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Abstract

We define Dorfman connections, which are to Courant algebroids what connections
are to Lie algebroids. We illustrate this analogy with examples. In particular, we
study horizontal spaces in the standard Courant algebroids over vector bundles:

A linear connection ∇ : X(M)×Γ(E)→ Γ(E) on a vector bundle E over a smooth
manifold M is tantamount to a linear splitting TE ' T qEE⊕H∇, where T qEE is the
set of vectors tangent to the fibres of E. Furthermore, the curvature of the connection
measures the failure of the horizontal space H∇ to be integrable. We extend this
classical result by showing that linear horizontal complements to T qEE ⊕ (T qEE)◦

in TE ⊕ T ∗E can be described in the same manner via a certain class of Dorfman
connections ∆: Γ(TM ⊕E∗)×Γ(E⊕T ∗M)→ Γ(E⊕T ∗M). Similarly to the tangent
bundle case, we find that, after the choice of such a linear splitting, the standard
Courant algebroid structure of TE ⊕ T ∗E → E can be completely described by
properties of the Dorfman connection. As a corollary, we find that the horizontal
space is a Dirac structure if and only if ∆ is the dual derivation to a Lie algebroid
structure on TM ⊕ E∗.

We use this to study splittings of TA⊕ T ∗A over a Lie algebroid A and, following
Gracia-Saz and Mehta, we compute the representations up to homotopy defined by
any linear splitting of TA⊕T ∗A and the linear Lie algebroid TA⊕T ∗A→ TM ⊕A∗.
We characterise VB- and LA-Dirac structures in TA⊕ T ∗A via Dorfman connections.

Keywords: linear connections; Courant algebroids; linear splittings; VB-algebroids;
Lie bialgebroids; IM-2-forms
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1. Introduction

This paper introduces Dorfman connections, and studies in depth the standard
Courant algebroid over a vector bundle. Let us begin with a simple observation. Take
a subbundle F ⊆ TM of the tangent bundle of a smooth manifold M . Then the
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R-bilinear map

∇̃ : Γ(F )× X(M)→ Γ(TM/F ), ∇̃XY = [X, Y ]

measures the failure of vector fields on M to preserve F . The subbundle F is involutive
if and only if ∇̃XY = 0 for all X, Y ∈ Γ(F ). In this case, ∇̃ induces a flat connection

∇ : Γ(F )× Γ(TM/F )→ Γ(TM/F ), ∇X Ȳ = [X, Y ],

the Bott connection associated to F [1].
In the same manner, given a Courant algebroid E→M with bracket J· , ·K, anchor

ρ and pairing 〈· , ·〉, and a subbundle K ⊆ E, we define an R-bilinear map

∆̃: Γ(K)× Γ(E)→ Γ(E/K), ∆̃ke = Jk, eK.

Again, we have ∆̃kk
′ = 0 for all k, k′ ∈ Γ(K) if and only if Γ(K) is closed under the

bracket on Γ(E). If K is in addition isotropic, it is a Lie algebroid over M and the
pairing on E induces a pairing K ×M (E/K)→ R. The R-bilinear map

∆: Γ(K)× Γ(E/K)→ Γ(E/K), ∆̃kē = Jk, eK

that is induced by ∆̃ is not a connection because it is not C∞(M)-homogeneous
in the first argument, but the obstruction to this is, as we will see, measured by
the pairing, the anchor of the Courant algebroid and the de Rham derivative on
C∞(M). This map is an example of what we call a Dorfman connection, namely
the Bott–Dorfman connection associated to K in E. Dorfman connections appear
naturally in several situations related to Courant algebroids and play a role similar to
the one that connections play for tangent bundles and Lie algebroids. We illustrate
this with a few examples and we present two major applications of the notion.

Linear splittings of the standard Courant algebroids over vector bundles.
Our main motivation for introducing this new concept is the following. It goes back
to Dieudonné that a linear TM -connection ∇ on a vector bundle qE : E → M
corresponds to a splitting TE ' T qEE ⊕H∇, where T qEE ⊆ TE is the set of vectors
tangent to the fibers of the vector bundle E, and H∇ is a subbundle of TE → E that
is also closed under the addition in TE → TM . There exists then for each vector field
X ∈ X(M) a unique section X∇ ∈ Γ(H∇) ⊆ X(E) (a horizontal vector field) such
that TqE ◦X∇ = X ◦ qE. The Lie bracket of two such vector fields X∇, Y ∇ ∈ Γ(H∇),
for X, Y ∈ X(M), is given by[

X∇, Y ∇
]

= [X, Y ]∇ − ˜R∇(X, Y ),

2



where ˜R∇(X, Y ) ∈ X(E) is given by

˜R∇(X, Y )(em) =
d

dt


t=0

em + t ·R∇(X, Y )(em)

for all em ∈ E, and so has values in the vertical space T qEE. Since Γ(H∇) is generated
as a C∞(E)-module by the set of sections {X∇ | X ∈ X(M)}, this means that the
failure of the horizontal space H∇ to be involutive is measured by the curvature of the
connection. The connection itself encodes the Lie bracket of horizontal and vertical
vector fields. The space Γ(T qEE) is indeed generated as a C∞(E)-module by the
vertical vector fields e↑ with flow φe

↑
t (e′m) = e′m + te(m) for e ∈ Γ(E), and we have[

X∇, e↑
]

= (∇Xe)
↑ for all X ∈ X(M).

This paper uses Dorfman connections to answer the following question: what can
be said about linear1 splittings

TE ⊕ T ∗E ' (T qEE ⊕ (T qEE)◦)⊕ L

of the standard Courant algebroid over E?
Our first main result is a similar one-to-one correspondence of such linear splittings

with TM ⊕E∗–Dorfman connections ∆ on E⊕T ∗M . Then we prove that the bundle
L∆ is isotropic (and thus also Lagrangian) relative to the canonical pairing on
TE ⊕ T ∗E if and only if a bracket on sections of TM ⊕ E∗, that is dual of the
Dorfman connection (in the sense of connections), is skew-symmetric. Further, the
set of sections of L∆ is closed under the Courant-Dorfman bracket if and only if
the curvature of the Dorfman connection vanishes. The Dorfman connection itself
is the Courant-Dorfman bracket restricted to horizontal and vertical sections of
TE ⊕ T ∗E → E.

The direct sum TE ⊕ T ∗E has the structure of a double vector bundle [2, 3] over
the bases E and TM ⊕E∗. Double vector subbundles of (TE⊕T ∗E;E, TM ⊕E∗,M)
have a double vector bundle structure over subbundles of E and TM ⊕ E∗. After
proving the main results on splittings of TE ⊕ T ∗E → E, we characterise the double
vector subbundles of TE ⊕ T ∗E over the sides E and a subbundle U ⊆ TM ⊕ E∗.
These double vector subbundles can be described by triples (U,K,∆), where ∆ is a
Dorfman connection and K is a subbundle of E ⊕ T ∗M (the core or double kernel
of TE ⊕ T ∗E). We prove that both maximal isotropy and integrability of this type
of double subbundle depend only on simple properties of the corresponding triple
(U,K,∆).

1The subbundle L ⊆ TE ⊕ T ∗E over E is said to be linear if it is also closed under the addition
of TE ⊕ T ∗E as a vector bundle over TM ⊕ E∗.

3



Note that TE ⊕ T ∗E has the natural structure of a VB-Courant algebroid with
sides E and TM ⊕ E∗ and with core E ⊕ T ∗M . We show in [4] that the Dorfman
connections that we study in Section 4 define (after a skew-symmetrisation) a new
class of examples of split N-manifolds of degree 2, namely the ones that are equivalent
to the metric double vector bundles TE ⊕ T ∗E for vector bundles E. We deduce
in [5] that the split Lie 2-algebroids which are equivalent to decompositions of the
VB-Courant algebroid TE ⊕ T ∗E [6] are completely encoded by those Dorfman
connections. In [5] we further use general Dorfman connections for a constructive
understanding of the equivalence of decomposed VB-Courant algebroids with split
Lie 2-algebroids.

If the vector bundle E =: A has a Lie algebroid structure (qA : A→M,ρ, [· , ·]),
then the standard Courant algebroid TA ⊕ T ∗A also has a naturally induced VB-
algebroid structure over TM ⊕ A∗. Given a TM ⊕ A∗-Dorfman connection ∆ on
A⊕ T ∗M , we compute the representation up to homotopy that corresponds to the
linear splitting TA⊕ T ∗A ' (T qAA⊕ (T qAA)◦)⊕L∆ and describes the VB-algebroid
TA ⊕ T ∗A → TM ⊕ A∗ [7]. This representation up to homotopy is in general not
the product of the two representations up to homotopy describing TA→ TM and
T ∗A→ A∗. Furthermore, we describe the sub-representations up to homotopy defined
by linear Dirac structures on A, that are at the same time Lie subalgebroids of
TA⊕ T ∗A→ TM ⊕A∗ over a base U ⊆ TM ⊕A∗. In that case, the Dirac structure
has the induced structure of a double Lie algebroid [8], and is called an LA-Dirac
structure on A [6]. We elaborate on this in [9] to infinitesimally describe Dirac
groupoids, i.e. Lie groupoids with Dirac structures that are compatible with the
multiplication. Here, the Bott-Dorfman connections associated to the Dirac structures
play a decisive role in the proof as they can be seen as the actual multiplicative
structures that reduce to infinitesimal Lie algebroid “actions”.

Let (A,A∗) be a Lie bialgebroid [10] and let πA be the linear Poisson bivector field
defined on A by the Lie algebroid structure on A∗. The graph of π]A : T ∗A→ TA is a
known example of an LA-Dirac structure on A. The second most common example
of an LA-Dirac structure is the graph of a linear presymplectic form σ∗ωcan ∈ Ω2(A),
for an IM–2–form σ : A→ T ∗M [11, 12]. A third example is FA⊕F ◦A, where FA → A
is an involutive subbundle that has at the same time a Lie algebroid structure over
some subbundle FM ⊆ TM . We describe the 2-term representations up to homotopy
encoding linear splittings of the three examples above.

Outline of the paper

Some background on Courant algebroids and Dirac structures, connections, and
double vector bundles is collected in the second section. In the third section, Dorfman
connections and dull algebroids are defined, and some examples are discussed. In
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the fourth section, splittings of the standard Courant algebroid TE ⊕ T ∗E over a
vector bundle E are shown to be equivalent to a certain class of TM ⊕ E∗-Dorfman
connections on E ⊕ T ∗M . Linear Dirac structures on the vector bundle E →M are
studied via Dorfman connections. In the fifth section, the geometric structures on
the two sides of the standard LA-Courant algebroid TA⊕ T ∗A over a Lie algebroid
A→M are expressed via splittings of TA⊕ T ∗A, and LA-Dirac structures on A are
classified via Dorfman connections and some adequate vector bundles over the units
M .

Notation and conventions

Let M be a smooth manifold. We denote by X(M) and Ω1(M) the spaces of
smooth sections of the tangent and the cotangent bundle, respectively. For an arbitrary
vector bundle E → M , the space of sections of E is written as Γ(E). We write in
general qE : E →M for vector bundle projections, except for pM = qTM : TM →M ,
cM = qT ∗M : T ∗M →M and πM = qTM⊕T ∗M : TM ⊕ T ∗M →M .

The flow of a vector field X ∈ X(M) is written as φX· , unless specified otherwise.
Let f : M → N be a smooth map between two smooth manifolds M and N . Then two
vector fields X ∈ X(M) and Y ∈ X(N) are said to be f-related if Tf ◦X = Y ◦ f .
We then write X ∼f Y .

Given a section ε of E∗, we always write `ε : E → R for the linear function
associated to it, i.e. the function defined by em 7→ 〈ε(m), em〉 for all em ∈ E. We write
φt : B∗ → A∗ for the dual morphism to a morphism φ : A→ B of vector bundles over
the identity, and we write F ∗ω for the pullback of a form ω ∈ Ω(N) under a smooth
map F : M → N of manifolds.
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2. Preliminaries

First we recall some necessary background on Courant algebroids, on the double
vector bundle structures on the tangent and cotangent spaces TE and T ∗E of a vector
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bundle E, and on linear connections.

2.1. Courant algebroids and Dirac structures

A Courant algebroid [13, 14] over a manifold M is a vector bundle E → M
equipped with a fibrewise non-degenerate symmetric bilinear form 〈· , ·〉, a bilinear
bracket J· , ·K on the smooth sections Γ(E), and an anchor ρ : E→ TM , which satisfy
the following conditions

1. Je1, Je2, e3KK = JJe1, e2K, e3K + Je2, Je1, e3KK,
2. ρ(e1)〈e2, e3〉 = 〈Je1, e2K, e3〉+ 〈e2, Je1, e3K〉,
3. Je1, e2K + Je2, e1K = D〈e1, e2〉

for all e1, e2, e3 ∈ Γ(E). Here, we use the notation D := ρt ◦d : C∞(M)→ Γ(E), using
〈· , ·〉 to identify E with E∗: 〈Df, e〉 = ρ(e)(f) for all f ∈ C∞(M) and e ∈ Γ(E). The
compatibility of the bracket with the anchor and the Leibniz identity

4. ρ(Je1, e2K) = [ρ(e1), ρ(e2)],

5. Je1, fe2K = fJe1, e2K + (ρ(e1)f)e2

are then also satisfied. They are often part of the definition in the literature, but [15]
observed that they follow from (1)-(3).2 For a nice overview of the history of Courant
algebroids, consult [16].

Example 2.1. [17] The direct sum TM ⊕T ∗M endowed with the projection on TM
as anchor map, ρ = prTM , the symmetric bracket 〈· , ·〉 given by

〈(vm, θm), (wm, ηm)〉 = θm(wm) + ηm(vm) (2.1)

for all m ∈ M , vm, wm ∈ TmM and αm, βm ∈ T ∗mM and the Courant-Dorfman
bracket given by

J(X, θ), (Y, η)K = ([X, Y ],£Xη − iY dθ) (2.2)

for all (X, θ), (Y, η) ∈ Γ(TM ⊕ T ∗M), yield the standard example of a Courant
algebroid, which is often called the standard Courant algebroid over M . The
map D : C∞(M)→ Γ(TM ⊕ T ∗M) is given by Df = (0,df).

We are particularly interested in the standard Courant algebroids over vector
bundles.

A Dirac structure D ⊆ E is a subbundle satisfying

2We quickly give here a simple manner to get (4)-(5) from (1)-(3). To get (5), replace e2 by fe2
in (2). Then replace e2 by fe2 in (1) in order to get (4).
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1. D⊥ = D relative to the pairing on E,
2. JΓ(D),Γ(D)K ⊆ Γ(D).

The rank of the Dirac bundle D is then half the rank of E, and the triple
(D→M,ρ|D, J· , ·K|Γ(D)×Γ(D)) is a Lie algebroid on M . Dirac structures appear natu-
rally in several contexts in geometry and geometric mechanics (see for instance [18]
for an introduction to the geometry and applications of Dirac structures).

2.2. Basic facts about connections

In this paper, connections will not be linear actions of Lie algebroids, but more
generally of dull algebroids.

Definition 2.2. A dull algebroid is a vector bundle Q → M endowed with an
anchor, i.e. a vector bundle morphism ρQ : Q → TM over the identity on M and
a bracket [· , ·]Q on Γ(Q) with ρQ[q1, q2]Q = [ρQ(q1), ρQ(q2)] for all q, q′ ∈ Γ(Q), and
satisfying the Leibniz identity in both terms

[f1q1, f2q2]Q = f1f2[q1, q2]Q + f1ρQ(q1)(f2)q2 − f2ρQ(q2)(f1)q1

for all f1, f2 ∈ C∞(M), q1, q2 ∈ Γ(Q).

In other words, a dull algebroid is a Lie algebroid if its bracket is in addition
skew-symmetric and satisfies the Jacobi-identity.

Let (Q → M,ρQ, [·, ·]Q) be a dull algebroid and B → M a vector bundle. A
Q-connection on B is a map ∇ : Γ(Q)× Γ(B)→ Γ(B), with the usual properties. By
the properties of a dull algebroid, one can still make sense of the curvature R∇ of
the connection, which is an element of Γ(Q∗ ⊗Q∗ ⊗B∗ ⊗B). The dual connection
∇∗ : Γ(Q)× Γ(B∗)→ Γ(B∗) to ∇ is defined by

〈∇∗qβ, b〉 = ρQ(q)〈β, b〉 − 〈β,∇qb〉

for all q ∈ Γ(Q), b ∈ Γ(B) and β ∈ Γ(B∗).

2.2.1. The Bott connection associated to a subbundle F ⊆ TM

Recall the definition of the Bott connection associated to an involutive subbundle
of TM : Let F ⊆ TM be a subbundle, then the Lie bracket on vector fields on M
induces a map

∇̃F : Γ(F )× Γ(TM)→ Γ(TM/F ), ∇̃F
XY = [X, Y ].

The subbundle F is involutive if and only if ∇̃F
XX

′ = 0 for all X,X ′ ∈ Γ(F ). In that
case, the map ∇̃F quotients to a flat connection

∇F : Γ(F )× Γ(TM/F )→ Γ(TM/F ),

the Bott connection.

7



2.2.2. The basic connections associated to a connection on a dull algebroid

Consider here a dull algebroid (Q, ρQ, [· , ·]Q) together with a connection∇ : X(M)×
Γ(Q) → Γ(Q). The induced basic connections are Q-connections on Q and TM
that are defined as follows [19].

∇bas = ∇bas,Q : Γ(Q)× Γ(Q)→ Γ(Q), ∇bas
q q′ = [q, q′]Q +∇ρQ(q′)q

and

∇bas = ∇bas,TM : Γ(Q)× X(M)→ X(M), ∇bas
q X = [ρQ(q), X] + ρQ(∇Xq).

The basic connections satisfy

∇bas,TM ◦ ρQ = ρQ ◦ ∇bas,Q.

The basic curvature is the map Rbas
∇ : Γ(Q)× Γ(Q)× X(M)→ Γ(Q),

Rbas
∇ (q, q′)(X) = −∇X [q, q′]Q + [q,∇Xq

′]Q − [q′,∇Xq]Q +∇∇bas
q′ X

q −∇∇bas
q Xq

′.

The basic curvature satisfies the identities

ρQ ◦Rbas
∇ = R∇bas,TM

Rbas
∇ (q1, q2)(ρQ(q3)) + Jac[· ,·](q1, q2, q3) = R∇bas,Q(q1, q2)q3,

for q1, q2, q3 ∈ Γ(Q), where Jac[· ,·] is the Jacobiator in Leibniz form of the dull bracket:

Jac[· ,·](q1, q2, q3) = [q1, [q2, q3]Q]Q − [[q1, q2]Q, q3]Q − [q2, [q1, q3]Q]Q.

If the dull bracket is skew-symmetric, then Rbas
∇ is an element of Ω2(Q,Hom(TM,Q)).

2.3. Double vector bundles, VB-algebroids and representations up to homotopy

We briefly recall the definitions of double vector bundles, of their linear and core
sections, and of their linear splittings and lifts. We refer to [2, 20, 7] for more
detailed treatments. A double vector bundle is a commutative square

D
πB //

πA
��

B

qB
��

A qA
//M

of vector bundles such that

(d1 +A d2) +B (d3 +A d4) = (d1 +B d3) +A (d2 +B d4) (2.3)
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for d1, d2, d3, d4 ∈ D with πA(d1) = πA(d2), πA(d3) = πA(d4) and πB(d1) = πB(d3),
πB(d2) = πB(d4). Here, +A and +B are the additions in D → A and D → B,
respectively. The vector bundles A and B are called the side bundles. The core C
of a double vector bundle is the intersection of the kernels of πA and of πB. From
(2.3) follows easily the existence of a natural vector bundle structure on C over M .
The inclusion C ↪→ D is denoted by Cm 3 c 7−→ c ∈ π−1

A (0Am) ∩ π−1
B (0Bm).

The space of sections ΓB(D) is generated as a C∞(B)-module by two special
classes of sections (see [21]), the linear and the core sections which we now describe.
For a section c : M → C, the corresponding core section c† : B → D is defined as
c†(bm) = 0̃

bm
+A c(m), m ∈M , bm ∈ Bm. We denote the corresponding core section

A→ D by c† also, relying on the argument to distinguish between them. The space
of core sections of D over B is written as ΓcB(D).

A section ξ ∈ ΓB(D) is called linear if ξ : B → D is a bundle morphism from
B →M to D → A over a section a ∈ Γ(A). The space of linear sections of D over B
is denoted by Γ`B(D). Given ψ ∈ Γ(B∗ ⊗ C), there is a linear section ψ̃ : B → D over

the zero section 0A : M → A given by ψ̃(bm) = 0̃bm +Aψ(bm). We call ψ̃ a core-linear
section.

Example 2.3. LetA, B, C be vector bundles overM and considerD = A×MB×MC.
With the vector bundle structures D = q!

A(B⊕C)→ A and D = q!
B(A⊕C)→ B, one

finds that (D;A,B;M) is a double vector bundle called the decomposed double
vector bundle with core C. The core sections are given by

c† : bm 7→ (0Am, bm, c(m)), where m ∈M, bm ∈ Bm, c ∈ Γ(C),

and similarly for c† : A→ D. The space of linear sections Γ`B(D) is naturally identified
with Γ(A)⊕ Γ(B∗ ⊗ C) via

(a, ψ) : bm 7→ (a(m), bm, ψ(bm)), where ψ ∈ Γ(B∗ ⊗ C), a ∈ Γ(A).

In particular, the fibered product A×M B is a double vector bundle over the sides
A and B and has core M × 0.

A linear splitting of (D;A,B;M) is an injective morphism of double vector
bundles Σ: A×M B ↪→ D over the identity on the sides A and B. That every double
vector bundle admits local linear splittings was proved by [22]. Local linear splittings
are equivalent to double vector bundle charts. Pradines originally defined double
vector bundles as topological spaces with an atlas of double vector bundle charts
[23]. Using a partition of unity, he proved that (provided the double base is a smooth
manifold) this implies the existence of a global double splitting [2]. Hence, any double
vector bundle in the sense of our definition admits a (global) linear splitting.
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A linear splitting Σ of D is also equivalent to a splitting σA of the short exact
sequence of C∞(M)-modules

0 −→ Γ(B∗ ⊗ C) ↪→ Γ`B(D) −→ Γ(A) −→ 0, (2.4)

where the third map is the map that sends a linear section (ξ, a) to its base section
a ∈ Γ(A). The splitting σA is called a horizontal lift. Given Σ, the horizontal
lift σA : Γ(A) → Γ`B(D) is given by σA(a)(bm) = Σ(a(m), bm) for all a ∈ Γ(A) and
bm ∈ B. By the symmetry of a linear splitting, we find that a lift σA : Γ(A)→ Γ`B(D)
is equivalent to a lift σB : Γ(B) → Γ`A(D). Given a lift σA : Γ(A) → Γ`B(D), the
corresponding lift σB : Γ(B)→ Γ`A(D) is given by σB(b)(a(m)) = σA(a)(b(m)) for all
a ∈ Γ(A), b ∈ Γ(B).

Example 2.4. Let qE : E → M be a vector bundle. Then the tangent bundle TE
has two vector bundle structures; one as the tangent bundle of the manifold E, and
the second as a vector bundle over TM . The structure maps of TE → TM are the
derivatives of the structure maps of E →M .

TE

TqE
��

pE // E

qE
��

TM pM
//M

The space TE is a double vector bundle with core bundle E → M . The map
¯: E → p−1

E (0E) ∩ (TqE)−1(0TM) sends em ∈ Em to ēm = d
dt


t=0

tem ∈ T0Em
E. Hence

the core vector field corresponding to e ∈ Γ(E) is the vertical lift e↑ : E → TE,
i.e. the vector field with flow φe

↑
: E × R → E, φt(e

′
m) = e′m + te(m). An element

of Γ`E(TE) = X`(E) is called a linear vector field. It is well-known (see e.g. [20])
that a linear vector field ξ ∈ Xl(E) covering X ∈ X(M) corresponds to a derivation
D : Γ(E) → Γ(E) over X ∈ X(M). The precise correspondence is given by the
following equations

ξ(`ε) = `D∗(ε) and ξ(q∗Ef) = q∗E(X(f)) (2.5)

for all ε ∈ Γ(E∗) and f ∈ C∞(M), where D∗ : Γ(E∗)→ Γ(E∗) is the dual derivation

to D. We write D̂ for the linear vector field in Xl(E) corresponding in this manner to
a derivation D of Γ(E). Given a derivation D over X ∈ X(M), the explicit formula

for D̂ is

D̂(em) = Tme(X(m)) +E
d

dt


t=0

(em − tD(e)(m)) (2.6)

for em ∈ E and any e ∈ Γ(E) such that e(m) = em. The choice of a linear splitting Σ
for (TE;TM,E;M) is equivalent to the choice of a connection on E: Since a linear
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splitting gives us for each X ∈ X(M) exactly one linear vector field σTM (X) ∈ Xl(E)

over X, we can define ∇ : X(M)×Γ(E)→ Γ(E) by σTM (X) = ∇̂X for all X ∈ X(M).
Conversely, a connection ∇ : X(M)×Γ(E)→ Γ(E) defines a lift σ∇TM : X(M)→ Xl(E)
and a linear splitting Σ∇ : TM ×M E → TE:

Σ∇(vm, em) = Tme(vm) +E
d

dt


t=0

(em − t∇vme)

for any e ∈ Γ(E) such that e(m) = em. Note that the image of Σ∇ is a subbundle
H∇ ⊆ TE that is linear, i.e. also closed under the addition in TE → TM and
satisfies TE ' H∇ ⊕ T qEE as a vector bundle over E. Hence we have just described
the correspondence of the two definitions of a connection; the first as the map
∇ : X(M)× Γ(E)→ Γ(E), the second as a linear splitting TE ' T qEE ⊕H. Given
∇ or Σ∇ it is easy to see, using the equalities in (2.5), that[

σ∇(X), σ∇(Y )
]

= σ∇[X, Y | − ˜R∇(X, Y ),[
σ∇(X), e↑

]
= (∇Xe)

↑,
[
e↑1, e

↑
2

]
= 0

(2.7)

for all X, Y ∈ X(M) and e, e1, e2 ∈ Γ(E). That is, the Lie bracket of vector fields on
E can be described using the connection. The connection itself can also be seen as a
suitable quotient of the Bott connection ∇H∇ :

∇H∇
σ∇TM (X)

e↑ = (∇Xe)↑

for all e ∈ Γ(E) and X ∈ X(M). That is, the Bott connection associated to H∇
restricts well to linear (horizontal) and vertical sections.

Example 2.5. Dualising TE over E, we get the double vector bundle

T ∗E
cE //

rE
��

E

qE
��

E∗ qE∗
//M

.

The map rE is given as follows. For θem , rE(θem) ∈ E∗m,

〈rE(θem), e′m〉 =

〈
θem ,

d

dt


t=0

em + te′m

〉
for all e′m ∈ Em. The addition in T ∗E → E∗ is defined as follows. If θem and ωe′m are
such that rE(θem) = rE(ωe′m) = εm ∈ E∗m, then the sum θem +rE ωe′m ∈ T ∗em+e′m

E is
given by

〈θem +E∗ ωe′m , vem +TM ve′m〉 = 〈θem , vem〉+ 〈ωe′m , ve′m〉
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for all vem ∈ TemE, ve′m ∈ Te′mE such that (qE)∗(vem) = (qE)∗(ve′m).
For ε ∈ Γ(E∗), the one-form d`ε is linear over ε, and for θ ∈ Ω1(M), the one-form

q∗Eθ is a core section of TE → E. We have rE(dem`ε) = ε(m) and rE((q∗Eθ)(em)) = 0E
∗

m .
The sum dem`ε +rE de′m`ε equals dem+e′m`ε. The vector space T ∗emE is spanned by
dem`ε and dem(q∗Ef) for all ε ∈ Γ(E∗) and f ∈ C∞(M).

Example 2.6. By taking the direct sum of the two double vector bundles in the two
preceding examples, we get a double vector bundle

TE ⊕ T ∗E πE //

ΦE
��

E

qE
��

TM ⊕ E∗qTM⊕E∗
//M

,

with ΦE = (qE)∗ ⊕ rE.
In the following, for any section (e, θ) of E ⊕ T ∗M , the vertical section (e, θ)↑ ∈

ΓE(T qEE ⊕ (T qEE)◦) is the pair defined by

(e, θ)↑(e′m) =

(
d

dt


t=0

e′m + te(m), (Te′mqE)tθ(m)

)
(2.8)

for all e′m ∈ E. Note that by construction the vertical sections (e, θ)↑ are core sections
of TE ⊕ T ∗E as a vector bundle over E.

A subbundle L of TE⊕T ∗E → E is said to be linear if it projects to a subbundle
U ⊆ TM ⊕ E∗ under ΦE and if it is also closed under the addition on TE ⊕ T ∗E
as a vector bundle over TM ⊕ E∗. Such a linear subbundle defines a sub double
vector bundle of TE ⊕ T ∗E.

A double vector bundle (D;A,B;M) is a VB-algebroid ([24]; see also [7]) if
there are Lie algebroid structures on D → B and A → M , such that the anchor
Θ: D → TB is a morphism of double vector bundles over ρA : A→ TM on one side
and if the Lie bracket is linear:

[Γ`B(D),Γ`B(D)] ⊂ Γ`B(D), [Γ`B(D),ΓcB(D)] ⊂ ΓcB(D), [ΓcB(D),ΓcB(D)] = 0.

The vector bundle A→M is then also a Lie algebroid, with anchor ρA and bracket
defined as follows: if ξ1, ξ2 ∈ Γ`B(D) are linear over a1, a2 ∈ Γ(A), then the bracket
[ξ1, ξ2] is linear over [a1, a2].

Now let A→M be a Lie algebroid and consider an A-connection ∇ on a vector
bundle E → M . Then the space Ω•(A,E) of E-valued Lie algebroid forms has an
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induced operator d∇ given by the Koszul formula:

d∇ω(a1, . . . , ak+1) =
∑
i<j

(−1)i+jω([ai, aj], a1, . . . , âi, . . . , âj, . . . , ak+1)

+
∑
i

(−1)i+1∇ai(ω(a1, . . . , âi, . . . , ak+1))

for all ω ∈ Ωk(A,E) and a1, . . . , ak+1 ∈ Γ(A).
Let e0, e1 be two vector bundles over the same base M as A. A 2-term repre-

sentation up to homotopy of A on E0 ⊕ E1 [25, 7] is the collection of

(1) a map ∂ : E0 → E1,
(2) two A-connections, ∇0 and ∇1 on E0 and E1, respectively, such that ∂ ◦ ∇0 =
∇1 ◦ ∂,

(3) an element R ∈ Ω2(A,Hom(E1, E0)) such that R∇0 = R ◦ ∂, R∇1 = ∂ ◦R and
d∇HomR = 0, where ∇Hom is the connection induced on Hom(E1, E0) by ∇0 and
∇1.

Note that Gracia-Saz and Mehta [7] defined this concept independently and called
them “superrepresentations”.

Consider again a VB-algebroid (D → B,A → M) and choose a linear splitting
Σ: A×M B → D. Since the anchor ΘB is linear, it sends a core section c†, c ∈ Γ(C)
to a vertical vector field on B. This defines the core-anchor ∂B : C → B given
by, Θ(c†) = (∂Bc)

↑ for all c ∈ Γ(C) and does not depend on the splitting (see [3]).
Since the anchor Θ of a linear section is linear, for each a ∈ Γ(A) the vector field
Θ(σA(a)) ∈ Xl(B) defines a derivation of Γ(B) with symbol ρ(a). This defines a linear
connection ∇AB : Γ(A)× Γ(B)→ Γ(B):

Θ(σA(a)) = ∇̂AB
a

for all a ∈ Γ(A). Recall further that the anchor Θ(c†) of a core section c† ∈ ΓcB(D)
is given by Θ(c†) = (∂Bc)

↑. Since the bracket of a linear section with a core section
is again a core section, we find a linear connection ∇AC : Γ(A)× Γ(C)→ Γ(C) such
that

[σA(a), c†] = (∇AC
a c)†

for all c ∈ Γ(C) and a ∈ Γ(A). The difference σA[a1, a2] − [σA(a1), σA(a2)] is a
core-linear section for all a1, a2 ∈ Γ(A). This defines a vector valued form R ∈
Ω2(A,Hom(B,C)) such that

[σA(a1), σA(a2)] = σA[a1, a2]− ˜R(a1, a2),

for all a1, a2 ∈ Γ(A). For more details on these constructions, see [7], where the
following result is proved.
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Theorem 2.7. Let (D → B;A→M) be a VB-algebroid and choose a linear splitting
Σ: A×MB → D. The triple (∇AB,∇AC , R) defined as above is a 2-term representation
up to homotopy of A on the complex ∂B : C → B.

Conversely, let (D;A,B;M) be a double vector bundle such that A has a Lie alge-
broid structure and choose a linear splitting Σ: A×M B → D. Then if (∇AB,∇AC , R)
is a 2-term representation up to homotopy of A on a complex ∂B : C → B, then the
equations above define a VB-algebroid structure on (D → B;A→M).

Example 2.8. Let E →M be a vector bundle. The tangent double (TE;E, TM ;M)
has a VB-algebroid structure (TE → E, TM → M). Consider a linear splitting
Σ: E ×M TM → TE and the corresponding linear connection ∇ : X(M)× Γ(E)→
Γ(E) as in Example 2.4. By (2.7), the representation up to homotopy corresponding
to this splitting is given by ∂E = idE : E → E, (∇,∇, R∇).

Example 2.9. Now assume that the vector bundle E is a Lie algebroid A. Then
the tangent prolongation (TA → TM,A → M) has a VB-algebroid structure; see
Appendix C. The linear splitting corresponding to a linear connection ∇ : X(M)×
Γ(A)→ Γ(A) defines a horizontal lift σA : Γ(A)→ ΓlTM(TA). The corresponding 2-
term representation up to homotopy is given by ∂TM = ρ : A→ TM , (∇bas,∇bas, Rbas

∇ ),
where ∇bas : Γ(A) × Γ(A) → Γ(A) and ∇bas : Γ(A) × X(M) → X(M) are the basic
connections associated to ∇.

Example 2.10. Let (A, ρ, [· , ·]) be a Lie algebroid over a smooth manifold M . Then
(T ∗A→ A∗, A→M) is naturally a VB-algebroid; see Appendix C. A linear splitting
Σ∇ of TA can be dualised to a linear splitting Σ?

∇ : A×M A∗ → T ∗A. In this splitting,
the VB-algebroid structure is equivalent to the 2-representation of A on the complex
ρt : T ∗M → A∗ that is defined by the connections

∇bas∗ : Γ(A)× Γ(A∗)→ Γ(A∗), ∇bas∗ : Γ(A)× Ω1(M)→ Ω1(M), (2.9)

and the curvature term

−Rbas
∇

t ∈ Ω2(A,Hom(A∗, T ∗M)). (2.10)

For more details, consult [26].

Example 2.11. The linear splittings of TA and T ∗A described in the previous
examples define a linear splitting of the VB-algebroid (TA⊕T ∗A→ TM⊕A∗ → TM⊕
A∗, A→M), the fibered product of TA→ TM and T ∗A→ A∗. The representations
up to homotopy found in these two examples sum up to a representation up to
homotopy of A on the complex (ρ, ρt) : A⊕ T ∗M → TM ⊕ A∗, which describes the
VB-algebroid in this linear splitting.

One application of our main results is a general description of linear splittings of
TA⊕T ∗A, and explicit formulas for the corresponding representations up to homotopy
(see Section 5).
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3. Dorfman connections: definition and examples

Definition 3.1. Let (Q→M,ρQ, [· , ·]Q) be a dull algebroid. Let B →M be a vector
bundle with a fiberwise pairing 〈· , ·〉 : Q×M B → R and a map dB : C∞(M)→ Γ(B)
such that

〈q,dBf〉 = ρQ(q)(f) (3.11)

for all q ∈ Γ(Q) and f ∈ C∞(M). Then (B,dB, 〈· , ·〉) is called a pre-dual of Q and
Q and B are said to be paired by 〈· , ·〉.

Remark 3.2. Note that if the pairing is non-degenerate, then (B →M,dB, 〈· , ·〉) is
isomorphic to the dual of (Q→M,ρQ, [· , ·]Q) and dQ∗ : C∞(M)→ Γ(Q∗) is defined
by (3.11), namely dQ∗f = ρtQdf .

The following is our main definition.

Definition 3.3. Let (Q→M,ρQ, [· , ·]Q) be a dull algebroid and (B →M,dB, 〈· , ·〉)
a pre-dual of Q.

1. A Dorfman (Q-)connection on B is an R-bilinear map

∆: Γ(Q)× Γ(B)→ Γ(B)

such that for all f ∈ C∞(M), q, q′ ∈ Γ(Q), b ∈ Γ(B):
(a) ∆fqb = f∆qb+ 〈q, b〉 · dBf ,
(b) ∆q(fb) = f∆qb+ ρQ(q)(f)b and
(c) ∆q(dBf) = dB(£ρQ(q)f).

2. The curvature of ∆ is the map R∆ : Γ(Q) × Γ(Q) → Γ(B∗ ⊗ B) defined on
q, q′ ∈ Γ(Q) by R∆(q, q′) := ∆q∆q′ −∆q′∆q −∆[q,q′]Q.

The failure of a Dorfman connection to be a connection is hence measured by the
map dB and the pairing of Q with B. We omit the proof of the following proposition.

Proposition 3.4. Let (Q → M,ρQ, [· , ·]Q) be a dull algebroid and (B,dB, 〈· , ·〉) a
pre-dual of Q. Let ∆ be a Dorfman Q-connection on B. Then:

1. For all f ∈ C∞(M) and q, q′ ∈ Γ(Q), b ∈ Γ(B), we have R∆(q, q′)(f · b) =
f ·R∆(q, q′).

2. R∆ is C∞(M)-linear in its first two arguments if the dull bracket is skew-
symmetric and if ρQ(q)〈q′, b〉 = 〈[q, q′]Q, b〉+ 〈q′,∆qb〉 for all q, q′ ∈ Γ(Q) and
b ∈ Γ(B).

3. If this last “pre-duality” of the dull bracket with the Dorfman connection is
satisfied, we have also

〈R∆(q1, q2)(b), q3〉 = 〈[[q1, q2]Q, q3]Q + [q2, [q1, q3]Q]Q − [q1, [q2, q3]Q]Q, b〉

for all q1, q2, q3 ∈ Γ(Q) and b ∈ Γ(B).
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Note that this does not mean that the curvature of the Dorfman connection
vanishes everywhere if Q is a Lie algebroid, since the pairing of Q and B can be
degenerate. The following example is a trivial example for this phenomenon.

Example 3.5. Let (Q → M,ρQ, [· , ·]Q) be a dull algebroid and B → M a vector
bundle. Take the pairing 〈· , ·〉 : Q×M B → R and the map dB : C∞(M)→ Γ(B) to
be trivial. Then any Q-connection on B is also a Dorfman connection.

Example 3.6. The easiest non-trivial example of a Dorfman connection is the
map £ : Γ(Q) × Γ(Q∗) → Γ(Q∗), 〈£qτ, q

′〉 = ρQ(q)〈τ, q′〉 − 〈τ, [q, q′]Q〉, for a dull
algebroid (Q→M,ρQ, [· , ·]Q) and its dual (Q∗,dQ∗), i.e. with the canonical pairing
Q×M Q∗ → R and dQ∗ = ρtQd : C∞(M)→ Γ(Q∗).

The third property of a Dorfman connection is immediate by definition of £
and the first two properties are easily verified. The curvature vanishes if and only
if [· , ·]Q satisfies the Jacobi-identity in Leibniz form [[q1, q2]Q, q3]Q + [q2, [q1, q3]Q]Q =
[q1, [q2, q3]Q]Q for all q1, q2, q3 ∈ Γ(Q).

The following proposition illustrates the general idea that Dorfman connections
are to Courant algebroids what linear connections are to Lie algebroids. Our main
result in Section 4 is a further example for this analogy.

Let (E→M,ρ : E→ TM, 〈· , ·〉, J· , ·K) be a Courant algebroid. If K is a subalge-
broid of E, the (in general singular) distribution S := ρ(K) ⊆ TM is algebraically
involutive and we can define the “singular” Bott connection

∇S : Γ(S)× X(M)

Γ(S)
→ X(M)

Γ(S)
by ∇S

s X̄ = [s,X]

for all X ∈ X(M) and s ∈ Γ(S). The anchor ρ : E→ TM induces a map ρ̄ : Γ(E/K)→
X(M)/Γ(S), ρ̄(ē) = ρ(e) + Γ(S).

Proposition 3.7. Let E → M be a Courant algebroid and K ⊆ E an isotropic
subalgebroid. Then the map

∆: Γ(K)× Γ(E/K)→ Γ(E/K), ∆kē = Jk, eK

is a Dorfman connection. The dull algebroid structure on K is its induced Lie algebroid
structure, the map dE/K is just D + Γ(K) and the pairing 〈· , ·〉 : K ×M (E/K)→ R
is the natural pairing induced by the pairing on E.

We have ρ̄(∆kē) = ∇S
ρ(k)ρ̄(ē) for all k ∈ Γ(K) and ē ∈ Γ(E/K).

Remark 3.8. 1. Because of the analogy of the Dorfman connection in the last
proposition with the Bott connection defined by involutive subbundles of TM , we
name this Dorfman connection the Bott–Dorfman connection associated
to K.
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2. Note that if K is a Dirac structure D in E, then E/D ' D∗ and the Dorfman
connection is just the Lie algebroid derivative of D on Γ(D∗).

We end this section with a further class of examples of Dorfman connections.

Example 3.9. Let (E→M,ρ, J· , ·K, 〈· , ·〉) be a Courant algebroid over M and choose
a linear TM -connection ∇ on E. Then

1. ∆bas : Γ(E)× Γ(E)→ Γ(E) defined by ∆bas
e1
e2 = Je1, e2K +∇ρ(e2)e1 is a Dorfman

connection with dual dull bracket Je1, e2K∆bas = Je1, e2K− ρ∗〈∇·e1, e2〉, and

2. ∇bas : Γ(E) × X(M) → X(M) defined by ∇bas
e X = [ρ(e), X] + ρ(∇Xe) is an

ordinary linear connection.

We have ∇bas
e1
ρ(e2) = ρ(∆bas

e1
e2) for all e1, e2 ∈ Γ(E). Note the analogy of this construc-

tion with the construction of the basic connections associated to a linear connection
on a Lie algebroid [7, 25]. The basic Dorfman connection and the basic connection
above are in fact two ingredients of the Lie 2-algebroid corresponding to the Courant
algebroid E [27], after a choice of splitting [5].

4. Linear splittings of TE ⊕ T ∗E

Consider a vector bundle qE : E →M . Recall from Example 2.4 that an ordinary
connection ∇ : X(M) × Γ(E) → Γ(E) is equivalent to a linear splitting Σ: E ×M
TM → TE. We show that a Dorfman connection ∆: Γ(TM ⊕E∗)× Γ(E ⊕ T ∗M)→
Γ(E ⊕ T ∗M) is the same as a linear splitting Σ: (TM ⊕ E∗) ×M E → TE ⊕ T ∗E.
Further, we show that the image L∆ of Σ in TE ⊕ T ∗E is maximally isotropic
relatively to the canonical pairing if and only if the bracket J· , ·K∆ dual3 to the
Dorfman connection (as in Example 3.6) is skew-symmetric, and we show how the
failure of Γ(L∆) to be closed under the Dorfman bracket is measured by the curvature
R∆.

Here, the vector bundle TM⊕E∗ is always anchored by the projection prTM : TM⊕
E∗ → TM and the dual E ⊕ T ∗M is always paired with TM ⊕ E∗ via the canonical
non-degenerate pairing. The map dE⊕T ∗M : C∞(M)→ Γ(E ⊕ T ∗M) is consequently
always

dE⊕T ∗M = prtTM ◦d,

i.e. dE⊕T ∗Mf = (0,df) for all f ∈ C∞(M). A Dorfman connection ∆ is here always
a TM ⊕ E∗-Dorfman connection on E ⊕ T ∗M , with dual J· , ·K∆. Note that since the

3Since the Dorfman connection and the dual dull bracket corresponding to a linear splitting of
TE ⊕ T ∗E encode the Courant-Dorfman bracket on E, we write the dull brackets on Γ(TM ⊕E∗)
with double bars, as we write Courant algebroid brackets.
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pairing is non-degenerate, the Dorfman connection is completely determined by its dual
structure, the associated dull bracket J· , ·K∆ and vice-versa. Hence, we can say here
that a Dorfman connection is equivalent to a dull algebroid (TM ⊕E∗, prTM , J· , ·K∆).
It is easy to see, using Proposition 3.4, that the curvature R∆ always vanishes on
(TM ⊕E∗)⊗ (TM ⊕E∗)⊗ (0⊕ T ∗M) and so it can be identified with an element of
Ω2(TM ⊕ E∗,Hom(E,E ⊕ T ∗M)).

4.1. Dorfman connection associated to a linear splitting of TE ⊕ T ∗E
Consider a linear splitting

Σ: E ×M (TM ⊕ E∗)→ TE ⊕ T ∗E

and the corresponding horizontal lift σTM⊕E∗ : Γ(TM ⊕E∗)→ ΓlE(TE ⊕ T ∗E). Note
that by the definition of the horizontal lift, we have σTM⊕E∗(f ·ν) = q∗Ef ·σTM⊕E∗(ν) for
all f ∈ C∞(M) and ν ∈ Γ(TM⊕E∗). Also by definition, the image under (qE)∗, rE) of
σTM⊕E∗(X, ε)(e(m)) equals (X(m), ε(m)), which is also ((qE)∗, rE)(TmeX(m),de(m)`ε)
for all X ∈ X(M), e ∈ Γ(E) and ε ∈ Γ(E∗). Hence the difference

(TmeX(m),de(m)`ε)− σTM⊕E∗(X, ε)(e(m))

is a core element, which can be written (δ(X,ε)e)
↑(e(m)), defining so a map4 δ : Γ(TM⊕

E∗)× Γ(E)→ Γ(E ⊕ T ∗M).

Set ∆: Γ(TM⊕E∗)×Γ(E⊕T ∗M)→ Γ(E⊕T ∗M), ∆(X,ε)(e, θ) = δ(X,ε)e+(0,£Xθ).
We prove that ∆ is a Dorfman connection. First

(Tm(fe)X(m),df(m)e(m)`ε)

= (Tm(f(m)e)X(m) +X(f)(m)e↑(f(m)e(m)),df(m)e(m)`ε)
(4.12)

and σTM⊕E∗(X, ε)((fe)(m)) = σTM⊕E∗(X, ε)(f(m)e(m)) yield δ(X,ε)(fe) = fδ(X,ε)e+
X(f)(e, 0). This implies

∆(X,ε)(f(e, θ)) = f∆(X,ε)(e, θ) +X(f)(e, θ)

4To see that δ(X,ε)e is a smooth section of E ⊕ T ∗M , it suffices to show that its pairing with
each section of TM ⊕ E∗ is smooth. For (Y, χ) ∈ Γ(TM ⊕ E∗), we have 〈δ(X,ε)e, (Y, χ)〉(m) =

〈δ(X,ε)e↑(e(m)), (TmeY (m),de(m)`χ)〉 and so

〈δ(X,ε)e, (Y, χ)〉(m) = 〈(TmeX(m),de(m)`ε)− σTM⊕E∗(X, ε)(e(m)), (TmeY (m),de(m)`χ)〉,

which is
Y (m)〈ε, e〉+X(m)〈χ, e〉 − 〈Σ((X, ε)(m), e(m)), (TmeY (m),de(m)`χ)〉.

This depends smoothly on m.
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for all (X, ε) ∈ Γ(TM ⊕ E∗), (e, θ) ∈ Γ(E ⊕ T ∗M) and f ∈ C∞(M). Then

(Tme(fX),de(m)`fε) = (Tme(f(m)X(m)), f(m)de(m)`ε+〈ε, e〉(m)de(m)(q
∗f)) (4.13)

and σTM⊕E∗(f · (X, ε)) = q∗Ef · σTM⊕E∗(X, ε) yield δf(X,ε)e = fδ(X,ε)e+ (0, 〈e, ε〉df).
Since £fXθ = f£Xθ + 〈X, θ〉df , we get

∆f(X,ε)(e, θ) = f∆(X,ε)(e, θ) + 〈(e, θ), (X, ε)〉(0,df)

for all (X, ε) ∈ Γ(TM ⊕ E∗), (e, θ) ∈ Γ(E ⊕ T ∗M) and f ∈ C∞(M). The equality
∆(X,ε)(0,df) = (0,d£Xf) is immediate.

Conversely let E → M be a vector bundle and consider a Dorfman connection
∆: Γ(TM ⊕E∗)× Γ(E ⊕ T ∗M)→ Γ(E ⊕ T ∗M). We want to define a linear splitting
Σ: (TM ⊕ E∗)×M E → TE ⊕ T ∗E by

Σ((vm, εm), em) = (TmeX(m),d`ε(em))−∆(X,ε)(e, 0)↑(em) (4.14)

for any sections (X, ε) ∈ Γ(TM⊕E∗) and e ∈ Γ(E) such that X(m) = vm, ε(m) = εm
and e(m) = em. For X ∈ X(M), ε ∈ Γ(E∗) and e ∈ Γ(E) define the element

Π(X, ε, e)(m) = (TmeX(m),d`ε(em))−∆(X,ε)(e, 0)↑(em)

of TE ⊕ T ∗E. By (4.12) and the properties of the Dorfman connection we have
Π(X, ε, fe)(m) = f(m)·TM⊕E∗Π(X, ε, e)(m) and by (4.13) we have Π(fX, fε, e)(m) =
f(m) ·E Π(X, ε, e)(m) and for all f ∈ C∞(M), (X, ε) ∈ Γ(TM ⊕ E∗) and e ∈ Γ(E).
Using this, it is easy to show that the map in (4.14) is a well-defined, injective
morphism of double vector bundles. Since it is the identity on the sides, it is a linear
splitting of TE ⊕ T ∗E.

Hence, we have proved our main theorem:

Theorem 4.1. Let E →M be a vector bundle. A linear splitting Σ: (TM ⊕E∗)×M
E → TE ⊕ T ∗E defines a Dorfman connection ∆Σ : Γ(TM ⊕ E∗)× Γ(E ⊕ T ∗M)→
Γ(E ⊕ T ∗M) by

Σ((X, ε)(m), e(m)) = (TmeX(m),dem`ε)−∆Σ
(X,ε)(e, 0)↑(e(m)) (4.15)

and ∆(X,ε)(0, θ) = (0,£Xθ) for all e ∈ Γ(E), (X, ε) ∈ Γ(TM ⊕ E∗) and θ ∈ Ω1(M).
Conversely, each Dorfman connection ∆: Γ(TM⊕E∗)×Γ(E⊕T ∗M)→ Γ(E⊕T ∗M)
defines a linear splitting Σ∆ : (TM ⊕ E∗)×M E → TE ⊕ T ∗E as in (4.15) and the
maps

∆ 7→ Σ∆, ∆Σ ←[ Σ

are inverse to each other.
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In short we have a bijection{
(TM ⊕ E∗)-Dorfman connections

∆ on E ⊕ T ∗M

}
↔
{

Linear splittings
Σ: (TM ⊕ E∗)×M E → TE ⊕ T ∗E

}
.

Since a (TM ⊕ E∗)-Dorfman connection ∆ on E ⊕ T ∗M is equivalent to a dull
algebroid structure (prTM , J· , ·K∆) on TM ⊕ E∗, we can reformulate this bijection as
follows:{

Dull algebroids
(TM ⊕ E∗, prTM , J· , ·K)

}
↔
{

Linear splittings
Σ: (TM ⊕ E∗)×M E → TE ⊕ T ∗E

}
.

Now we study some examples of Dorfman connections. The first example explains
how linear splittings of TE induce linear splittings of TE ⊕ T ∗E. That is, we show
how a linear TM -connection on E defines a Dorfman connection as above.

Example 4.2. Let E →M be a vector bundle with a linear connection ∇ : X(M)×
Γ(E)→ Γ(E). Then the standard Dorfman connection associated to ∇ is the
map ∆: Γ(TM ⊕ E∗)× Γ(E ⊕ T ∗M)→ Γ(E ⊕ T ∗M),

∆(X,ε)(e, θ) = (∇Xe,£Xθ + 〈∇∗· ε, e〉).

The dual bracket is in this case defined by

J(X, ε), (Y, χ)K∆ = ([X, Y ],∇∗Xχ−∇∗Y ε)

for all (X, ε), (Y, χ) ∈ Γ(TM ⊕ E∗).
The curvature of the standard Dorfman connection ∆ associated to ∇ is given by

R∆((X, ε), (Y, η)) = (R∇(X, Y ), R∇∗(·, X)(η)−R∇∗(·, Y )(ε)).

As a consequence, we find easily that (TM ⊕ E∗, prTM , J· , ·K∆) is a Lie algebroid if
and only if ∇ is flat.

For any section (X, ε) ∈ Γ(TM ⊕ E∗), the horizontal lift is

σ∆
TM⊕E∗(X, ε)(em) = (TmeX(m),dem`ε)−

(
d

dt


t=0

em + t∇Xe, (TemqE)t〈∇∗· ε, e〉
)

and the subbundle L∆ spanned by these sections is equal to H∇ ⊕H◦∇. Hence, the
standard Dorfman connection associated to a connection ∇ is the same as the splitting

TE ⊕ T ∗E ∼= (T qEE ⊕ (T qEE)◦)⊕ (H∇ ⊕H◦∇),

the sum of a (trivial) Dirac structure and an almost Dirac structure.
Note that H∇ ⊕H◦∇ is a Dirac structure if and only if ∇ is flat, that is, if and

only if (TM ⊕ E∗, prTM , J· , ·K∆) is a Lie algebroid. This is not a coincidence, but a
special case of our next main result in Proposition 4.9 and Theorem 4.11.
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Now we discuss more intricate examples of Dorfman connections ∆: Γ(TM ⊕
E∗) × Γ(E ⊕ T ∗M) → Γ(E ⊕ T ∗M). The geometric meaning of the corresponding
linear splittings will be explained later.

Example 4.3. Consider a dull algebroid (A, ρ, [· , ·]) with skew-symmetric bracket.
We construct a TM⊕A-Dorfman connection ∆ on A∗⊕T ∗M , hence corresponding to
a linear splitting Σ: (TM ⊕A)×M A∗ → TA∗ ⊕ T ∗A∗ of the Pontryagin bundle over
A∗. Take any connection ∇ : X(M)× Γ(A)→ Γ(A) and recall the definition of the
basic connection ∇bas : Γ(A)× Γ(A)→ Γ(A) associated to ∇ and the dull algebroid
structure on A: ∇bas

a b = [a, b] +∇ρ(b)a for all a, b ∈ Γ(A). The Dorfman connection

∆: Γ(TM ⊕ A)× Γ(A∗ ⊕ T ∗M)→ Γ(A∗ ⊕ T ∗M)

is defined by

∆(X,a)(α, θ) =
(
〈α,∇bas

· a〉+∇∗Xα− ρt〈∇·a, α〉,£Xθ + 〈∇·a, α〉
)
.

The bracket J· , ·K∆ on sections of TM ⊕ A is then given by

J(X, a), (Y, b)K∆ =
(
[X, Y ],∇Xb−∇Y a+∇ρ(b)a−∇ρ(a)b+ [a, b]

)
.

Since it is skew-symmetric, the image L∆ of Σ is in this case maximally isotropic.
The projection prTM obviously intertwines this bracket with the Lie bracket of vector
fields. The curvature of this Dorfman connection is given by

− 〈R∆((X1, a1), (X2, a2))(α, θ), (X3, a3)〉 (4.16)

= 〈J(X1, a1), J(X2, a2), (X3, a3)K∆K∆ + c.p., (α, θ)〉 (4.17)

= 〈
(
R∇(X1 − ρ(a1), X2 − ρ(a2))a3

)
+ c.p., α〉

+ 〈
(
Rbas
∇ (a1, a2)(X3 − ρ(a3)

)
+ c.p., α〉+ 〈[a1, [a2, a3]] + c.p., α〉.

The proof of this formula is a rather long, but straightforward computation and
we omit it here. Example 4.21 the signification of this example in terms of the
linear almost Poisson structure defined on A∗ by the skew-symmetric dull algebroid
structure.

Example 4.4. Consider a vector bundle E → M endowed with a vector bundle
morphism σ : E → T ∗M over the identity and a connection ∇ : X(M)×Γ(E)→ Γ(E).
Define the Dorfman connection ∆: Γ(TM ⊕ E∗)× Γ(E ⊕ T ∗M)→ Γ(E ⊕ T ∗M) by

∆(X,ε)(e, θ) = (∇Xe,£X(θ − σ(e)) + 〈∇∗· (σtX + ε), e〉+ σ(∇Xe)).

The bracket J· , ·K∆ on sections of TM ⊕ E∗ is here given by

J(X, ε), (Y, η)K∆ = ([X, Y ],∇∗X(η + σtY )−∇∗Y (ε+ σtX)− σt[X, Y ]).
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In this case also, the image L∆ of Σ∆ is maximally isotropic.
Here also, we give the curvature of the Dorfman connection in terms of the

Jacobiator of the associated bracket:

J(X, ε), J(Y, η), (Z, γ)K∆K∆ + c.p. =
(

0, R∇∗(X, Y )(γ + σtZ) + c.p.
)
. (4.18)

Example 4.22 shows how this Dorfman connection is related to the 2-form σ∗ωcan ∈
Ω2(E), where ωcan is the canonical symplectic form on T ∗M .

4.2. The canonical pairing, the anchor and the Courant-Dorfman bracket on TE⊕T ∗E
This section shows that the image of a linear splitting Σ: (TM ⊕ E∗)×M E →

TE⊕T ∗E is maximally isotropic if and only if the corresponding dull bracket J· , ·KΣ is
skew-symmetric, and its set of sections is closed under the Courant-Dorfman bracket
if and only if the curvature of ∆Σ vanishes.

Here and later, we need the following notation. Let E →M be a vector bundle
and ∆: Γ(TM ⊕E∗)× Γ(E ⊕ T ∗M)→ Γ(E ⊕ T ∗M) a Dorfman connection. We call
Skew∆ ∈ Γ((TM ⊕ E∗)⊗ (TM ⊕ E∗)⊗ E∗) the tensor defined by

Skew∆(ν1, ν2) = prE∗(Jν1, ν2K∆ + Jν2, ν1K∆)

for all ν1, ν2 ∈ Γ(TM ⊕ E∗). By the Leibniz identity, this is indeed C∞(M)-linear
in both arguments. Note that the TM -part of Jν1, ν2K∆ + Jν2, ν1K∆ always vanishes
since the Lie bracket of vector fields is skew-symmetric.

In this subsection, given a Dorfman connection ∆: Γ(TM ⊕E∗)×Γ(E⊕T ∗M)→
Γ(E ⊕ T ∗M), we always write σ∆ for the induced horizontal lift σ∆

TM⊕E∗ : Γ(TM ⊕
E∗)→ ΓlE(TE ⊕ T ∗E).

Proposition 4.5. Let ∆: Γ(TM ⊕E∗)×Γ(E⊕T ∗M)→ Γ(E⊕T ∗M) be a Dorfman
connection and choose ν, ν1, ν2 ∈ Γ(TM ⊕ E∗) and τ, τ1, τ2 ∈ Γ(E ⊕ T ∗M). Then

1.
〈
σ∆(ν1), σ∆(ν2)

〉
= `Skew∆(ν1,ν2),

2.
〈
σ∆(ν), τ ↑

〉
= q∗E〈ν, τ〉,

3.
〈
τ ↑1 , τ

↑
2

〉
= 0.

Proof. Since the second and third equalities are immediate by (4.14), we prove only
the first one. We write ν1 = (X, ε), ν2 = (Y, η) and compute for any section e ∈ Γ(E):〈

(TmeX(m),d`ε(em))−∆(X,ε)(e, 0)↑(em), (TmeY (m),d`η(em))−∆(Y,η)(e, 0)↑(em)
〉

=X(m)〈η, e〉 − 〈prT ∗M ∆(Y,η)(e, 0), X(m)〉 − 〈η(m), prE ∆(X,ε)(e, 0)〉
+ Y (m)〈ε, e〉 − 〈prT ∗M ∆(X,ε)(e, 0), Y (m)〉 − 〈ε(m), prE ∆(Y,η)(e, 0)〉

=
(
X〈η, e〉 − 〈∆(Y,η)(e, 0), (X, ε)〉+ Y 〈ε, e〉 − 〈∆(X,ε)(e, 0), (Y, η)〉

)
(m)

= 〈(e, 0), Jν2, ν1K∆ + Jν1, ν2K∆〉.

22



The last proposition implies the following result.

Theorem 4.6. The dull bracket J· , ·K∆ associated to a Dorfman connection ∆ is
skew-symmetric if and only if the image of Σ∆ is maximally isotropic in TE ⊕ T ∗E.
Then TE ⊕ T ∗E is the direct sum of the Dirac structure T qEE ⊕ (T qEE)◦ and the
linear almost Dirac structure L∆ = Σ∆((TM ⊕ E∗)×M E).

Proof. Since the rank of L∆ as a vector bundle over E is equal to the dimension of
E as a manifold, we have only to show that L∆ is isotropic if and only if J· , ·K∆ is
skew-symmetric. But this is immediate by the preceding theorem.

Next we describe the anchor of the Courant algebroid TE ⊕ T ∗E → E in terms
of linear splittings and the corresponding Dorfman connections. We begin with a
proposition, the proof of which is left to the reader.

Proposition 4.7. Let ∆: Γ(TM ⊕E∗)×Γ(E⊕T ∗M)→ Γ(E⊕T ∗M) be a Dorfman
connection. Then the map

∇ : Γ(TM ⊕ E∗)× Γ(E)→ Γ(E), ∇νe = prE(∆ν(e, 0))

is a linear connection.

This linear connection encodes in the following manner the anchor prTE : TE ⊕
T ∗E → TE.

Proposition 4.8. Let ∆: Γ(TM ⊕ E∗) × Γ(E ⊕ T ∗M) → Γ(E ⊕ T ∗M) be a
Dorfman connection and choose ν ∈ Γ(TM ⊕ E∗) and τ ∈ Γ(E ⊕ T ∗M). Then

prTE
(
σ∆
TM⊕E∗(ν)

)
= ∇̂ν and prTE(τ ↑) = (prE τ)↑.

Proof. The second claim is immediate by the definition of τ ↑ in (2.8). For the first
equality, note that by definition of ∇ and σ∆

TM⊕E∗(ν),

prTE
(
σ∆
TM⊕E∗(ν)

)
(e(m)) = Tme(prTM ν)(m) +E

d

dt


t=0

e(m)− t∇νe(m)

for all e ∈ Γ(E) and m ∈M . By (2.6), this proves the claim.

Finally, we show how the Dorfman connection encodes the Courant-Dorfman
bracket on linear and core sections. The next theorem shows how the integrability of
L∆ is related to the curvature R∆ of the Dorfman connection.

Proposition 4.9. Let ∆: Γ(TM ⊕E∗)×Γ(E⊕T ∗M)→ Γ(E⊕T ∗M) be a Dorfman
connection and choose ν, ν1, ν2 ∈ Γ(TM ⊕ E∗) and τ, τ1, τ2 ∈ Γ(E ⊕ T ∗M). Then
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1.
r
τ ↑1 , τ

↑
2

z
= 0,

2.
q
σ∆(ν), τ ↑

y
= (∆ντ)↑,

3.
q
σ∆(ν1), σ∆(ν2)

y
= σ∆(Jν1, ν2K∆)− ˜R∆(ν1, ν2)(·, 0).

The proof of these formulas is relatively long and technical, it can be found in
Appendix B.

Remark 4.10. 1. If the Courant-Dorfman bracket is twisted by a linear closed
3-form H over a map H̄ : TM ∧ TM → E∗ [28], then the bracket Jν̃1, ν̃2K is
linear over Jν1, ν2KH̄,∆ = Jν1, ν2K∆ + (0, H̄(X1, X2)). Note that the Dorfman

connection dual to this bracket is ∆H̄
v σ = ∆vσ + (0, 〈H̄(X, ·), e〉). A more

careful study of general exact Courant algebroids [14] over vector bundles and
of the corresponding twisting of the Dorfman connections and dull algebroids
corresponding to splittings of TE ⊕ T ∗E will be done somewhere else.

2. The Courant bracket, i.e. the skew-symmetric counterpart of the Courant-
Dorfman bracket, is given by

(a)
r
τ ↑1 , τ

↑
2

z

C
= 0,

(b)
q
σ∆(ν), τ ↑

y
C

=
q
σ∆(ν), τ ↑

y
− (0, 1

2
q∗Ed〈ν, τ〉) =

(
∆ντ − (0, 1

2
d〈ν, τ〉)

)↑
,

(c)
q
σ∆(ν1), σ∆(ν2)

y
C

= σ∆(Jν1, ν2K∆)− ˜R∆(ν1, ν2)(·, 0)− (0, 1
2
d`Skew∆(ν1,ν2)),

with (
0,

1

2
d`Skew∆(ν1,ν2)

)
= σ∆

(
1

2
Skew∆(ν1, ν2)

)
+ ˜∆ 1

2
Skew∆(ν1,ν2)(·, 0).

We chose to work with the Courant Dorfman bracket – and to call Dorfman
connections after I. Dorfman– because it is described naturally by Dorfman
connections, as in Proposition 4.1. Since Dorfman connections are equivalent to
linear splittings of the standard Courant algebroid over a vector bundle, this
shows that in this context, the Courant Dorfman bracket is more natural than
the Courant bracket.

The following corollary of Theorem 4.6 and Proposition 4.9 is immediate.

Theorem 4.11. Let E → M be a vector bundle and consider a linear splitting
TE⊕T ∗E = (T qEE⊕ (T qEE)◦)⊕L. Then the horizontal space L is a Dirac structure
if and only if the corresponding dull algebroid (TM ⊕ E∗, prTM , J· , ·KL) is a Lie
algebroid.

In the next section we study more general (non-horizontal) Dirac structures on E.
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4.3. VB-Dirac structures and Dorfman connections

We consider linear subbundles

D

��

// U

��
E //M

of TE ⊕ T ∗E

��

// TM ⊕ E∗

��
E //M

The intersection of such a sub- double vector bundle D with the vertical space
T qEE⊕(T qEE)◦ always has constant rank on E and there is a subbundle K ⊆ E⊕T ∗M
such that D∩ (T qEE⊕ (T qEE)◦) is spanned over E by the sections k↑ for all k ∈ Γ(K).
In other words K is the core of D. The following proposition follows from this
observation.

Proposition 4.12. Let E be a vector bundle endowed with a linear subbundle D ⊆
TE ⊕ T ∗E over U ⊆ TM ⊕ E∗ and with core K ⊆ E ⊕ T ∗M . Then there exists a
Dorfman connection ∆ such that D is spanned by the sections k↑ for all k ∈ Γ(K)
and σ∆(u) for all u ∈ Γ(U).

The Dorfman connection ∆ is then said to be adapted to D. Conversely, given
a Dorfman connection and two subbundles U ⊆ TM ⊕ E∗ and K ⊆ E ⊕ T ∗M , we
call DU,K,∆ the linear subbundle of TE ⊕ T ∗E → E that is spanned by k↑, for all
k ∈ Γ(K) and σ∆(u) for all u ∈ Γ(U).

Proof. To see that such a splitting exists, we work with decompositions. Since D
and TE ⊕ T ∗E are both double vector bundles, there exist two decompositions
ID : E×M U ×M K → D and I : E×M (TM ⊕E∗)×M (E⊕T ∗M)→ TE⊕T ∗E. Let
ι : D → TE ⊕ T ∗E be the double vector bundle inclusion, over ιU : U → TM ⊕ E∗
and the identity on E, and with core ιK : K → E ⊕ T ∗M . Then there exists φ ∈
Γ(E∗⊗U∗⊗(E⊕T ∗M)) such that the map I−1◦ι◦ID : E×MU×MK → E×M (TM⊕
E∗) ×M (E ⊕ T ∗M) sends (em, um, km) to (em, ιU(um), ιK(km) + φ(em, um)). Using
local basis sections of TM ⊕E∗ adapted to U and a partition of unity on M , extend φ
to φ̂ ∈ Γ(E∗⊗(TM⊕E∗)⊗(E⊕T ∗M)). Then define a new decomposition Ĩ−1 : TE⊕
T ∗E → E×M (TM⊕E∗)×M (E⊕T ∗M) by Ĩ−1(ξ) = I−1(ξ)+E (em, 0m,−φ̂(em, νm)) =
I−1(ξ) +TM⊕E∗ (0m, νm,−φ̂(em, νm)) for ξ ∈ TemE × T ∗emE with ΦE(ξ) = νm. Then

(Ĩ ◦ ι ◦ ID)(em, um, km) = (em, ιU(um), ιK(km)) for all (em, um, km) ∈ E ×M U ×M K.
The corresponding linear splitting Σ̃ : E ×M (TM ⊕ E∗)→ TE ⊕ T ∗E, Σ̃(em, νm) =
Ĩ(em, νm, 0m) sends (em, ιU(um)) to ι(ID(em, um, 0m)) ∈ ι(D).

Next we ask how many linear splittings are adapted to D, and how two linear
splittings that are adapted to D are related.
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Definition 4.13. Two Dorfman connections ∆,∆′ are said to be (U,K)-equivalent
if (∆−∆′)(Γ(U)× Γ(E ⊕ 0)) ⊆ Γ(K).

The following proposition shows that this defines an equivalence relation on the
set of Dorfman connections. We write [∆]U,K , or simply [∆], for the (U,K)-class of
the Dorfman connection ∆. By the next proposition, triples (U,K, [∆]) are in one-one
correspondence with linear subbundles of TE ⊕ T ∗E → E.

Proposition 4.14. Choose two Dorfman connections ∆,∆′ and assume that ∆ is
adapted to D. Then ∆′ is adapted to D if and only if ∆ and ∆′ are (U,K)-equivalent.

Proof. Since ∆ is adapted to D, D is spanned by the sections σ∆(u) and k↑ for all
k ∈ Γ(K) and u ∈ Γ(U). If ∆ and ∆′ are (U,K)-equivalent, we have σ∆(u)−σ∆′(u) =
φ̃u for some φu ∈ Γ(Hom(E,K)). This implies immediately that ∆′ is adapted to D.
The converse implication can be proved in a similar manner.

The following theorem follows from the results in the preceding subsection.

Theorem 4.15. Let D be a linear subbundle of TE⊕ T ∗E → E over U ⊆ TM ⊕E∗
and with core K ⊆ E ⊕ T ∗M , and choose a Dorfman connection ∆ that is adapted to
D. Then

1. D is isotropic if and only if Skew∆ |U⊗U = 0 and K ⊆ U◦.

2. D is maximally isotropic if and only if Skew∆ |U⊗U = 0 and K = U◦.

3. Γ(D) is closed under the Courant-Dorfman bracket if and only if

(a) ∆uk ∈ Γ(K) for all u ∈ Γ(U), k ∈ Γ(K),
(b) JΓ(U),Γ(U)K∆ ⊆ Γ(U),

(c) R∆

(
Γ(U)× Γ(U)× Γ(E ⊕ T ∗M)

)
⊆ Γ(K).

Proof. This is an immediate corollary of the results in the preceding subsection,

using R∆

(
Γ(TM ⊕ E∗)× Γ(TM ⊕ E∗)× Γ(0⊕ T ∗M)

)
= 0. To see this use (2) of

Proposition 3.4, bearing in mind that the anchor is prTM .

Corollary 4.16. Let D be a linear subbundle of TE⊕T ∗E → E over U ⊆ TM ⊕E∗
and with core K ⊆ E ⊕ T ∗M , and choose a Dorfman connection ∆ that is adapted to
D. Then

1. D is an isotropic subalgebroid of TE ⊕ T ∗E → E if and only if

(a) U ⊆ K◦,
(b) ∆uk ∈ Γ(K) for all u ∈ Γ(U), k ∈ Γ(K),
(c) (U, prTM |U , J· , ·K∆|Γ(U)×Γ(U)) is a skew-symmetric dull algebroid.
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(d) the induced Dorfman connection

∆̄ : Γ(U)× Γ((E ⊕ T ∗M)/K)→ Γ((E ⊕ T ∗M)/K)

is flat.

2. D is a Dirac structure if and only if U = K◦ and (U, prTM |U , J· , ·K∆|Γ(U)×Γ(U))
is a Lie algebroid.

Note that in the second situation, the induced Dorfman connection ∆̄ is just the
Lie derivative

£ = ∆̄: Γ(U)× Γ(U∗)→ Γ(U∗),

which flatness is equivalent to the restriction of J· , ·K∆ to Γ(U) satisfying the Jacobi-
identity. The Dorfman connection ∆̄ depends only on the class [∆] of the connection ∆.
Conversely, a Dorfman connection ∆̄ : Γ(U)×Γ((E⊕T ∗M)/K)→ Γ((E⊕T ∗M)/K),
can be extended to a Dorfman connection ∆: Γ(TM ⊕ E∗) × Γ(E ⊕ T ∗M) →
Γ(E ⊕ T ∗M) (by extending in a dull manner the corresponding Lie algebroid bracket
on U). Two such extensions of ∆̄ are automatically (U,K)-equivalent.

Proof of Corollary 4.16. The proof is immediate. For (2), note only that K = U◦ and
∆uk ∈ Γ(K) for all u ∈ Γ(U), k ∈ Γ(K) imply together that the dull bracket restricts
to a bracket on Γ(U), and vice-versa.

Remark 4.17. 1. Using the following Proposition 4.18, one can see that if the
conditions in (2) of Corollary 4.16 are satisfied for ∆, then they are also satisfied
for any ∆′ that is (U,K)-equivalent to ∆.

2. We say that (U,K, [∆]) is a Dirac triple if the corresponding linear subbundle
D(U,K,[∆]) is a Dirac structure on E. By the considerations above, we find that
linear Dirac structures in TE ⊕ T ∗E → E are in one-one correspondence with
Dirac triples.

Proposition 4.18. Let E →M be a vector bundle and choose a triple (U,K, [∆]U,K)
such that U = K◦. Then for any two representatives ∆,∆′ ∈ [∆]U,K, we have
Ju1, u2K∆ = Ju1, u2K∆′for all u1, u2 ∈ Γ(U).

Proof. Since prTMJu1, u2K∆ = [prTM u1, prTM u2] = prTMJu1, u2K∆′ , we need only
to check that 〈Ju1, u2K∆, (e, 0)〉 = 〈Ju1, u2K∆′ , (e, 0)〉 for all e ∈ Γ(E). But this is
immediate by the hypothesis, the duality of ∆ and J· , ·K∆ and the definition of
(U,K)-equivalence.

Since a linear Dirac structure D in TE ⊕ T ∗E over the base U ⊆ TM ⊕ E∗ is a
VB-algebroid (D → E,U →M), we get the following corollary from Theorem 4.15,
Corollary 4.16 and Proposition 4.18.
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Corollary 4.19. Let (D;E,U ;M) be a linear Dirac structure in (TE⊕T ∗E;E, TM⊕
E∗;M).

A linear splitting Σ∆ of TE ⊕ T ∗E that is adapted to D defines a linear splitting
Σ of D. Then

1. (U, prTM |U , J· , ·K∆|Γ(U)×Γ(U)) is a Lie algebroid (that does not depend on the
splitting) – it is the base Lie algebroid of the VB-algebroid (D → E,U →M);

2. the restriction ∆̃ of ∆ to Γ(U)× Γ(U◦)→ Γ(U◦) is a linear connection;

3. the linear connection ∇ restricts to ∇̃ : Γ(U)× Γ(E)→ Γ(E) and the vector-
valued 2-form R∆ restricts to R̃∆ ∈ Ω2(U,Hom(E,U◦)).

The triple (∆̃, ∇̃, R̃∇) is a 2-term representation up to homotopy of U on prE |U◦ : U◦ →
E, that describes the VB-algebroid structure on D in the linear splitting Σ.

We conclude with a series of examples of Dorfman connections adapted to linear
Dirac structures. Our first example finds a Dorfman connection adapted to a linear
trivial Dirac structure (the direct sum of a linear involutive subbundle of TE and its
annihilator).

Example 4.20. In the situation of Example 4.2, choose two subbundles FM ⊆ TM
and C ⊆ E. Set U := FM ⊕C◦ and K := C⊕F ◦M = U◦. The linear subbundle DU,K,∆

corresponding to U , K and the standard Dorfman connection associated to ∇ is then
the direct sum of a linear subbundle FE ⊆ TE, with CE ⊆ T ∗E. Since U = K◦,
we get immediately that CE = F ◦E and DU,K,[∆] is the trivial almost Dirac structure
FE ⊕ F ◦E. An application of Corollary 4.16 to this situation yields that FE ⊕ F ◦E is a
Dirac structure if and only if

1. FM is involutive,

2. ∇Xc ∈ Γ(C) for all X ∈ Γ(FM) and c ∈ Γ(C) and

3. the induced connection ∇̃ : Γ(FM)× Γ(E/C)→ Γ(E/C) is flat.

Since FE ⊕ F ◦E is Dirac if and only if FE ⊆ TE is involutive, we have recovered
Proposition 4.2 in [29], see also [30].

The second example describes a Dorfman connection adapted to the graph of a
linear (almost) Poisson structure.

Example 4.21. In the situation of Example 4.3, consider U = graph(ρ : A→ TM) ⊆
TM⊕A∗ and set K = graph(−ρt : T ∗M → A∗) = U◦. A straightforward computation
shows that

∆(ρ(a),a)(−ρt(θ), θ) =
(
−ρt

(
∇bas
a

∗
θ
)
,∇bas

a

∗
θ
)
∈ Γ(K)
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for all a ∈ Γ(A) and θ ∈ Ω1(M). Furthermore, we have

J(ρ(a1), a1), (ρ(a2), a2)K∆ = (ρ([a1, a2]), [a1, a2])

for all a1, a2 ∈ Γ(A), which shows that (U, prTM , J· , ·K∆) is a Lie algebroid if and only
if A is a Lie algebroid. We have:

∆̄(ρ(a),a)(α, 0) =
(
〈α,∇bas

· a〉+∇∗ρ(a)α− ρt〈∇·a, α〉, 〈∇·a, α〉
)

=
(
〈α,∇bas

· a〉+∇∗ρ(a)α, 0
)

= (£aα, 0).

Finally, the right-hand side of (4.17) vanishes for (ρ(a), a), (ρ(b), b), (ρ(c), c) ∈ Γ(U)
and arbitrary (α, θ) ∈ Γ(A∗ ⊕ T ∗M) if and only if A is a Lie algebroid.

Hence, we find that the linear subbundle D of TA∗ ⊕ T ∗A∗ → A∗ associated to
U,K and ∆ is an almost Dirac structure on A∗, and that is is a Dirac structure if
and only if A is a Lie algebroid. The vector bundle D → A∗ is the graph of the vector
bundle morphism

π]A : T ∗A∗ → TA∗

associated to the linear almost Poisson structure defined on A∗ by the skew-symmetric
dull algebroid structure on A (see [17]). More precisely, D is spanned by the sections
k↑ for k ∈ Γ(K) and σ∆(u) for u ∈ Γ(U), or, equivalently, by the sections (−ρtθ↑, q∗A∗θ)
and

(
£̂a,d`a

)
for θ ∈ Ω1(M) and for a ∈ Γ(A). By Appendix A.1, these are exactly

the sections (π]A(q∗A∗θ), q
∗
A∗θ) and (π]A(d`a),d`a).

The third example finds a Dorfman connection adapted to the graph of a linear
closed 2-form on E.

Example 4.22. Consider, in the situation of Example 4.4, U := graph(−σt : TM →
E∗) and K := graph(σ : E → T ∗M). Then U = K◦ by definition and since

∆(X,−σtX)(e, σ(e)) = (∇Xe, σ(∇Xe)),

we find that ∆uk ∈ Γ(K) for all u ∈ Γ(U) and k ∈ Γ(K). Furthermore, we have

J(X,−σtX), (Y,−σtY )K∆ = ([X, Y ],−σt[X, Y ])

for all X, Y ∈ X(M) and U is a Lie algebroid (isomorphic to TM with the Lie bracket
of vector fields). Alternatively, the Jacobiator in (4.18) is easily seen to vanish on
sections of U . This shows that the double vector subbundle D ⊆ TE ⊕ T ∗E defined
by U,K and ∆ is a Dirac structure.

By the considerations in Appendix A.2, D is the graph of the vector bundle
morphism TE → T ∗E defined by the closed 2-form σ∗ωcan ∈ Ω2(E).
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Example 4.23. In this example, we consider the vector bundle E = TM , for a
smooth manifold M . Consider a Dirac structure D on M and the Bott-Dorfman
connection

∆D : Γ(D)× Γ(TM ⊕ T ∗M/D)→ Γ(TM ⊕ T ∗M/D)

defined by D (see Proposition 3.7). Choose an extension ∆: Γ(TM⊕T ∗M)×Γ(TM⊕
T ∗M)→ Γ(TM ⊕ T ∗M) of ∆D, i.e. a dull extension of the restriction to Γ(D) of the
Courant-Dorfman bracket.

It is easy to check that the triple (D,D, [∆]) = (D,D,∆D) is a Dirac triple. Later
we will see the meaning of the Dirac structure on TM associated to it.

Example 4.24. We now combine Examples 4.20 and 4.22. We consider the vector
bundle T ∗M →M endowed with a TM -connection ∇ and the Dorfman connection

∆: Γ(TM ⊕ TM)× Γ(T ∗M ⊕ T ∗M)→ Γ(T ∗M ⊕ T ∗M),

∆(X,Y )(θ, ω) = (∇Xθ,£X(ω − θ) + 〈∇∗· (X + Y ), ω〉+∇Xθ).

Consider a subbundle F ⊆ TM and U := {(v,−v) | x ∈ F} ⊆ TM ⊕ TM . The
annihilator K = U◦ is then given by K = {(θ, ω) ∈ T ∗M ⊕ T ∗M | θ − ω ∈ F ◦}.

Note that by Example 4.4, the dull bracket on TM ⊕ TM is skew-symmetric.
It is easy to see that its restriction to U is just the Lie bracket of vector fields:
J(X,−X), (Y,−Y )K∆ = ([X, Y ],−[X, Y ]) for allX, Y ∈ Γ(F ). Hence, we know already
that the linear subbundle D(U,K,[∆]) is an almost Dirac structure on T ∗M . An easy
computation using Appendix A.2 yields that

D(U,K,[∆])(θ) = {(vθ, ω[can(vθ) + ηθ) | vθ ∈ F(θ), ηθ ∈ F◦(θ)}

for all θ ∈ T ∗M , where F = (TcM)−1(F ). Assume that M is the configuration
space of a nonholonomic mechanical system and F the constraints distribution. If
L is the Lagrangian of the system, then the pullback to the contraints submanifold
FL(F ) ⊆ T ∗M of the Dirac structure D(U,K,[∆]) is one of the frameworks proposed in
[31, Equation (22)] for the study of nonholonomic systems, following [32, Equation
(2.1)].

5. The prolongation TA⊕ T ∗A→ TM ⊕A∗ of a Lie algebroid A

We consider a Lie algebroid (A→M,ρ, [· , ·]) and a Dorfman connection

∆: Γ(TM ⊕ A∗)× Γ(A⊕ T ∗M)→ Γ(A⊕ T ∗M)

with corresponding dull bracket J· , ·K∆ and anchor prTM on TM ⊕ A∗. By Theorem
4.1, this Dorfman connection corresponds to a linear splitting of TA⊕ T ∗A. Our goal
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is to compute the representation up to homotopy defined by this linear splitting of
the VB-algebroid (TA⊕ T ∗A→ TM ⊕ A∗, A→M). Note that until now, only the
representations up to homotopy defined by standard Dorfman connections were known
(Example 2.11). The results in this section are used in [9] to describe infinitesimally
Dirac groupoids.

We define a map Ω: Γ(TM ⊕ A∗)× Γ(A)→ Γ(A⊕ T ∗M) by

Ω(X,α)a = ∆(X,α)(a, 0)− (0,d〈α, a〉).

Ω satisfies Ωf(X,α)a = fΩ(X,α)a and Ω(X,α)(fa) = fΩ(X,α)a+X(f)(a, 0)−〈α, a〉(0,df)
for all f ∈ C∞(M), a ∈ Γ(A) and (X,α) ∈ Γ(TM ⊕A∗). For each a ∈ Γ(A), we have
two derivations over ρ(a) ∈ X(M):

£a : Γ(A⊕ T ∗M)→ Γ(A⊕ T ∗M), £a(a
′, θ) = ([a, a′],£ρ(a)θ) and

£a : Γ(TM ⊕ A∗)→ Γ(TM ⊕ A∗), £a(X,α) = ([ρ(a), X],£aα).

Note that £fa(a
′, θ) = f£a(a

′, θ) + (−ρ(a′)(f)a, 〈θ, ρ(a)〉df).

5.1. The basic connections associated to ∆

Proposition 5.1. The two maps

∇bas : Γ(A)× Γ(TM ⊕ A∗)→ Γ(TM ⊕ A∗), and

∇bas : Γ(A)× Γ(A⊕ T ∗M)→ Γ(A⊕ T ∗M),

defined by ∇bas
a (X,α) = (ρ, ρt)(Ω(X,α)a) + £a(X,α) and ∇bas

a (a′, θ) = Ω(ρ,ρt)(a′,θ)a +
£a(a

′, θ) are ordinary linear connections.

Proof. The proof is straightforward and left to the reader.

The following proposition is easily checked, and shows that the connections are
dual to each other if and only if the dull bracket on Γ(TM ⊕ A∗) is skew-symmetric.

Proposition 5.2. We have

〈∇bas
a ν, τ〉+ 〈ν,∇bas

a τ〉 = ρ(a)〈ν, τ〉 − 〈Skew∆(ν, (ρ, ρt)τ), a〉 (5.19)

∇bas
a (ρ, ρt)τ = (ρ, ρt)∇bas

a τ (5.20)

for all a ∈ Γ(A), ν ∈ Γ(TM ⊕ A∗) and τ ∈ Γ(A⊕ T ∗M).

Definition 5.3. The connections ∇bas : Γ(A) × Γ(TM ⊕ A∗) → Γ(TM ⊕ A∗) and
∇bas : Γ(A)× Γ(A⊕ T ∗M)→ Γ(A⊕ T ∗M) in Proposition 5.1 are called the basic
connections associated to ∆.
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Proposition 5.4. The map

Rbas
∆ : Γ(A)× Γ(A)× Γ(TM ⊕ A∗)→ Γ(A⊕ T ∗M)

where Rbas
∆ (a, b)(X,α) is

−Ω(X,α)[a, b] + £a

(
Ω(X,α)b

)
−£b

(
Ω(X,α)a

)
+ Ω∇bas

b (X,α)a− Ω∇bas
a (X,α)b.

is tensorial, i.e. it defines Rbas
∆ ∈ Ω2(A,Hom(TM ⊕ A∗, A⊕ T ∗M)).

Proof. This proof also is a straightforward computation.

Definition 5.5. We call the tensor Rbas
∆ the basic curvature associated to ∆.

Proposition 5.6. The basic curvature satisfies R∇bas = Rbas
∆ ◦ (ρ, ρt) and R∇bas =

(ρ, ρt) ◦Rbas
∆ .

Proof. For τ ∈ Γ(A⊕ T ∗M) and a, b ∈ Γ(A), we have

R∆(a, b)((ρ, ρt)τ) = −Ω(ρ,ρt)τ [a, b] + £a

(
Ω(ρ,ρt)τb

)
−£b

(
Ω(ρ,ρt)τa

)
+ Ω∇bas

b (ρ,ρt)τa− Ω∇bas
a (ρ,ρt)τb

= −Ω(ρ,ρt)τ [a, b]−£[a,b]τ + £a

(
Ω(ρ,ρt)τb+ £bτ

)
−£b

(
Ω(ρ,ρt)τa+ £aτ

)
+ Ω∇bas

b (ρ,ρt)τa− Ω∇bas
a (ρ,ρt)τb

= −∇bas
[a,b]τ +∇bas

a ∇bas
b τ −∇bas

b ∇bas
a τ = R∇bas(a, b)τ.

Note that in the second equality, we insert £a£b − £b£a − £[a,b] = 0. The second
equality is shown in a similar manner.

5.2. The Lie algebroid structure on TA⊕ T ∗A→ TM ⊕ A∗

Consider a Lie algebroid A and a Dorfman connection ∆: Γ(TM ⊕ A∗)× Γ(A⊕
T ∗M)→ Γ(A⊕ T ∗M). Then, for any section a ∈ Γ(A), the horizontal lift σA(a) ∈
ΓTM⊕A∗(TA⊕ T ∗A) is given by

σ∆
A (a)(vm, αm) = (Tmavm,dam`α)−∆(X,α)(a, 0)↑(am)

for any choice of section (X,α) ∈ Γ(TM ⊕A∗) such that (X,α)(m) = (vm, αm). That
is, we have

σ∆
A (a) = (Ta,R(d`a))− Ω̃·a = al − Ω̃·a

for all a ∈ Γ(A) (using the notation of Appendix C). For simplicity, we write σA for
σ∆
A .

Proposition 5.7. The Lie algebroid structure on TA⊕T ∗A→ TM⊕A∗ with anchor
Θ: TA⊕ T ∗A→ T (TM ⊕ A∗) is described as follows:
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1. [σA(a1)σA(a2)] = σA([a1, a2])− ˜Rbas
∆ (a1, a2),

2. [σA(a), τ †] = (∇bas
a τ)†,

3. [τ †1 , τ
†
2 ] = 0,

4. Θ(σA(a)) = ∇̂bas
a ∈ X(TM ⊕ A∗),

5. Θ(τ †) = ((ρ, ρt)τ)↑ ∈ X(TM ⊕ A∗).

In other words, we have the following theorem.

Theorem 5.8. (ρ, ρt) : A ⊕ T ∗M → TM ⊕ A∗, the basic connections ∇bas and the
basic curvature Rbas

∆ define the representation up to homotopy describing the VB-Lie
algebroid structure on TA⊕ T ∗A→ TM ⊕ A∗ in the linear splitting given by ∆.

Proof of Proposition 5.7. The proof of this theorem consists in checking the formulas,
using the description of the Lie algebroid structure on TA ⊕ T ∗A → TM ⊕ A∗ in
Appendix C. We begin with the Lie algebroid brackets. Choose a1, a2 ∈ Γ(A) and
τ ∈ Γ(A⊕ T ∗M). Using Proposition 3, we find

[σA(a1), σA(a2)] =
[
al1 − Ω̃·a1, a

l
2 − Ω̃·a2

]
= [a1, a2]l − £̃a1Ω·a2 + £̃a2Ω·a1 + ˜Ω·a2 ◦ (ρ, ρt) ◦ Ω·a1 − ˜Ω·a1 ◦ (ρ, ρt) ◦ Ω·a2

= σA[a1, a2]− ˜Rbas
∆ (a1, a2).

We have used

− (£a1Ω·a2)(v) + (£a2Ω·a1)(v) + (Ω·a2 ◦ (ρ, ρt) ◦ Ω·a1)(v)− (Ω·a1 ◦ (ρ, ρt) ◦ Ω·a2)(v)

=−£a1Ωva2 + Ω£a1v
a2 + £a2Ωva1 − Ω£a2v

a1 + Ω(ρ,ρt)Ωva1a2 − Ω(ρ,ρt)Ωva2a1

=−£a1Ωva2 + £a2Ωva1 + Ω∇bas
a1

va2 − Ω∇bas
a2

va1 = −Rbas
∆ (a1, a2)v − Ωv[a1, a2]

for all v ∈ Γ(TM ⊕ A∗). Next, we find [σA(a), τ †] = (£aτ)† + Ω(ρ,ρt)τa
† = (∇bas

a τ)†.
For the anchor map, we compute Θ(σA(a))(`τ ) = `£aτ−(Ω·a)t((ρ,ρt)τ), which yields the
desired equality since

〈(Ω·a)t((ρ, ρt)τ), v〉 = 〈(ρ, ρt)Ωva, τ〉 = 〈∇bas
a v −£av, τ〉

= ρ(a)〈v, τ〉 − 〈v,∇bas
a

∗
τ〉 − 〈£av, τ〉

and consequently 〈v,£aτ − (Ω·a)t((ρ, ρt)τ)〉 = 〈v,∇bas
a
∗
τ〉. The remaining equalities

follow from Proposition 3 in Appendix C.

Proposition 5.9. Consider a Lie algebroid A and a Dorfman connection ∆: Γ(TM⊕
A∗)×Γ(A⊕T ∗M)→ Γ(A⊕T ∗M). Let U ⊆ TM⊕A∗ and K ⊆ A⊕T ∗M be subbundles.
Then the linear subbundle D(U,K,[∆]) is a subalgebroid of TA⊕ T ∗A→ TM ⊕A∗ over
U if and only if:
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1. (ρ, ρt)(K) ⊆ U ,

2. ∇bas
a k ∈ Γ(K) for all a ∈ Γ(A) and k ∈ Γ(K),

3. ∇bas
a u ∈ Γ(U) for all a ∈ Γ(A) and u ∈ Γ(U),

4. Rbas
∆ (a1, a2)u ∈ Γ(K) for all u ∈ Γ(U), a1, a2 ∈ Γ(A).

Proof. Assume that D(U,K,[∆]) → U is a subalgebroid of TA ⊕ T ∗A → TM ⊕ A∗.

Then we have ((ρ, ρt)k)↑|U = Θ(k†|U) ∈ X(U) and ∇̂bas
a |U = Θ(σA(a)|U) ∈ X(U)

for all a ∈ Γ(A) and k ∈ Γ(K). This is the case if and only if ((ρ, ρt)k)↑(`τ )|U = 0

and ∇̂bas
a (`τ )|U = 0 for all τ ∈ Γ(U◦). Since ((ρ, ρt)k)↑(`τ ) = π∗〈(ρ, ρt)k, τ〉 and

∇̂bas
a (`τ ) = `∇bas

a
∗τ , we find that (ρ, ρt)k must be a section of U and ∇bas

a
∗
τ ∈ Γ(U◦)

for all τ ∈ Γ(U◦). But the latter is equivalent to ∇bas
a u ∈ Γ(U) for all u ∈ Γ(U). We

have in the same manner (∇bas
a k)†|U = [σA(a), k†]|U ∈ Γ(D(U,K,[∆])) and

(
σA[a1, a2]−

˜Rbas
∆ (a1, a2)

)
|U = [σA(a1), σA(a2)]|U ∈ Γ(D(U,K,[∆])) for all a1, a2 ∈ Γ(A) and k ∈ Γ(K).

But this is only the case if ∇bas
a k ∈ Γ(K) and, since σA[a1, a2]|U ∈ Γ(D(U,K,[∆])),

if Rbas
∆ (a1, a2)

†|U ∈ Γ(D(U,K,[∆])). This holds only if Rbas
∆ (a1, a2)u ∈ Γ(K) for all

u ∈ Γ(U). The converse implication is shown in a similar manner.

5.3. LA-Dirac structures in TA⊕ T ∗A
Our last result is a description of the triples (U,K, [∆]U,K) associated to Dirac

structures on A that are at the same time Lie subalgebroids of TA⊕T ∗A→ TM⊕A∗.
We call such a Dirac structure DA an LA-Dirac structure on A, and we call the
pair (A,DA) a Dirac algebroid.

Proposition 5.10. Consider a Lie algebroid A and a Dorfman connection ∆: Γ(TM⊕
A∗)× Γ(A⊕ T ∗M)→ Γ(A⊕ T ∗M). Let U ⊆ TM ⊕ A∗ and K ⊆ A⊕ T ∗M be sub-
bundles. Then D(U,K,[∆]) is a Dirac structure in TA⊕ T ∗A→ A and a subalgebroid
of TA⊕ T ∗A→ TM ⊕ A∗ over U if and only if:

1. K = U◦

2. (ρ, ρt)(K) ⊆ U ,

3. (U, prTM , J· , ·K∆) is a Lie algebroid,

4. ∇bas
a k ∈ Γ(K) for all a ∈ Γ(A) and k ∈ Γ(K),

5. Rbas
∆ (a1, a2)u ∈ Γ(K) for all u ∈ Γ(U), a1, a2 ∈ Γ(A).

Proof. This theorem follows from (2) in Corollary 4.16, together with Proposition 5.9.
Note that if U = K◦, (ρ, ρt)K ⊆ U and (U, prTM , J· , ·K∆) is a Lie algebroid, then ∇bas

a

preserves Γ(U) if and only if ∇bas
a preserves Γ(K). So (2) and (3) in Proposition 5.9

become one single condition.

Hence we have found the following result.
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Theorem 5.11. There is a one-one correspondence of triples (U,K, [∆]U,K) satisfying
(1)–(5) in Proposition 5.9 with LA-Dirac structures on the Lie algebroid A.

Remark 5.12. If D is an LA-Dirac structure over U ⊆ TM ⊕A∗ in TA⊕T ∗A, then
(D → U,A → M) and (D → A,U → M) are VB-algebroids. A linear splitting Σ∆

that is adapted to D defines a linear splitting Σ of D. The 2-term representation
up to homotopy (∆̃, ∇̃, R̃∆) of U on prE : U◦ → A describes (D → A,U → M) in
this splitting (see Corollary 4.19). Proposition 5.9 shows that the representation up
to homotopy (∇bas,∇bas, Rbas

∆ ) of A on (ρ, ρt) : A⊕ T ∗M → TM ⊕ A∗ restricts to a

representation up to homotopy (∇̃bas, ∇̃bas, R̃bas
∆ ) of A on (ρ, ρt)|U◦ : U◦ → U . One

can check that these two 2-term representations up to homotopy form a matched
pair, which implies that D is a double Lie algebroid [26]. The computation is very
similar to the one for the double Lie algebroid TA in [26, Section 3.3].

Finally we discuss our previous examples and we recover the equivalences of
infinitesimal ideal systems with foliated algebroids [29], of Lie bialgebroids with
Poisson Lie algebroids [10] and of IM-2-forms with presymplectic Lie algebroids [12].
To avoid confusions, we write ∇A for the A-basic connections induced on A and TM
by the Lie algebroid structure on A and the connection ∇, and RA

∇ for the basic
curvature associated to it (§2.2.2).

Example 5.13 (Foliated algebroids and infinitesimal ideal systems). In the situation
of Examples 4.2 and 4.20, assume that the vector bundle E is a Lie algebroid A.
We show that the conditions in Proposition 5.10 define in this case an infinitesimal
ideal system [29], see also [33]. Condition (1) is trivially satisfied by construction and
Condition (3) is the involutivity of FM and the quotient of ∇ to a flat connection
∇̃ : Γ(FM) × Γ(A/C) → Γ(A/C) (Example 4.20). Condition (2) is ρ(C) ⊆ FM ,
Condition (4) is ∇A

a c ∈ Γ(C) for all c ∈ Γ(C) and ∇A
aX ∈ Γ(FM) for all X ∈

Γ(FM ). To see this, note that ∇bas : Γ(A)× Γ(A⊕ T ∗M)→ Γ(A⊕ T ∗M) is here just
∇bas
a (a′, θ) = (∇A

a a
′,∇A∗

aθ). Finally, an easy computation shows Rbas
∆ (a1, a2)(X,α) =

(RA
∇(a1, a2)X,−RA

∇(a1, a2)
∗α), which implies the equivalence of Condition (5) with

RA
∇(a1, a2)X ∈ Γ(C◦) for all X ∈ Γ(FM) and all a1, a2 ∈ Γ(A). Therefore, following

[30, §5.2] we find that the conditions of Proposition 5.10 are satisfied if and only if
(FM , C, ∇̃) is an infinitesimal ideal system in A.

Example 5.14 (Poisson Lie algebroids and Lie bialgebroids). Consider again Exam-
ples 4.3 and 4.21. Assume that A∗ has itself also a Lie algebroid structure with anchor
ρ∗ and bracket [· , ·]∗. For simplicity, we switch the roles of A and A∗ in Examples 4.3
and 4.21. We show that U , K, ∆ satisfy the conditions of Proposition 5.10 if and only
if (A,A∗) is a Lie bialgebroid. Recall that we have already found that (1) and (3) are

35



equivalent to A∗ being a Lie algebroid. Then, (2) in Proposition 5.10 is equivalent to

ρ∗ ◦ ρt = −ρ ◦ ρt∗. (5.21)

We assume in the following that this condition is satisfied. We also have:

Ω(ρ∗(α),α)a =
(
£αa− ρt∗〈∇∗· α, a〉, 〈∇∗· α, a〉

)
− (0,d〈α, a〉)

=
(
iαdAa+ ρt∗〈α,∇·a〉,−〈α,∇·a〉

)
,

for all α ∈ Γ(A∗) and a ∈ Γ(A) and so

Ω(ρ,ρt)(−ρt∗θ,θ)a = Ω(ρ∗(ρtθ),ρtθ)a =
(
iρtθdAa+ ρt∗〈ρtθ,∇·a〉,−〈ρtθ,∇·a〉

)
.

for all θ ∈ Ω1(M). In particular, if θ = df for some f ∈ C∞(M), we get:

∇bas
a (−ρt∗df,df) = Ω(ρ,ρt)(−ρt∗df,df)a+ £a(−ρt∗df,df)

=
(
idA∗fdAa+ ρt∗〈dA∗f,∇·a〉 − [a,dAf ],−〈dA∗f,∇·a〉+ d(ρ(a)(f))

)
.

Thus, using (1) in Proposition 5.10, ∇bas
a (−ρt∗df,df) ∈ Γ(K) if and only if

〈
(
idA∗fdAa+ ρt∗〈dA∗f,∇·a〉 − [a,dAf ],−〈dA∗f,∇·a〉+ d(ρ(a)(f))

)
, (ρ∗α, α)〉 = 0

for all α ∈ Γ(A∗). But this pairing equals

〈
(
idA∗fdAa+ ρt∗〈dA∗f,∇·a〉 − [a,dAf ],−〈dA∗f,∇·a〉+ d(ρ(a)(f))

)
, (ρ∗α, α)〉,

which is easily shown to be
(
[ρ∗(α), ρ(a)] +ρ∗(£aα)−ρ(£αa) +ρ(dA〈α, a〉)

)
(f). Since

f was arbitrary, we have shown that the fourth condition is satisfied if and only if

[ρ(a), ρ∗(α)]− ρ∗(£aα) + ρ(£αa) = ρ(dA〈α, a〉) (5.22)

for all a ∈ Γ(A) and α ∈ Γ(A∗). Thus, we have found until here (5.21) and (5.22),
which are properties of Lie bialgebroids (see [20]).

Using these equations, we study Condition (5), on the basic curvature. Since
Ω(ρ∗(α),α)a = (iαdAa, 0) − (−ρt∗〈α,∇·a〉, 〈α,∇·a〉), we find 〈Ω(ρ∗(α),α)a, (ρ∗α

′, α′)〉 =
(dAa)(α, α′) for all a ∈ Γ(A), α, α′ ∈ Γ(A∗). The fourth condition together with (5.19)
and the first and third conditions imply that ∇bas

a u ∈ Γ(A) for all u ∈ Γ(U). Hence,

∇bas
a (ρ∗(α), α) = (ρ, ρt)

(
iαdAa+ ρt∗〈α,∇·a〉,−〈α,∇·a〉

)
+ £a(ρ∗(α), α)

=
(
ρ∗(−ρt〈α,∇·a〉+ £aα),−ρt〈α,∇·a〉+ £aα

)
and

〈Ω∇bas
a (ρ∗α,α)a

′, (ρ∗α
′, α′)〉 = (dAa

′)(−ρt〈α,∇·a〉+ £aα, α
′)
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for all a, a′ ∈ Γ(A), α, α′ ∈ Γ(A∗). Then a computation yields

〈Rbas
∆ (a, a′)(ρ∗α, α), (ρ∗α

′, α′)〉 = (dA[a, a′]− [a,dAa
′] + [a′,dAa])(α, α′)

+ 〈α,∇ρ∗(£aα′)a
′〉 − 〈α,∇[ρ(a),ρ∗α′]a

′〉 − 〈α,∇ρ∗(£a′α
′)a〉+ 〈α,∇[ρ(a′),ρ∗α′]a〉

+ 〈α,∇ρ(dA〈a,α′〉)a
′〉 − 〈α,∇ρ(£α′a)a

′〉 − 〈α,∇ρ(dA〈a′,α′〉)a〉+ 〈α,∇ρ(£α′a
′)a〉.

By (5.22), the second and the third lines vanish. We find hence that the last condition
is satisfied if and only if (A,A∗) is a Lie bialgebroid. Hence, (U,K, [∆]) is an LA-Dirac
triple if and only if (A,A∗) is a Lie bialgebroid, and so the graph of πA is a subalgebroid
and Dirac if and only if (A,A∗) is a Lie bialgebroid. This was already found in [10].

Example 5.15 (IM-2-forms and presymplectic Lie algebroids). In the situation of
Examples 4.4 and 4.22, assume furthermore that E =: A is a Lie algebroid. Condition
(2) in Proposition 5.10 reads here (ρ, ρt)(a, σ(a)) = (ρ(a),−σtρ(a)) for all a ∈ Γ(A),
that is, ρt ◦ σ = −σt ◦ ρ. This is equivalent to the first axiom defining an IM–2–form
σ : A→ T ∗M [11, 12], namely 〈σ(a1), ρ(a2)〉 = −〈ρ(a1), σ(a2)〉 for all a1, a2 ∈ Γ(A).
Next we compute ∇bas

a (a′, σ(a′)). We have

Ω(X,−σtX)a = (∇Xa,−£Xσ(a) + σ(∇Xa)) + (0,d〈σ(a), X〉)
= (∇Xa,−iXdσ(a) + σ(∇Xa))

and as a consequence

∇bas
a (a, σ(a′)) = Ω(ρ,ρt)(a′,σ(a′))a+ £a(a

′, σ(a′))

= (∇ρ(a′)a+ [a, a′],£ρ(a)σ(a′)− iρ(a′)dσ(a) + σ(∇ρ(a′)a)).

Hence we find that∇bas
a (a′, σ(a′)) ∈ Γ(K) if and only if ([a, a′],£ρ(a)σ(a′)−iρ(a′)dσ(a))

is a section of K, i.e. if and only if σ([a, a′]) = £ρ(a)σ(a′) − iρ(a′)dσ(a). Since this
is the second axiom in the definition of an IM–2–form, we find that the graph of
(σ∗ωcan)[ : TA→ T ∗A is a subalgebroid of TA⊕T ∗A→ TM⊕A∗ overU = graph(−σt)
only if σ : A→ T ∗M is an IM–2–form.

In order to recover the equivalence of IM-2-forms with presymplectic Lie algebroids
[12], we show that in this example, Condition (5) follows from the four previous
conditions. We have also for a, a′ ∈ Γ(A) and X ∈ X(M):

£a′Ω(X,−σtX)a = −(0,£ρ(a′)iXdσ(a)) + ([a′,∇Xa],£ρ(a′)σ(∇Xa))

= −(0, i[ρ(a′),X]dσ(a) + iX£ρ(a′)dσ(a)) + ([a′,∇Xa], σ([a′,∇Xa]) + iρ(∇Xa)dσ(a′))

and

∇bas
a (X,−σtX) = −(ρ, ρt)(0, iXdσ(a)) + (ρ, ρt)(∇Xa, σ(∇Xa)) + £a(X,−σtX)

which equals (∇A
aX,−σt(∇A

aX)). Then we easily get

Rbas
∆ (a, a′)(X,−σtX) =

(
RA
∇(a, a′)(X), σ(RA

∇(a, a′)(X))
)
∈ Γ(K).
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Example 5.16 (Tangent Dirac structures). We are here in the situation of Exam-
ple 4.23. Recall that TM →M with the Lie bracket of vector fields and the anchor
IdTM is the standard example of a Lie algebroid. We check here that the Dirac
triple (D,D,∆D) satisfies the conditions of Proposition 5.10. First, we obviously have
(IdTM , Id

t
TM )(D) ⊆ D. Then, note that for all X, Y ∈ X(M) and θ ∈ Ω1(M), we have

∇bas
X (Y, θ) = £X(Y, θ) + Ω(Y,θ)X = J(X, 0), (Y, θ)K + ∆(Y,θ)(X, 0)− (0,d〈θ,X〉)

= ∆(Y,θ)(X, 0)− J(Y, θ), (X, 0)K.

Thus, we can compute for X ∈ X(M) and d1, d2 ∈ Γ(D):

〈∇bas
X d1, d2〉 = 〈∆d1(X, 0)− Jd1, (X, 0)K, d2〉 = 〈∆D

d1
(X, 0), d2〉 − 〈Jd1, (X, 0)K, d2〉

= 〈Jd1, (X, 0)K, d2〉 − 〈Jd1, (X, 0)K, d2〉 = 0.

This shows that ∇bas
X d ∈ Γ(D) for all d ∈ Γ(D). Finally we check Condition (5),

involving the basic curvature. For this, note first that an easy computation using
〈∆d(X, 0), d′〉 = 〈∆D(X, 0), d′〉 = 〈Jd, (X, 0)K, d′〉 yields 〈ΩdX, d

′〉 = −〈£Xd, d
′〉 for

all X ∈ X(M) and d, d′ ∈ Γ(D). We get that 〈Rbas
∆ (X1, X2)d, d′〉 equals

〈−Ωd[X1, X2] + £X1ΩdX2 −£X2ΩdX1 + Ω∇bas
X2

dX1 − Ω∇bas
X1

dX2, d
′〉

= 〈£[X1,X2]d+ £X1ΩdX2 −£X2ΩdX1 −£X1∇bas
X2
d+ £X2∇bas

X1
d, d′〉,

since we have found above that∇bas
X2
d,∇bas

X1
d ∈ Γ(D). But since £X1ΩdX2−£X1∇bas

X2
d =

−£X1£X2d, we find 〈Rbas
∆ (X1, X2)d, d′〉 = 〈£[X1,X2]d−£X1£X2d+ £X2£X1d, d

′〉 = 0.
There is a canonical isomorphism from the Courant algebroid over TM

TTM ⊕ T ∗TM //

��

TM ⊕ T ∗M

��
TM //M

−→ T (TM)⊕ T (T ∗M) //

��

TM ⊕ T ∗M

��
TM //M

to the double tangent of the vector bundle TM⊕T ∗M [34], see also [20]. One can check
in a straightforward manner (using for instance [20]) that this isomorphism is nothing
else than the anchor of the VB-Lie algebroid (T (TM)⊕T ∗(TM), TM⊕T ∗M ;TM,M).

D(D,D,∆D) is spanned as a vector bundle over D by the sections σ∆
TM(X)|D for

all X ∈ X(M) and d†|D for all d ∈ Γ(D). By Theorem 5.7, the image of σ∆
TM(X)

under the anchor Θ is ∇̂bas
X and the image of d† is d↑. Hence, since ∇bas restricts to

a TM -connection on D, we get that the linear subbundle (D(D,D,∆D), D;TM,M) is
sent via this isomorphism to (TD,D;TM,M), the tangent Dirac structure in [17].
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Appendix A. Linear almost Poisson structures and the canonical symplec-
tic form on T ∗E

Appendix A.1. Linear almost Poisson structures

Consider here a skew-symmetric dull algebroid (A, ρ, [· , ·]). This is equivalent to a
linear almost Poisson bracket on the vector bundle A∗ →M , i.e. a skew-symmetric
bracket {· , ·} : C∞(A∗)× C∞(A∗)→ C∞(A∗) such that

1. {· , ·} satisfies the Leibniz identity,

2. {`a, `b} = `[a,b] is again linear for two sections a, b ∈ Γ(A) and

3. {`a, q∗A∗f} = q∗A∗(ρ(a)(f)) is again a pullback for all a ∈ Γ(A) and f ∈ C∞(M).

Let πA ∈ X2(A∗) be the bivector field associated to this almost Poisson structure. We
describe the vector bundle morphism π]A : T ∗A∗ → TA∗, dF 7→ {F, ·}, F ∈ C∞(A∗),
associated to it.

We compute the vector fields π]A(d`a) and π]A(q∗A∗θ) for all a ∈ Γ(A) and θ ∈ Ω1(M).
Since π]A(q∗A∗df)(q∗A∗g) = π]A(dq∗A∗f)(q∗A∗g) = 0 and π]A(dq∗A∗f)(`a) = −q∗A∗(ρ(a)(f))
for all f, ψ ∈ C∞(M) and a ∈ Γ(A), we find π]A(q∗A∗df) = −(ρt(df))↑ for all f ∈
C∞(M) and consequently π]A(q∗A∗θ) = −(ρtθ)↑ for all θ ∈ Ω1(M). In the same manner,
we have

π]A(d`a)(`b) = `[a,b] and π]A(d`a)(q
∗
A∗f) = q∗A∗(ρ(a)(f))

for a, b ∈ Γ(A) and f ∈ C∞(M). Recall that the vector field £̂a ∈ X(A∗) satisfies

£̂a(αm)(`b) = `[a,b](αm) and £̂a(αm)(q∗A∗f) = ρ(a(m))(f) for αm ∈ A∗. This shows

the equality π]A(d`a) = £̂a.

Appendix A.2. The canonical symplectic form on T ∗E

Now let M be a smooth manifold and cM : T ∗M →M its cotangent bundle. Recall
that there is a canonical 1-form θcan ∈ Ω1(T ∗M), given by

〈θcan(ηm), vηm〉 = 〈ηm, TηmcM(vηm)〉

for all ηm ∈ T ∗M and vηm ∈ Tηm(T ∗M). The canonical symplectic form ωcan ∈
Ω2(T ∗M) is defined by ωcan = −dθcan.

Consider a vector bundle E → M endowed with a vector bundle morphism
λ : E → T ∗M over the identity, and a connection ∇ : X(M) × Γ(E) → Γ(E). For
simplicity, we write σ∇ for the horizontal lift σ∇TM . The one-form λ∗θcan ∈ Ω1(E) can
be described as follows

〈(λ∗θcan)(e′m), σ∇(X)(e′m)〉 = 〈θcan(λ(e′m)), Te′mλ(σ∇(X)(e′m))〉 = 〈λ(e′m), X(m)〉
〈(λ∗θcan)(e′m), e↑(e′m)〉 = 〈θcan(λ(e′m)), λ(e)↑(e′m)〉 = 0
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for all e′m ∈ E, X ∈ X(M) and e ∈ Γ(E). This shows in particular the equality
〈λ∗θcan, σ

∇(X)〉 = `λt(X). As a consequence, we get for all e, e1, e2 ∈ Ω1(M), X, Y ∈
X(M):

λ∗ωcan(σ∇(X), σ∇(Y )) =σ∇(X)((λ∗θcan)(σ∇(Y )))− σ∇(Y )((λ∗θcan)(σ∇(X)))

− (λ∗θcan)
(
σ∇[X, Y ]− ˜R∇(X, Y )

)
= `∇∗X(λtY ) − `∇∗Y (λtX) − `λt[X,Y ] = `∇∗X(λtY )−∇∗Y (λtX)−λt[X,Y ]

λ∗ωcan(σ∇(X), e↑) =σ∇(X)(0)− e↑(`λtX)− λ∗θcan

([
σ∇(X), e↑

])
= −q∗E〈λ(e), X〉

and λ∗ωcan(e↑1, e
↑
2) = 0. Hence, the one-forms (λ∗ωcan)[(σ∇(X)) and (λ∗ωcan)[(e↑) ∈

Ω1(E) are given by

(λ∗ωcan)[(σ∇(X)) = d`−λtX + ˜λ(∇X ·)−£X(λ(·)),

where λ(∇X ·)−£X(λ(·)) is a section of Hom(E, T ∗M), and (λ∗ωcan)[(e↑) = q∗E(λ(e)).

Appendix B. Proof of Proposition 4.9

In this section we prove Proposition 4.9. For simplicity, given a Dorfman connection

∆: Γ(TM ⊕ E∗)× Γ(E ⊕ T ∗M)→ Γ(E ⊕ T ∗M),

we write X̃ = prTE
(
σ∆
TM⊕E∗(X, ε)

)
and ε̃ = prT ∗E

(
σ∆
TM⊕E∗(X, ε)

)
. The reader should

bear in mind that both X̃ and ε̃ depend on X and ε. More precisely, X̃ is the linear

vector field ∇̂(X,ε), with the connection ∇ : Γ(TM⊕E∗)×Γ(E)→ Γ(E) in Proposition
4.7. Recall that by construction, the Dorfman connection can be written

∆(X,ε)(e, θ) = ∆(X,ε)(e, 0) + (0,£Xθ) (B.1)

for all (X, ε) ∈ Γ(TM ⊕ E∗) and (e, θ) ∈ Γ(E ⊕ T ∗M). This shows that

prE ◦∆ = ∇ ◦ prE . (B.2)

Lemma 1. Choose (X, ε) ∈ Γ(TM ⊕ E∗) and e ∈ Γ(E). Then

1. 〈ε̃, e↑〉 = q∗E〈ε, e〉.
2. £e↑ ε̃ = q∗E

(
d〈ε, e〉 − prT ∗M ∆(X,ε)(e, 0)

)
.

3.
[
X̃, e↑

]
= (∇(X,ε)e)

↑.
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Proof. The first claim is immediate by the definition of ε̃. For any e′ ∈ Γ(E), we have

〈£e↑ ε̃, e
′↑〉 = e↑(〈ε̃, e′↑〉)− 〈ε̃, [e↑, e′↑]〉 = e↑(q∗E〈ε, e′〉)− 〈ε̃, 0〉 = 0.

This shows that £e↑ ε̃ is vertical, i.e. the pullback under qE of a 1-form on M . Thus,
we just need to compute 〈(£e↑ ε̃)(e

′(m)), Tme
′vm〉 for e′ ∈ Γ(E) and vm ∈ TM . But

we have

〈(£e↑ ε̃)(e
′(m)), Tme

′vm〉 =
d

dt


t=0

〈ε̃(e′(m) + te(m)), Te′(m)φ
e↑

t (Tme
′vm)〉

=
d

dt


t=0

〈ε̃(e′(m) + te(m)), Tm(e′ + te)vm〉

=
d

dt


t=0

vm〈ε, e′ + te〉 − 〈prT ∗M ∆(X,ε)(e
′ + te, 0), vm〉

= vm〈ε, e〉 − 〈prT ∗M ∆(X,ε)(e, 0), vm〉.

For the third equality we just need to compute [X̃, e↑](`ε′) for sections ε′ ∈ Γ(E∗)
and [X̃, e↑](q∗Ef) for functions f ∈ C∞(M). We have

[X̃, e↑](`ε′) = X̃(e↑(`ε′))− e↑(X̃(`ε′)) = X̃(q∗E〈ε′, e〉)− e↑(`∇∗(X,ε)ε′)

= q∗E
(
X〈ε′, e〉 − 〈∇∗(X,ε)ε′, e〉

)
= (∇(X,ε)e)

↑(`ε′),

and [X̃, e↑](q∗Ef) = 0 = (∇(X,ξ)e)
↑(q∗Ef) since e↑ ∼qE 0 and X̃ ∼qE X.

Next note that since X̃ is linear over X, the flow φX̃t of X̃ is a vector bundle
morphism E → E over φXt : M →M , for any t ∈ R where this is defined. Hence, for

any section e ∈ Γ(E), we can define a new section ψ
(X,ε)
t (e) ∈ Γ(E) by

ψ
(X,ε)
t (e) = φX̃−t ◦ e ◦ φXt .

Lemma 2. The time derivative of ψ
(X,ε)
t satisfies

d

dt


t=0

ψ
(X,ε)
t (e) = ∇(X,ε)e.

Note that in this statement, there is an abuse of notation: Given m ∈ M , the
curve c : t 7→ ψXt (e)(m) is a curve in E with c(0) = em and satisfying qE ◦ c = m.
Hence, the derivative ċ(0) can be understood as a vertical vector over em. But given

e ∈ Γ(E) we understand the map m 7→ d
dt


t=0

ψ
(X,ε)
t (e)(m) as a new section of E.

41



Proof. Since φX̃t is linear, we have

((φX̃t )∗e↑)(e′m) =
d

ds


0

φX̃−t(φ
X̃
t (e′m) + se(φXt (m))) =

d

ds


0

e′m + sψ
(X,ε)
t (e)(m)

for e′m ∈ E. Thus, we get for any ε ∈ Γ(E∗):

[X̃, e↑](`ε)(e
′
m) =

d

dt


0

〈de′m`ε, ((φ
X̃
t )∗e↑)〉

=
d

dt


0

d

ds


0

〈ε(m), e′m + sψ
(X,ε)
t (e)(m)〉 =

d

ds


0

d

dt


0

〈ε(m), e′m + sψ
(X,ε)
t (e)(m)〉

=
d

ds


0

s

〈
ε(m),

d

dt


0

ψ
(X,ε)
t (e)(m)

〉
=

〈
ε(m),

d

dt


0

ψ
(X,ε)
t (e)(m)

〉
.

This shows that

[X̃, e↑] =

(
d

dt


0

ψ
(X,ε)
t (e)

)↑
.

By (3) of Lemma 1, we are done.

Now we can prove Proposition 4.9. We write τ = (e, θ), τi = (ei, θi) and ν = (X, ε),
νi = (Xi, εi) for i = 1, 2.

Proof of Proposition 4.9. The first equality is easy to check: for the tangent part, we
use the commutativity of the flows of the vertical vector fields. For the cotangent
part, note that since e↑i ∼qE 0 for i = 1, 2, we get immediately £e↑1

q∗Eθ2 − ie↑2
dq∗Eθ1 =

q∗E (£0θ2 − i0dθ1) = 0.
For the second equality, we know by Lemma 1 that [X̃, e↑] equals (prE ∆(X,ε)(e, 0))↑.

We compute the cotangent part of the Courant-Dorfman bracket. Using Lemma 1,
we have

£X̃q
∗
Eθ − ie↑dε̃ = £X̃q

∗
Eθ −£e↑ ε̃+ d〈ε̃, e↑〉

= £X̃q
∗
Eθ − q∗E

(
d〈ε, e〉 − prT ∗M ∆(X,ε)(e, 0)

)
+ dq∗E〈ε, e〉

= q∗E(£Xθ + prT ∗M ∆(X,ε)(e, 0))
(B.1)
= q∗E prT ∗M ∆ντ.

This leads to our claim
q
σ∆
TM⊕E∗(ν), τ ↑

y
= ∆ντ

↑.

For the last equality choose a section τ = (e, θ) of E ⊕ T ∗M . Then the pairing of
£X̃1

ε̃2 − iX̃2
dε̃1 with e↑ is

X̃1〈ε̃2, e
↑〉 −

〈
ε̃2,
[
X̃1, e

↑
]〉
− X̃2〈ε̃1, e

↑〉+ e↑〈ε̃1, X̃2〉+
〈
ε̃1,
[
X̃2, e

↑
]〉
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First we have 〈ε̃2, e
↑〉 = q∗E〈ε2, e〉 by Lemma 1, and consequently we find that

X̃1〈ε̃2, e
↑〉 equals q∗E(X1〈ε2, e〉). Then, we get

〈
ε̃2,
[
X̃1, e

↑
]〉

= q∗E〈ε2,∇(X1,ε1)e〉 by (3)

of Lemma 1, and 〈ε̃1, X̃2〉(em) = X2(m)〈ε1, e〉−〈ε1,∇ν2e〉(m)−〈X2, prT ∗M ∆ν1(e, 0)〉(m),
which defines a linear function on E. This yields

e↑〈ε̃1, X̃2〉 = q∗E (X2〈ε1, e〉 − 〈ε1,∇ν2e〉 − 〈X2, prT ∗M ∆ν1(e, 0)〉) .

Thus, we get〈
£X̃1

ε̃2 − iX̃2
dε̃1, e

↑〉 = q∗E (X1〈ε2, e〉 − 〈ε2,∇ν1e〉 −�����X2〈ε1, e〉+�����X2〈ε1, e〉 −������〈ε1,∇ν2e〉
−〈X2, prT ∗M ∆ν1(e, 0)〉+������〈ε1,∇ν2e〉)

= q∗E (X1〈ε2, e〉 − 〈(X2, ε2),∆ν1(e, 0)〉) = q∗E〈Jν1, ν2K∆, (e, 0)〉.

This leads to
〈q
σ∆
TM⊕E∗(ν1), σ∆

TM⊕E∗(ν2)
y
, (e, θ)↑

〉
= q∗E〈Jν1, ν2K∆, (e, θ)〉, which shows

that
q
σ∆
TM⊕E∗(ν1), σ∆

TM⊕E∗(ν2)
y

(em) = (Tme[X1, X2](m),dem`prE∗Jν1,ν2K∆
) + τ ↑(em),

for some τ ∈ Γ(E ⊕ T ∗M). Hence we know that for any (X, ε) ∈ Γ(TM ⊕ E∗), we
have

〈τ, (X, ε)〉(m) =
〈q
σ∆
TM⊕E∗(ν1), σ∆

TM⊕E∗(ν2)
y

(em), (TmeX(m),dem`ε)
〉

−X(m)〈Jν1, ν2K∆, (e, 0)〉 − [X1, X2](m)〈ε, e〉.
(B.3)

First we find
[
X̃1, X̃2

]
(`ε) = `∇∗ν1∇

∗
ν2
ε−∇∗ν2∇

∗
ν1
ε. We compute 〈£X̃1

ε̃2, TmeX(m)〉.

Using Lemma 2 and the identity φX̃1
t (em) = ψν1

−t(e)(φ
X1
t (m)), we find

〈£X̃1
ε̃2(em), TmeX(m)〉 =

d

dt


0

〈
ε̃2(φX̃1

t (em)), (Temφ
X̃1
t ◦ Tme)X(m)

〉
=

d

dt


0

〈ε̃2(ψν1
−t(e)(φ

X1
t (m))), T

φ
X1
t (m)

ψν1
−t(e)((φ

X1
−t )
∗(X)(φX1

t (m)))〉

=
d

dt


0

((φX1
−t )
∗(X))〈ε2, ψ

ν1
−t(e)〉(φX1

t (m))− 〈prT ∗M ∆ν2(ψν1
−t(e), 0), (φX1

−t )
∗(X)〉(φX1

t (m))

= (−[X1, X]〈ε2, e〉+X1X〈ε2, e〉 −X〈ε2, prE ∆ν1(e, 0)〉 −X1〈prT ∗M ∆ν2(e, 0), X〉
+〈prT ∗M ∆ν2(e, 0), [X1, X]〉+ 〈prT ∗M ∆ν2(prE ∆ν1(e, 0), 0), X〉) (m).

We also have

〈dem〈ε̃1, X̃2〉, TmeX(m)〉 = X
(
〈ε̃1, X̃2〉 ◦ e

)
= X (X2〈ε1, e〉 − 〈prT ∗M ∆ν1(e, 0), X2〉 − 〈ε1,∇ν2e〉) ,
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which leads to

〈£X̃1
ε̃2 − iX̃2

dε̃1, TmeX(m)〉 = 〈£X̃1
ε̃2 −£X̃2

ε̃1 + d〈ε̃1, X̃2〉, TmeX(m)〉
= (XX1〈ε2, e〉 −X〈ε2,∇ν1e〉 −X1〈prT ∗M ∆ν2(e, 0), X〉+ 〈prT ∗M ∆ν2(e, 0), [X1, X]〉

+ 〈prT ∗M ∆ν2(∇ν1e, 0), X〉 −������XX2〈ε1, e〉+�������
X〈ε1,∇ν2e〉

+X2〈prT ∗M ∆ν1(e, 0), X〉 − 〈prT ∗M ∆ν1(e, 0), [X2, X]〉 − 〈prT ∗M ∆ν1(∇ν2e, 0), X〉
+������XX2〈ε1, e〉 −X〈prT ∗M ∆ν1(e, 0), X2〉 −�������

X〈ε1,∇ν2e〉
)

(m)

The first, second and last remaining terms add up toX(X1〈ν2, (e, 0)〉−〈∆ν1(e, 0), ν2〉) =
X〈Jν1, ν2K∆, (e, 0)〉. The fifth remaining term is 〈∆ν2(prE ∆ν1(e, 0), 0), (X, 0)〉. But
this equals

X2〈(prE ∆ν1(e, 0), 0), (X, 0)〉 − 〈(prE ∆ν1(e, 0), 0), Jν2, (X, 0)K∆〉
= 0− 〈∆ν1(e, 0), Jν2, (X, 0)K∆〉+ 〈prT ∗M ∆ν1(e, 0), [X2, X]〉,

which, together with the seventh remaining term, add up to −〈∆ν1(e, 0), Jν2, (X, 0)K∆〉.
This and the sixth remaining term add up to 〈∆ν2∆ν1(e, 0), (X, 0)〉. Similarly, the
eighth, third and fourth remaining terms add up to −〈∆ν1∆ν2(e, 0), (X, 0)〉. This
leads to

〈£X̃1
ε̃2 − iX̃2

dε̃1, TmeX(m)〉
= (X〈Jν1, ν2K∆, (e, 0)〉 − 〈∆ν1∆ν2(e, 0)−∆ν2∆ν1(e, 0), (X, 0)〉) (m).

Now we find that (B.3) simplifies to the function 〈τ, (X, ε)〉 being

〈∇∗ν1
∇∗ν2

ε−∇∗ν2
∇∗ν1

ε, e〉 − [X1, X2]〈ε, e〉 − 〈∆ν1∆ν2(e, 0)−∆ν2∆ν1(e, 0), (X, 0)〉
= 〈R∇∗(ν1, ν2)ε+∇∗Jν1,ν2K∆

ε, e〉 − [X1, X2]〈ε, e〉
− 〈R∆(ν1, ν2)(e, 0) + ∆Jν1,ν2K∆

(e, 0), (X, 0)〉
= 〈−R∇(ν1, ν2)e−∇Jν1,ν2K∆

e, ε〉 − 〈R∆(ν1, ν2)(e, 0) + ∆Jν1,ν2K∆
(e, 0), (X, 0)〉

= 〈−R∆(ν1, ν2)(e, 0)−∆Jν1,ν2K∆
(e, 0), (X, ε)〉.

In the last equality, we have used (B.2), which implies that prE ◦R∆(ν1, ν2)(e, 0) equals
R∇(ν1, ν2)e. This shows τ = −R∆(ν1, ν2)(e, 0)−∆Jν1,ν2K∆

(e, 0).

Appendix C. The Lie algebroid structure on TA⊕ T ∗A→ TM ⊕A∗

Let (qA : A→M,ρ, [· , ·]) be a Lie algebroid. We describe here the Lie algebroid
structures on TA→ TM , T ∗A→ A∗ and TA⊕ T ∗A→ TM ⊕A∗. For simplicity, we
write q := qA : A→M and q∗ := qA∗ : A∗ →M for the vector bundle maps.
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The Lie algebroid TA→ TM

Recall that for a ∈ Γ(A), we have two particular types of sections of TA→ TM : the
linear sections Ta : TM → TA, which are vector bundle morphisms over a : M → A,
and the core sections a† : TM → TA, a†(vm) = Tm0Avm +pA

d
dt


t=0

t · a(m). The Lie
algebroid bracket on sections of TA→ TM is given by

[Ta1, Ta2] = T [a1, a2], [Ta1, a
†
2] = [a1, a2]†, [a†1, a

†
2] = 0

and the anchor is given by ρTA(Ta) = ̂[ρ(a), ·], ρTA(a†) = (ρ(a))↑ ∈ X(TM) (see [35]).

The Lie algebroid T ∗A→ A∗

There is an isomorphism of double vector bundles

T ∗A∗
rA∗ //

cA∗
��

A

��
A∗ //M

R−→ T ∗A
cA //

rA
��

A

��
A∗ //M

over the identity on the sides, and − idT ∗M on the core T ∗M . The map R is given as
follows: for θ ∈ Ω1(M), we have R(q∗∗θ(αm)) = d0Am

`α − q∗θ(0Am) and for α ∈ Γ(A∗)
and a ∈ Γ(A), we have R(dα(m)`a) = da(m)(`α − q∗〈α, a〉) for all m ∈M . Hence, we
find that for θ ∈ Ω1(M), the core section θ† ∈ ΓA∗(T

∗A) is αm 7→ R(−q∗∗θ(αm)). For
a ∈ Γ(A), we write aR ∈ ΓA∗(T

∗A) for the section αm 7→ R(dα(m)`a).
Recall that since A is a Lie algebroid, its dual A∗ is endowed with a linear Poisson

structure given by

{`a1 , `a2} = `[a,b], {`a, q∗∗f} = q∗∗(ρ(a)(f)), {q∗∗f, q∗∗g} = 0

for all a1, a2 ∈ Γ(A) and f, g ∈ C∞(M). Hence, there is a Lie algebroid structure on
T ∗A∗ → A∗ associated to this Poisson structure, and the Lie algebroid structure on
T ∗A→ A∗ is exactly such that the isomorphism R : T ∗A∗ → T ∗A is an isomorphism
of Lie algebroids [35, 36].

Therefore, we first give the Lie brackets and images under the anchor map ρT ∗A∗ of
the sections d`a and q∗∗θ ∈ Ω1(A∗) = ΓA∗(T

∗A∗), for θ ∈ Ω1(M) and a ∈ Γ(A). By the
definition of the Lie algebroid structure T ∗A∗ → A∗ associated to the linear Poisson
structure on A∗, one finds easily that the Lie algebroid structure on T ∗A∗ → A∗ is
given by the following identities:

[d`a,d`b] = d`[a,b], [d`a, q
∗
∗θ] = q∗∗(£ρ(a)θ), [q∗∗θ, q

∗
∗θ] = 0,

ρT ∗A∗(d`a) = £̂a ∈ X(A∗), ρT ∗A∗(q
∗
∗θ) = (−ρtθ)↑ ∈ X(A∗)
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for a, b ∈ Γ(A) and θ, θ ∈ Ω1(M). As a consequence, we find that the Lie algebroid
structure on T ∗A→ A∗ is given by

[aR1 , a
R
2 ] = [a1, a2]R, [aR1 , θ

†] = (£ρ(a1)θ)
†, [θ†1, θ

†
2] = 0,

ρT ∗A(aR) = £̂a ∈ X(A∗), ρT ∗A(θ†) = (ρtθ)↑ ∈ X(A∗)

for a1, a2 ∈ Γ(A) and θ1, θ2 ∈ Ω1(M).

The fibered product TA×A T ∗A→ TM ×M A∗

The Lie algebroid TA⊕T ∗A→ TM⊕A∗ is defined as the pullback to the diagonals
∆A → ∆M of the Lie algebroid TA× T ∗A→ TM ×A∗. We have the special sections

al := (Ta, aR) : TM ⊕ A∗ → TA⊕ T ∗A

for a ∈ Γ(A) and

(a, θ)† := (a†, θ†) : TM ⊕ A∗ → TA⊕ T ∗A

for (a, θ) ∈ Γ(A⊕ T ∗M). The set of sections of TA⊕ T ∗A→ TM ⊕A∗ is spanned as
a C∞(TM ⊕A∗)-module by these two types of sections. We write π : TM ⊕A∗ →M
for the projection and Θ: TA⊕ T ∗A→ T (TM ⊕A∗) for the anchor of TA⊕ T ∗A→
TM ⊕ A∗. We leave to the reader the proof of the following proposition.

Proposition 3. The Lie algebroid (TA⊕ T ∗A,Θ, [· , ·]) is described by the following
identities

[al1, a
l
2] = [a1, a2]l, [al, τ †] = (£aτ)†, [τ †1 , τ

†
2 ] = 0

[al, φ̃] = £̃aφ, [τ †, φ̃] = ˜φ((ρ, ρt)τ , [φ̃, ψ̃] = ˜ψ ◦ (ρ, ρt) ◦ φ− ˜φ ◦ (ρ, ρt) ◦ ψ,

Θ(al) = £̂a, Θ(τ †) = ((ρ, ρt)τ)↑, Θ(φ̃) = ˜(ρ, ρt) ◦ φ

for a, b ∈ Γ(A), σ, τ ∈ Γ(A⊕ T ∗M) and φ, ψ ∈ Γ(Hom(TM ⊕ A∗, A⊕ T ∗M)).

[1] R. Bott, Lectures on characteristic classes and foliations. Notes by Lawrence
Conlon. Appendices by J. Stasheff., Lectures algebraic diff. Topology, Lect. Notes
Math. 279, 1-94 (1972). (1972).

[2] J. Pradines, Fibrés vectoriels doubles et calcul des jets non holonomes, Vol. 29 of
Esquisses Mathématiques [Mathematical Sketches], Université d’Amiens U.E.R.
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(N.S.) 27 (1) (1977) 101–114.

[35] K. C. H. Mackenzie, P. Xu, Lie bialgebroids and Poisson groupoids., Duke Math.
J. 73 (2) (1994) 415–452.

[36] K. C. H. Mackenzie, P. Xu, Classical lifting processes and multiplicative vector
fields, Quart. J. Math. Oxford Ser. (2) 49 (193) (1998) 59–85.

49

http://dx.doi.org/10.1007/s00208-011-0697-5
http://dx.doi.org/10.1007/s00208-011-0697-5
http://dx.doi.org/10.1007/s00208-011-0697-5
http://dx.doi.org/10.1016/j.indag.2014.07.009
http://dx.doi.org/10.1016/j.indag.2014.07.009
http://dx.doi.org/10.1016/j.indag.2014.07.009
http://dx.doi.org/10.1016/S0034-4877(12)60016-0
http://dx.doi.org/10.1016/S0034-4877(12)60016-0
http://dx.doi.org/10.1016/S0034-4877(12)60016-0
http://projecteuclid.org/getRecord?id=euclid.jsg/1215032733
http://projecteuclid.org/getRecord?id=euclid.jsg/1215032733

	Introduction
	Preliminaries
	Courant algebroids and Dirac structures
	Basic facts about connections
	The Bott connection associated to a subbundle FTM
	The basic connections associated to a connection on a dull algebroid

	Double vector bundles, VB-algebroids and representations up to homotopy

	Dorfman connections: definition and examples
	Linear splittings of TE+T*E
	Dorfman connection associated to a linear splitting of TE+T*E
	The canonical pairing, the anchor and the Courant-Dorfman bracket on TE+T*E
	VB-Dirac structures and Dorfman connections

	The prolongation TA+T*A->TM+A* of a Lie algebroid A
	The basic connections associated to 
	The Lie algebroid structure on TA+T*A->TM+A*
	LA-Dirac structures in TA+T*A

	Linear almost Poisson structures and the canonical symplectic form on T*E
	Linear almost Poisson structures
	The canonical symplectic form on T*E

	Proof of Proposition 4.9
	The Lie algebroid structure on TA+T*A->TM+A*

