Introduction to Scattering Theory Exercise Sheet 3

Exercise 6.

Let \mathcal{H} be a Hilbert space and let S be a bounded and closed subset of \mathcal{H} . Show that S is compact if and only if for any $\varepsilon > 0$ there is a finite-dimensional orthogonal projection P_{ε} such that

$$\|\psi - P_{\varepsilon}\psi\| < \varepsilon, \quad \forall \psi \in S.$$

Exercise 7.

Let A be a self-adjoint operator in the Hilbert space \mathcal{H} . Show that, for any $f \in \mathcal{H}_{pp}(A)$, the set $\{e^{itA}; -\infty < t < \infty\}$ is relatively compact (i.e. the closure of this set is compact).

Exercise 8.

- (1) Let A be a self-adjoint operator in the Hilbert space \mathcal{H} and let $\lambda \in \mathbb{R}$. Show that $s - \lim_{t \to \infty} e^{it(A-\lambda)}\varphi$ exists if and only if $A\varphi = \lambda\varphi$.
- (2) Let A and B be self-adjoint operators on \mathcal{H} . Show that $e^{itA}e^{-itB}$ converges in the operator norm if and only if A = B.

The solutions will be discussed in the tutorial on 21.11.2018.