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Abstract. This paper considers the Pontryagin characters of graded vector

bundles of finite rank, in the cohomology vector spaces of a Lie algebroid
over the same base. These Pontryagin characters vanish if the graded vector

bundle carries a representation up to homotopy of the Lie algebroid. As a

consequence, this gives a strong obstruction to the existence of a representation
up to homotopy on a graded vector bundle of finite rank. In particular, if a

graded vector bundle E[0] ⊕ F [1] → M carries a 2-term representation up to

homotopy of a Lie algebroid A → M , then all the (classical) A-Pontryagin
classes of E and F must coincide.

This paper generalises as well Bott’s vanishing theorem to the setting of

Lie algebroid representations (up to homotopy) on arbitrary vector bundles.
As an application, the main theorems induce new obstructions to the existence

of infinitesimal ideal systems in a given Lie algebroid.
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1. Introduction

Representations up to homotopy of Lie algebroids were found by Arias Abad
and Crainic [2] to be a convenient geometric setting for defining the adjoint repre-
sentation of a Lie algebroid. They showed in [1] that the adjoint representation up
to homotopy is the right notion of adjoint of a Lie algebroid since it can be used
to define its Weil algebra. The precursor notion of strong homotopy representation
could be found already much earlier in [38], in the context of constrained Poisson
algebras – incidentally, in the study of ideals in constrained Poisson algebras. Fur-
ther, 2-term representations up to homotopy are super-representations in the sense
of Quillen [35].

Gracia-Saz and Mehta found in [17] that these 2-representations are equivalent to
splittings of VB-algebroids. This latter insight in particular led in the last ten years
to advances in the study of VB-algebroids with an additional geometric structure
– see [8], [20, 23], [21, 22], [16], [27], [14], [36] among others. Representations up
to homotopy, in particular 2-representations, were further richly studied in e.g. [5],
[7], [32], [39], [3], [25], [4].

Obstructions to the existence of n-representations. Recall the definition of
an n-term representation up to homotopy [2], also called flat superconnection in [17]
following [35], but named here n-representation for short.

Definition ([2, 17]). Let A → M be a Lie algebroid. Then an n-representation
of A is a graded vector bundle E = E0[0]⊕ . . .⊕En−1[n−1]→M with an operator

D : Ω(A,E)• → Ω(A,E)•+1

that increases the total degree by 1 and satisfies D2 = 0 as well as

(1) D(ω ∧ η) = dAω ∧ η + (−1)lω ∧ Dη

for ω ∈ Ωl(A) and η ∈ Ω(A,E)•.

An n-connection (or n-term connection up to homotopy) of a Lie algebroid
A on a graded vector bundle E = E0[0]⊕ . . .⊕En−1[n− 1]→M is defined to
be an operator D as in the definition above, but without the condition D2 = 0, see
e.g. [35, 17, 31].

The A-Pontryagin classes of a vector bundle E measure “the failure of E to have
a flat A-connection” – or in other words to carry a representation of A. Therefore,
it is natural to ask if there are characteristic classes of a graded vector bundle E =
E0[0]⊕ . . .⊕En−1[n−1]→M that measure its failure to carry an n-representation
of a Lie algebroid A.
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This paper explores the fact that the Chern-Weil construction of Pontryagin
characters carries over almost word by word to the setting of n-connections, if
the graded trace on End(E) replaces the trace on endomorphisms of an ordinary
vector bundle [35, 31]. In short, given an n-connection, its curvature D2 is (graded)
Ω•(A)-linear and “equals” a form RD ∈ Ω(A,End(E))• of total degree 2. The

graded trace ŝtr(RlD) of the l-th power of this form is just an element of Ω2l(A),

with dA

(
ŝtr(RlD)

)
= 0, hence defining a cohomology class[

ŝtr(RlD)
]
∈ H2l(A),

called here the l-th Pontryagin character of the graded vector bundle. These
classes, for l ≥ 1, do not depend on the choice of the n-connection on E, and they
generate together the A-Pontryagin algebra of the graded vector bundle E,
as an R-subalgebra of H•(A). Obviously the A-Pontryagin algebra of E vanishes if
E carries an n-representation of A.

A connection ∇ : Γ(A)×Γ(E)→ Γ(E) that preserves the grading is an example
of an n-connection of A on E. Therefore the generators above of Pont•A(E) are
alternating sums of the classical Pontryagin characters of the terms Ei of E, i =
0, . . . , n − 1. This immediately yields the following theorem, which seems to have
been overlooked so far in the literature.

Theorem 1. Let E = E0[0] ⊕ . . . ⊕ En−1[n − 1] be a graded vector bundle over
a smooth manifold M , and let A → M be a Lie algebroid. If there exists an n-
representation D of A on E, then the Pontryagin characters σlA(Ei), l > 1, of the
vector bundles Ei, i = 0, . . . , n− 1, satisfy the equations

(2)

n−1∑
i=0

(−1)iσlA(Ei) = 0 ∈ H2l(A)

for all l > 1.

In particular, for a graded vector bundle with grading concentrated in degrees 0
and 1, this theorem gives a simple obstruction to the existence of a 2-representation
(see Theorem 4.13 below).

Theorem 2. Let E and F be smooth vector bundles over M , and let A → M
be a Lie algebroid. If there is a 2-representation of A on E[0] ⊕ F [1], then the
A-Pontryagin classes of E and F are equal:

plA(E) = plA(F ) ∈ H l(A)

for all l ≥ 1.

Using the adjoint representation up to homotopy of a Lie algebroid A → M ,
which is a 2-representation of A on A[0]⊕ TM [1], this yields the following result.

Theorem 3. Let A be a vector bundle over a smooth manifold M , and let ρ : A→
TM be a vector bundle morphism over the identity. If A → M carries a Lie
algebroid structure with anchor ρ, then the Pontryagin classes of A and TM satisfy

ρ?
(
pl(A)

)
= ρ?

(
pl(TM)

)
∈ H l(A)

for all l ≥ 1.

This is in fact a special case of the following theorem, which is proved using a
similar method.
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Theorem 4. Let A and B be Lie algebroids over M . If there is a Lie algebroid
morphism ∂ : B → A over the identity on M , then

∂∗plA(A) = plB(A) = plB(B) = ∂∗plA(B) ∈ H l(B)

for all l ≥ 1.

Bott’s vanishing theorems and obstructions to the existence of ideals
in Lie algebroids. The starting point of this paper is actually Bott’s vanishing
theorem [6] on Pontryagin classes and foliations:

Theorem ([6]). Let M be a smooth manifold and let FM be a subbundle of codi-
mension q of TM . If FM is involutive, then the Pontryagin spaces

Pontl (TM/FM ) ⊆ H l(M)

of TM/FM are all trivial for l > 2q.

Since an involutive subbundle FM ⊆ TM is always represented on the normal
bundle TM/FM via the Bott connection [6], this theorem is a special case of the
following result (see Theorem 3.1).

Theorem 5. Let E be a smooth vector bundle over a smooth manifold M and let A
be a Lie algebroid over M . If there exists a Lie subalgebroid B of A of codimension
q with a linear representation ∇ : Γ(B) × Γ(E) → Γ(E), then the A-Pontryagin
spaces

PontlA(E) ⊆ H l(A)

are all trivial for l > 2q.

The generalisation of this theorem to the setting of Pontryagin algebras of a
graded vector bundle is given by Theorem 4.19. Although it does not yet lead to
additional obstruction results for particular examples, its proof is given in detail
for completeness and future applications.

The author’s original motivation for proving Theorem 5 is her search for topo-
logical obstructions to the existence of ideals in Lie algebroids. Jointly with Ortiz,
the author identified in [27] what they consider the “right notion” of ideals in
Lie algebroids. These objects are called infinitesimal ideal systems and defined as
follows.

Definition ([27],[18]). Let (q : A → M,ρ, [· , ·]) be a Lie algebroid, FM ⊆ TM an
involutive subbundle, J ⊆ A a subbundle over M such that ρ(J) ⊆ FM , and ∇ a
flat partial FM -connection on A/J with the following properties:

(1) If a ∈ Γ(A) is ∇-parallel1, then [a, j] ∈ Γ(J) for all j ∈ Γ(J).
(2) If a, b ∈ Γ(A) are ∇-parallel, then [a, b] is also ∇-parallel.
(3) If a ∈ Γ(A) is ∇-parallel, then ρ(a) is ∇FM -parallel, where

∇FM : Γ(FM )× Γ(TM/FM )→ Γ(TM/FM ), ∇FM

X Ȳ = [X,Y ]

is the Bott connection associated to FM .

Then the triple (FM , J,∇) is an infinitesimal ideal system in A.

1A section a ∈ Γ(A) is said to be ∇-parallel if ∇X ā = 0 for all X ∈ Γ(FM ). Here, ā is the
class of a in Γ(A/J) ' Γ(A)/Γ(J).
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The first axiom implies immediately that J ⊆ A is a subalgebroid of A. Infinites-
imal ideal systems are an infinitesimal version of the ideal systems in [19, 29] – the
latter are exactly the kernels of fibrations of Lie algebroids [19]. Infinitesimal ideal
systems already appear in [18] (not under this name) in the context of geometric
quantization as the infinitesimal version of polarizations on groupoids. Moreover,
the special case where FM = TM has been studied independently in [12] in relation
with a modern approach to Cartan’s work on pseudogroups.

Consider an involutive subbundle FM ⊆ TM and the Bott connection
∇FM : Γ(FM ) × Γ(TM/FM ) → Γ(TM/FM ) associated to it. Then the triple
(FM , FM ,∇FM ) is an infinitesimal ideal system in the Lie algebroid TM . There-
fore, Bott’s vanishing theorem provides an obstruction result for this particular class
of infinitesimal ideal systems. The general goal of this paper is to find adequate
generalisations of Bott’s vanishing theorem, yielding obstructions to the existence
of infinitesimal ideal systems in a given Lie algebroid A → M – in terms of the
Pontryagin classes of A and TM .

The following result (see Propositions 5.4 and 5.5) gives the first set of informa-
tion that can be extracted from Theorem 5 and the definition of an infinitesimal
ideal system.

Proposition 1.1. Let (FM , J,∇) be an infinitesimal ideal system in a Lie algebroid
A → M . Let s be the codimension of J in A and let q be the codimension of FM
in TM . Then

(1) the Pontryagin spaces Pontl(A/J) and Pontl(TM/FM ) in H•(M) all van-
ish for l > 2q, and

(2) the Pontryagin spaces PontlA(A/J) and PontlA(TM/FM ) in H•(A) all van-
ish for l > 2 min{s, q}.

However, this result turns out to be rather unsatisfactory on its own because it
uses only very few of the axioms of an infinitesimal ideal system: (1), (2) and (3)
in the definition are not used in the proof of this proposition. These three axioms
ensure [14] that an infinitesimal ideal system in a Lie algebroid A → M defines a
subrepresentation J [0]⊕FM [1] of the adjoint representation up to homotopy of A on
A[0]⊕TM [1], after the choice of a suitable connection. Theorem 2 hence translates
this fact to the context of A-Pontryagin classes of FM and J . More precisely, the
results in [14] and Theorem 2 lead to further obstructions to the existence of an
infinitesimal ideal system in a Lie algebroid A (see Theorem 5.6):

Theorem 6. Let (A → M,ρ, [· , ·]) be a Lie algebroid. If (FM , J,∇) is an infini-
tesimal ideal system in A, then

plA(J) = plA(FM )

for all l ≥ 1.

Outline of the paper. Section 2 recalls in detail the Chern-Weil construction
of the Pontryagin classes of a vector bundle, using the powerful modern language
exposed in [13]. The author recommends here as well the reference [40], which sum-
marises in a beautiful manner the construction of characteristic classes associated
to vector bundles and principal bundles, as well as some of their applications in
geometry and topology.

Section 3 proves the first generalisation of Bott’s vanishing theorem in [6], and
proves a refinement of it in the case where an appropriate Atiyah class vanishes.
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Section 4 studies connections up to homotopy and the Pontryagin algebras of
graded vector bundles of finite rank. The obstruction to the existence of represen-
tations up to homotopy is also proved there, as well as Bott’s vanishing theorem
for graded vector bundles.

Section 5 finally applies the prior results to the study of characteristic classes
defined by infinitesimal ideal systems in Lie algebroids.

Outlook. The construction of the A-Pontryagin algebra of a graded vector bundle
presented here can be extended to a construction of the (M,Q)-Pontryagin algebra
of a graded vector bundle, for a Lie n-algebroid (M,Q). This is the subject of a
project in progress that is joint with Papantonis.

Acknowledgements. The author warmly thanks her student Jannick Rönsch for
writing his Bachelor thesis about Section 2.2 and Theorem 5, which could already
be found in an earlier draft of this article. The review of his thesis, as well as the
supervision meetings, were a source of motivation for the author to continue her
preliminary work on this project.

Finally, the author thanks Theocharis Papantonis for his careful reading, Thomas
Schick for inspiring discussions, and Jim Stasheff for useful comments.

2. Preliminaries

This section recalls the modern definition of Pontryagin classes of a vector bun-
dle. It begins with some background on linear connections on vector bundles and
the associated calculus on differential forms. The second subsection recalls the
definition of the Pontryagin classes of a vector bundle. In this section, the main
reference is [13], but A-Pontryagin classes of a vector bundle were defined in [15].

2.1. Notation and vector-valued forms. Given a Lie algebroid A → M , the
Lie algebroid cohomology defined by the complex (Ω•(A),dA) is written H•(A).
For simplicity, H•(M) is the (de Rham) cohomology of the standard Lie algebroid
TM →M .

Let A be a Lie algebroid over a smooth manifold M and let E →M be a smooth
vector bundle. Then Ω•(A,E) := Γ(∧•A∗⊗E). If A = TM is the standard tangent
Lie algebroid, then Ω•(TM,E) is written Ω•(M,E) for simplicity. The degree of a
(degree-homogeneous) element ω of Ω•(A,E) is written |ω| ∈ N.

For K ∈ Ωl(A,Hom(E,E′)), the graded Ω•(A)-linear operator K̂ : Ω•(A,E) →
Ω•+l(A,E′) is defined by K̂(ω) = K ∧ ω, i.e.

K̂(ω)(a1, . . . , as+l) =
∑

σ∈S(l,s)

(−1)σK(aσ(1), . . . , aσ(l))(ω(aσ(l+1), . . . , aσ(l+s)))

for ω ∈ Ωs(A,E) and a1, . . . , as+l ∈ Γ(A). Here, S(l,s) is the set of (l, s)-shuffles,
i.e. the permutations σ ∈ Sl+s such that σ(1) < . . . < σ(l) and σ(l + 1) < . . . <
σ(l + s).

The space of graded-Ω•(A)-linear operators Ω(A,E) → Ω(A,E′) is denoted by
Hom•Ω(A)(Ω(A,E),Ω(A,E′)). That is, an elementK of Homs

Ω(A)(Ω(A,E),Ω(A,E′)),

for s ≥ 0, is a map K : Ω•(A,E)→ Ω•+s(A,E′) satisfying K(ω ∧ η) = (−1)s·|ω|ω ∧
K(η) for all ω ∈ Ω•(A) and η ∈ Ω•(A,E).
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The map Ω•(A,Hom(E,E′)) → Hom•Ω(A)(Ω(A,E),Ω(A,E′)) given by K 7→
K̂ is a bijection [2], with inverse sending K : Ω•(A,E) → Ω•+s(A,E′) to K0 ∈
Ωs(A,Hom(E,E′)) defined by

K0(a1, . . . , as)(e) = K(e)(a1, . . . , as)

for a1, . . . , as ∈ Γ(A) and e ∈ Γ(E) = Ω0(A,E).
Let now E = ⊕z∈ZEz[z] be a graded vector bundle over M . As always, the

Ω•(A)-module of E-valued forms Ω(A,E)• has a total grading given by deg η =
j + l for η ∈ Ωj(A,El). Here also, there is a bijection between elements K ∈
Ω(A,Hom(E,F ))s and graded-Ω•(A)-linear operators K : Ω(A,E)• → Ω(A,F )•+s
that increase the total degree by s. An element K ∈ Ω(A,Hom(E,F ))s can be
written

K =
s∑
i=0

∑
j−l=s−i

Ki,l,j ∈
s⊕
i=0

⊕
j−l=s−i

Ωi(A,Hom(El, Fj)).

The corresponding K̂ ∈ EndΩ•(A)(Ω(A,E),Ω(A,E))s is given by

K̂ =

s∑
i=0

∑
j−l=s−i

K̂i,l,j ,

with K̂i,l,j : Ω•(A,El) → Ω•+i(A,Fj) defined as before. The inverse to the map ·̂
is easily defined as above.

Finally, the graded commutator of degree-homogeneous elements
K1,K2 ∈ Ω(A,End(E))• can now be defined by

̂[K1,K2] =
[
K̂1, K̂2

]
= K̂1 ◦ K̂2 − (−1)|K1|·|K2|K̂2 ◦ K̂1.

2.2. Linear connections on vector bundles, and vector valued forms. Let
E → M be a vector bundle, and let (A → M,ρ, [· , ·]) be a Lie algebroid over the
same base. Then a linear A-connection ∇ : Γ(A) × Γ(E) → Γ(E) is equivalent to
an operator d∇ : Ω•(A,E)→ Ω•+1(A,E) satisfying

(3) d∇(ω ∧ η) = (dAω) ∧ η + (−1)lω ∧ d∇η

for ω ∈ Ωl(A) and η ∈ Ω•(A,E). Given ∇, the operator d∇ is defined by (3) and
by

d∇e = ∇·e ∈ Ω1(A,E)

for e ∈ Γ(E) = Ω0(A,E). For instance, if E = R ×M with the canonical flat A-
connection ∇af = £ρ(a)(f), then Ω•(A,E) ' Ω•(A) and d∇ =: dA, which satisfies

in addition d2
A = 0 and defines the Lie algebroid cohomology H•(A). In general,

d2
∇ = R̂∇ : Ω•(A,E)→ Ω•+2(A,E),

with R∇ ∈ Ω2(A,End(E)) the curvature tensor of ∇.
Let E and E′ be vector bundles over M , and let∇ and∇′ be linear A-connections

on E and E′, respectively. The reader is invited to check (see also [13]) that for
K ∈ Ωs(A,Hom(E,E′)),

(4) d∇′ ◦ K̂ − (−1)sK̂ ◦ d∇ = ̂d∇HomK,
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where∇Hom : Γ(A)×Γ(Hom(E,E′))→ Γ(Hom(E,E′)) is defined by
(
∇Hom
a φ

)
(e) =

∇′a(φ(e))− φ(∇ae) for a ∈ Γ(A) and e ∈ Γ(E). If E = E′ and ∇ = ∇′, then

(5)
[
d∇, K̂

]
= d∇ ◦ K̂ − (−1)kK̂ ◦ d∇ = ̂d∇EndK.

The trace operator tr : Γ(End(E)) → C∞(M) can be understood as an ele-
ment of Ω0(A,Hom(End(E),R)), and so defines as above an Ω•(A)-linear map

t̂r : Ω•(A,End(E))→ Ω•(A) that preserves the degree.
Equip R×M as above with the flat A-connection £ : Γ(A)×C∞(M)→ C∞(M),

and the vector bundle End(E) with the connection induced by ∇ : Γ(A)× Γ(E)→
Γ(E). Then the induced connection

∇Hom : Γ(A)× Γ(Hom(End(E),R))→ Γ(Hom(End(E),R))

applied to the trace operator reads

(∇Hom
a tr)(φ) = £ρ(a)(tr(φ))− tr

(
∇End
a φ

)
for a ∈ Γ(A) and φ ∈ Γ(End(E)).

Lemma 2.1. With the choices of connections above, ∇Hom
a tr = 0 for all a ∈ Γ(A).

Proof. Take a local frame (e1, . . . , ek) of E over an open set U ⊆ M and consider
the dual local frame (ε1, . . . , εk) of E∗. It is easy to see that for each i, j = 1, . . . , k
and each a ∈ ΓU (A):

(∇Hom
a tr)(ei ⊗ εj) = £ρ(a)(δij)− tr(∇End

a (ei ⊗ εj)) = −
k∑
s=1

〈εs,∇End
a (ei ⊗ εj)(es)〉

= −
k∑
s=1

〈
εs,∇a(δjsei)− 〈εj ,∇aes〉ei

〉
= −〈εj ,∇aei〉+ 〈εj ,∇aei〉 = 0.

�

Lemma 2.1 and (4) yield the equality

(6) dA ◦ t̂r = t̂r ◦ d∇End : Ω•(A,End(E))→ Ω•+1(A).

2.3. A-Pontryagin characters of a vector bundle. As before, consider a Lie al-
gebroid A→M , and a vector bundle E →M of rank k, with a linear A-connection
∇ : Γ(A)× Γ(E)→ Γ(E). Let R∇ ∈ Ω2(A,Hom(TM,A)) be the curvature of ∇.

Define for i ≥ 1 the form Ri∇ ∈ Ω2i(A,End(E)) by

R̂i∇ = R̂∇
i

= d2i
∇ ∈ EndΩ•(A)(Ω

•(A,E)).

Then (5) shows ̂d∇EndRi∇ =
[
d∇, R̂i∇

]
=
[
d∇, R̂∇

i
]

=
[
d∇,d

2i
∇
]

= 0, and so with

(6):

(7) dA(t̂r(Ri∇)) = t̂r(d∇EndRi∇) = 0.

Therefore, t̂r(Ri∇) defines a cohomology class in H2i(A).

Lemma 2.2. Let E → M be a vector bundle and let A → M be a Lie algebroid.
Then the chomology class

[
t̂r(Ri∇)

]
∈ H2i(A) does not depend on the choice of

A-connection ∇ on E, for i ≥ 1.
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This proof is standard; in the context of Lie algebroid Pontryagin classes, it is
due to [15] following a classical method. The proof is omitted here, but done later
in the more general setting of Pontryagin algebras defined by connections up to
homotopy (see Proposition 4.6, and Appendix A); in the same manner as in [35]
for superconnections.

Definition 2.3. Let E be a vector bundle over M and let A→M be a Lie algebroid.

(1) Choose any linear A-connection ∇ on E. The cohomology classes σiA(E) :=[
t̂r(Ri∇)

]
∈ H2i(A), for i ≥ 1, are called the A-Pontryagin characters

of E.
(2) The A-Pontryagin algebra of E is the R-subalgebra Pont•A(E) ⊆ H•(A)

generated by the A-Pontryagin characters.

The Pontryagin algebra is also called the characteristic algebra in [40]. It is easy

to see that PontlA(E) = 0 for l an odd number. It is a standard fact that even

PontlA = 0 for l not divisible by 4. For completeness, Bott’s proof of this fact [6]
is quickly recalled here. Equip the vector bundle E with a smooth metric (i.e. a
positive definite fibrewise pairing), and take the A-connection ∇ : Γ(A) × Γ(E) →
Γ(E) to be metric: 〈∇ae, e′〉 + 〈e,∇ae′〉 = £ρ(a)〈e, e′〉 for a ∈ Γ(A), e, e′ ∈ Γ(E).
Then it is easy to check that 〈R∇(a, b)e, e′〉 = −〈e,R∇(a, b)e′〉 for all a, b ∈ Γ(A),
e, e′ ∈ Γ(E), and inductively

〈Ri∇(a1, b1, a2, b2, . . . , ai, bi)e, e
′〉 = (−1)i〈e,Ri∇(a1, b1, a2, b2, . . . , ai, bi)e

′〉

for i ≥ 1. Then immediately t̂r(Ri∇) = 0 for i odd, and so Pont2i
A (E) = 0 for i odd.

Finally, the A-Pontryagin classes of the vector bundle E can be defined; see
e.g. [40] for detailed explanations. Consider Gl(k,R)-invariant polynomial functions
p : gl(k,R)→ R, i.e. such that for all g ∈ Gl(k,R) and X ∈ gl(k,R)

p(gXg−1) = p(X).

The Gl(k,R)-invariant polynomials on gl(k,R) form an R-algebra, which is gener-
ated as an R-algebra by the polynomials Σ0,Σ1, . . . defined by

Σi(X) = trace(Xi)

for all X ∈ gl(k,R) (see for instance [6]). It follows from Definition 2.3 that
each Gl(k,R)-invariant polynomial p on gl(k,R) defines a closed form p(R∇) ∈
Ω•(A) and an element [p(R∇)] ∈ H•(A). More precisely, if p = q(Σi1 , . . . ,Σil) ∈
R[Σ1,Σ2, . . .], then

p(R∇) = q(Σi1(R∇), . . . ,Σil(R∇)).

For instance, p = Σ2− (Σ1)2 gives p(R∇) = t̂r(R2
∇)− t̂r(R∇)∧ t̂r(R∇). This defines

the Chern-Weil morphism of R-algebras

cwA(E) : Sym•(gl(k,R))Gl(k,R) → H2•(A), p 7→ [p(R∇)] .

The R-subalgebra Pont•A(E) ⊆ H•(A) is the image of this morphism, i.e. the sub-
algebra of all cohomology classes [p(R∇)] defined by Gl(k,R)-invariant polynomial
p on gl(k,R).

For i a positive integer, the characteristic polynomial

(8) det (λ · Ik +X) =

k∑
i=0

fi(X)λk−i
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defines homogeneous polynomials fi of degree i on gl(k,R), for k ≥ i ≥ 0. These
polynomials are obviously Gl(k,R)-invariant, and so for each i ≥ 1, the i-th A-
Pontryagin class of E can be defined as

piA(E) :=

[
f2i

(
i

2π
R∇

)]
∈ H4i(A),

for any choice of connection ∇ : Γ(A) × Γ(E) → Γ(E). The A-Pontryagin classes
of E generate together Pont•A(E) (see for instance [6]). The total A-Pontryagin
class of E is defined by

pA(E) =

[
det

(
Ik +

i

2π
R∇

)]
= 1 + p1

A(E) + p2
A(E) + . . .+ pb

k
2 c ∈ Pont•A(E).

Remark 2.4. Given an ordinary linear connection ∇ : X(M) × Γ(E) → Γ(E) on
a vector bundle E of rank k, a Lie algebroid A→M defines a linear A-connection
∇A : Γ(A)× Γ(E)→ Γ(E) by ∇Aa e = ∇ρ(a)e. It is easy to see that

[p(R∇A)] = ρ?[p(R∇)] ∈ H•(A)

for any Gl(k,R)-invariant polynomial p on gl(k,R). Here, ρ? is the cochain map

ρ? : (Ω•(M),d)→ (Ω•(A),dA),

ρ?(ω)(a1, . . . , as) = ω(ρ(a1), . . . , ρ(as)) for ω ∈ Ωs(M) and a1, . . . , as ∈ Γ(A).
As observed by Fernandes in [15], this yields Pont•A(E) = ρ?(Pont•(E)), or more

precisely cwA(E) = ρ? ◦ cw(E).

3. Bott’s vanishing theorem in a more general setting

This section rephrases Bott’s proof of the vanishing Pontryagin classes of the
normal bundle to an involutive subbundle of the tangent [6]. Since the decisive
object is the Bott connection, i.e. a flat FM -connection on a smooth vector bundle
TM/FM , that can be extended to a linear TM -connection in order to define Pon-
tryagin characters or classes, one can easily prove a similar result for the existence
of a flat partial connection on a general smooth vector bundle. Further, the con-
struction is adapted to the more general A-Pontryagin classes of a vector bundle
E.

3.1. Bott’s vanishing theorem. Let A be a Lie algebroid over a smooth manifold
M , and let B be a subalgebroid of A over M . Let n be the rank of A, and let q be
the codimension of B in A. Let E be a smooth vector bundle over M , with a flat
B-connection ∇. It is not difficult to see that ∇ can be extended to an A-connection
∇̃ : Γ(A)× Γ(E)→ Γ(E), satisfying

(9) ∇̃be = ∇be
for all b ∈ Γ(B) and e ∈ Γ(E).

Define the space I•(B) ⊆ Ω•(A) as the ideal in Ω•(A) generated by the 1-forms
vanishing on B. That is, it is generated by the sections of the annihilator B◦ ⊆ A∗
of B. It is explicitly given by I0(B) = {0} ⊆ Ω0(A) = C∞(M) and

Ir(B) = {ω ∈ Ωr(A) | ω(b1, . . . , br) = 0 for all b1, . . . , br ∈ Γ(B)}
for r ≥ 1.

Choose an open set U ⊆ M trivialising A and B. That is, there is a smooth
frame (a1, . . . , an) for A over U such that (aq+1, . . . , an) is a smooth frame for B.
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Consider the dual frame (α1, . . . , αn) of A∗ over U . By construction, (α1, . . . , αq)
is a smooth frame for B◦ over U . Since I•(B) is generated as an ideal by Γ(B◦),
for r ≥ 1, an element ω of IrU (B) can be written as

ω =

q∑
i=1

ωi ∧ αi

with ωi ∈ Ωr−1
U (A). Therefore, since B◦ has rank q, the wedge product

(I•(B))q+1 = I•(B) ∧ . . . ∧ I•(B)︸ ︷︷ ︸
q+1 times

must necessarily vanish.
It is now easy to see that (9) implies

R∇̃(b, b′)e = R∇(b, b′)e = 0

for b, b′ ∈ Γ(B) and all e ∈ Γ(E), and so R∇̃ ∈ I2(B) ⊗C∞(M) Γ(End(E)). This

implies Ri∇̃ ∈ (I2(B))i ⊗C∞(M) Γ(End(E)) and so t̂r(Ri∇̃) ∈ (I2(B))i. More gen-

erally, for p a Gl(k,R)-invariant polynomial of degree d on gl(k,R), the 2d-form
p(R∇) ∈ Ω2d(A) is an element of (I2(B))d and so p(R∇) = 0 for d > q.

As a summary, this section has proved the following result.

Theorem 3.1. Let E be a smooth vector bundle over a smooth manifold M and let
A be a Lie algebroid over M . If there exists a Lie subalgebroid B of A of codimension
q with a linear representation ∇ : Γ(B)×Γ(E)→ Γ(E), then the Pontryagin spaces

PontlA(E) ⊆ H l(A)

are all trivial for l > 2q.

Using Remark 2.4, this yields the following obstruction result in terms of the
classical Pontryagin spaces of E.

Corollary 3.2. Let E be a smooth vector bundle over a smooth manifold M and let
A be a Lie algebroid over M . If there exists a Lie subalgebroid B of A of codimension
q with a linear representation ∇ : Γ(B)×Γ(E)→ Γ(E), then the Pontryagin spaces

Pontl(E) ⊆ H l(M)

all lie in the kernel of ρ? : H•(M)→ H•(A) for l > 2q.

If a Lie algebroid A has a subalgebroid B of codimension q; then B is represented
on A/B via the flat Bott-connection

∇B : Γ(B)× Γ(A/B)→ Γ(A/B), ∇Bb ā = [b, a].

Hence PontlA(A/B) ⊆ H l(A) is trivial for l > 2q. This yields obstructions to a
subalgebroid structure on B ⊆ A of codimension q.

However, in the case A = TM and B = FM , the algebroid FM is in fact
more than just a subalgebroid: it carries as well an infinitesimal ideal system
(FM , FM ,∇FM ) [27]. The goal of this paper is the generalisation of Bott’s van-
ishing theorem [6] as a statement on ideals.
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3.1.1. Massey products. As already emphasised in [6], Theorem 3.1 shows more
than the vanishing of the Pontryagin classes plA(E) for l > 2q. It shows the vanishing
of all A-characteristic classes of E defined by invariant polynomials of degree d > q.
In [37], Bott’s vanishing theorem is refined as we explain now in our general setting.

Let A→M be a Lie algebroid and [α], [β], [γ] ∈ H•(A) be classes such that

[α] ∧ [β] = 0 and [β] ∧ [γ] = 0.

Then α∧ β = dAω and β ∧ γ = (−1)|α|dAη for some forms ω and η ∈ Ω•(A). As a
consequence, dA(ω ∧ γ) = α ∧ β ∧ γ = dA(α ∧ η), which shows that the class

〈[α], [β], [γ]〉 := [ω ∧ γ − α ∧ η] ∈ H•(A)

is defined. As mentioned in [6], this is called the Massey triple product [30] of
[α], [β], [γ] ∈ H•(A); it is well-defined up to an element of I•([α], [γ]) ⊆ H•(A), the
ideal generated by [α] and [γ].

Consider the situation of Theorem 3.1 and take any three classes [α], [β] and [γ]
in Pont•A(E) such that |α| + |β| > 2q and |β| + |γ| > 2q. Then α, β, γ ∈ Ω•(A)
can be chosen α = pα(R∇), β = pβ(R∇) and γ = pγ(R∇) for ∇ as in the proof
of Theorem 3.1 and pα, pβ , pγ Gl(k,R)-invariant polynomials on gl(k,R) of degrees
|α|/2, |β|/2 and |γ|/2, respectively – where k is the rank of E. Then by definition,
α∧β = (pα ·pβ)(R∇), which must vanish by the proof of Theorem 3.1 and |α|+|β| >
2q, and in the same manner β ∧ γ = 0. Then by definition, 〈[α], [β], [γ]〉 = 0. This
proves the following theorem, which is attributed to Shulman in [6].

Theorem 3.3. Let E be a smooth vector bundle over a smooth manifold M and
let A be a Lie algebroid over M . If there exists a Lie subalgebroid B of A of
codimension q with a linear representation ∇ : Γ(B) × Γ(E) → Γ(E), then for all
[α], [β] and [γ] in Pont•A(E) such that |α|+ |β| > 2q and |β|+ |γ| > 2q,

〈[α], [β], [γ]〉 = 0.

3.2. Reducible vector bundles – a short discussion. Consider a fibration of
vector bundles

E

qE

��

φ // E′

qE′

��
M

f
// M ′

i.e. a fibrewise surjective vector bundle morphism φ over a smooth surjective sub-
mersion f . Assume that E and E′ have the same rank, so that φ restricted to each
fibre is a bijection. If f has connected fibres, then M ′ can be identified with the
leaf space of the involutive subbundle T fM := ker(Tf) ⊆ TM and the morphism
φ defines a flat T fM -connection [27] ∇ : Γ(T fM)× Γ(E)→ Γ(E) by

∇Xe = 0 for all X ∈ Γ(T fM) :⇔ ∃ e′ ∈ Γ(E′) : φ ◦ e = e′ ◦ f.

That is, the ∇-flat sections of E are the sections of E that are φ-projectable to
sections of E′.

Conversely, consider a smooth vector bundle E → M , an involutive subbundle
FM ⊆ TM and a flat connection ∇ : Γ(FM ) × Γ(E) → Γ(E). If FM is simple and
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∇ has no holonomy, then they induce a fibration of vector bundles [27]

E

qE

��

π // E/∇

[qE ]

��
M

πM

// M/FM

where E/∇ is the quotient of E by parallel transport.

We say that E is q-reducible if there is a fibration of vector bundles

E

qE

��

φ // E′

qE′

��
M

f
// M ′

such that dimM ′ = q and rankE = rankE′. Then the Pontryagin classes of E of
degree greater than q must necessarily vanish. This is because the Gauss map gE
of E then factors as gE = gE′ ◦ f , and so Pont•(E) = f∗ Pont•(E′). Therefore, in
that case, Bott’s vanishing theorem (Theorem 3.1) is satisfied even with q as lower
bound.

Pontryagin classes are invariants of a vector bundle, that vanish if it is trivial-
izable. In particular, the Pontryagin classes of E of rank k all vanish if there is a
smooth morphism of vector bundles

E

qE

��

π // Rk

��
M // {pt}

that restricts to an isomorphism on each fibre. The consideration above shows
that much finer geometrical information can be extracted from Pontryagin classes,
and that they could be seen as obstructions to (constant rank) fibrations to low

dimensional manifolds. For instance, if Pontl(E) 6= {0} for some l ≥ 4, then the

vector bundle E is not 1-reducible, and if Pontl(E) 6= {0} for some l > 4, then the
vector bundle E is not 2-reducible, etc.

3.3. Bott’s vanishing theorem and the Atiyah class. If E → M has a flat
FM -connection, but FM is not simple or the holonomy of ∇ is not trivial, then
the vector bundle E still is “infinitesimally symmetric along FM”, but we can only
prove Bott’s vanishing theorem with lower bound 2q. However, following ideas by
Molino [34] (see also [28]), Theorem 3.1 holds with the lower bound q instead of 2q
if the Atiyah class of the connection vanishes. On the other hand, the new, more
general version of Bott’s vanishing theorem in Theorem 3.1, might be useful in the
search for examples where E has a flat FM -connection, with FM of codimension q,
but its k-th Pontryagin class does not vanish for some k > q

2 .

Let A be a Lie algebroid over a smooth manifold M , and let B be a subalgebroid
of A over M , of codimension q. Let E be a smooth vector bundle over M , as before
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with a flat B-connection ∇. Take again an extension ∇̃ : Γ(A) × Γ(E) → Γ(E) of
∇ as in (9). Then the form ω∇̃ ∈ Ω1(B,Hom(A/B,End(E))) is defined by

ω∇̃(b, ā)(e) = R∇̃(b, a)e.

The flat B-connection ∇ on E and the flat Bott-connection ∇B : Γ(B)×Γ(A/B)→
Γ(A/B) combine to a flat B-connection ∇Hom on Hom(A/B,End(E)), and then
d∇Homω∇̃ = 0 [34, 9, 24].

The class α∇ = [ω∇̃] ∈ H1(B,Hom(A/B,End(E))) is called the Atiyah class
of the representation of B ⊆ A on E. It does not depend on the choice of the
extension ∇̃ of ∇, and it is zero if and only if there is an extension ∇̃ such that
R∇̃(b, a) = 0 for all b ∈ Γ(B) and all a ∈ Γ(A) [34, 9, 24]. That is, α∇ = 0 if and

only if there is an extension ∇̃ such that R∇̃ ∈ Γ(∧2B◦ ⊗ End(E)).

Then for all l ≥ 1 the form t̂r(Rl∇̃) is a section of ∧2lB◦ and so t̂r(Rl∇̃) = 0 for
2l > q. This shows the following theorem.

Theorem 3.4. Let E be a smooth vector bundle over a smooth manifold M and
let A be a Lie algebroid over M . If there exists a Lie subalgebroid B of A of
codimension q with a linear representation ∇ : Γ(B)×Γ(E)→ Γ(E) with vanishing
Atiyah class α∇ ∈ H1(B,Hom(A/B,End(E))), then the Pontryagin spaces

PontlA(E) ⊆ H l(A)

are all trivial for l > q.

If A = TM , B = FM , and ∇ is defined by a fibration to a vector bundle over
M/FM as in the previous section, then the Atiyah class α∇ vanishes (see [24]).
With Section 3.2, this yields the following corollary.

Corollary 3.5. Let E be a smooth vector bundle over a smooth manifold M . If
there exists an involutive subbundle FM of TM of codimension q with a flat con-
nection ∇ : Γ(FM )× Γ(E)→ Γ(E) such that

E

qE

��

π // E/∇

[qE ]

��
M

πM

// M/FM

is a smooth fibration of vector bundles, then the Atiyah class
α∇ ∈ H1(FM ,Hom(TM/FM ,End(E))) vanishes and the Pontryagin spaces

Pontl(E) ⊆ H l(M) are all trivial for l > q.

4. Pontryagin algebras of graded vector bundles

This section studies connections up to homotopy on graded vector bundles, and
explains how Pontryagin or characteristic algebras are defined by those objects, in
the same manner as the classical Pontryagin algebras of a vector bundle are defined
by linear connections on it [35, 31].

4.1. The graded trace operator. In the following, consider a Lie algebroid (A→
M,ρ, [· , ·]), and a graded vector bundle E = ⊕z∈ZEz[z] over the same smooth
manifold M , with grading concentrated in finitely many degrees (i.e. all but finitely
many of the vector bundles Ez, z ∈ Z are trivial).
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The graded trace operator str : Γ(End(E))→ C∞(M), i.e.

str ∈ Ω0(A,Hom(End(E)0,R))

is defined by
str(φ) = (−1)i tr(φ)

for φ ∈ Γ(End(Ei)). It yields a (graded) Ω•(A)-linear map

ĝtr : Ω(A,End(E))• → Ω•(A).

The operator ŝtr vanishes by definition on Ω•(A,End(E)i) for all i 6= 0, and so only
‘sees’ the part Ω•(A,End(E)0) of Ω(A,End(E))•.

The signs are chosen such that for K1 ∈ Ω0(A,Hom(Ei, Ej)) = Γ(Hom(Ei, Ej))
and K2 ∈ Ω0(A,Hom(Ej , Ei)) = Γ(Hom(Ej , Ei)), i.e. with compositions K1 ◦K2 ∈
Γ(End(Ej)) and K2 ◦K1 ∈ Γ(End(Ei)):

str(K1 ◦K2) = (−1)j tr(K1 ◦K2) = (−1)j tr(K2 ◦K1)

= (−1)i+j str(K2 ◦K1) = str((−1)(j−i)(i−j)K2 ◦K1)

= str((−1)|K1|·|K2|K2 ◦K1)

since i+ j and (j − i)(i− j) = 2ij − j2 − i2 have the same parity. That is,

(10) str[K1,K2] = 0

for K1 ∈ Γ(Hom(Ei, Ej)) and K2 ∈ Γ(Hom(Ej , Ei)). More generally, this yields

(11) ŝtr([K1,K2]) = 0

for K1,K2 ∈ Ω(A,End(E))•, see also [35].

4.2. Connections up to homotopy. The notion of superconnection dates back
to Quillen [35]. Connections up to homotopy appeared in [17] in the more recent
literature. The notion of connection up to homotopy defined by Crainic in [10, 11]
is a different2 one.

Let A→ M be a Lie algebroid and let E → M a graded vector bundle of finite
rank, i.e. the grading is concentrated in finitely many degrees. Then a connection
up to homotopy of A on E is an operator

D : Ω(A,E)• → Ω(A,E)•+1

that increases the total degree by 1 and satisfies

(12) D(ω ∧ η) = dAω ∧ η + (−1)|ω|ω ∧ Dη
for ω ∈ Ω•(A) and η ∈ Ω(A,E)•.

If E = E0[0] ⊕ . . . ⊕ En−1[n − 1], then a connection up to homotopy of A on
E is called for simplicity an n-connection. Of course, an n-connection D is an
n-representation, i.e. an n-term representation up to homotopy in the sense of [2],
if in addition D2 = 0.

2There, a connection up to homotopy on a 2-term complex (E, ∂) of vector bundles

E0
∂
�
∂

E1

is an R-bilinear map ∇ : X(M) × Γ(E) → Γ(E) such that ∂ ◦ ∇ = ∇ ◦ ∂, that satisfies as usual

the Leibniz condition in the second argument, but which is not C∞(M)-linear in the X(M)-entry.
Instead, the failure of the C∞(M)-linearity is measured by the commutator of ∂ with a map
H∇ : C∞(M)× Γ(E)→ Γ(End(E)), which is R-linear and local in its entries.
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Example 4.1 (Degree-preserving connections are connections up to homotopy).
Let E →M be a graded vector bundle of finite rank. Choose for all z ∈ Z a linear
A-connection ∇z : Γ(A)× Γ(Ez)→ Γ(Ez). Then the connections define together a
connection up to homotopy

D : Ω(A,E)• → Ω(A,E)•+1

by D(ω) = d∇zω ∈ Ω•+1(A,Ez) for ω ∈ Ω•(A,Ez).

Example 4.2 (2-connections in more detail). Take E = E0[0]⊕E1[1] over M and
A→M a Lie algebroid. Then a 2-connection

D : Ω(A,E)• → Ω(A,E)•+1

is completely defined by its values

D(e0) ∈ Ω1(A,E0)⊕ Ω0(A,E1) and D(e1) ∈ Ω1(A,E1)⊕ Ω2(A,E0)

for arbitrary e0 ∈ Γ(E0) and e1 ∈ Γ(E1). It is easy to check that

D(e0) = d∇0e0 + ∂(e0) and D(e1) = d∇1e1 + K̂(e1)

for ∇i : Γ(A) × Γ(Ei) → Γ(Ei) linear connections, i = 0, 1, a vector bundle mor-
phism ∂ : E0 → E1 over the identity, i.e. ∂ ∈ Ω0(A,Hom(E0, E1)), and K ∈
Ω2(A,Hom(E1, E0)).

In general, connections up to homotopy can be described as follows.

Proposition 4.3. Let A → M be a Lie algebroid and let E → M be a graded
vector bundle of finite rank. Then a connection up to homotopy

D : Ω(A,E)• → Ω(A,E)•+1

can always be written

D = d∇ + D̂

with a linear connection ∇ : Γ(A)× Γ(E) → Γ(E) that preserves the grading as in
Example 4.1, and D ∈ Ω(A,End(E))1. The connection ∇ and the form D can even
be chosen such that

D ∈
⊕
s 6=1

Ωs(A,End(E)1−s).

Proof. Take any degree-preserving connection ∇ : Γ(A) × Γ(E) → Γ(E) as in Ex-
ample 4.1. Then D − d∇ : Ω(A,E)• → Ω(A,E)•+1 is easily seen to be graded

Ω•(A)-linear. Hence D − d∇ = D̂ for a D ∈ Ω(A,End(E))1.

Now writeD =
∑
s∈ZDs ∈

⊕
s∈Z Ωs(A,End(E)1−s). ThenD1 ∈ Ω1(A,End(E)0)

and so ∇′ := ∇ + D1 is a new connection on E that preserves the grading, such

that D = d∇ + D̂ = d∇′ + D̂ −D1. �

Finally, a connection up to homotopy of A on E defines an induced connection
up to homotopy

DEnd : Ω(A,End(E))• → Ω(A,End(E))•+1

of A on End(E) by
̂DEnd(K) = D ◦ K̂ − (−1)|K|K̂ ◦ D

for all K ∈ Ω(A,End(E))• and e ∈ Γ(E). That is, as before,

(13) [D, K̂] := D ◦ K̂ − (−1)|K|K̂ ◦ D = D̂EndK
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for all K ∈ Ω(A,End(E))•. More generally, if D is a connection up to homotopy of
A on E and D′ is a connection up to homotopy of A on E′, then define the induced
connection up to homotopy

DHom : Ω(A,Hom(E,E′))• → Ω(A,Hom(E,E′))•+1

of A on Hom(E,E′) by

̂DHom(K) = D′ ◦ K̂ − (−1)|K|K̂ ◦ D
for all K ∈ Ω(A,Hom(E,E′))•.

As in the case of superconnections, this yields the following lemma [35], see also
[31].

Lemma 4.4. In the situation above,

(14) ŝtr ◦ DEnd = dA ◦ ŝtr.

Proof. Write the connection up to homotopy D as in Proposition 4.3 as

D = d∇ + D̂

with ∇ : Γ(A)× Γ(E) → Γ(E) a linear connection that preserves the grading, and
D ∈ Ω(A,End(E))1. Then for K ∈ Ω(A,End(E))•:

D̂EndK = d∇ ◦ K̂ + D̂ ◦ K̂ − (−1)|K|K̂ ◦ d∇ − (−1)|K|K̂ ◦ D̂ = ̂d∇EndK + [̂D,K].

This yields DEndK = d∇EndK + [D,K] and so by (11)

(15) ŝtr (DEndK) = ŝtr (d∇EndK) .

The connection d∇End and the flat connection dA : Ω•(A) → Ω•+1(A) yield as be-
fore the connection d∇Hom : Ω(A,Hom(End(E),R))• → Ω(A,Hom(End(E),R))•+1.
Equation (15) and the proof of Lemma 2.1 now give

dA ◦ ŝtr− ŝtr ◦ DEnd = dA ◦ ŝtr− ŝtr ◦ d∇End = ̂d∇Hom str = 0. �

4.3. Curvature of a connection up to homotopy, and Pontryagin char-
acters. Now if D is a connection up to homotopy of A on E, then (12) implies
immediately

D2(ω ∧ η) = ω ∧ D2η = (−1)2|ω|ω ∧ D2η

for ω ∈ Ω•(A) and η ∈ Ω(A,E)•. That is, D2 is (graded) Ω•(A)-linear and there is

a unique RD ∈ Ω(A,End(E))2 with D2 = R̂D. The form RD ∈ Ω(A,End(E))2 is
the curvature form of D.

Of course, an n-connection is an n-representation if and only if its curvature
form vanishes. As before, define RiD ∈ Ω(A,End(E))2i by

R̂iD = R̂D
i

= D2i

for i ≥ 1. The Bianchi identity

(16) DEndR
i
D = 0

then holds for all i ≥ 1 since

̂DEndRiD = [D, R̂iD] = [D,D2i] = D2i+1 − (−1)2iD2i+1 = 0.

As a consequence, the curvature form RD satisfies

dA(ŝtr(RiD))
(14)
= ŝtr(DEnd(RiD))

(16)
= 0
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for all i ≥ 1.

Example 4.5. In the situation of Example 4.1, it is easy to see that for each i ≥ 1

RiD =
∑
z∈Z

Ri∇z ∈
⊕
z∈Z

Ω2i(A,End(Ez)) ⊆ Ω(A,End(E))2i.

In this case, all the results follow easily from the considerations in §2.3, and

ŝtr(RiD) =
∑
z∈Z

(−1)z t̂r(Ri∇z )

which is obviously a dA-closed element of Ω2i(A) by (7). This is already observed
in [35] in the context of superconnections.

Now one can construct as before the Pontryagin algebras defined by the powers
of the curvature form.

Proposition 4.6. Choose a graded vector bundle E of finite rank over a smooth
manifold M , and a Lie algebroid A over M . Then the cohomology classes[

ŝtr(RiD)
]
∈ H2i(A)

do not depend on the choice of the connection up to homotopy D on E.

As observed in [31], the proof of Proposition 4.6 follows the standard techniques,
exactly as done in [35] in the situation of superconnections. For the convenience of
the reader, it is carried out in detail in Appendix A.

Definition 4.7. Choose a graded vector bundle E of finite rank over a smooth
manifold M , and a Lie algebroid A over M . Then the A-Pontryagin algebra of
the graded vector bundle E

Pont•A(E) ⊆ H•(A)

is the subalgebra generated by the A-Pontryagin characters of E

σiA(E) :=
[
ŝtr(RiD)

]
∈ H2i(A), i ≥ 1,

defined by any choice of connection up to homotopy D of A on E.

Here also, it is easy to show using Example 4.1 and Proposition 4.6 that

Pont•A(E) = ρ? Pont•(E).

As usual, Pont•(E) denotes the TM -Pontryagin algebra of E.

Remark 4.8. This paper does not define Pontryagin classes of a graded vector
bundle as images of special invariant polynomials under a suitable Chern-Weil ho-
momorphism – this is not needed for the obstruction theorems below. However,
consider a graded vector bundle E =

⊕
z∈ZEz[z] and set V :=

⊕
z∈Z RrankEz [z],

a (finite dimensional) graded R-vector space. Set A(V ) ⊆ P(gl(V )) to be the
subalgebra of polynomials that is generated by the polynomials

φ 7→ str(φl),

for l ≥ 1. Then there is an obvious Chern-Weil homomorphism A(V )→ Pont•A(E)
of R-algebras, but A(V ) cannot be understood as a subalgebra of the Gl(V )-
invariant polynomials on gl(V ) since for φ ∈ gl(V ), A ∈ Gl(V ) and l ≥ 1:

str((AφA−1)l) = (−1)|A|+l|φ|·|A| str(φl)
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by (10).

Example 4.9. In the situation of Example 4.2,

D : Ω(A,E0[0]⊕ E1[1])• → Ω(A,E0[0]⊕ E1[1])•+1

equals

D = d∇ + ∂̂ + ω̂

with ∇ : Γ(A) × Γ(E) → Γ(E) a linear connection that preserves the degree, ∂ ∈
Γ(Hom(E0, E1)) = Ω0(A,End(E)1) and ω ∈ Ω2(A,Hom(E1, E0)) = Ω2(A,End(E)−1).

Then

D2 = d2
∇ + d∇ ◦ ∂̂ + d∇ ◦ ω̂ + ∂̂ ◦ d∇ + ∂̂ ◦ ω̂ + ω̂ ◦ d∇ + ω̂ ◦ ∂̂

= d2
∇ +

[
d∇, ∂̂

]
+ [d∇, ω̂] +

[
∂̂, ω̂

]
= R̂∇ + d̂∇End∂ + d̂∇Endω + [̂∂, ω].

(17)

In this equation, R∇ + [∂, ω] ∈ Ω2(A,End(E)0), d∇End∂ ∈ Ω1(A,End(E)1) and
d∇Endω ∈ Ω3(A,End(E)−1). This shows that the 2-connection is a 2-representation
if and only if [2, 17]

R∇0 + ω ◦ ∂ = 0, R∇1 + ∂ ◦ ω = 0, ∇1 ◦ ∂ = ∂ ◦ ∇0 and d∇Endω = 0.

The form ŝtr(D2) is

ŝtr(R∇ + [∂, ω]) = t̂r(R∇0 + ω ◦ ∂)− t̂r(R∇1 + ∂ ◦ ω).

The form ŝtr(D4) is the graded trace of

R2
∇+R∇∧[∂, ω]+[∂, ω]∧R∇+[∂, ω]2+(d∇End∂)∧(d∇Endω)+(d∇Endω)∧(d∇End∂) ,

etc.

4.4. Application: Obstructions to the existence of an n-representation.
Example 4.1 shows that a degree-preserving linear A-connection on E is an example
of an A-connection up to homotopy on E. Choose a graded vector bundle E of
finite rank k over a smooth manifold M , and a Lie algebroid A over M , and set
E := ⊕z∈ZEz. If E is concentrated in even degrees, then by Proposition 4.6 and
Example 4.5, the Pontryagin characters satisfy

σiA(E) = σi(E)

for all i ≥ 1. If E has grading in odd degrees only,

σiA(E) = −σiA(E) ∈ H•(A),

for all i ≥ 1. That is, the Pontryagin algebra of the graded vector bundle E is
then just the Pontryagin algebra of the vector bundle E obtained by forgetting the
grading on E.

This shows that Pontryagin algebras of graded vector bundles only lead to new
information if the grading is on mixed odd and even degrees. In general, Proposition
4.6, Example 4.1 and Example 4.5 lead to the following formula.

Corollary 4.10. Let E =
⊕

z∈ZEz be a graded vector bundle of finite rank over
a smooth manifold M , and let A → M be a Lie algebroid. Then for l ≥ 1, the
A-Pontryagin character σlA(E) of E equals

(18) σlA(E) =
∑
z∈Z

(−1)zσlA(Ez) ∈ H2l(A).
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Proof. Choose linear connections ∇ : Γ(A)×Γ(Ez)→ Γ(Ez) for each z ∈ Z and let
D be the induced connection up to homotopy of A on E as in Example 4.1. Then
by Proposition 4.6 and Example 4.5:

σlA(E) =
[
ŝtr(RlD)

]
=
∑
z∈Z

(−1)z
[
t̂r(Rl∇z )

]
=
∑
z∈Z

(−1)zσlA(Ez). �

Remark 4.11. Using the formula in the last corollary, it is again easy to show
that PontlA(E) 6= 0 implies l = 4z for some z ∈ N.

Corollary 4.10 gives a necessary condition for the existence of an n-representation
on a given graded vector bundle E = E0[0]⊕ . . .⊕ En−1[n− 1].

Theorem 4.12. Let E = E0[0]⊕ . . .⊕En−1[n− 1] be a graded vector bundle over
a smooth manifold M , and let A → M be a Lie algebroid. If there exists an n-
representation D of A on E, then the A-Pontryagin characters σlA(Ei), l > 1, of
the vector bundles Ei, i = 0, . . . , n− 1, satisfy the equations

(19)

n−1∑
i=0

(−1)iσlA(Ei) = 0 ∈ H2l(A)

for all l > 1.

Proof. Since there is an n-connection D with D2 = 0, the left-hand side of (18)
vanishes. �

Theorem 4.13. Let E and F be smooth vector bundles over M , and let A → M
be a Lie algebroid. If there is a 2-representation of A on E[0]⊕ F [1], then

Pont•A(E) = Pont•A(F ) ⊆ H•(A).

More precisely, the A-Pontryagin classes of E equals the A-Pontryagin classes of
F .

Proof. In this case, (19) yields immediately

σlA(E) = σlA(F )

for all l ≥ 1. Therefore, since the generators of the Pontryagin algebras are equal,
the Pontryagin algebras and the Pontryagin classes of E and F must be equal. �

The reader acquainted with the equivalence of decomposed VB-algebroids with 2-
representations [17], and of decomposed double Lie algebroids with matched pairs of
2-representations [16] might find interesting the two following corollaries of Theorem
4.13.

Corollary 4.14. Let B and C be smooth vector bundles over M , and let (A →
M,ρ, [· , ·]) be a Lie algebroid. If there is a VB-algebroid (D → B,A → M) with
core C, then the total Pontryagin classes coincide:

pA(B) = pA(C) ∈ H•(A).

That is, ρ?pl(B) = ρ?pl(C) for all l ≥ 1.

Corollary 4.15. Let C be a smooth vector bundle over M , and let A → M and
B →M be two Lie algebroids. If there is a double Lie algebroid (D,A,B,M) with
core C, then

pA(C) = pA(B) ∈ H•(A), and pB(C) = pB(A) ∈ H•(B).
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4.4.1. Example: the double 2-representation defined by a connection. Let A → M
be a Lie algebroid and E a vector bundle over M . Then any linear A-connection
∇ : Γ(A) × Γ(E) → Γ(E) defines as follows a representation up to homotopy of A
on E[0]⊕ E[1], see [2, 17]. The operator

D : Ω(A,E[0]⊕ E[1])• → Ω(A,E[0]⊕ E[1])•+1

is defined by

D(e0) = d∇(e0) + e0 ∈ Ω1(A,E[0])⊕ Ω0(A,E[1])

for e0 ∈ Ω0(A,E[0]) = Γ(E[0]), and

D(e1) = d∇(e1)− R̂∇(e1) ∈ Ω1(A,E[1])⊕ Ω2(A,E[0])

for e1 ∈ Ω0(A,E[1]) = Γ(E[1]). Here, R∇ is seen as an element of
Ω2(A,Hom(E[1], E[0])) ⊆ Ω(A,End(E))1. It is easy to check that D2 = 0 – use
(17) in Example 4.9 with ω = −R∇ ∈ Ω2(A,Hom(E[1], E[0])) and ∂ = idE : E[0]→
E[1]. This representation up to homotopy is called the double representation up to
homotopy of A on E [2, 17].

Let K ⊆ E be a vector subbundle. Take an A-connection ∇K on K and an
A-connection ∇̄ on E/K. Then K ⊕ E/K ' E and the sum ∇K + ∇̄ defines an
A-connection on E. The A-Pontryagin characters of E, K and E/K satisfy

σiA(E) = σiA(K) + σiA(E/K) ∈ H2i(A)

for i ≥ 0. This is usually formulated as pA(E) = pA(K) ∧ pA(E/K) (see e.g. [33,
40]). In other words the generators of Pont•A(E/K) are given by

(20) σiA(E/K) = σiA(E)− σiA(K) ∈ H2i(A)

for i ≥ 0. Likewise, the linear A-connections on K and on E define together a 2-
connection D of A on K[0]⊕E[1]. Hence, the A-Pontryagin characters of K[0]⊕E[1]
are

(21) ŝtr(RiD) = σiA(K)− σiA(E) ∈ H2i(A)

for i ≥ 0. Up to a sign, they equal the generators of Pont•A(E/K). This yields the
following proposition.

Proposition 4.16. Let E → M be a smooth vector bundle, and let A be a Lie
algebroid over M . Let K ⊆ E be a vector subbundle of E. Then

(22) Pont•A(K[0]⊕ E[1]) = Pont•A(E/K).

4.4.2. Example: the adjoint 2-representation of a Lie algebroid. Let A → M be
a Lie algebroid with anchor ρ and Lie bracket [· , ·]. Then any choice of linear
connection ∇ : X(M) × Γ(A) → Γ(A) defines as follows a representation up to
homotopy of A on A[0]⊕ TM [1], see [2, 17]. The operator

Dad : Ω(A,A[0]⊕ TM [1])• → Ω(A,A[0]⊕ TM [1])•+1

is defined by

Dad(a) = d∇bas(a) + ρ(a) ∈ Ω1(A,A[0])⊕ Ω0(A, TM [1])

for a ∈ Ω0(A,A[0]) = Γ(A), and

Dad(X) = d∇bas(X)− R̂bas
∇ (X) ∈ Ω1(A, TM [1])⊕ Ω2(A,A[0])
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for X ∈ Ω0(A, TM [1]) = X(M). Here, Rbas
∇ ∈ Ω2(A,Hom(X,A)) is defined by

Rbas
∇ (a, b)X = −∇X [a, b] + [∇Xa, b] + [a,∇Xb] +∇∇bas

b Xa−∇∇bas
a Xb

for a, b ∈ Γ(A) and X ∈ X(M), and the two basic connections

∇bas : Γ(A)× X(M)→ X(M) and ∇bas : Γ(A)× Γ(A)→ Γ(A)

are defined by

∇bas
a X = [ρ(a), X] + ρ(∇Xa), ∇bas

a b = [a, b] +∇ρ(b)a

for a, b ∈ Γ(A) and X ∈ X(M). A computation using (17) shows RDad
= D2

ad = 0.
This representation up to homotopy is called the adjoint representation up to

homotopy of A on E [2, 17]. The following result follows from Theorem 4.13

Theorem 4.17. Let A be a vector bundle over a smooth manifold M , and let
ρ : A → TM be a vector bundle morphism over the identity. If A → M carries a
Lie algebroid structure with anchor ρ, then

ρ?
(
pl(A)

)
= ρ?

(
pl(TM)

)
∈ H4l(A)

for all l ≥ 1.

4.4.3. Example: the 2-representations defined by a morphism of Lie algebroids.
More generally, let A→M and B →M be two Lie algebroids, with a Lie algebroid
morphism ∂ : B → A over the identity on M . Then any choice of linear connection
∇ : Γ(A) × Γ(B) → Γ(B) defines as follows a representation up to homotopy of B
on B[0]⊕A[1] – this was found in the work in preparation [26].

The operator

D : Ω(B,B[0]⊕A[1])• → Ω(B,B[0]⊕A[1])•+1

is defined by

D(b) = d∇∂ (b) + ∂(b) ∈ Ω1(B,B[0])⊕ Ω0(B,A[1])

for b ∈ Ω0(B,B[0]) = Γ(B), and

D(X) = d∇∂ (a)− R̂∂∇(a) ∈ Ω1(B,A[1])⊕ Ω2(B,B[0])

for a ∈ Ω0(B,A[1]) = Γ(A). Here, R∂∇ ∈ Ω2(A,Hom(X,A)) is defined by

R∂∇(b1, b2)a = −∇a[b1, b2] + [∇ab1, b2] + [b1,∇ab2] +∇∇∂
b2
ab1 −∇∇∂

b1
ab2

for b1, b2 ∈ Γ(B) and a ∈ Γ(A), and the two connections

∇∂ : Γ(B)× Γ(B)→ Γ(B) and ∇∂ : Γ(B)× Γ(A)→ Γ(A)

are defined by

∇∂b1b2 = [b1, b2] +∇∂b2b1, ∇∂b a = [∂(b), a] + ∂(∇ab)

for b1, b2 ∈ Γ(B) and a ∈ Γ(A). A computation shows D2 = 0 and so RD = 0. The
following result follows then from Theorem 4.13.

Theorem 4.18. Let A and B be Lie algebroids over M . If there is a Lie algebroid
morphism ∂ : B → A over the identity on M , then

plB(A) = plB(B)

for all l ≥ 1.
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Vaisman defines characteristic classes of morphisms of Lie algebroids in [41]; by
considering the graphs of these morphisms. The result above does not consider
these classes; but it would be interesting to compare the two approaches.

4.5. Bott’s vanishing theorem for graded vector bundles. This section proves
a more general formulation of Bott’s vanishing theorem [6] and of Theorem 3.1, on
Lie subalgebroids with n-representations.

For B ⊆ A a subalgebroid, the space Ω(B,E)• can be (non-canonically) embed-
ded as follows as a C∞(M)-submodule of Ω(A,E)•. Fix C ⊆ A a subbundle such
that A = B⊕C. Then the C∞(M)-linear map iC : Ω(B,E)• → Ω(A,E)• is defined
by

iC(ω)(a1, . . . , as) = ω(b1, . . . , bs)

for ω ∈ Ωs(B,Ei) and aj = bj + cj ∈ A = B ⊕ C for j = 1, . . . , s. In the same
manner, iC : Ω(B,End(E))• → Ω(A,End(E))• is defined.

In addition, the inclusion ι : B → A induces the C∞(M)-linear restriction map

ι? : Ω(A,E)• → Ω(B,E)•,

defined by (ι?ω)(b1, . . . , bs) = ω(b1, . . . , bs) for ω ∈ Ωs(A,El). By construction,
ι? ◦ iC = IdΩ(B,End(E))• .

Let now A→ M be a Lie algebroid and let E = E0[0]⊕ . . .⊕ En−1[n− 1] be a
graded vector bundle over M . Let k be the rank of E. Assume that there is a Lie
subalgebroid B ⊆ A of codimension q, with an n-representation

D : Ω(B,E)• → Ω(B,E)•+1.

Then, as in Proposition 4.3, the n-representation D equals D = d∇+ D̂, with a B-
connection on E preserving the grading, and a form D ∈ Ω(B,End(E))1. Using the
second part of Proposition 4.3, without loss of generality D has no component in
Ω1(B,End(E)0). Extend the B-connection ∇ on E to an A-connection ∇̃ on E that
preserves the grading, and extend the form D to the form iC(D) ∈ Ω(A,End(E))1,
after the choice of a smooth complement C of B in A.

Then

D̃ = d∇̃ + îC(D) : Ω(A,E)• → Ω(A,E)•+1

is an n-connection of A on E. Take ω ∈ Ωs(A,El). Then

D̃(ω) =
rankA∑
i=0

(D̃ω)i ∈
rankA⊕
i=0

Ωi(A,Es+l+1−i)

and easy computations yield the following identities:

• For i = s+ 1:

(D̃ω)i(b1, . . . , bi) = (d∇̃ω)(b1, . . . , bi) = d∇(ι?ω)(b1, . . . , bi)

= (D(ι?ω))i(b1, . . . , bi)

for b1, . . . , bi ∈ Γ(B), and
• For i 6= s+ 1:

(D̃ω)i(b1, . . . , bi) = (îC(D)ω)i(b1, . . . , bi) = (D̂(ι?ω))i(b1, . . . , bi)

= (D(ι?ω))i(b1, . . . , bi)

for b1, . . . , bi ∈ Γ(B).
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This proves ι? ◦ D̃ = D ◦ ι? and as a consequence ι? ◦ D̃2 = D2 ◦ ι?. Therefore,

the equality D2 = 0 yields ι?(RD̃) = ι?(D̃2) = 0. That is,

RD̃ ∈
(
I•(B)⊗C∞(M) Γ(End(E))

)
2

=
⊕
j≥1

Ij(B)⊗C∞(M) Γ(End(E)2−j),

and so

RlD̃ ∈ (I•(B))l ⊗C∞(M) Γ(End(E))

for all l ≥ 1. This yields RlD̃ = 0 for l > q, and, as in the classical case, the following
theorem.

Theorem 4.19. Let A→M be a Lie algebroid and let E = E0[0]⊕. . .⊕En−1[n−1]
be a graded vector bundle over M . Assume that there is a Lie subalgebroid B ⊆ A
of codimension q, with an n-representation

D : Ω(B,E)• → Ω(B,E)•+1.

Then the A-Pontryagin spaces of the graded vector bundle E

PontlA(E) ⊆ H l(A)

all vanish for l > 2q.

Example 4.20. Let E → M be a smooth vector bundle, and let A be a Lie
algebroid over M . Let K ⊆ E be a vector subbundle of E and let B ⊆ A be a
subalgebroid. Consider a linear A-connection ∇ on E, that preserves K. Define the
linear B-connection ∇̄ : Γ(B)×Γ(E/K)→ Γ(E/K) by ∇̄be = ∇be for all b ∈ Γ(B)
and e ∈ Γ(E), where e ∈ Γ(E/K) is the class of the section e.

The connection ∇̄ is flat if and only if the 2-representation of A on E[0]⊕ E[1]
defined by ∇ as in §4.4.1 restricts to a 2-representation of B on K[0] ⊕ E[1]; see
[14]. Then, by Theorem 4.19,

PontlA(K[0]⊕ E[1]) ⊆ H l(A)

all vanish for l > 2q. By (22), this is a reformulation in the graded setting of
Theorem 3.1 applied to B ⊆ A and the flat connection ∇̄ on E/K.

5. Infinitesimal ideal systems and Pontryagin classes

The main motivation for the results above was the search for obstructions to the
existence of infinitesimal ideal systems in a given Lie algebroid, in terms of the A
and TM -Pontryagin classes of A and TM . This section first recalls some of the
main examples of infinitesimal ideal systems. Then the first and second subsections
present the obtained obstructions.

Recall that infinitesimal ideal systems are defined as in the Definition on Page 4.
The three main classes of examples of infinitesimal ideal systems are the following.

Example 5.1 (The usual notion of ideals in Lie algebroids). An ideal I in a Lie
algebroid A → M is a subbundle over M such that [a, i] ∈ Γ(I) for all i ∈ Γ(I)
and all a ∈ Γ(A). The inclusion I ⊆ ker(ρ) follows immediately and shows that
this definition of an ideal is very restrictive. These ideals, called here naive ideals,
correspond obviously to the ideal systems (FM = 0, J = I,∇ = 0) in A. In
particular, an ideal in a Lie algebra is an infinitesimal ideal system.
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Example 5.2 (The Bott connection). Consider an involutive subbundle FM ⊆ TM
and the Bott connection

∇FM : Γ(FM )× Γ(TM/FM )→ Γ(TM/FM ), ∇FM

X Ȳ = [X,Y ]

associated to it. Then it is straightforward to check that the triple (FM , FM ,∇FM )
is an infinitesimal ideal system in the Lie algebroid TM .

Example 5.3 (The ideal system associated to a fibration of Lie algebroids). Let

A
ϕ //

qA

��

A′

qA′

��
M

f
// M ′

be a fibration of Lie algebroids, i.e. the map ϕ0 is a surjective submersion (with
connected fibers) and ϕ! : A → ϕ!

0A
′ is a surjective vector bundle morphism over

the identity on A.
Then J := ker(ϕ) ⊆ A is a subalgebroid of A and FM = Tϕ0M ⊆ TM is an

involutive subbundle. The equality Tϕ0 ◦ρ = ρ′ ◦ϕ yields immediately ρ(J) ⊆ FM .
Define a connection ∇ϕ : Γ(FM ) × Γ(A/J) → Γ(A/J) by setting ∇ϕX ā = 0 for

all sections a ∈ Γ(A) that are ϕ-related to some section a′ ∈ Γ(A′), i.e. such that
ϕ ◦ a = a′ ◦ ϕ0. Then the properties of the Lie algebroid morphism (ϕ,ϕ0) imply
that (FM , J,∇ϕ) is an infinitesimal ideal system in A.

Conversely, up to topological obstructions, a Lie algebroid can be “quotiented
out” by an infinitesimal ideal system [27], just as a Lie algebra modulo an ideal gives
a new Lie algebra. More precisely let (FM , J,∇) be an infinitesimal ideal system
in a Lie algebroid A. Assume that M̄ = M/FM is a smooth manifold and that
∇ has trivial holonomy. Then the quotient defined by parallel transport along the
leaves of FM , (A/J)/∇, inherits a Lie algebroid structure over F/FM such that the
canonical projections π : A→ (A/J)/∇ and πM : M →M/FM define a fibration of
Lie algebroids [27].

5.1. Pontryagin classes associated to an infinitesimal ideal system. First
of all, since an infinitesimal ideal system consists among other ingredients of an
involutive subbundle FM ⊆ TM and a flat FM -connection on A/J , the following
proposition is immediate.

Proposition 5.4. Let (FM , J,∇) be an infinitesimal ideal system in a Lie algebroid
A → M . Let q be the codimension of FM in TM . Then the Pontryagin algebras
Pontr(A/J) and Pontr(TM/FM ) are all trivial for r > 2q.

Next, it is easy to see that J is a subalgebroid of A. The Bott connection
associated to J ⊆ A is the flat J-connection ∇J on A defined by

∇J : Γ(J)× Γ(A/J)→ Γ(A/J), ∇Jj a = [j, a]

for j ∈ Γ(J) and a ∈ Γ(A). In addition, there is a flat J-connection on TM/FM ,
defined by

∇ : Γ(J)× Γ(TM/FM )→ Γ(TM/FM ), ∇jX = [ρ(j), X] = ∇FM

ρ(j)X

for j ∈ Γ(J) and X ∈ X(M). This, Proposition 5.4 and Remark 2.4 yield the
following result.
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Proposition 5.5. Let (FM , J,∇) be an infinitesimal ideal system in a Lie algebroid
A → M . Let s be the codimension of J in A. Then the Pontryagin algebras
PontrA(A/J) and PontrA(TM/FM ) are all trivial for r > 2 min{s, q}.

Of course, Propositions 5.4 and 5.5 can be refined using Theorem 3.4 and the
Atiyah classes defined by extensions of the four flat connections.

5.2. Finer obstructions. The obstructions found above are too “rough” for being
really meaningful – the proofs use very little of the structure of infinitesimal ideal
systems. This section uses the Pontryagin algebras of graded vector bundles in
order to find further (finer!) obstructions to the existence of infinitesimal ideal
systems in a given Lie algebroid.

In order to do this, let us recall some results found in [14]. Let A → M be
a Lie algebroid. Let FM ⊆ TM be an involutive subbundle and let J ⊆ A be a
smooth subbundle. Let ∇ : Γ(FM ) × Γ(A/J) → Γ(A/J) be a flat connection, and

let ∇̃ : X(M) × Γ(A) → Γ(A) be an extension of ∇. That is, ∇̃Xj ∈ Γ(J) for all
X ∈ Γ(FM ) and j ∈ Γ(J) and the induced quotient connection equals ∇. Recall

from §4.4.3 that ∇̃ defines the two basic connections

∇̃bas : Γ(A)× Γ(A)→ Γ(A), ∇̃bas : Γ(A)× X(M)→ X(M)

and the basic curvature Rbas
∇̃ ∈ Ω2(A,Hom(TM,A)) – that is, ∇̃ defines the adjoint

representation ad∇̃ as in §4.4.3.
Then (FM , J,∇) is an infinitesimal ideal system in A if and only if [14]:

(1) ρ(J) ⊆ FM ;

(2) The basic connection ∇̃bas : Γ(A)× Γ(A)→ Γ(A) preserves J ;

(3) The basic connection ∇̃bas : Γ(A)× X(M)→ X(M) preserves FM ;
(4) The basic curvature Rbas

∇̃ ∈ Ω2(A,Hom(TM,A)) restricts to an element of

Ω2(A,Hom(FM , J)).

That is, (FM , J,∇) is an infinitesimal ideal system in A if and only if the adjoint
2-representation ad∇̃ of A on A[0] ⊕ TM [1] defined by the anchor and the basic
connections and curvature restricts to a 2-representation of A on J [0] ⊕ FM [1].
Theorem 4.14 yields immediately the following result.

Theorem 5.6. Let (A→M,ρ, [· , ·]) be a Lie algebroid. Let J ⊆ A and FM ⊆ TM
be vector subbundles. If FM is involutive and there is a flat FM -connection on A/J
such that (FM , J,∇) is an infinitesimal ideal system, then

plA(J) = plA(FM ) ∈ H4l(A)

for all l ≥ 1.

Example 5.7. Example 5.1 and the last proposition show that if I ⊆ A is an ideal,
then Pont•A(I) = {0}. This is easy to see directly since A is represented on I by
the Lie bracket.

In the situation of Example 5.2, the statement of the last proposition is trivial
since J = FM . However, Example 5.3 and the last proposition show that if ϕ : A→
A′ is a fibration of Lie algebroids over a smooth submersion f : M →M ′, then

plA(T fM) = plA(kerϕ) ∈ H4l(A)

for all l ≥ 1.
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Appendix A. Proof of Proposition 4.6

Let D and D′ be two connections up to homotopy of a Lie algebroid A→M on
a graded vector bundle E = ⊕k∈ZEz[z]→M of finite rank. The difference D′ −D
is graded-Ω•(A)-linear and there exists an element D ∈ Ω(A,End(E))1 such that

D′ − D = D̂. For each t ∈ [0, 1] set Dt = D + tD̂. Then Dt is a connection up to
homotopy of A on E for all t ∈ [0, 1], with D0 = D and D1 = D′. Its curvature at

time t reads R̂Dt
= D2

t = (D + tD̂)2 = D2 + t
[
D, D̂

]
+ 1

2 t
2
[
D̂, D̂

]
, which leads to

d

dt
R̂Dt

=
[
D, D̂

]
+ t
[
D̂, D̂

]
=
[
Dt, D̂

]
(13)
= D̂t,EndD,

and so to d
dtRDt

= Dt,EndD. Next, this implies

d

dt
RiDt

=

i∑
s=1

R
(s−1)
Dt

∧ Dt,EndD ∧Ri−sDt

and so

d

dt
ŝtr
(
RiDt

)
= i · ŝtr

(
Ri−1
Dt
∧ Dt,EndD

) (16)
= i · ŝtr

(
Dt,End

(
Ri−1
Dt
∧D

))
(14)
= i · dA

(
ŝtr
(
Ri−1
Dt
∧D

))
.

Using this, conclude that

ŝtr
(
RiD
)
− ŝtr

(
RiD′

)
= dA

∫ 1

0

i ·
(

ŝtr
(
Ri−1
Dt
∧D

))
dt,

and so ŝtr
(
RiD
)

and ŝtr
(
RiD′

)
define the same cohomology class in H2i(A).
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sidad Nacional Autónoma de México and UNESCO, Mexico City, 1958.

[31] R. A. Mehta. Lie algebroid modules and representations up to homotopy. Indag. Math. (N.S.),

25(5):1122–1134, 2014.
[32] R. A. Mehta. Modular classes of Lie groupoid representations up to homotopy. SIGMA Sym-

metry Integrability Geom. Methods Appl., 11:Paper 058, 10, 2015.

[33] J. W. Milnor and J. D. Stasheff. Characteristic classes. Princeton University Press, Princeton,
N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76.
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