Introduction to Scattering Theory Exercise Sheet 7

Exercise 16.

Give a proof of the following statements:
(1) $A \in \mathcal{B}_{1}(\mathcal{H})$ if and only if for any orthonormal basis $\left(e_{j}\right)_{j \in \mathbb{N}}$ for \mathcal{H},

$$
\sum_{j \in \mathbb{N}}\langle | A\left|e_{j}, e_{j}\right\rangle<\infty
$$

(2) For $A \in \mathcal{B}_{1}(\mathcal{H})$ and an orthonormal basis $\left(e_{j}\right)_{j \in \mathbb{N}}$ of \mathcal{H}, the trace

$$
\operatorname{tr}(A):=\sum_{j \in \mathbb{N}}\left\langle A e_{j}, e_{j}\right\rangle
$$

is well-defined, i.e. the sum converges absolutely and is independent of the choice of the orthonormal basis $\left(e_{j}\right)_{j \in \mathbb{N}}$ of \mathcal{H}.

Exercise 17.

Let $A \in \mathcal{L}(\mathcal{H})$ and let f by cyclic for A. Let $\left(e_{j}\right)_{j \in N_{0}}$ be the orthonormal basis of \mathcal{H} that is obtained from the Gram-Schmidt process applied to $\left(A^{k} f\right)_{k \in \mathbb{N}_{0}}$. Let $a=\left(a_{i j}\right)_{i, j \in \mathbb{N}_{0}}$ be the matrix associated with A by $a_{i j}=\left\langle A e_{i}, e_{j}\right\rangle$.

Show that: If A is symmetric, then a is a symmetric tridiagonal matrix with positive coefficients in the minor diagonals, i.e. $a_{i j}=0$ for $j \geq i+2$, $a_{i j}>0$ for $j=i+1$ and $a_{i j}=a_{j i}$.

The solutions will be discussed in the tutorial on 19.12.2018.

