Introduction to Scattering Theory Exercise Sheet 7

Exercise 16.

Give a proof of the following statements:

(1) $A \in \mathcal{B}_1(\mathcal{H})$ if and only if for any orthonormal basis $(e_j)_{j \in \mathbb{N}}$ for \mathcal{H} ,

$$\sum_{j\in\mathbb{N}}\langle |A|e_j,e_j\rangle<\infty.$$

(2) For $A \in \mathcal{B}_1(\mathcal{H})$ and an orthonormal basis $(e_j)_{j \in \mathbb{N}}$ of \mathcal{H} , the trace

$$\operatorname{tr}(A) \coloneqq \sum_{j \in \mathbb{N}} \langle A e_j, e_j \rangle$$

is well-defined, i.e. the sum converges absolutely and is independent of the choice of the orthonormal basis $(e_j)_{j \in \mathbb{N}}$ of \mathcal{H} .

Exercise 17.

Let $A \in \mathcal{L}(\mathcal{H})$ and let f by cyclic for A. Let $(e_j)_{j \in N_0}$ be the orthonormal basis of \mathcal{H} that is obtained from the Gram-Schmidt process applied to $(A^k f)_{k \in \mathbb{N}_0}$. Let $a = (a_{ij})_{i,j \in \mathbb{N}_0}$ be the matrix associated with A by $a_{ij} = \langle Ae_i, e_j \rangle$.

Show that: If A is symmetric, then a is a symmetric tridiagonal matrix with positive coefficients in the minor diagonals, i.e. $a_{ij} = 0$ for $j \ge i + 2$, $a_{ij} > 0$ for j = i + 1 and $a_{ij} = a_{ji}$.

The solutions will be discussed in the tutorial on 19.12.2018.