courant algebroid
inherits a linear Lie algebroid structure: (D → B,U →M) is a VB-algebroid.

5.2. LA-Dirac structures. Assume now that (E→ Q,B → M) is a metric VB-
algebroid, and take a maximal isotropic double subbundle D of E over the sides
U ⊆ Q and B′ ⊆ B. We will study conditions on the self-dual 2-representation
defined by a Lagrangian splitting and the linear Lie algebroid structure on E→ Q,
and on Q and on B′, for D to be an isotropic subalgebroid of E→ Q over U .

Note the similarity of the following result with Proposition 5.5.
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Proposition 5.9. Let (E, B,Q,M) be a metric VB-algebroid and (D,B′, U,M) ⊆ E
a maximal isotropic double subbundle. Choose a Lagrangian splitting of E that is
adapted to D and consider the corresponding self-dual 2-representation, denoted as
usual. Then D → U is a subalgebroid of E→ Q if and only if

(1) ∂Q(U◦) ⊆ U ,
(2) ∇bu ∈ Γ(U) for all u ∈ Γ(U) and b ∈ Γ(B′),
(3) [b1, b2] ∈ Γ(B′) for all b1, b2 ∈ Γ(B′),
(4) R(b1, b2) restricts to a section of Γ(Hom(U,U◦)) for all b1, b2 ∈ Γ(B′).

Proof. This proof is very similar to the proof of Proposition 5.5, and left to the
reader. �

Now let (E, Q,B,M) be an LA-Courant algebroid. A VB-Dirac structure
(D,U,B′,M) in E is an LA-Dirac structure if (D → U,B′ → M) is also a
subalgebroid of (E → Q,B → M). We deduce from Propositions 5.5 and 5.9 a
characterisation of LA-Dirac structures.

Proposition 5.10. Let (E, B,Q,M) be an LA-Courant algebroid and (D,B′, U,M)
a maximal isotropic double subbundle of E. Choose a Lagrangian splitting of E that
is adapted to D and consider the corresponding matched self-dual 2-representation
and split Lie 2-algebroid. Then D → U is an LA-Dirac structure in E if and only if

(1) ∂B(U◦) ⊆ B′ and ∂Q(U◦) ⊆ U ,
(2) ∇ub ∈ Γ(B′) for all u ∈ Γ(U) and b ∈ Γ(B′),
(3) ∇bu ∈ Γ(U) for all u ∈ Γ(U) and b ∈ Γ(B′),
(4) Ju1, u2K ∈ Γ(U) for all u1, u2 ∈ Γ(U),
(5) [b1, b2] ∈ Γ(B′) for all b1, b2 ∈ Γ(B′),
(6) iu2

iu1
ω restricts to a section of Γ(Hom(B′, U◦)) for all u1, u2 ∈ Γ(U),

(7) R(b1, b2) restricts to a section of Γ(Hom(U,U◦)) for all b1, b2 ∈ Γ(B′).

Hence, we also have the following result.

Corollary 5.11. VB-subalgebroids (D → U,B → M) of a metric VB-algebroid
(E→ Q,B →M) are equivalent to wide coisotropic [1]-submanifolds of the corre-
sponding Poisson [2]-manifold.

LA-Dirac structures (D → U,B →M) in an LA-Courant algebroid (E→ Q,B →
M) are equivalent to wide coisotropic Lie subalgebroids of the corresponding Poisson
Lie 2-algebroid.

Proof. Let U [−1] be a [1]-submanifold of a Poisson [2]-manifold (M, {· , ·}). Then
U [−1] is coisotropic if and only if µ?(ξ) = µ?(η) = 0 imply µ?({ξ, η}) = 0 for all
ξ, η ∈ C∞(M), where µ : Q[−1]→M is the inclusion. In a local splitting, we find
easily that this implies ∂Q(U◦) ⊆ U , ∇∗bτ ∈ Γ(U◦) for all b ∈ Γ(B) and τ ∈ Γ(U◦),
and the restriction to U of R(b1, b2) has image in U◦. By Proposition 5.9, we can
conclude. The second claim follows with Corollary 5.7. �

As a corollary of Theorem 3.7, Proposition 5.5 and Proposition 5.9, we get the
following theorem.

Theorem 5.12. Let (E, B,Q,M) be an LA-Courant algebroid and (D,U,B,M) ⊆ E
a (wide) LA-Dirac structure in E.

Then D is a double Lie algebroid with the VB-algebroid structure in Corollary
5.8 and the VB-algebroid structure (D → U,B →M).
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Proof. Let us study the two linear Lie algebroid structures on D. Choose as before a
linear splitting Σ: B×MQ→ E that restricts to a linear splitting ΣD : U×MB → D
of D. The LA-Courant algebroid structure of E is then encoded as in Sections
2.5.2 and 2.5.1, respectively, by a split Lie 2-algebroid (∂B : Q∗ → B, ρQ : Q →
TM, J· , ·K,∇, ω) and by a self-dual 2-representation (∇,∇∗, R) of the Lie algebroid
B on ∂Q = ∂∗Q : Q∗ → Q. By Theorem 3.7, the Dorfman 2-representation and the
2-representation form a matched pair as in Definition 3.1.

By Proposition 5.5 and Corollary 5.6, the restriction to Γ(U) of the dull bracket on
Γ(Q) that is dual to ∆ defines a Lie algebroid structure on U , ω|U⊗U⊗Q can be seen
as an element of Ω2(U,Hom(B,U◦)) and since ∆uτ ∈ Γ(U◦) for all u ∈ Γ(U) and
τ ∈ Γ(U◦), the Dorfman connection ∆ restricts to a map ∆D : Γ(U)×Γ(U◦)→ Γ(U◦).
Since ∆D

u (fτ) = f∆D
u τ + ρQ(u)(f)τ and ∆D

fuτ = f∆D
u τ + 〈u, τ〉ρ∗Qdf = f∆uτ

for f ∈ C∞(M), we find that this restriction is in fact an ordinary connection.
Since ω(u1, u2, u3) vanishes for all u1, u2, u3 ∈ Γ(U), it is then easy to see that
the restrictions to sections of U and U◦ of (12), (13) and of (iv) and (v) in the
definition of a split Lie 2-algebroid define an ordinary 2-representation. By (32),
this 2-representation (∂B : U◦ → B,∇,∆D, ω|U⊗U⊗Q) of the Lie algebroid U on
∂B : U◦ → B encodes the VB-algebroid structure that D → B inherits from the
Courant algebroid E→ B.

In a similar manner, we find using Proposition 5.9 that the self-dual 2-representation
(∂Q : Q∗ → Q,∇,∇∗, R ∈ Ω2(B,Q∗∧Q∗)) restricts to a 2-representation (∂Q : U◦ →
U,∇U : Γ(B)×Γ(U)→ Γ(U),∇U◦ : Γ(B)×Γ(U◦)→ Γ(U◦), R ∈ Ω2(B,Hom(U,U◦)))
of B.

A study of the restrictions to sections of U and U◦ of the equations in Definition
3.1 shows then that (M1) restricts to (m2) in §2.4 since ∂∗B〈τ,∇U · u〉 = 0 for
all u ∈ Γ(U) and τ ∈ Γ(U◦). The equations (M2), and (M3) immediately yield
(m3) and (m6), respectively. (M4) restricts to (m5) since 〈R(·, b)u1, u2〉 = 0 for all
u1, u2 ∈ Γ(U) and b ∈ Γ(B). (M5) restricts to (m7) since the right-hand side of
(M5) in (1) of Remark 3.2 vanishes. Finally, (21) restricts to (m1) and (22) restricts
to (m4) since 〈∇∇·bu, τ〉 = 0 for all b ∈ Γ(B), u ∈ Γ(U) and τ ∈ Γ(U◦). Thus,
the two 2-representations describing the sides of D given the splitting ΣD form a
matched pair, which implies that D is a double Lie algebroid (see [4] or §2.4 for a
quick summary of this paper). �

Note finally that with a different approach as the one adopted in this paper, we
could deduce the main result in [4] from our Theorem 3.7. Once one has ‘directly’
proved that for each double Lie algebroid (D,A,B,M) with core C, the direct sum
over B of D and D∗B defines an LA-Courant algebroid (D ⊕B (D∗B), A⊕ C∗, B,M)
as in §3.3.3, then one can use the last theorem to deduce the equations in §2.4 from
the ones in Definition 3.1 and in Remark 3.2: by construction, the double vector
subbundle D of D ⊕B (D∗B) is a VB-Dirac structure in D ⊕B (D∗B) → B and a
linear Lie subalgebroid in D ⊕B (D∗B)→ A⊕ C∗. Instead, we have chosen to use
the main theorem in [4] to prove that (D⊕B (D∗B), A⊕C∗, B,M) is an LA-Courant
algebroid, see §3.3.3. By the complexity of Li-Bland’s definition of an LA-Courant
algebroid, this is the most simple approach.

5.3. Pseudo-Dirac structures. We explain here the notion of pseudo-Dirac struc-
tures that was introduced in [14, 15] and we compare it with our approach to
VB- and LA-Dirac structures in the tangent of a Courant algebroid. Consider a
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VB-Courant algebroid E with core Q∗, and a double vector subbundle in E with
core K, as in the following diagrams.

E //

��

Q

��
B // M

D //

��

U

��
B // M

Consider the restriction E|U of E to U ; i.e. E|U = π−1
Q (U). This is a double vector

bundle with sides B and U and with core Q∗. The total quotient of E|U by D is
the map q from

E|U //

��

Q

��
B // M

to Q∗/K //

��

0M

��
0M // M,

defined by

q(e) = τ̄ ⇔ e− τ † ∈ D.
After the choice of a linear splitting of E that is adapted to D, we know that each
element of E|U can be written σQ(u)(bm)+τ †(bm) for some u ∈ Γ(U), τ ∈ Γ(Q∗) and
bm ∈ B. The image of σQ(u)(bm)+τ †(bm) under q is then simply τ̄(m). Conversely it

is easy to see that D can be recovered from q. Recall that if e1 = σQ(u1)(bm)+τ †1 (bm)

and e2 = σQ(u2)(bm) + τ †2 (bm) ∈ E, then

〈e1, e2〉 = 〈σQ(u1)(bm) + τ †1 (bm), σQ(u2)(bm) + τ †2 (bm)〉
= `Λ(u1,u2)(bm) + 〈u1(m), τ2(m)〉+ 〈u2(m), τ1(m)〉.

In particular, 〈e1, e2〉 = 〈πQ(e1), q(e2)〉+ 〈πQ(e2), q(e1)〉 for all e1, e2 ∈ E|U if and
only if Λ|U⊗U vanishes and K = U◦, i.e. if and only if D is maximal isotropic
(Proposition 5.2).

Now we recall Li-Bland’s definition of a pseudo-Dirac structure [15].

Definition 5.13. Let E→M be a Courant algebroid. A pseudo-Dirac structure is
a pair (U,∇p) consisting of a subbundle U ⊆ E together with a map ∇p : Γ(U) →
Ω1(M,U∗) satisfying

(1) ∇p(fu) = f∇pu+ df ⊗ 〈u, ·〉,
(2) d〈u1, u2〉 = 〈∇pu1, u2〉+ 〈u1,∇pu2〉,
(3) Ju1, u2Kp := Ju1, u2KE−ρ∗〈∇pu1, u2〉 defines a bracket Γ(U)×Γ(U)→ Γ(U),
(4) and

(33) (〈Ju1, u2Kp,∇pu3〉+ iρ(u1)d〈∇pu2, u3〉) + c.p.

+ d
(〈
∇pρ(u1)u2 −∇pρ(u2)u1, u3

〉
− 〈Ju1, u2Kp, u3〉

)
= 0

for all u1, u2, u3 ∈ Γ(U) and f ∈ C∞(M).

Consider the tangent double (TE, TM,E,M) where E is a Courant algebroid over
M . Choose a linear (wide) Dirac structure D in TE, over the side U ⊆ E and a
metric connection ∇ : X(M)× Γ(E)→ Γ(E) that is adapted to D. Li-Bland defines
the pseudo-Dirac structure associated to D [15] as the map ∇p : Γ(U)→ Ω1(M,U∗)
that is defined by ∇pu = q ◦ Tu for all u ∈ Γ(U). By definition of σ∇E , we have
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Tu = σ∇E (u) + ∇̃·u and we find that ∇pu(vm) = ∇vmu = [∇]vmu. The pseudo-Dirac
structure is nothing else than the invariant part of the metric connection that is
adapted to D (Remark 5.4). Condition (2) in Definition 5.13 is then

(34) d〈u1, u2〉 = 〈Tu1, Tu2〉TE = 〈u1,∇pu2〉+ 〈u2,∇pu1〉
for all u1, u2 ∈ Γ(U) and Condition (1) is

(35) ∇p(ϕ · u) = ∇·(ϕ · u) = ϕ · ∇·u+ dϕ⊗ u = ϕ · ∇pu+ dϕ⊗ u.
The bracket J· , ·Kp is then

Ju1, u2Kp = Ju1, u2KE − ρ∗〈∇pu1, u2〉 = Ju1, u2KE − ρ∗〈∇·u1, u2〉 = Ju1, u2K∇,

the bracket defined in (14). Finally, a straightforward computation shows that the
left-hand side of (33) equals Rbas

∆ (u1, u2)∗u3 ∈ Γ(B∗), which is zero by Proposition
5.5. Li-Bland proves that the bracket J· , ·Kp defines a Lie algebroid structure on
U . More explicitly, he finds that the left-hand side Ψ(u1, u2, u3) of (33) defines
a tensor Ψ ∈ Ω3(U, T ∗M) that is related as follows to the Jacobiator of J· , ·Kp:
JacJ· ,·Kp = (β−1 ◦ ρ∗E)Ψ. He proves so that (wide) linear Dirac structures in TE are
in bijection with pseudo-Dirac structures on E. Hence, our result in Proposition
5.5 is a generalisation of Li-Bland’s result to linear Dirac structures in general
VB-Courant algebroids.

Further, our Theorem 5.9 can be formulated as follows in Li-Bland’s setting.

Theorem 5.14. In the correspondence of linear Dirac structures with pseudo-Dirac
connections in [15], LA-Dirac structures correspond to pseudo-Dirac connections
(U,∇p) such that

(1) U ⊆ E is an isotropic (or ‘quadratic’) subbundle, i.e. U⊥ ⊆ U ,
(2) ∇p sends U⊥ to zero and so, by Condition (2) in Definition 5.13, has image

in U/U⊥ ⊆ E/U⊥ ' U∗,
(3) the induced ordinary connection ∇p : Γ(U/U⊥)→ Ω1(M,U/U⊥) is flat.

We propose to call these pseudo-Dirac connections quadratic pseudo-Dirac
connections. Note that∇p equals ∇̄ : X(M)×Γ(U/U⊥)→ Γ(U/U⊥) ∇̄X ū = ∇Xu,
u ∈ Γ(U) and X ∈ X(M), for any metric connection ∇ : X(M)×Γ(U)→ Γ(U) such
that [∇] = ∇p. Such a connection must preserve U by Condition (2) in Proposition
5.9, and so also U⊥ since it is metric. The condition R∇(X1, X2)u ∈ Γ(U⊥) for all
X1, X2 ∈ X(M) and u ∈ Γ(U) in Proposition 5.9 is then equivalent to R∇̄ = 0.

5.4. The Manin pair associated to an LA-Dirac structure. Consider as
before an LA-Courant algebroid E with sides B and Q and with core Q∗, and an
LA-Dirac structure D

E //

��

Q

��
B // M

D //

��

U

��
B // M

in E with core U◦. Since ∂Q restricts to a map from U◦ to U , we can define the
vector bundle

B =
U ⊕Q∗

graph(−∂Q|U◦)
→M.

This vector bundle is anchored by the map

ρB : B→ TM, ρB(u⊕ τ) = ρQ(u+ ∂Qτ) = ρQ(u) + ρB(∂Bτ).
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Note that this map is well-defined because

ρB(−∂Qτ ⊕ τ) = ρQ(−∂Qτ + ∂Qτ) = 0

for all τ ∈ U◦. We will show that there is a symmetric non-degenerate pairing 〈· , ·〉B
on B×M B and a bracket J· , ·KB on Γ(B) such that

(B→M,ρB, 〈· , ·〉B, J· , ·KB)

is a Courant-algebroid. We define the pairing on B by

〈u1 ⊕ τ1, u2 ⊕ τ2〉B = 〈u1, τ1〉+ 〈u2, τ2〉+ 〈τ1, ∂Qτ2〉.

It is easy to check that this pairing is well-defined and non-degenerate and that the
induced map DB : C∞(M)→ Γ(B) given by

〈DBf, u⊕ τ〉F = ρB(u⊕ τ)(f)

can alternatively be defined by DBf = 0⊕ ρ∗Qdf .
Choose as before a Lagrangian splitting of E that is adapted to D, and recall

that the linear Courant algebroid structure and the linear Lie algebroid structure
on E are then encoded by a split Lie 2-algebroid and by a self-dual 2-representation,
respectively, both denoted as usual. We define the bracket on Γ(B) by

Ju1 ⊕ τ1, u2 ⊕ τ2KB
=(Ju1, u2KU +∇∂Bτ1u2 −∇∂Bτ2u1)⊕ (Jτ1, τ2KQ∗ + ∆u1

τ2 −∆u2
τ1 + ρ∗Qd〈τ1, u2〉).

(36)

A quick computation as the one at the end of the proof of Theorem 4.1 show that
this bracket does not depend on the choice of Lagrangian splitting.

Theorem 5.15. Let (D,U,B,M) be an LA-Dirac structure in a LA-Courant alge-
broid (E, Q,B,M). Then the vector bundle

B =
U ⊕Q∗

graph(−∂Q|U◦)
→M,

with the anchor ρB, the pairing 〈· , ·〉B and the bracket J· , ·KB, is a Courant algebroid.
Further, U is a Dirac structure in B, via the inclusion U ↪→ B, u 7→ u⊕ 0.

The proof of Theorem 5.15 can be found in Appendix A.

Corollary 5.16. Let (D,U,B,M) be an LA-Dirac structure in an LA-Courant
algebroid (E, B,Q,M) (with core Q∗). The Manin pair (B, U) defined in Theorem
5.15 and the degenerate Courant algebroid Q∗ satisfy the following conditions:

(1) There is a morphism ψ : Q∗ → B of degenerate Courant algebroids and an
embedding ι : U → Q over the identity on M

(2) ι is compatible with the anchors: ρQ ◦ ι = ρB|U ,
(3) ψ(Q∗) + U = B and
(4) 〈ψ(τ), u〉B = 〈ι(u), τ〉 for all τ ∈ Q∗ and u ∈ U .

Proof. Take an LA-Dirac structure (D,U,B,M) in an LA-Courant algebroid
(E, Q,B,M). The morphism ψ : Q∗ → B defined by ψ(τ) 7→ 0 ⊕ τ is obviously
a morphism of degenerate Courant algebroids. Conditions (1)–(4) are then immedi-
ate. �
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Conversely take a Manin pair (B, U) over M satisfying with Q∗ the conditions in
Corollary 5.16 and identify U with a subbundle of Q. If τ ∈ U◦ ⊆ Q∗, then ψ(τ)
satisfies

〈u, ψ(τ)〉B = 〈u, τ〉 = 0

for all u ∈ U . Since U is a Dirac structure, we find that ψ restricts to a map
U◦ → U . Conversely, we find easily that ψ(τ) ∈ U if and only if τ ∈ U◦. Next
choose τ1 ∈ U◦ and τ2 ∈ Q∗. Then since ψ(τ1) ∈ U ,

〈ψ(τ1), τ2〉 = 〈ψ(τ1), ψ(τ2)〉B = 〈τ1, τ2〉Q∗ = 〈∂Qτ1, τ2〉,
which shows that ψ|U◦ = ∂Q|U◦ . In particular, ∂Q sends U◦ to U , and U◦ is
isotropic in Q∗. Consider the vector bundle map U ⊕Q∗ → B, (u, τ) 7→ u+ ψ(τ).
By assumption, this map is surjective. Its kernel is the set of pairs (u, τ) with
u = −ψ(τ), i.e. the graph of −∂Q|U◦ : U◦ → U . It follows that

(37) B ' U ⊕Q∗

graph(−∂Q|U◦ : U◦ → U)
.

Hence, we can use the notation u⊕ τ for u+ ψ(τ) ∈ B.
In the case of an LA-Courant algebroid (TA⊕AT ∗A, TM⊕A∗, A,M) as in §3.3.2,

for a Lie algebroid A, we could show in [11] that Manin pairs as in Corollary 5.16
are in bijection with LA-Dirac structures on A. That is, given a Manin pair (B, U)
with an inclusion U ↪→ TM ⊕ A∗ and a degenerate Courant algebroid morphism
A⊕ T ∗M → B satisfying (1)–(4), then via (37), there exists a Lagrangian splitting
of TA⊕A T ∗A such that the Courant bracket on B is given by (36).

Appendix A. Proof of Theorem 5.15

Note that in the following computations, we will make use of the identity ∂Q = ∂∗Q
without always mentioning it. We begin by proving the following two lemmas.

Lemma A.1. Consider an LA-Courant algebroid (E, Q,B,M). The bracket J· , ·KQ∗
on sections of the core Q∗ satisfies the following equation:

R(∂Bτ1, ∂Bτ2)q =−∆qJτ1, τ2KQ∗ + J∆qτ1, τ2KQ∗ + Jτ1,∆qτ2KQ∗

+ ∆∇∂Bτ2qτ1 −∆∇∂Bτ1qτ2 − ρ
∗
Qd〈τ1,∇∂Bτ2q〉

(38)

for all q ∈ Γ(Q) and τ1, τ2 ∈ Γ(Q∗).

Proof. The proof is just a computation using (M1) and (22). We have

∆qJτ1, τ2KQ∗ − J∆qτ1, τ2KQ∗ − Jτ1,∆qτ2KQ∗ + ∆∇∂Bτ1qτ2

−∆∇∂Bτ2qτ1 + ρ∗Qd〈τ1,∇∂Bτ2q〉
=∆q∆∂Qτ1τ2 −∆q∇∗∂Bτ2τ1 −∆∂Q(∆qτ1)τ2 +∇∗∂Bτ2∆qτ1 −∆∂Qτ1∆qτ2

+∇∗∂B(∆qτ2)τ1 + ∆∇∂Bτ1qτ2 −∆∇∂Bτ2qτ1 + ρ∗Qd〈τ1,∇∂Bτ2q〉

Replacing ∆q∆∂Qτ1τ2 −∆∂Qτ1∆qτ2 by R∆(q, ∂Qτ1)τ2 + ∆Jq,∂Qτ1Kτ2 and reordering
the terms yields

R∆(q, ∂Qτ1)τ2 + ∆Jq,∂Qτ1K−∂Q(∆qτ1)+∇∂Bτ1qτ2 −∆q∇∗∂Bτ2τ1 +∇∗∂Bτ2∆qτ1

+∇∗∂B(∆qτ2)τ1 −∆∇∂Bτ2qτ1 + ρ∗Qd〈τ1,∇∂Bτ2q〉.

Since R∆(q, ∂Qτ1)τ2 = 〈i∂Qτ1 iqω, ∂Bτ2〉 by (13), we can now use (22) and ∇q ◦∂B =
∂B ◦∆q to replace

R∆(q, ∂Qτ1)τ2 −∆q∇∗∂Bτ2τ1 +∇∗∂Bτ2∆qτ1 −∆∇∂Bτ2qτ1 +∇∗∇q∂Bτ2τ1
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by−〈∇∇·∂Bτ2q, τ1〉+R(∂Bτ2, ∂Bτ1)q. We use (M1) to replace ∆Jq,∂Qτ1K−∂Q(∆qτ1)+∇∂Bτ1qτ2
by −∆∂∗B〈τ1,∇·q〉τ2. These two steps yield that the right hand side of our equation is

− 〈∇∇·∂Bτ2q, τ1〉+R(∂Bτ2, ∂Bτ1)q −∆∂∗B〈τ1,∇·q〉τ2 + ρ∗Qd〈τ1,∇∂Bτ2q〉.

To conclude, let us show that

−〈∇∇·∂Bτ2q, τ1〉 −∆∂∗B〈τ1,∇·q〉τ2 + ρ∗Qd〈τ1,∇∂Bτ2q〉 ∈ Γ(Q∗)

vanishes. On q′ ∈ Γ(Q), this is

− 〈∇∇q′ (∂Bτ2)q, τ1〉+ 〈J∂∗B〈∇·q, τ1〉, q′K, τ2〉+ ρQ(q′)〈τ1,∇∂Bτ2q〉
=− 〈∇∇q′ (∂Bτ2)q, τ1〉+ 〈∆q′τ2, ∂

∗
B(〈∇·q, τ1〉)〉

=− 〈∇∇q′ (∂Bτ2)q, τ1〉+ 〈∇∂B(∆q′τ2)q, τ1〉 = 0.

We have used (11) and (2) in the first line, as well as for the first equality. To
conclude, we have used ∂B ◦∆q′ = ∇q′ ◦ ∂B by (12). �

Lemma A.2. The bracket on Q∗ satisfies

(39) Jρ∗Qdf, τKQ∗ = 0

for all f ∈ C∞(M) and τ ∈ Γ(Q∗).

Proof. By (21), we have Jρ∗Qdf, τKQ∗ = ∇∂Bρ∗Qdfτ−∆∂Qτ (ρ∗Qdf)+ρ∗Qd((ρQ∂Qτ)f).

But ∂Bρ
∗
Q = 0 by (11) and ∆∂Qτ (ρ∗Qdf) = ρ∗Qd(ρQ(∂Qτ)(f)) by (3). �

Now we check that the bracket J· , ·KB in Theorem 5.15 is well-defined. We have
for all υ ∈ Γ(U◦), τ ∈ Γ(Q∗) and u ∈ Γ(U):

Ju⊕ τ, (−∂Qυ)⊕ υK = (−Ju, ∂QυKU +∇∂Bτ (−∂Qυ)−∇∂Bυu)

⊕
(
Jτ, υKQ∗ + ∆uυ −∆−∂Qυτ + ρ∗Qd〈τ,−∂Qυ〉

)
.

By (M1), the properties of 2-representations and (21), this is(
−∂Q(∆uυ) + ∂∗B〈υ,∇·u〉+���

�∇∂Bυu− ∂Q∇∗∂Bτυ −���
�∇∂Bυu
)

⊕
(
−����∆∂Qυτ +∇∂Bτυ +

��
���

�
ρ∗Qd〈τ, ∂Qυ〉+ ∆uυ +���

�∆∂Qυτ −���
���ρ∗Qd〈τ, ∂Qυ〉

)
=
(
−∂Q(∆uυ) + ∂∗B〈υ,∇·u〉 − ∂Q∇∗∂Bτυ

)
⊕
(
∇∗∂Bτυ + ∆uυ

)
.

Since υ ∈ Γ(U◦) and ∇b preserves Γ(U) for all b ∈ Γ(B), the section 〈υ,∇·u〉 of B∗

vanishes and we get

Ju⊕ τ, (−∂Qυ)⊕ υK =
(
−∂Q(∆uυ +∇∗∂Bτυ)

)
⊕
(
∇∗∂Bτυ + ∆uυ

)
.

Because ∆u preserves as well Γ(U◦), the sum ∇∗∂Bτυ + ∆uυ is a section of U◦, and
so Ju⊕ τ, (−∂Qυ)⊕ υK is zero in B.

We now check the Courant algebroid axioms (CA1), (CA2) and (CA3). The last
one, (CA3), is immediate:

Ju1 ⊕ τ1, u2 ⊕ τ2KB + Ju2 ⊕ τ2, u1 ⊕ τ1KB
= 0⊕

(
ρ∗Qd〈τ1, ∂Qτ2〉+ ρ∗Qd〈τ1, u2〉+ ρ∗Qd〈τ2, u1〉

)
= 0⊕ ρ∗Qd〈u1 ⊕ τ1, u2 ⊕ τ2〉B

= DB〈u1 ⊕ τ1, u2 ⊕ τ2〉B.
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Next we prove (CA2). We have, using (21) to replace Jτ1, τ2KQ∗ by −∆∂Qτ2τ1 +
∇∂Bτ1τ2 + ρ∗Qd〈τ1, ∂Qτ2〉:

〈Ju1 ⊕ τ1, u2 ⊕ τ2KB, u3 ⊕ τ3〉B
= 〈Ju1, u2KU +∇∂Bτ1u2 −∇∂Bτ2u1, τ3〉
+ 〈−∆∂Qτ2τ1 +∇∗∂Bτ1τ2 + ρ∗Qd〈τ1, ∂Qτ2〉+ ∆u1

τ2 −∆u2
τ1 + ρ∗Qd〈τ1, u2〉, u3 + ∂Qτ3〉.

We sum 〈Ju1 ⊕ τ1, u2 ⊕ τ2KB, u3 ⊕ τ3〉B with 〈u2 ⊕ τ2, Ju1 ⊕ τ1, u3 ⊕ τ3KB〉B, and
replace only in the first summand the term 〈∆u1

τ2, ∂Qτ3〉 by ρQ(u1)〈τ2, ∂Qτ3〉 −
〈τ2, Ju1, ∂Qτ3K〉. This yields

〈Ju1 ⊕ τ1, u2 ⊕ τ2KB, u3 ⊕ τ3〉B + 〈u2 ⊕ τ2, Ju1 ⊕ τ1, u3 ⊕ τ3KB〉B
= ρQ(u1)〈u2, τ3〉 −���

���〈u2,∆u1
τ3〉+ 〈∇∂Bτ1u2 −∇∂Bτ2u1, τ3〉

− 〈∆∂Qτ2τ1, u3〉+ 〈∇∗∂Bτ1τ2, u3〉+ ρQ(u3)〈τ1, ∂Qτ2〉+���
���〈∆u1

τ2, u3〉 − 〈∆u2
τ1, u3〉

+ ρQ(u3)〈τ1, u2〉 − 〈∆∂Qτ2τ1, ∂Qτ3〉+ 〈∇∗∂Bτ1τ2, ∂Qτ3〉+ ρQ(∂Qτ3)〈τ1, ∂Qτ2〉
+ ρQ(u1)〈τ2, ∂Qτ3〉 − 〈τ2, Ju1, ∂Qτ3K〉 − 〈∆u2

τ1, ∂Qτ3〉+ ρQ(∂Qτ3)〈τ1, u2〉
+ ρQ(u1)〈u3, τ2〉 −���

���〈u3,∆u1
τ2〉+ 〈∇∂Bτ1u3 −∇∂Bτ3u1, τ2〉

− 〈∆∂Qτ3τ1, u2〉+ 〈∇∗∂Bτ1τ3, u2〉+ ρQ(u2)〈τ1, ∂Qτ3〉+���
���〈∆u1

τ3, u2〉 − 〈∆u3
τ1, u2〉

+ ρQ(u2)〈τ1, u3〉 − 〈∆∂Qτ3τ1, ∂Qτ2〉+ 〈∇∗∂Bτ1τ3, ∂Qτ2〉+ ρQ(∂Qτ2)〈τ1, ∂Qτ3〉
+ 〈∆u1

τ3, ∂Qτ2〉 − 〈∆u3
τ1, ∂Qτ2〉+ ρQ(∂Qτ2)〈τ1, u3〉.

We reorder the remaining terms and replace eight times sums like ρQ(∂Qτ2)〈τ1, u3〉−
〈∆∂Qτ2τ1, u3〉 by 〈J∂Qτ2, u3K, τ1〉 (2), and three times sums like 〈∇∂Bτ1u2, τ3〉 +
〈u2,∇∗∂Bτ1τ3〉 by ρB(∂Bτ1)〈u2, τ3〉. This leads to

〈Ju1 ⊕ τ1, u2 ⊕ τ2K, u3 ⊕ τ3〉B + 〈u2 ⊕ τ2, Ju1 ⊕ τ1, u3 ⊕ τ3K〉B
= ρQ(u1)〈u2 ⊕ τ2, u3 ⊕ τ3〉B
+((((

((((〈J∂Qτ2, ∂Qτ3K, τ1〉+(((
((((〈J∂Qτ2, u3K, τ1〉+(((

((((〈Ju3, ∂Qτ2K, τ1〉+((((
((〈Ju2, u3K, τ1〉

+((((
((〈Ju3, u2K, τ1〉+((((

(((〈J∂Qτ3, u2K, τ1〉+((((
(((〈Ju2, ∂Qτ3K, τ1〉+(((

((((
(

〈J∂Qτ3, ∂Qτ2K, τ1〉
+ ρB(∂Bτ1)〈u2, τ3〉+ ρB(∂Bτ1)〈τ3, ∂Qτ2〉+ ρB(∂Bτ1)〈u3, τ2〉
− 〈∇∂Bτ2u1, τ3〉 − 〈τ2, Ju1, ∂Qτ3K〉 − 〈∇∂Bτ3u1, τ2〉+ 〈∆u1

τ3, ∂Qτ2〉.

The four last terms cancel each other by (M1) and ∂Q = ∂∗Q. This yields

〈Ju1 ⊕ τ1, u2 ⊕ τ2K, u3 ⊕ τ3〉B + 〈u2 ⊕ τ2, Ju1 ⊕ τ1, u3 ⊕ τ3K〉B
= (ρQ(u1) + ρB∂Bτ1)〈u2 ⊕ τ2, u3 ⊕ τ3〉B = ρB(u1 ⊕ τ1)〈u2 ⊕ τ2, u3 ⊕ τ3〉B.

Finally we check the Jacobi identity in Leibniz form (CA1). We will check that

JacJ· ,·K(u1 ⊕ τ1, u2 ⊕ τ2, u3 ⊕ τ3) = (−∂Qυ)⊕ υ

with υ = (R(∂Bτ1, ∂Bτ2)u3−〈iu2
iu1
ω, ∂Bτ3〉)+cyclic permutations. Since by Propo-

sition 5.9 iu2 iu1ω has image in U◦ for all u1, u2 ∈ Γ(U) and R(b1, b2) restricts to a
morphism U → U◦ for all b1, b2 ∈ Γ(B) by Proposition 5.5, υ is a section of U◦ and
so JacJ· ,·K(u1 ⊕ τ1, u2 ⊕ τ2, u3 ⊕ τ3) will be zero in B.
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Using (29), (3), (39) and (11), we find

JJu1 ⊕ τ1, u2 ⊕ τ2K, u3 ⊕ τ3K

=
(
JJu1, u2KU , u3KU + J∇∂Bτ1u2 −∇∂Bτ2u1, u3KU

+∇[∂Bτ1,∂Bτ2]+∂B(∆u1
τ2−∆u2

τ1)u3 −∇∂Bτ3(Ju1, u2KU +∇∂Bτ1u2 −∇∂Bτ2u1)
)

⊕
(
JJτ1, τ2KQ∗ , τ3KQ∗ + J∆u1

τ2 −∆u2
τ1, τ3KQ∗

+ ∆Ju1,u2KU+∇∂Bτ1u2−∇∂Bτ2u1
τ3 −∆u3

(Jτ1, τ2KQ∗ + ∆u1
τ2 −∆u2

τ1)

+ ρ∗Qd 〈Jτ1, τ2KQ∗ + ∆u1
τ2 −∆u2

τ1, u3〉
)
.

In the same manner, we compute

Ju1 ⊕ τ1, Ju2 ⊕ τ2, u3 ⊕ τ3KK
=

q
u1 ⊕ τ1, (Ju2, u3KU +∇∂Bτ2u3 −∇∂Bτ3u2)⊕ (Jτ2, τ3KQ∗ + ∆u2

τ3 −∆u3
τ2 + ρ∗Qd〈τ2, u3〉)

y

=
(
Ju1, Ju2, u3KU KU + Ju1,∇∂Bτ2u3 −∇∂Bτ3u2KU

+∇∂Bτ1(Ju2, u3KU +∇∂Bτ2u3 −∇∂Bτ3u2)−∇[∂Bτ2,∂Bτ3]+∂B(∆u2
τ3−∆u3

τ2)u1

)
⊕
(
Jτ1, Jτ2, τ3KQ∗KQ∗ + Jτ1,∆u2

τ3 −∆u3
τ2KQ∗ + ρ∗Qd(ρQ(∂Qτ1)〈τ2, u3〉)

+ ∆u1
(Jτ2, τ3KQ∗ + ∆u2

τ3 −∆u3
τ2) + ρ∗Qd(ρQ(u1)〈τ2, u3〉)−∆Ju2,u3KU+∇∂Bτ2u3−∇∂Bτ3u2

τ1

+ ρ∗Qd〈τ1, Ju2, u3KU +∇∂Bτ2u3 −∇∂Bτ3u2〉
)

Since JacJ· ,·KU (u1, u2, u3) = 0 and ∂B ◦∆q = ∇q ◦ ∂B for all q ∈ Γ(Q), the U -term
of JacJ· ,·K(u1 ⊕ τ1, u2 ⊕ τ2, u3 ⊕ τ3) equals

J∇∂Bτ1u2 −∇∂Bτ2u1, u3KU
+∇[∂Bτ1,∂Bτ2]+∇u1∂Bτ2−∇u2∂Bτ1u3 −∇∂Bτ3(Ju1, u2KU +∇∂Bτ1u2 −∇∂Bτ2u1)

+ Ju2,∇∂Bτ1u3 −∇∂Bτ3u1KU
+∇∂Bτ2(Ju1, u3KU +∇∂Bτ1u3 −∇∂Bτ3u1)−∇[∂Bτ1,∂Bτ3]+∇u1∂Bτ3−∇u3∂Bτ1u2

− Ju1,∇∂Bτ2u3 −∇∂Bτ3u2KU
−∇∂Bτ1(Ju2, u3KU +∇∂Bτ2u3 −∇∂Bτ3u2) +∇[∂Bτ2,∂Bτ3]+∇u2∂Bτ3−∇u3∂Bτ2u1.

Note that since for any b1, b2 ∈ Γ(B), R(b1, b2) restricts to a section of Hom(U,U◦)
(see §5.2), the last summand on the right hand side of (M4) vanishes on sections of
U . By sorting out the terms and using (M4) on sections of U , we get

−R∇(∂Bτ3, ∂Bτ1)u2 −R∇(∂Bτ1, ∂Bτ2)u3 −R∇(∂Bτ2, ∂Bτ3)u1

+ ∂Q〈iu2
iu1
ω, ∂Bτ3〉+ ∂Q〈iu3

iu2
ω, ∂Bτ1〉+ ∂Q〈iu1

iu3
ω, ∂Bτ2〉.
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Since R∇ = ∂Q ◦ R, this is −∂Qυ. We conclude by computing the Q∗-part of
JacJ· ,·K(u1 ⊕ τ1, u2 ⊕ τ2, u3 ⊕ τ3). Again, because JacJ· ,·KQ∗ (τ1, τ2, τ3) = 0, we get

J∆u1
τ2 −∆u2

τ1, τ3KQ∗ + ∆Ju1,u2KU+∇∂Bτ1u2−∇∂Bτ2u1
τ3 −∆u3

(Jτ1, τ2KQ∗ + ∆u1
τ2 −∆u2

τ1)

+ ρ∗Qd 〈Jτ1, τ2KQ∗ +���∆u1
τ2 −���∆u2

τ1, u3〉+ Jτ2,∆u1
τ3 −∆u3

τ1KQ∗ + ρ∗Qd(ρQ(∂Qτ2)〈τ1, u3〉)

+ ∆u2
(Jτ1, τ3KQ∗ + ∆u1

τ3 −∆u3
τ1) +

((((
((((

(
ρ∗Qd(ρQ(u2)〈τ1, u3〉)−∆Ju1,u3KU+∇∂Bτ1u3−∇∂Bτ3u1

τ2

+ ρ∗Qd〈τ2,���
��Ju1, u3KU +∇∂Bτ1u3 −∇∂Bτ3u1〉 − Jτ1,∆u2τ3 −∆u3τ2KQ∗ − ρ∗Qd(ρQ(∂Qτ1)〈τ2, u3〉)

−∆u1(Jτ2, τ3KQ∗ + ∆u2τ3 −∆u3τ2)−
(((

((((
((

ρ∗Qd(ρQ(u1)〈τ2, u3〉) + ∆Ju2,u3KU+∇∂Bτ2u3−∇∂Bτ3u2
τ1

− ρ∗Qd〈τ1,���
��Ju2, u3KU +∇∂Bτ2u3 −∇∂Bτ3u2〉

The six cancelling terms cancel by (2). Reordering the terms, we get using Lemma
A.1:

−R∆(u3, u1)τ2 −R∆(u2, u3)τ1 −R∆(u1, u2)τ3

+R(∂Bτ2, ∂Bτ3)u1 +R(∂Bτ1, ∂Bτ2)u3 −R(∂Bτ1, ∂Bτ3)u2

− ρ∗Qd〈τ2, ∂Q∆u3τ1〉+ ρ∗Qd 〈Jτ1, τ2KQ∗ , u3〉+ ρ∗Qd(ρQ(∂Qτ2)〈τ1, u3〉)
+ ρ∗Qd〈τ2,∇∂Bτ1u3〉 − ρ∗Qd(ρQ(∂Qτ1)〈τ2, u3〉).

For the second use of Lemma A.1, we had to replace−Jτ2,∆u3
τ1KQ∗ by J∆u3

τ1, τ2KQ∗−
ρ∗Qd〈τ2, ∂Q∆u3

τ1〉. This is why we get the first term on the third line. Using (13),

we get υ + ρ∗Qdf with f ∈ C∞(M) defined by

f =− 〈τ2, ∂Q∆u3
τ1〉+

〈
∆∂Qτ1τ2 −∇∗∂Bτ2τ1, u3

〉
+ ρQ(∂Qτ2)〈τ1, u3〉

+ 〈τ2,∇∂Bτ1u3〉 − ρQ(∂Qτ1)〈τ2, u3〉
=〈τ2,−∂Q∆u3τ1 − J∂Qτ1, u3K +∇∂Bτ1u3〉+ ρQ(∂Qτ2)〈τ1, u3〉 − 〈∇∗∂Bτ2τ1, u3〉.

By (M1), the first pairing equals −〈τ1,∇∂Bτ2u3〉. Hence, we find f = 0 using
ρB ◦ ∂B = ρQ ◦ ∂Q. We have proved JacJ· ,·K(u1 ⊕ τ1, u2 ⊕ τ2, u3 ⊕ τ3) = (−∂Qυ)⊕ υ.
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[19] K. C. H. Mackenzie. General Theory of Lie Groupoids and Lie Algebroids, volume 213 of
London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,

2005.

[20] K. C. H. Mackenzie. Ehresmann doubles and Drinfel’d doubles for Lie algebroids and Lie
bialgebroids. J. Reine Angew. Math., 658:193–245, 2011.

[21] R. A. Mehta and X. Tang. From double Lie groupoids to local Lie 2-groupoids. Bull. Braz.
Math. Soc. (N.S.), 42(4):651–681, 2011.

[22] R. A. Mehta and X. Tang. Symplectic structures on the integration of exact Courant algebroids.

J. Geom. Phys., 127:68–83, 2018.
[23] J. Pradines. Fibrés vectoriels doubles et calcul des jets non holonomes, volume 29 of Esquisses
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