Introduction to Scattering Theory Exercise Sheet 2

Exercise 3.

Let $A \in \mathcal{L}(\mathcal{H})$ with the spectral family $(E(\lambda))_{\lambda \in \mathbb{R}}$.

- (1) Show that $\sum_{k=0}^{\infty} \frac{1}{k!} (itA)^k$ converges for any $t \in \mathbb{R}$ in $\mathcal{L}(\mathcal{H})$ and that the convergence is uniform for $t \in [-R, R]$, for all R > 0.
- (2) We denote by $e^{iAt} \coloneqq \int e^{i\lambda t} dE(\lambda)$ the unitary operator obtained from Theorem 2.2. Show that

$$\mathrm{e}^{\mathrm{i}tA} = \sum_{k=0}^{\infty} \frac{1}{k!} (\mathrm{i}tA)^k.$$

Exercise 4.

Let A be a self-adjoint operator on the Hilbert space \mathcal{H} and let $M \subset \mathcal{H}$ be a closed subspace of \mathcal{H} with orthogonal projection P. Show that:

$$e^{itA}P = Pe^{itA} \iff PA \subset AP.$$

Exercise 5.

Let \mathcal{H} and \mathcal{H}' be Hilbert spaces and let A be a self-adjoint operator in \mathcal{H} . Let $U: \mathcal{H} \to \mathcal{H}'$ be unitary and let $B \coloneqq UAU^{-1}$; then B is a self-adjoint operator in \mathcal{H}' . Show that:

- (1) The spectral families $(E(\lambda))_{\lambda \in \mathbb{R}}$ and $(E'(\lambda))_{\lambda' \in \mathbb{R}}$ of A and B satisfy $E'(\lambda) = UE(\lambda)U^{-1}$ for all $\lambda \in \mathbb{R}$.
- (2) Let $f \colon \mathbb{R} \to \mathbb{C}$ be bounded and continuous. Then

$$f(B) = Uf(A)U^{-1}$$

(3) If A is purely absolutely continuous (i.e. $\mathcal{H}_{ac}(A) = \mathcal{H}$), then B is also purely absolutely continuous.

The solutions will be discussed in the tutorial on 14.11.2018.