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Abstract. Inspired from the notion of infinitesimal ideal system in a Lie algebroid, we

describe a possible notion of (weak and strong) ideal in a Lie-Rinehart algebra. We show
that the kernel of a morphism of Lie Rinehart algebras carries a weak ideal structure.
We prove that a Lie-Rinehart algebra can be quotiented by a strong ideal and we give a

factorisation theorem in this context.

1. Introduction

An ideal in a Lie algebroid (A→M,ρ, [· , ·]) is a vector subbundle I ⊆ A such that Γ(I)
is a Lie algebra ideal in Γ(A). This notion of ideal is not very permissive since the Leibniz
condition implies immediately ρ(I) = 0 or I = A. Ideal systems were proposed by Higgins
and Mackenzie [4] as the kernels of fibrations of Lie algebroids. Of course, the kernel of a Lie
algebroid morphism over the identity on a common base is always an ideal, and the setting
of ideal systems is required for Lie algebroid morphisms over two different base manifolds. In
[6], the author and Ortiz proposed an infinitesimal version of Higgins and Mackenzie’s ideal
systems. Such an infinitesimal ideal system consists of a subalgebroid J ⊆ A, an involutive
subbundle FM ⊆ TM with ρ(J) ⊆ FM and a flat connection ∇ : Γ(FM )× Γ(A/J)→ Γ(A/J)
such that

(1) If a ∈ Γ(A) is ∇-parallel, then [a, j] ∈ Γ(J) for all j ∈ Γ(J).
(2) If a, b ∈ Γ(A) are ∇-parallel, then [a, b] is also ∇-parallel.
(3) If a ∈ Γ(A) is ∇-parallel, then ρ(a) is ∇FM -parallel, where

∇FM : Γ(FM )× Γ(TM/FM )→ Γ(TM/FM ), ∇FM

X Y = [X,Y ]

is the Bott connection associated to FM .

Note that since the connection is flat, one can show that A has local frames consisting of
flat sections of A/J together with sections of J . Therefore, the sheaf Γ·(A) is locally finitely
generated as a C∞· (M)-module by flat sections.

This notion of ideal in a Lie algebroid seems to be the right one since – under the usual
topological conditions that are in fact satisfied if and only if the infinitesimal ideal system
integrates to an ideal system [6] – A → M can be reduced to a Lie algebroid (A/J)/∇ →
M/FM . In addition, an infinitesimal ideal system is equivalent to a subrepresentation up to
homotopy of the adjoint representation up to homotopy [2].

The purely algebraic formulation (and generalisation) of the notion of Lie algebroid is the
one of Lie-Rinehart algebra, first introduced by Herz [3] as pseudo-Lie algebras, then studied
by Palais [7] under the name d-Lie ring ; Rinehart then found [8] hat a Poisson structure on
an algebra A over a commutative ring R gives rise to a structure of an “(R,A)-Lie algebra;
see the introduction of [5] for more details on the historic development of the notion. In
this context, we observe the same phenomenom: the usual notion of ideal in a Lie-Rinehart
algebra is rather restrictive [1]. Inspired from our knowledge of infinitesimal ideal systems in
Lie algebroids, we propose here a more elaborate notion of ideal in a Lie Rinehart-algebra
(A,L) over a ring R. We explain morphisms of Lie-Rinehart algebras and their kernels in
Section 2. The latter are called weak kernels, and become strong kernels if the subspace
corresponding here to the flat sections above generates L as an A-module. In Section 3 we
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define then weak and strong ideals, so that a weak kernel is a weak ideal and a strong kernel
is a strong ideal. We explain why we propose to call a morphism of Lie-Rinehart algebras
factorisable if its kernel is a strong ideal.

2. Lie-Rinehart algebras and kernels of morphisms

2.1. Definitions. We begin by recalling the definition of Lie-Rinehart algebras, of Lie-
Rinehart subalgebras and of morphisms of Lie-Rinehart algebras.

Definition 2.1. Let R be a commutative ring with 1. A Lie Rinehart algebra over R is a
tuple (A,L, [· , ·], ρ) where

(1) A is a commutative R-algebra;
(2) L is an A-module and (L, [· , ·]) is a Lie algebra over R;
(3) ρ : L→ Der(A) is a homomorphism of Lie algebras and of A-modules

such that

[l1, a · l2] = ρ(l1)(a) · l2 + a[l1, l2]

for all a, b ∈ A and l, l1, l2 ∈ L.
We simply write that (A,L) is a Lie-Rinehart algebra over R.

For instance, consider a Lie algebroid A over a smooth manifold M . Then (C∞(M),Γ(A))
is a Lie-Rinehart algebra over R, with ρ : Γ(A) → X(M) the composition of sections of A
with the anchor, and with the Lie algebra bracket on sections of A. For the sake of our later
considerations, note that we get this Lie-Rinehart algebra by considering global sections of A
and global smooth functions on M .

In the literature we find the following notions:

Definition 2.2. Let R be a commutative ring with 1, let (A,L) be a Lie-Rinehart algebra.
Then a Lie-Rinehart subalgebra of (A,L) is a pair (A,S) with

(1) S a Lie subalgebra of L
(2) A · S ⊆ S and
(3) S acts on A via S ↪→ L→ Der(A).

The pair (A,S) has then automatically the structure of a Lie-Rinehart algebra over R.

A Lie-Rinehart subalgebra (A, I) of (A,L) is an ideal [1] in (A,L) if

(1) ρ(I)(A)L ⊆ I and
(2) I is an ideal in L.

In the case of the Lie-Rinehart algebra (C∞(M),Γ(A)) defined by a Lie algebroid, (1)
in the definition of an ideal implies that an ideal must consist first of all in a C∞(M)-
submodule of sections of A, which are all sent by the anchor to the zero vector field (unless
the submodule is the whole of Γ(A)). In particular, there are no non-trivial ideals in the
prototype (C∞(M),X(M)).

Next we turn to the notion of morphism of Lie-Rinehart algebras. Consider two Lie-
Rinehart algebras (A,L) and (A′, L′) over a commutative ring R with 1. Assume that
there is a morphism ϕ : A′ → A of R-algebras. Then A is naturally an A′-module and we
can build the tensor product A ⊗ϕ L′ of A and L′ as A-modules. In particular, we have
(ϕ(a′) · a)⊗ϕ l′ = a⊗ϕ (a′ · l′) for all a ∈ A, a ∈ A′ and l′ ∈ L′.

Then we can construct the pullback

Der(A)×ϕ L′ :=

{(
d,

m∑
i=1

ai ⊗ϕ l′i

)∣∣∣∣ d ∈ Der(A),m ∈ N, ai ∈ A, li ∈ L′ (i = 1, . . . ,m)
and

∑
ai · ϕ ◦ ρ′(li) = d ◦ ϕ

}
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It is easy to check that (A,Der(A)×ϕL′) is a Lie-Rinehart algebra over R, with the morphism
π1 : Der(A)×ϕ L′ → Der(A), (d,

∑m
i=1 ai ⊗ϕ li) 7→ d, and the bracket(d1,

m1∑
i=1

a1
i ⊗ϕ l1i

)
,

d2,

m2∑
j=1

a2
j ⊗ϕ l2j


=

[d1, d2],
∑
i,j

a1
i a

2
j ⊗ϕ [l1i , l

2
j ] +

∑
j

d1(a2
j )⊗ϕ l2j −

∑
i

d2(a1
i )⊗ϕ l1j


Note that if ϕ : A→ A is the identity, then Der(A)×idA

L′ = graph(ρ′ : L′ → Der(A)) ' L′
since then (d,

∑m
i=1 ai ⊗idA

li) = (d,
∑m
i=1 ai · li) ∈ Der(A)×idA

L′ implies

d = d ◦ idA =

m∑
i=1

ai · idA ◦ρ′(li) = ρ′

(
m∑
i=1

ai · li

)
.

Definition 2.3. Let R be a commutative ring with 1, and let (A,L) and (A′, L′) be Lie-
Rinehart algebras over R.

A morphism (ϕ,Φ): (A,L) → (A′, L′) of Lie-Rinehart algebras is a unital morphism
ϕ : A′ → A of commutative R-algebras, together with a morphism Φ: L→ Der(A)×ϕ L′ of
Lie algebras and of A-modules such that π1 ◦ Φ = ρ : L→ Der(A).

Note that if A = A′ and ϕ : A→ A is the identity, then we can simply define a morphism
φ : L→ L′ ' Der(A)×idA

L′ of Lie-Rinehart algebras over A to be a morphism of Lie algebras
and of A-modules with ρ′ ◦φ = ρ. We say then that φ : L→ L′ is a morphism of Lie-Rinehart
algebras over A.

2.2. The ‘kernel’ of a morphism of Lie-Rinehart algebras. Now we are ready to
consider the kernel of a morphism of Lie-Rinehart algebras. In the situation of the last
definition, we set B = ϕ(A′) ⊆ A, a commutative R-subalgebra with 1, J ⊆ L,

J = {l ∈ L | Φ(l) = (ρ(l), 0) ∈ Der(A)×ϕ L′}.

We set finally L̄ ⊆ L,

L̄ = {l ∈ L | ∃l′ ∈ L′ : Φ(l) = (ρ(l), 1⊗ϕ l′)}.

The triple (ϕ(A′), J, L̄) is called the kernel of the morphism (ϕ,Φ).
We define the map φ : L̄→ L′ by Φ(l) = (ρ(l), 1⊗ϕ φ(l)) for all l ∈ L̄. We will see below

that φ is a morphism of Lie-Rinehart algebras over A′.

Note that for φ : L → L′ a morphism of Lie-Rinehart algebras over A, we have simply
J = kern(φ) and L̄ = L. Then J is an ideal in L and the quotient L/J has a unique structure
of a Lie-Rinehart algebra over A, such that the projection π : L → L/J is a morphism of
Lie-Rinehart algebras (over A). The morphism φ : L → L′ factors then as φ̄ : π = φ, with
φ̄ : L/J → L′ defined by φ̄(l + J) = φ̄(l) for l ∈ L.

In general, the situation is more delicate and we prove the following theorem:

Proposition 2.4. Let R be a commutative ring with 1, and let (A,L) and (A′, L′) be Lie-
Rinehart algebras over R. Consider a morphism (ϕ,Φ): (A,L) → (A′, L′) of Lie-Rinehart
algebras over R. Then the subsets defined above have the following properties:

(1) L̄ is a Lie subalgebra of L and a ϕ(A′)-module;
(2) (ϕ(A′), L̄) is a Lie-Rinehart algebra over R;
(3) φ : L̄→ L′ is a morphism of Lie-Rinehart algebras over A′;
(4) J is an ideal in (ϕ(A′), L̄) with ρ(J)(ϕ(A′)) = 0;
(5) J is an A-module.
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Proof. (1) For l1, l2 ∈ L̄ we have Φ[l1, l2] = [Φ(l1),Φ(l2)] = [(ρ(l1), 1⊗ϕ l′1), (ρ(l2), 1⊗ϕ
l′2)] = ([ρ(l1), ρ(l2)], 1 ⊗ϕ [l′1, l

′
2]) which shows that [l1, l2] ∈ L̄. We have further for

l ∈ L̄ and a′ ∈ A′: Φ(ϕ(a′) · l) = (ρ(ϕ(a′) · l), ϕ(a′)⊗ϕ l′) = (ρ(ϕ(a′) · l), 1⊗ϕ (a′ · l′)),
which shows that B = ϕ(A′) acts on L̄.

(2) It remains to show that for l ∈ L̄, the derivation ρ(l) restricts to a derivation of B.
We have

ρ(l) ◦ ϕ = 1A · ϕ ◦ (ρ′(l′)) = ϕ ◦ (1A′ · ρ′(l′)) = ϕ ◦ (ρ′(l′))

since Φ(l) = (ρ(l), 1 ⊗ϕ l′) ∈ Der(A) ×ϕ L′, and so ρ(l) sends an element of B to
an element of B. The remaining conditions follow from the fact that (A,L) is a
Lie-Rinehart algebra.

(3) By the proof of (1), φ is a morphism of Lie algebras over R. By definition, φ is a
morphism of A′-modules, and ρ̄ = ρ′ ◦ φ.

(4) This is now easy to check. Note that for j ∈ J we have ρ(j)(B) = 0 so ρ(J)(B) · L̄ ⊆ J
is trivially satisfied.

(5) This works as (5).
�

Now we reduce the Lie-Rinehart algebras (A′, L̄) and (ϕ(A′), L̄) by their ideal J .

Theorem 2.5. In the situation of the last proposition, (ϕ(A′), L̄/J) with the morphism
ρ̄ : L̄/J → Der(ϕ(A′)), ρ̄(l + J) = ρ(l)|ϕ(A′) and the bracket [l1 + J, l2 + J ] = [l1, l2] + J for

all l, l1, l2 ∈ L̄ is a Lie-Rinehart algebra over R.

Proof. The proof follows immediately from the preceding proposition. �

Further, if we assume that L is generated as an A-module by L̄ we have a canonical
projection (ι, π) : (A,L)→ (ϕ(A′), L̄/J), where ι : ϕ(A′)→ A is the inclusion; a morphism of
R-algebras with 1.

Lemma 2.6. Let R be a commutative ring with 1, and let (A,L) and (A′, L′) be Lie-Rinehart
algebras over R. Consider a morphism (ϕ,Φ): (A,L) → (A′, L′) of Lie-Rinehart algebras
over R. We denote by ι : ϕ(A′)→ A the inclusion. Then

Der(A)×ϕ L̄/J = Der(A)×ι L̄/J,
where on the left-hand side, L̄/J is considered as an A′-module and on the right-hand side it
is considered as a ϕ(A′)-module.

Proof. The tensor products A⊗ι L̄/J and A⊗ϕ L̄/J are equal as sets since in both cases, A
is considered as an A′-module via ϕ.

Take (d,
∑m
i=1 ai ⊗ϕ (li + J)) ∈ Der(A)×ϕ L̄/J . Then for all b = ϕ(a′) ∈ ϕ(A′) we have

d(ι(b)) = d(ϕ(a′)) =

m∑
i=1

ai · ϕ(ρ̄(li + J)(a′)) =

m∑
i=1

ai · ρ(li)(ϕ(a′)) =

m∑
i=1

ai · ρ(li)(ι(b))

and so (d,
∑m
i=1 ai ⊗ϕ (li + J)) ∈ Der(A)×ι L̄/J . �

Theorem 2.7. Let R be a commutative ring with 1, and let (A,L) and (A′, L′) be Lie-
Rinehart algebras over R. Consider a morphism (ϕ,Φ): (A,L) → (A′, L′) of Lie-Rinehart
algebras over R. Assume that L is generated as an A-module by L̄. Then we can define
π : L→ Der(A)×ϕ L̄/J = Der(A)×ι L̄/J by

π

(
r∑
i=1

ai · li

)
=

(
ρ(a),

r∑
i=1

ai ⊗ϕ (li + J)

)
for a1, . . . , ar ∈ A and l1, . . . , lr ∈ L̄. (ι, π) : (A,L) → (ϕ(A′), L̄/J) is a morphism of Lie-
Rinehart algebras.
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Finally, we immediately get a factorisation theorem in this setting.

Theorem 2.8. Let R be a commutative ring with 1, and let (A,L) and (A′, L′) be Lie-
Rinehart algebras over R. Consider a morphism (ϕ,Φ): (A,L) → (A′, L′) of Lie-Rinehart
algebras over R. Assume that L is generated as an A-module by L̄. Then the morphism (ϕ,Φ)
factors as

(A,L)

(ϕ,Φ) &&

(ι,π)// (ϕ(A′), L̄/J)

(ϕ,φ)

��
(A′, L′)

3. Ideals in Lie-Rinehart algebras

The considerations in the last paragraph lead us to the following definition.

Definition 3.1. Let (A,L) be a Lie-Rinehart algebra over a commutative ring R with 1. A
weak ideal in (A,L) is a triple (B, J, L̄) with

(1) B is an R-subalgebra of A with 1;
(2) L̄ is a Lie subalgebra of L and a B-module;
(3) (B, L̄) is a Lie-Rinehart algebra over R;
(4) J is an ideal in (B, L̄) with ρ(J)(B) = 0;
(5) J is an A-module.

A weak ideal (B, J, L̄) is a strong ideal if L is generated as an A-module by L̄.

We immediately have the following theorem, the proof of which can be taken from the
considerations in the previous section.

Theorem 3.2. Let (A,L) be a Lie-Rinehart algebra over a commutative ring R with 1, and
let (B, J, L̄) be a weak ideal in (A,L). Then (B, L̄/J) is a Lie-Rinehart algebra over R. If
(B, J, L̄) is a strong ideal, then there is a canonical surjective morphism

(ιB , π) : (A,L)→ (B, L̄/J)

of Lie-Rinehart algebras, with kernel (B, J, L̄) in (A,L).

In view of the considerations above, we propose to call a morphism (ϕ,Φ): (A,L)→ (A′, L′)
of Lie-Rinehart algebras over R factorisable if its kernel as in Theorem 2.4 is a strong ideal
in (A,L). The morphism (ϕ,Φ) factors then to (ϕ, φ) ◦ (ι, π).

Example 3.3. Let (FM , J,∇) be an infinitesimal ideal system in a Lie algebroid A→ M .
Take p ∈M and a chart (U,ϕ) of M around p, that is adapted to the involutive subbundle
FM ⊆ TM and trivialises J and A. Then A|U → U is a Lie algebroid and so (C∞(U),ΓU (A))
is a Lie-Rinehart algebra. Set B = C∞U (M)FM , J = ΓU (J) and let L̄ be the space of ∇-flat
sections of A on U (where sections of J are understood as ∇-flat). Then (B,J , L̄) is a strong
ideal in A|U .

In general, an infinitesimal ideal system does not come with global flat sections of A/J , so
we do not get a strong ideal in (C∞(M),ΓM (A)), unless we consider the sheaf of Lie-Rinehart
algebras over M defined by A, thereby loosing the purely algebraic flavor of the notion of
Lie-Rinehart algebra associated to a Lie algebroid.
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