Introduction to Scattering Theory Exercise Sheet 8

Exercise 18.

Let $A = \int \lambda \, \mathrm{d}E(\lambda)$ be a self-adjoint operator on the Hilbert space \mathcal{H} . Let $\mathcal{M}(A)$ denote the set of all $\varphi \in \mathcal{H}$ such that $\mathrm{d}\langle \varphi, E(\lambda)\varphi \rangle = |f(\lambda)|^2 \, \mathrm{d}\lambda$ where $f \in L_{\infty}(\mathbb{R})$. Let $||\!|\varphi|\!|\!| = ||f|\!|_{\infty}$. Show that $||\!|\cdot|\!|\!|$ is a norm and $\mathcal{M}(A)$ is dense (in the \mathcal{H} -norm) in $\mathcal{H}_{\mathrm{ac}}(A)$.

Exercise 19.

(1) Let $H_0 := \overline{-\Delta \upharpoonright_{C_c^{\infty}(\mathbb{R}^3)}}$ and let $u \in L_2(\mathbb{R}^3)$. Show that for any $R \ge 0$,

$$\|\chi_{B_R} \mathrm{e}^{-\mathrm{i}tH_0} u\| \to 0, \quad t \to \infty.$$

Hint. Apply the estimate of Corollary 3.15.

- (2) Let $H = H_0 + V$ with $V \in L_2(\mathbb{R}^3)$ bounded. Show that for $u \in \mathcal{H}_{\pm} = R(\Omega_{\pm}(H, H_0)),$ $\|\chi_{B_R} e^{-itH} u\| \to 0, \quad t \to \infty.$
- (3) Comment on the behavior of $\|\chi_{B_R} e^{-itH} u\|$ for $t \to \pm \infty$, if u is an eigenfunction of H.
- (4) Give a physical interpretation of the results in (1)-(3).

The solutions will be discussed in the tutorial on 16.01.2019.