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Abstract. We discuss an evolution free boundary problem of mixed type with

two free boundaries modeling an idealized electrostatically actuated MEMS

device. While the electric potential is the solution of an elliptic equation,

the dynamics of the membranes’ displacement is modeled by two parabolic

equations. It is shown that the model is locally well-posed in time and that

solutions exist globally for small source voltages whereas non-existence holds

for large voltage values. Moreover, our model possesses a steady state solution

that is asymptotically stable. Finally, we show that in the vanishing aspect

ratio limit, solutions of the model converge towards solutions of the associated

small aspect ratio problem.

1. Introduction and main results

Mathematical models for Micro-Electro-Mechanical Systems (MEMS) have been

studied with regularity in the last few years, cf. [11, 36] for an overview and pertinent

questions to be answered. Frequently, a two-dimensional setup for an idealized

MEMS device is discussed and it is assumed that there is an elastic membrane

which is suspended above a fixed groundplate and deflected if a potential difference

is applied to the device, see [33–36] for some background information. However,

in engineering a novel structure for capacitive micromachined switches in which

both contact plates are designed as displaceable membranes has been proposed

recently, cf. [1]. In [12], a similar type of a MEMS has been presented and called a

double-freestanding-membranes (DFM) device. Mathematical models for this novel

type of a MEMS have scarcely been studied. The present paper will introduce and

investigate a free boundary problem suitable for the modeling of DFM devices. We

begin with an explanation of the governing equations of our model and refer to the

Appendix for some more details.

Let I = (−1, 1) and consider sufficiently smooth functions u(t, x), v(t, x) of time

t > 0 and x ∈ I with −1 ≤ v < u ≤ 0 on I. The idealized MEMS device will be

modeled by the two-dimensional domain

Ωu(t),v(t) = {(x, z) ∈ I × (0,−1); v(t, x) < z < u(t, x)}.
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We denote by Γu(t) = {z = u(t, x)} and Γv(t) = {z = v(t, x)} the horizontal bound-

ary components of Ωu(t),v(t). The functions u and v model the one-dimensional

displacements of two deformable elastic membranes from Γ0 and Γ−1 when a non-

zero source voltage is applied to the device Ω0,−1; see Fig. 1. Since both membranes

should be held fixed along the boundary of the device, we impose the conditions

u(t,±1) = 0 and v(t,±1) = −1. The evolution of the membranes starts from

u(0, x) = u0(x) and v(0, x) = v0(x). The electrostatic potential ϕ in the region

between both membranes satisfies the Laplace equation, is equal to zero on the

lower and one on the upper membrane and is assumed to be a linear function of

z on the lateral boundary components. Moreover, the functions u and v solve a

heat equation with a right-hand side proportional to the square of the trace of

the gradient of the electrostatic potential on the respective membrane. From the

modeling point of view, we also need two parameters λ, μ > 0 in the equations on

the free boundaries proportional to the square of the source voltage and inversely

proportional to the surface tension of the respective membrane. The coefficients

λ and μ interrelate the strengths of the electrostatic and mechanical forces in the

device. Finally, by nondimensionalization, there is a parameter ε > 0 called the

aspect ratio of the device, comparing gap size to device length.

Let ∂t =
∂
∂t , ∂x = ∂

∂x , ∂z = ∂
∂z , ∇ε = (ε∂x, ∂z) and Δε = ε2∂2x+∂

2
z . Our problem

reads

−Δεϕ = 0, in Ωu,v, t > 0,(1)

ϕ =
z − v

u− v
, on ∂Ωu,v, t > 0,(2)

∂tu− ∂2xu = −λ|∇εϕ|2, on Γu, t > 0,(3)

∂tv − ∂2xv = μ|∇εϕ|2, on Γv, t > 0,(4)

u(t,±1) = 0, t > 0,(5)

v(t,±1) = −1, t > 0,(6)

u(0, x) = u0, x ∈ I,(7)

v(0, x) = v0, x ∈ I.(8)

The setup and the issues considered here may be regarded as a generalization of

what has been done by Taylor in [37], also see [2], for bubble coalescence: Exper-

iments show that two neighboring drops at different electric potentials coalesce if

the potential difference reaches a critical value. The modeling assumptions in [37]

correspond to the choice λ = μ in (1)–(8) enforcing the surface tensions of the

membranes to be the same. One can show that, in this case, the problem can be

reformulated in terms of one function meaning that the membranes deflect in the

same fashion. This becomes particularly obvious in the limit ε → 0 of the system

(1)–(8) with undeflected initial conditions u0 ≡ 0, v0 ≡ −1 which we will discuss

later on, see (9)–(15), and from which one concludes that the function U = u+v+1

is a solution to the problem Ut −Uxx = 0, U(t,±1) = 0, U(0, x) = 0 so that U ≡ 0

and hence v = −u− 1. The benefit of the paper at hand thus is a discussion of the

case λ �= μ which applies particularly to a novel type of a MEMS.
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Figure 1: An idealized model for an electrostatic MEMS device with two free bound-

aries.
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For time-independent functions (u, v, ϕ), the system (1)–(8) reduces to the prob-

lem studied in [23] where the existence of solutions in suitable Sobolev and Hölder

spaces for small source voltages (i.e., small values of the parameters λ, μ) has been

proved. The results of the paper at hand refer to two of the open problems stated in

[23], namely the discussion of parabolic evolution equations on the free boundaries

and the question of the existence and non-existence of solutions for (λ, μ) varying

through the parameter space. The present work can thus be seen as a companion

paper of [23]. Also note that a modified version of (1)–(8) with additional curvature

terms on the boundaries Γu and Γv has been studied in [24] and that the problem

at hand refers to the limit of small deformations of the membranes in the model

with curvature.

Experience has shown that studying the small aspect ratio limit (ε → 0) of an

idealized MEMS model is useful for getting results on the existence and uniqueness

of solutions [11, 13–19, 21, 30, 36]. Sending ε→ 0, one obtains the following narrow

gap model from (1)–(8):

ϕ =
z − v

u− v
, in Ωu,v, t > 0,(9)

∂tu− ∂2xu = − λ

(u− v)2
, x ∈ I, t > 0,(10)

∂tv − ∂2xv =
μ

(u− v)2
, x ∈ I, t > 0,(11)

u(t,±1) = 0, t > 0,(12)

v(t,±1) = −1, t > 0,(13)

u(0, x) = u0, x ∈ I,(14)

v(0, x) = v0, x ∈ I.(15)

The right-hand sides of (10) and (11) have a singularity for u(x) = v(x). This

singularity corresponds to the physical observation that both membranes come

closer and closer and finally touch when the source voltage is increased. This
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phenomenon called pull-in instability is a major factor limiting the effectiveness of

many real-life MEMS devices. Thus for practical reasons it is important to know

the precise value of the pull-in voltage such that there is a stable configuration of

the device below the threshold and collision of the membranes and malfunction for

voltages larger than or equal to the threshold. Since the parameters λ and μ are

proportional to the source voltage of the idealized MEMS device Ωu(t),v(t), it is

reasonable to expect that our model possesses solutions for small values of λ and μ

which cease to exist as (λ, μ) vary though the parameter space.

There are a wide range of papers studying idealized MEMS devices that consist

of only one free membrane that is suspended above a rigid, fixed ground plate

corresponding to the case v ≡ −1 and μ = 0 in (1)–(8). In [8, 25] and [9] the

authors study the stationary and the dynamic free boundary problem associated

with the model with a fixed ground plate. In [6, 7, 10] an elliptic-parabolic problem

with an additional curvature term is discussed. Recently, some fourth-order models

including the mechanical effects damping and bending have been studied. In this

case, terms of the form α∂2t u and β∂4xu occur in the equation on the free boundary,

cf. [26–29]. Hyperbolic (α > 0) MEMS models associated with a device with

only one free membrane have been subject of [13, 20, 22] and further references

concerning second-order parabolic (α = β = 0) models are, e.g., [14, 16, 18, 19, 21].

Following the line of arguments of [9], the results of the present paper and its

organization are as follows: In Section 2 we show that the problem (1)–(8) is locally

well-posed for any pair of values λ, μ > 0. To this end, the free boundary problem

(1)–(8) is mapped to a reference problem of mixed type on a fixed domain. Solving

the elliptic equation for the potential first, our analysis results in a semilinear

evolution equation for the free surfaces with a right-hand side depending on the

trace of the gradient of the potential. We then apply the Contraction Mapping

Theorem to obtain a solution (uε, vε, ϕε) of regularity W 2
q (I)

2 × W 2
2 (Ωu,v), for

q > 2 and any ε > 0. Furthermore, it is shown that this solution exists globally

in time if λ, μ < m1, for some m1(ε) > 0. Section 3 deals with the non-existence

of global solutions. Using a suitable Lyapunov functional, we compute a number

m2(ε) > 0 such that, for max{λ, μ} > m2, the maximal existence time of the

solution to (1)–(8) is finite. A smooth branch of steady state solutions of (1)–(8)

emanating from (λ, μ) = (0, 0) is obtained in Section 4 from the Implicit Function

Theorem. Applying the Principle of Linearized Stability, we also show that this

steady state is asymptotically stable. Finally, in Section 5, a rigorous justification

of the small aspect ratio model (9)–(15) is given by showing that there is ε∗ > 0

so that any family of solutions {(uε, vε, ϕε); ε < ε∗} to (1)–(8) contains a sequence

that converges to a solution of (9)–(15) in suitable spaces. A discussion of our

results can be found in Section 6 and the Appendix contains the derivation of our

model from the physical viewpoint.

2. Local and global well-posedness

As major difference to the stationary version of (1)–(8) studied in [23], we will

use a W 2
q -setting, q ∈ (2,∞), to be able to work with the heat semigroup in Lq(I).
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We introduce, for q ∈ (2,∞) and κ ∈ (0, 1/2), the sets

Sq(κ) :=

{
(u, v) ∈W 2

q (I)×W 2
q (I); (u, v)(±1) = (0,−1), ‖u‖W 2

q,D(I) <
1

κ
,

‖v + 1‖W 2
q,D(I) <

1

κ
, v(x) + κ < u(x)− κ, ∀x ∈ I

}
where

W 2α
q,D(I) :=

{ {w ∈W 2α
q (I); w(±1) = 0}, 2α ∈ (1/q, 2],

W 2α
q (I), 0 ≤ 2α < 1/q.

Then Sq(κ) + {(0, 1)} is open in the topology of W 2
q,D(I)×W 2

q,D(I) and its closure

Sq(κ) is obtained by replacing < by ≤ in the definition of Sq(κ).

In a first step, we transform the problem (1)–(8) on the a priori unknown domain

Ωu(t),v(t) to the fixed reference domain Ω := I×(0, 1) by applying a time-dependent

transformation of coordinates T = Tu(t),v(t) : Ωu(t),v(t) → Ω given by

(16) T (x, z) = (x′, z′) =
(
x,

z − v(t, x)

u(t, x)− v(t, x)

)
.

It is easily checked that, with the definition of Ωu(t),v(t) in Section 1, Tu(t),v(t) is a

diffeomorphism Ωu(t),v(t) → Ω with the inverse

T−1(x′, z′) = (x′, z′(u(t, x′)− v(t, x′)) + v(t, x′)).

Let θ∗(u, v) and θ∗(u, v) be the pull-back and push-forward operators for the pair

(Ωu,v,Ω) defined by θ∗(u, v)w̃ = w̃ ◦ Tu,v and θ∗(u, v)w = w ◦ T−1
u,v where w and w̃

are functions of the coordinates (x, z) and (x′, z′) respectively, i.e.,

[θ∗(u, v)w̃](x, z) = w̃(Tu,v(x, z)) and [θ∗(u, v)w](x′, z′) = w(T−1
u,v (x

′, z′)).

We let Δ̃u,v;ε = θ∗(u, v)Δεθ
∗(u, v) denote the time-dependent transformed Laplace

operator on Ω. As explained in [23],

Δ̃u,v;εw̃ = ε2w̃x′x′ − 2ε2w̃x′z′
z′(ux′ − vx′) + vx′

u− v
+ w̃z′z′

1 + ε2[z′(ux′ − vx′) + vx′ ]2

(u − v)2

+ ε2w̃z′

(
2
ux′ − vx′

(u− v)2
[z′(ux′ − vx′) + vx′ ]− z′(ux′x′ − vx′x′) + vx′x′

u− v

)
;(17)

here the notation ux′ stands for ∂x′u et cetera. We first concentrate on the elliptic

boundary value problem (1)–(2) which is reformulated as

−
(
Δ̃u(t),v(t);εϕ̃

)
(t, x′, z′) = 0, (x′, z′) ∈ Ω, t > 0,(18)

ϕ̃(t, x′, z′) = z′, (x′, z′) ∈ ∂Ω, t > 0,(19)

with ϕ̃ = θ∗(u(t), v(t))ϕ. With ψ(t, x′, z′) = ϕ̃(t, x′, z′)− z′ and

(20) fu,v;ε = ε2
(
2
ux′ − vx′

(u− v)2
[z′(ux′ − vx′) + vx′ ]− z′(ux′x′ − vx′x′) + vx′x′

u− v

)
we can rewrite the problem (18)–(19) as

−
(
Δ̃u(t),v(t);εψ

)
(t, x′, z′) = fu(t),v(t);ε, (x′, z′) ∈ Ω, t > 0,(21)

ψ(t, x′, z′) = 0, (x′, z′) ∈ ∂Ω, t > 0.(22)
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In the following, c1, c2, c3, . . . stand for positive constants depending on what is

postpositioned in brackets. For (u, v) ∈ Sq(κ) and x ∈ I, we have

u(x)− v(x) > 2κ, ‖u‖C1([−1,1]) , ‖v‖C1([−1,1]) ≤ c1(κ, q).

Then it easy to see that −Δ̃u(t),v(t);ε is strictly elliptic, with an ellipticity constant

independent of (u, v) ∈ Sq(κ), and writing (17) in divergence form,

−Δ̃u,v;εw̃ = −∂x′

(
ε2w̃x′ − ε2

z′(ux′ − vx′) + vx′

u− v
w̃z′

)
− ∂z′

(
−ε2 z

′(ux′ − vx′) + vx′

u− v
w̃x′ +

1 + ε2[z′(ux′ − vx′) + vx′ ]2

(u− v)2
w̃z′

)
+ ε2(ux′ − vx′)

z′(ux′ − vx′) + vx′

(u− v)2
w̃z′ − ε2

ux′ − vx′

u− v
w̃x′ ,

= −∂x′(a11(u, v; ε)w̃x′ + a12(u, v; ε)w̃z′) + b1(u, v; ε)w̃x′

− ∂z′(a21(u, v; ε)w̃x′ + a22(u, v; ε)w̃z′) + b2(u, v; ε)w̃z′ ,

it is clear that
2∑

i,j=1

‖aij(u, v; ε)‖W 1
q (Ω) +

2∑
i=1

‖bi(u, v; ε)‖L∞(Ω) ≤ c2(κ, ε), ∀(u, v) ∈ Sq(κ),

and that aij , 1 ≤ i, j ≤ 2, belongs to C(Ω). Since fu,v;ε ∈ L2(Ω), we can apply the

arguments in the proofs of Proposition 2.1 and Lemma 2.2 of [9] to obtain that the

problem (21)–(22) possesses, for q ∈ (2,∞), κ ∈ (0, 1/2), ε > 0 and (u, v) ∈ Sq(κ),

a unique solution ψu,v;ε ∈ W 2
2,D(Ω) satisfying

(23) ‖ψu,v;ε‖W 2
2,D(Ω) ≤ c3(κ, ε) ‖fu,v;ε‖L2(Ω) .

Hence ϕ̃u,v;ε = ψu,v;ε + z′ is the unique solution to (18)–(19) with ‖ϕ̃u,v;ε‖W 2
2 (Ω) ≤

c4(κ, ε). Moreover, with the notation w̃(x′) := w(−x′), x′ ∈ I, we have that

ϕ̃ũ,ṽ;ε(t, x
′, z′) = ϕ̃u,v;ε(t,−x′, z′) for (x′, z′) ∈ Ω, as Sq(κ) is invariant under the

operation x �→ −x and by (17) and uniqueness. In particular, for even functions

(u, v), the potential ϕ̃ is even in x′.
Next, we discuss the parabolic equations (3)–(4) on the free boundaries. We

first concentrate on the right-hand side terms of these equations. For simplicity, we

write x instead of x′ henceforth. For (u, v) ∈ Sq(κ), let

gε(u, v) =

(
1 + ε2u2x
(u− v)2

|∂z′ ϕ̃u,v;ε(t, ·, 1)|2, 1 + ε2v2x
(u − v)2

|∂z′ ϕ̃u,v;ε(t, ·, 0)|2
)

(24)

and denote the components of gε by gε,1 and gε,2. Then clearly gε(ũ, ṽ)(x) =

gε(u, v)(−x), x ∈ I, and (3)–(4) can be rewritten as

ut − uxx = −λgε,1(u, v), x ∈ I, t > 0,(25)

vt − vxx = μgε,2(u, v), x ∈ I, t > 0.(26)

Again we simplify notation by now omitting the index ε. Given (u, v) ∈ Sq(κ), we

introduce a bounded linear operator A(u, v) ∈ L(W 2
2,D(Ω), L2(Ω)) by setting

A(u, v)w = −Δ̃u,vw, ∀w ∈W 2
2,D(Ω).
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By (23), A(u, v) is invertible and its inverseA(u, v)−1 ∈ L(L2(Ω),W
2
2,D(Ω)) satisfies

(27)
∥∥A(u, v)−1

∥∥
L(L2(Ω),W 2

2,D(Ω))
≤ c3(κ, ε).

For nonzero w ∈ W 2
2,D(Ω) and (u1, v1), (u2, v2) ∈ Sq(κ), we have, by (17) and the

continuity of the mapping Lq(Ω) ·W 1
2 (Ω) ↪→ L2(Ω),

‖A(u1, v1)w −A(u2, v2)w‖L2(Ω)

‖w‖W 2
2,D(Ω)

≤ 2ε2
∥∥∥∥z′(u1,x − v1,x) + v1,x

u1 − v1
− z′(u2,x − v2,x) + v2,x

u2 − v2

∥∥∥∥
L∞(Ω)

+

∥∥∥∥1 + ε2[z′(u1,x − v1,x) + v1,x]
2

(u1 − v1)2
− 1 + ε2[z′(u2,x − v2,x) + v2,x]

2

(u2 − v2)2

∥∥∥∥
L∞(Ω)

+ 2ε2
∥∥∥∥ (u1,x − v1,x)[z

′(u1,x − v1,x) + v1,x]

(u1 − v1)2

− (u2,x − v2,x)[z
′(u2,x − v2,x) + v2,x]

(u2 − v2)2

∥∥∥∥
L∞(Ω)

+ ε2
∥∥∥∥z′(u1,xx − v1,xx) + v1,xx

u1 − v1
− z′(u2,xx − v2,xx) + v2,xx

u2 − v2

∥∥∥∥
Lq(Ω)

= 2ε2 ‖α1‖L∞(Ω) + ‖α2‖L∞(Ω) + 2ε2 ‖α3‖L∞(Ω) + ε2 ‖α4‖Lq(Ω) .

Some elementary computations show that

α1 = z′
[
u1,x − u2,x
u1 − v1

+ u2,x
(u2 − u1)− (v2 − v1)

(u1 − v1)(u2 − v2)

]
+ (1− z′)

[
v1,x − v2,x
u1 − v1

+ v2,x
(u2 − u1)− (v2 − v1)

(u1 − v1)(u2 − v2)

]
.

We now make use of the continuity of the mappings W 1
q (I) ·W 1

q (I) ↪→ W 1
q (I) ↪→

L∞(I) to see that ‖α1‖L∞(Ω) can be bounded by a positive constant, depending

only on κ, times ‖(u1, v1)− (u2, v2)‖W 2
q (I)×W 2

q (I). The terms involving α2, . . . , α4

can be treated similarly and we omit the tedious computations for the convenience

of the reader. Finally, we get

(28)

‖A(u1, v1)−A(u2, v2)‖L(W 2
2,D(Ω),L2(Ω)) ≤ c5(κ, ε) ‖(u1, v1)− (u2, v2)‖W 2

q (I)×W 2
q (I)

and using the second resolvent identity, (27) and (28), we also have∥∥A(u1, v1)
−1 −A(u2, v2)

−1
∥∥
L(L2(Ω),W 2

2,D(Ω))

≤ c6(κ, ε) ‖(u1, v1)− (u2, v2)‖W 2
q (I)×W 2

q (I)
.(29)

As before, one deduces

‖fu1,v1 − fu2,v2‖L2(Ω) ≤ 2ε2 ‖α3‖L2(Ω) + ε2 ‖α4‖L2(Ω)

≤ c7(κ, ε) ‖(u1, v1)− (u2, v2)‖W 2
q (I)×W 2

q (I) .(30)
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From (30) and the fact that (0,−1) ∈ Sq(κ), we get

‖fu,v‖L2(Ω) ≤ 2c7(κ, ε)/κ, ∀(u, v) ∈ Sq(κ).

Now using (27), (29) and (30), we observe that

‖ϕ̃u1,v1 − ϕ̃u2,v2‖W 2
2 (Ω) = ‖ψu1,v1 − ψu2,v2‖W 2

2 (Ω)

=
∥∥A(u1, v1)

−1fu1,v1 −A(u2, v2)
−1fu2,v2

∥∥
W 2

2,D(Ω)

≤ c8(κ, ε) ‖(u1, v1)− (u2, v2)‖W 2
q (I)×W 2

q (I)

and hence Sq(κ) → W 2
2 (Ω): (u, v) �→ ϕ̃u,v is globally Lipschitz continuous. With

the aid of [32, Thm. II-5.5] and the continuity of the pointwise multiplication

W
1/2
2 (I) ·W 1/2

2 (I) ↪→ W 2σ1
2 (I), 2σ1 < 1/2, cf. [4, Thm. 4.1], it follows that the

mappings

Sq(κ) →W 2σ1
2 (I), (u, v) �→ |∂z′ ϕ̃u,v(t, ·, 1)|2 , (u, v) �→ |∂z′ ϕ̃u,v(t, ·, 0)|2

are globally Lipschitz continuous. As W 2
q (I) ↪→ W 1∞(I), the mappings

Sq(κ) →W 1
q (I), (u, v) �→ 1 + ε2u2x

(u− v)2
, (u, v) �→ 1 + ε2v2x

(u − v)2

are globally Lipschitz continuous with a Lipschitz constant depending only on κ

and ε. Finally the continuity of the pointwise multiplication W 1
q (I) ·W 2σ1

2 (I) ↪→
W 2σ

2 (I) = W 2σ
2,D(I), 2σ < 2σ1 < 1/2, cf. [4, Thm. 4.1], implies that gε is globally

Lipschitz continuous.

Note that the map (u, v) �→ ϕ̃u,v : Sq(κ) →W 2
2 (Ω) is analytic, since A : Sq(κ) →

L(W 2
2,D(Ω), L2(Ω)) and hence A−1 : Sq(κ) → L(L2(Ω),W

2
2,D(Ω)) is analytic and

by the analyticity of the right-hand side (u, v) �→ fu,v, Sq(κ) → L2(Ω), of (21)–

(22). This immediately achieves that also gε is analytic. We have just proven the

following proposition which is the analog of [9, Prop. 2.1].

Proposition 1. Let q ∈ (2,∞), κ ∈ (0, 1/2) and ε > 0. For each (u, v) ∈ Sq(κ)

there is a unique solution ϕ̃u,v;ε ∈ W 2
2 (Ω) to the problem (18)–(19). Moreover,

with the definition (ũ, ṽ)(x) = (u, v)(−x), x ∈ I, we have that ϕ̃ũ,ṽ;ε(t, x
′, z′) =

ϕ̃u,v;ε(t,−x′, z′), (x′, z′) ∈ Ω, t > 0, and for 2σ ∈ [0, 1/2), the mapping gε : Sq(κ) →
W 2σ

2,D(I) ×W 2σ
2,D(I) defined in (24) is analytic, globally Lipschitz continuous and

bounded with gε(0,−1) = (1, 1).

Recall from [23] that the Lipschitz continuity of the right-hand side of the equa-

tions on the free boundary was not needed for the stationary free boundary problem.

Now the boundary conditions (5)–(8) enter the game. For p ∈ (1,∞), we define

a bounded linear operator Ap ∈ L(W 2
p,D(I), Lp(I)) by setting Apw := −wxx, for all

w ∈ W 2
p,D(I). As Ar ⊂ Ap, r ≥ p, we simply write A instead of Ap in the following.

Note that −A is the generator of the heat semigroup {e−tA; t ≥ 0} on Lp(I). In

particular, A is invertible.
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With the definitions v̂ = v+1 and ĝε(u, v̂) = gε(u, v̂−1) = gε(u, v), the equations

(25) and (26) with the boundary conditions (5)–(8) read(
d

dt
+A

)(
u

v̂

)
=

(−λ 0

0 μ

)
ĝε(u, v̂), x ∈ I, t > 0,(31) (

u

v̂

)
=

(
0

0

)
, x ∈ {1,−1}, t > 0,(32) (

u

v̂

)
=

(
u0
v̂0

)
, x ∈ I, t = 0.(33)

Pick u0, v0 ∈ W 2
q (I), q ∈ (2,∞), such that (u0, v0)(±1) = (0,−1) and −1 ≤ v0 <

u0 ≤ 0 on I. Then there is κ ∈ (0, 1/4) such that (u0, v0) ∈ Sq(2κ). As explained

in [9, Lem. 2.3] there are M ≥ 1 and ω > 0 so that

(34)
∥∥e−tA

∥∥
L(W 2

q,D(I))
+ t

−σ+1+
1
2 (

1
2−

1
q )
∥∥e−tA

∥∥
L(W 2σ

2,D(I),W 2
q,D(I))

≤Me−ωt,

for 1
2 − 1

q < 2σ < 1
2 , 2σ �= 1/q. Let κ0 = κ/M < κ. Using the Lipschitz continuity

of ĝε,i, for i = 1, 2, i.e.,

‖ĝε,i(w1, ŵ2)− ĝε,i(w3, ŵ4)‖W 2σ
2,D(I)

≤ c9(κ, ε) ‖(w1, ŵ2)− (w3, ŵ4)‖W 2
q,D(I)×W 2

q,D(I) ,(35)

where (w1, w2), (w3, w4) ∈ Sq(κ0), and that (0,−1) ∈ Sq(κ0) and gε(0,−1) = (1, 1),

we obtain the bound

(36) ‖ĝε,i(w1, ŵ2)‖W 2σ
2,D(I) ≤ c10(κ, ε), ∀(w1, w2) ∈ Sq(κ0),

for i = 1, 2. For τ > 0 we define the spaces Xτ := C
(
[0, τ ];Sq(κ0) + {(0, 1)}) and

for t ∈ [0, τ ] and (u, v̂) ∈ Xτ the map F (u, v̂)(t) = (F1(u, v̂)(t), F2(u, v̂)(t))
T given

by

F1(u, v̂)(t) = e−tAu0 − λ

∫ t

0

e−(t−s)Aĝε,1(u(s), v̂(s)) ds,

F2(u, v̂)(t) = e−tAv̂0 + μ

∫ t

0

e−(t−s)Aĝε,2(u(s), v̂(s)) ds.

We aim to apply the Contraction Mapping Theorem to the map F . Let

I(τ) :=
∫ τ

0

e−ωss
σ−1− 1

2 (
1
2−

1
q ) ds.

Then I → 0 as τ → 0, I → I(∞) < ∞ for τ → ∞ and τ �→ I(τ) is increasing on

[0,∞). Writing m := max{λ, μ} and using (34)–(36), we find

‖Fi(u, v̂)(t)‖W 2
q,D(I) ≤

M

2κ
+mMc10(κ, ε)I(τ)

and

‖Fi(u1, v̂1)(t)− Fi(u2, v̂2)(t)‖W 2
q,D(I)

≤ mMc9(κ, ε)I(τ) ‖(u1, v̂1)− (u2, v̂2)‖C([0,τ ],W 2
q,D(I)×W 2

q,D(I)) ,
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for i = 1, 2, (u1, v̂1), (u2, v̂2) ∈ Xτ and t ∈ [0, τ ]. As ‖w‖L∞(I) ≤ 2 ‖w‖W 2
q,D(I), for

all w ∈ W 2
q,D(I), ĝε,1, ĝε,2 ≥ 0 and the heat semigroup is positivity preserving, we

infer

F1(u, v̂)(t) ≤ 0,

F2(u, v̂)(t) ≥ 0,

F̂1(u, v̂)(t)− F2(u, v̂)(t) ≥ 4κ− 4mMc10(κ, ε)I(τ).
From this one concludes that there exists a τ0 = τ0(λ, μ, κ, ε, q, σ) > 0 such that

F : Xτ0 → Xτ0 is a contraction. It follows that there exists Tε ∈ (τ0,∞] and a

unique maximal solution(
u

v̂

)
= e−tA

(
u0
v̂0

)
+

∫ t

0

e−(t−s)A

(−λĝε,1
μĝε,2

)
(u(s), v̂(s)) ds

to (31)–(33) on [0, Tε) satisfying

u, v̂ ∈ C([0, Tε),W
2
q,D(I)) ∩ C((0, Tε),W 2+2σ

2,D (I)) ∩ C1([0, Tε), Lq(I))

and

u(t, x) ≤ 0, v̂(t, x) ≥ 0, û(t, x) − v̂(t, x) ≥ 2κ0, (t, x) ∈ [0, Tε)× I.

If, for any τ > 0, there is κ(τ) ∈ (0, 1/2) and a solution (u, v̂) ∈ Sq(κ(τ)) + {(0, 1)}
for t ∈ [0, Tε) ∩ [0, τ ], then Tε = ∞. Choosing m suitably small, m < m1, where

m1 = m1(κ, ε, q, σ) > 0, we obtain

mM max{c9, c10}I(∞) < 1 <
1

2κ0
and 2mMc10I(∞) ≤ κ0,

so that the map F : Xτ → Xτ is a contraction for any τ > 0. In particular, there

exists a unique global solution (u, v̂) ∈ Sq(κ0) + {(0, 1)}. Finally, Proposition 1

and uniqueness of the solution imply that, for u0, v̂0 even, the associated solution

(u, v̂) to (31)–(33) is even on [0, Tε) × I. Up to the transformation v = v̂ − 1 and

up to pulling the solution (u, v, ϕ̃) back to Ωu(t),v(t), this completes the proof of the

following theorem.

Theorem 2. Let q ∈ (2,∞), ε > 0 and initial values u0, v0 ∈ W 2
q (I) with −1 ≤

v0 < u0 ≤ 0 on I and (u0, v0)(±1) = (0,−1) be given. Then:

(i) For any λ, μ > 0, there is a unique maximal solution (uε, vε, ϕε) to (1)–(8)

with regularity

uε, vε ∈ C([0, Tε),W
2
q (I)) ∩ C1([0, Tε), Lq(I)), ϕ ∈ W 2

2 (Ωuε(t),vε(t))

so that −1 ≤ vε < uε ≤ 0 on [0, Tε)× I and Tε > 0 is maximal.

(ii) If for each τ > 0 there is κ(τ) ∈ (0, 1/2) such that (uε(t), vε(t)) ∈ Sq(κ(τ))

for t ∈ [0, Tε)∩ [0, τ ], then the solution exists globally in time, i.e., Tε = ∞.

(iii) If u0 and v0 are even functions on I, then (uε, vε, ϕε) is even in x on

[0, Tε)× I.

(iv) Given κ ∈ (0, 1/2) and (u0, v0) ∈ Sq(κ), there exist m1 = m1(κ, ε) > 0 and

κ0 = κ0(κ, ε) > 0 such that, for λ, μ < m1, Tε = ∞ and (uε(t), vε(t)) ∈
Sq(κ0) for all t ≥ 0.
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Before we proceed, we formulate the following lemma about some elementary prop-

erties of the solution (u, v, ϕ) to (1)–(8). Theorem 2 and Lemma 3 are the analogs

of Theorem 1.1, Theorem 1.2(i) and Proposition 2.4 of [9].

Lemma 3. Let q ∈ (2,∞), ε, λ, μ > 0 and initial values u0, v0 ∈ W 2
q (I) with

(u0, v0)(±1) = (0,−1) and −1 ≤ v0 < u0 ≤ 0 on I be given. Let (uε, vε, ϕε)

denote the associated maximal solution of (1)–(8) satisfying the properties stated

in Theorem 2. Then, for all (t, x, z) ∈ [0, Tε)× Ωu,v,

(37) − 1 ≤ ϕε(t, x, z) ≤ 1

and

(∂xϕε)(t, x, u(t, x)) = −(∂xuε)(t, x)(∂zϕε)(t, x, u(t, x)),(38)

(∂xϕε)(t, x, v(t, x)) = −(∂xvε)(t, x)(∂zϕε)(t, x, v(t, x)).(39)

Proof. The bounds (37) are obtained from the maximum principle applied to the

constant functions ±1 and the function ϕε. Finally, differentiating the equations

ϕε(t, x, uε(t, x)) = 1 and ϕε(t, x, vε(t, x)) = 0 with respect to x and applying the

chain rule, we immediately obtain (38) and (39). �

3. Non-existence of global solutions

In Section 2 we have proved the local existence of solutions to (1)–(8). Let us

now discuss criteria for the non-existence of global solutions. Let (u, v, ϕ) denote

the maximal solution of (1)–(8) with initial values u0, v0 satisfying the properties

stated in Theorem 2; to simplify notation, we omit the index ε in this section again.

Here, we show that there is a critical valuem2(ε) > 0 such that for max{λ, μ} > m2,

the maximal existence time Tε > 0 of the solution (u, v, ϕ) is finite.

Theorem 4. Let q ∈ (2,∞), ε, λ, μ > 0 and initial values u0, v0 ∈ W 2
q (I) with

(u0, v0)(±1) = (0,−1) and −1 ≤ v0 < u0 ≤ 0 on I be given. Let (u, v, ϕ) denote

the associated maximal solution of (1)–(8) with initial values u0, v0 and maximal

existence time Tε > 0 according to Theorem 2. Then for

max{λ, μ} > m2 := π4(1 + ε2)2

we have that Tε <∞.

Proof. Let ζ1 : I → [0, π/4], ζ1(x) :=
π
4 cos(π2x) and μ1 := π2

4 so that

−∂2xζ1 = μ1ζ1, x ∈ I, ζ1(±1) = 0, ‖ζ1‖L1(I)
= 1,

i.e., μ1 is the principal eigenvalue of −∂2x acting on L2(I). For some α ∈ (0, 1) and

t ∈ [0, Tε), let

Eα(t) :=

∫
I

ζ1(x)(u + α
2 u

2)(t, x) dx.

In [9, Sec. 3], it is shown for the problem with one free boundary that

(40)
d

dt
Eα ≤ μ1 +

4αβ

ε2p

[
1

p
μ1ε

2 +
1

4β
p− 1

1 + Eα

]
,
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where α = ε2/(1 + ε2), β =
√
λ/2 and p = 1 + 2μ1ε

2, and it is proven that,

for λ > m2, the right-hand side of the inequality (40) can be estimated by a

negative constant, so that finiteness of Tε follows immediately by integrating (40)

over [0, Tε). Using Lemma 3, it is straightforward to generalize these arguments for

Eα(t) in the problem with two free boundaries, with the obvious changes, so that

(40) also holds true for the problem (1)–(8). In the case μ > λ, we make use of the

following symmetry of the problem (1)–(8): If (u, v, ϕ) is a solution to (1)–(8) with

the parameters (λ, μ), then (U, V, φ) defined by

U = −v − 1, V = −u− 1, φ(t, x, z) = 1− ϕ(t, x,−z − 1)

is a solution to (1)–(8) with the parameters (μ, λ). In view of this symmetry and

the inequality (40), the proof is completed. �

Theorem 4 shows that, for λ or μ sufficiently large, the problem (1)–(8) cannot

have a stationary solution. Applying a technique presented in [25, Thm. 3], we

obtain a more precise value of the threshold for the parameters λ and μ to guaran-

tee the non-existence of stationary solutions of (1)–(8). Recall from [23] that the

stationary problem (1)–(8) possesses even solutions in W 2∞(I)2 ×W 2
2 (Ωu,v).

Theorem 5. Let ε > 0. There exists ξ0(ε) ∈ (0, π
2ε ) such that for max{λ, μ} >

ξ0(ε) the stationary problem (1)–(6) possesses no even solution (u, v, ϕ) of regularity

u, v ∈ W 2
∞(I) and ϕ ∈ W 2

2 (Ωu,v) such that −1 ≤ v < u ≤ 0 on I. In addition

ξ0(ε) → 2 for ε→ 0.

Proof. It follows from (3) and (4) that, for all x ∈ I,

uxx(x) = λ(1 + ε2|ux(x)|2)|ϕz(x, u(x))|2,(41)

vxx(x) = −μ(1 + ε2|vx(x)|2)|ϕz(x, v(x))|2.(42)

For reasons of convexity, cf. [23], S1(x, z) := 1 + z − u(x) is a supersolution and

S2(x, z) := z − v(x) is a subsolution for the elliptic operator −Δε satisfying

S1(±1, z) = 1 + z = ϕ(±1, z),

S1(x, u(x)) = 1 = ϕ(x, u(x)),

S1(x, v(x)) = 1 + v(x) − u(x) ≥ 0 = ϕ(x, v(x)),

−ΔεS1(x, z) = ε2uxx ≥ 0 = −Δεϕ

and

S2(±1, z) = 1 + z = ϕ(±1, z),

S2(x, u(x)) = u(x)− v(x) ≤ 1 = ϕ(x, u(x)),

S2(x, v(x)) = 0 = ϕ(x, v(x)),

−ΔεS2(x, z) = ε2vxx ≤ 0 = −Δεϕ.

The weak maximum principle implies that, for all (x, z) ∈ Ωu,v,

ϕ(x, z)− S1(x, z) ≤ max
Ωu,v

{ϕ− S1} = max
∂Ωu,v

{ϕ− S1} ≤ 0
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and that

S2(x, z)− ϕ(x, z) ≤ max
Ωu,v

{S2 − ϕ} = max
∂Ωu,v

{S2 − ϕ} ≤ 0.

Hence, for fixed x ∈ I and z ∈ (v(x), u(x)),

ϕ(x, z)− ϕ(x, u(x))

z − u(x)
≥ 1 and

ϕ(x, z)− ϕ(x, v(x))

z − v(x)
≥ 1,

and sending z to u(x) and v(x) respectively, we conclude that ϕz(x, u(x)) ≥ 1 and

ϕz(x, v(x)) ≥ 1, for all x ∈ I. Then (41) and (42) imply

uxx(x) ≥ λ(1 + ε2|ux(x)|2),(43)

vxx(x) ≤ −μ(1 + ε2|vx(x)|2).(44)

Let

Λε(ξ) := 1 +
1

ε2ξ
ln(cos(εξ)), ξ ∈

(
0,
π

2ε

)
.

As explained in the proof of [25, Thm. 3], Λε possesses a unique zero ξ0(ε) such

that Λε(ξ) < 0 for ξ0(ε) < ξ < π
2ε and ξ0(ε) → 2 for ε → 0. Moreover, it has been

shown that integrating (43) twice leads to

u(0) ≤ 1

ε2λ
ln(cos(ελx)), x ∈

[
0,min

{
1,

π

2ελ

})
so that, for λ ≥ π

2ε and x→ π
2ελ , u(0) = −∞, and, for x→ 1, u(0) ≤ Λε(λ)−1 ≤ −1

on [ξ0(ε),
π
2ε ), which are both contradictions.

Clearly, any C1-smooth even function on I has vanishing derivative at x = 0.

Then vx(0) = 0 and integrating (44) over [0, x] yield

arctan(εvx(x)) ≤ −εμx, x ∈ [0, 1),

or equivalently

vx(x) ≤ −1

ε
tan (εμx) , x ∈

[
0,min

{
1,

π

2εμ

})
.

Integrating once more and using that v(0) < 0, we arrive at

v(x) <
1

ε2μ
ln(cos(εμx)), x ∈

[
0,min

{
1,

π

2εμ

})
.

Assuming μ ≥ π
2ε and sending x→ π

2εμ , we see that v( π
2εμ ) = −∞ which is clearly

contradicting v ≥ −1. Assuming μ < π
2ε and sending x→ 1, we get v(1) ≤ Λε(μ)−1

and for μ > ξ0(ε), we conclude −1 = v(1) < −1, which is again a contradiction.

This completes the proof of our theorem. �

4. Asymptotic stability

Fix q ∈ (2,∞), κ ∈ (0, 1/2), ε > 0 and 2σ ∈ (12 − 1
q ,

1
2 ). Recall that gε defined in

(24) is an analytic map Sq(κ) → W 2σ
2,D(I) ×W 2σ

2,D(I) ↪→ Lq(I) × Lq(I). Moreover

the operator A = −∂2x with D(A) = W 2
q,D(I) is invertible and −A generates the

heat semigroup on Lq(I).
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Define F : R2 × Sq(κ) →W 2
q,D(I)×W 2

q (I) by setting

F (Λ, U) =

(
U1

U2

)
+

(
Λ1 0

0 −Λ2

)
A−1gε(U1, U2).

Then F (0, 0) = (0, 0) and, for all W ∈ Sq(κ),

[DUF (0, 0)]W = lim
t→0

1

t
(F (0, tW )− F (0, 0)) =W.

According to the Implicit Function Theorem, there is δ > 0 and an analytic function

[0, δ)2 → Sq(κ), Λ �→ UΛ, such that F (Λ, UΛ) = 0. For Λ �= (0, 0), let ΦΛ denote the

associated potential solving (1) and (2) with u, v replaced by UΛ,1, UΛ,2. Writing

Λ = (λ, μ), (UΛ,ΦΛ) is a stationary solution of (1)–(6) as F (Λ, UΛ) = 0 and UΛ,t = 0

imply the equations corresponding to (3) and (4) and also (5) and (6) are satisfied.

With the notation U = (u, v) and Û = (u, v̂), equations (3) and (4) read

Ût +AÛ =

(−Λ1 0

0 Λ2

)
gε(U).

Setting V̂ = U − UΛ = Û − ÛΛ, Λ ∈ (0, δ)2, and

BΛ := −
(−Λ1 0

0 Λ2

)
Dgε(UΛ) ∈ L(W 2

q,D(I)×W 2
q,D(I), Lq(I)× Lq(I)),

we obtain the linearization

(45) V̂t + (A+BΛ)V̂ =

(−Λ1 0

0 Λ2

)(
gε(V̂ + UΛ)− gε(UΛ)−Dgε(UΛ)V̂

)
,

and, denoting the right-hand side of (45) by GΛ(V̂ ), the initial value problem

V̂t + (A+BΛ)V̂ = GΛ(V̂ ), t > 0,

V̂ (0) = V̂0,

where GΛ ∈ C2(OΛ, Lq(I)×Lq(I)) is defined on an open zero neighborhood OΛ ⊂
W 2

q,D(I)×W 2
q,D(I) such that UΛ+OΛ ⊂ Sq(κ). MoreoverGΛ(0) = 0 andDGΛ(0) =

0. It follows from a line of arguments similar to what is presented in Section 4 of

[9] that

lim
Λ→0

‖BΛ‖L(W 2
q,D(I)×W 2

q,D(I),Lq(I)×Lq(I))
= 0

implies that −(A + BΛ) generates an analytic semigroup on Lq(I) × Lq(I) with a

negative spectral bound. Now the following theorem is an immediate consequence

of [31, Thm. 9.1.2].

Theorem 6. Let q ∈ (2,∞), κ ∈ (0, 1/2) and ε > 0 be fixed.

(i) There are δ(κ) > 0 and an analytic function [0, δ)2 → W 2
q,D(I) ×W 2

q (I),

Λ → UΛ = (UΛ,1, UΛ,2), such that, for each Λ = (λ, μ) ∈ (0, δ)2, (UΛ,ΦΛ) is

the unique steady state of (1)–(6) with UΛ ∈ Sq(κ) and ΦΛ ∈ W 2
2 (ΩUΛ,1,UΛ,2).

Moreover, UΛ,1 and −UΛ,2 are convex and even for all Λ ∈ (0, δ)2 and

U(0,0) = (0, 0).
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(ii) Let Λ ∈ (0, δ)2. There are ω0, r, R > 0 such that for each pair of initial

values u0, v0 ∈ W 2
q (I) satisfying (u0, v0)(±1) = (0,−1), −1 ≤ v0 < u0 ≤ 0

and ‖(u0, v0)− UΛ‖W 2
q,D(I)×W 2

q,D(I) < r, the associated solution (u, v, ϕ) to

(1)–(8) exists globally in time and

‖(u, v)− UΛ‖W 2
q,D(I)×W 2

q,D(I) + ‖(ut, vt)‖Lq(I)×Lq(I)

≤ Re−ω0t ‖(u0, v0)− UΛ‖W 2
q,D(I)×W 2

q,D(I) , ∀t ≥ 0.

Remark 7. As a consequence of the above theorem and the Lipschitz continuity

of (u, v) �→ ϕ̃u,v, we also have, under the assumptions of Theorem 6, that ϕ̃u,v

converges exponentially to ϕ̃UΛ,1,UΛ,2 as t→ ∞, i.e.,∥∥ϕ̃u,v − ϕ̃UΛ,1,UΛ,2

∥∥
W 2

2 (Ω)
≤ R′e−ω0t ‖(u0, v0)− UΛ‖W 2

q,D(I)×W 2
q,D(I) , ∀t ≥ 0,

with a positive constant R′.

5. The small aspect ratio limit

In this section, we examine the connection between the original problem (1)–

(8) and the vanishing aspect ratio model (9)–(15). Let λ, μ > 0, q ∈ (2,∞) and

κ ∈ (0, 1/2) be fixed. With M in (34), define κ1 := κ/(2M) < κ. For ε > 0,

let (uε, vε, ϕε)(t) denote the solution of (1)–(8) on [0, Tε), for (u0, v0) ∈ Sq(κ) with

u0 ≤ 0 and v0 ≥ −1 given, cf. Theorem 2 and its proof. As the solution is continuous

in time,

τε := sup
{
t ∈ [0, Tε); (uε(s), vε(s)) ∈ Sq(κ1); ∀s ∈ [0, t]

}
is positive. Moreover, Tε ≥ τε. We then have

uε(t)− vε(t) ≥ 2κ1, −1 ≤ vε(t) < uε(t) ≤ 0 on [0, τε]× [−1, 1],

and, by the continuous embedding W 2
q (I) ↪→W 1

∞(I),

‖uε(t)‖W 2
q (I)

+ ‖vε(t)‖W 2
q (I) + ‖uε(t)‖W 1∞(I) + ‖vε(t)‖W 1∞(I) ≤ C1, ∀t ∈ [0, τε].

Again, we denote by C1, C2, C3, . . . a sequence of positive constants. For (t, x′, z′) ∈
[0, τε] × Ω, we recall the definition ψε(t, x

′, z′) = ϕ̃ε(t, x
′, z′) − z′, where ϕ̃ε(t) =

θ∗(u(t), v(t))ϕε(t) = ϕε(t) ◦ T−1
uε(t),vε(t)

with the transformation Tuε(t),vε(t) in (16).

Also recall that, by Lemma 3, −1 ≤ ϕ̃ε ≤ 1, so that −2 ≤ ψε ≤ 1 on [0, τε]×Ω. The

function fε(t, x
′, z′) = Δ̃uε(t),vε(t);εz

′ has been computed in Eq. (20). To simplify

notation, we will write (x, z) for points in Ω henceforth, since we do not need to

distinguish between points in Ω and Ωu,v here.

In what follows, we need control of the L2(Ω)-norm of fε and therefore we prepare

the estimates

‖fε‖Lq(Ω) ≤
2ε2

4κ21
‖z(uε,x − vε,x) + vε,x‖L∞(Ω) ‖uε,x − vε,x‖Lq(I)

+
ε2

2κ1

(
‖uε,xx‖Lq(I)

+ 2 ‖vε,xx‖Lq(I)

)
≤ C2ε

2

and, with the aid of Hölder’s inequality,

‖fε‖Lp(Ω) ≤ 2
q−p
qp ‖fε‖Lq(Ω) ≤ C3ε

2, ∀p ∈ [1, q].
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Our next lemma provides some important bounds on the function ψε and its deriva-

tives. Compared to the analysis of the stationary case, it can be seen as a general-

ization of [23, Lem. 7] and [9, Lem. 5.1].

Lemma 8. There exist positive constants ε∗ and K1 such that, for all ε < ε∗ and

t ∈ [0, τε],

‖∂xψε(t)‖L2(Ω) +
1

ε

(
‖ψε(t)‖L2(Ω) + ‖∂zψε(t)‖L2(Ω)

)
≤ K1,(46)

1

ε
‖∂x∂zψε(t)‖L2(Ω) +

1

ε2

∥∥∂2zψε(t)
∥∥
L2(Ω)

≤ K1,(47)

1

ε

(
‖∂zψε(t, ·, 0)‖W 1/2

2 (I)
+ ‖∂zψε(t, ·, 1)‖W 1/2

2 (I)

)
≤ K1.(48)

Proof. As −Δ̃εψε = fε and ψε|∂Ω = 0, we can use the divergence form of −Δ̃ε and

integration by parts to obtain∫
Ω

fεψε dx dz = ε2
∫
Ω

(
∂xψε − z(uε,x − vε,x) + vε,x

uε − vε
∂zψε

)2

dx dz

+

∫
Ω

|∂zψε|2
(uε − vε)2

dx dz

+ ε2
∫
Ω

(uε,x − vε,x)
z(uε,x − vε,x) + vε,x

(uε − vε)2
(∂zψε)ψε dx dz

− ε2
∫
Ω

uε,x − vε,x
uε − vε

(∂xψε)ψε dx dz.

Henceforth, we choose ε sufficiently small, i.e., ε smaller than some ε1 > 0, so that

(49) ε21

(
‖uε,x(t)‖L∞(I) + 2 ‖vε,x(t)‖L∞(I)

)2
≤ 1

2
, ∀(t, ε) ∈ [0, τε]× (0, ε1].

Using the inequality (r − s)2 ≥ r2

2 − s2 we get∫
Ω

fεψε dx dz ≥ ε2

2
‖∂xψε‖2L2(Ω)

+
(
1− ε2 ‖z(uε,x − vε,x) + vε,x‖2L∞(Ω)

)∫
Ω

|∂zψε|2
(uε − vε)2

dx dz

− ε2

2

∥∥z(uε,x − vε,x)
2 + vε,x(uε,x − vε,x)

∥∥
L∞(Ω)

∫
Ω

( |∂zψε|2 + |ψε|2
(uε − vε)2

)
dx dz

− ε2

4

∫
Ω

|∂xψε|2 dx dz − ε2
∥∥∥∥uε,x − vε,x

uε − vε

∥∥∥∥2
L∞(I)

∫
Ω

|ψε|2 dx dz

≥ ε2

4
‖∂xψε‖2L2(Ω) + (1− C4ε

2) ‖∂zψε‖2L2(Ω) − C5ε
2.

Since ∫
Ω

fεψε dx dz ≤ ‖fε‖L2(Ω) ‖ψε‖L2(Ω) ≤ C6ε
2,

we have, for sufficiently small ε, i.e., ε smaller than some ε2 > 0,

(50) C7ε
2 ≥ ε2 ‖∂xψε‖2L2(Ω) + ‖∂zψε‖2L2(Ω) ,
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and (50) shows that ‖∂xψε‖L2(Ω) and 1
ε ‖∂zψε‖L2(Ω) are bounded by a positive

constant. Since ‖ψε‖L2(Ω) ≤ ‖∂zψε‖L2(Ω), it is clear that 1
ε ‖ψε‖L2(Ω) is bounded

by a positive constant. This implies (46). Setting ζε := ∂2zψε and ωε := ∂x∂zψε, it

follows from integrating the equation −Δ̃εψε = fε, as explained in [23], that∫
Ω

fε(1 − ∂zψε)ζε dx dz

= ε2
∫
Ω

(
ωε − z(uε,x − vε,x) + vε,x

uε − vε
ζε

)2

dx dz +

∫
Ω

ζ2ε
(uε − vε)2

dx dz.

Using again the inequality (r − s)2 ≥ r2

2 − s2 and (49) it follows that∫
Ω

fε(1 − ∂zψε)ζε dx dz

≥
∫
Ω

[
ζ2ε

(uε − vε)2
+
ε2

2
ω2
ε − ε2ζ2ε

(
z(uε,x − vε,x) + vε,x

uε − vε

)2
]
dx dz

≥ 1

2

(
‖ζε‖2L2(Ω) + ε2 ‖ωε‖2L2(Ω)

)
.(51)

Applying the techniques used in [9] to derive an estimate for the quantity corre-

sponding to the right-hand side of (51), we obtain from (50) and (51) that

‖ζε‖2L2(Ω) + ε2 ‖ωε‖2L2(Ω) ≤ C8ε
4.

This proves (47). From (46) and (47) one concludes that ‖∂zψε‖W 1
2 (Ω) ≤ C9ε

and (48) immediately follows from the embedding 7.56 in [3, p. 217]. We set

ε∗ = min{ε1, ε2} to complete our proof. �

Since we are interested in the limit ε→ 0 of (uε, vε, ϕε), we have to guarantee that

the maximal existence times Tε > 0 do not converge to zero as ε → 0. Therefore,

the following lemma generalizing [9, Lem. 5.2] will be crucial.

Lemma 9. There is τ = τ(q, λ, μ, κ) > 0 such that τε ≥ τ for all ε < ε∗. Moreover,

there is Λ = Λ(κ) > 0 such that τε = Tε = ∞ for all ε < ε∗, provided λ, μ ∈ (0,Λ).

Proof. Recalling the methods used to prove Proposition 1, we see that, for fixed

2σ ∈ (12 − 1
q ,

1
2 ), there exists a positive constant K2(q, κ) such that

‖gε,i(uε(t), vε(t))‖W 2σ
2,D(I) ≤ K2, ∀t ∈ [0, τε], i = 1, 2.

With the aid of Duhamel’s formula, see Section 2, we conclude that

‖uε(t)‖W 2
q,D(I) ≤

M

κ
+ λMK2I(t),

‖v̂ε(t)‖W 2
q,D(I) ≤

M

κ
+ μMK2I(t),

uε(t) ≤ 0,

vε(t) ≥ −1,

uε(t)− vε(t) ≥ 2κ− 2(λ+ μ)MK2I(t).
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Let m = max{λ, μ}. As I(t) → 0 for t→ 0, there is τ = τ(q, λ, μ, κ) > 0 so that

I(t) ≤ min

{
1

mK2κ
,
(2M − 1)κ

4mM2K2

}
, ∀t ∈ [0, τ ].

It is clear that

‖uε(t)‖W 2
q,D(I) , ‖v̂ε(t)‖W 2

q,D(I) ≤
1

κ1

and

uε(t)− vε(t) ≥ 2κ1, −1 ≤ vε(t) < uε(t) ≤ 0,

for all t ∈ [0, τ ] ∩ [0, τε]. By the definition of τε, we conclude τε ≥ τ . Letting

Λ(κ) := min

{
1

κK2I(∞)
,

(2M − 1)κ

4M2K2I(∞)

}
and λ, μ ∈ (0,Λ(κ)), we find that Tε = τε = ∞, as was to be shown. �

We are now ready to present a proof of the following main theorem about con-

vergence towards solutions of the small aspect ratio problem. Let 1A denote the

characteristic function of the set A ⊂ R
2.

Theorem 10. Let λ, μ > 0, q ∈ (2,∞) and κ ∈ (0, 1/2) and let (u0, v0) ∈ Sq(κ)

satisfying u0 ≤ 0 and v0 ≥ −1 be given. For ε > 0, the unique solution to (1)–

(8) with initial values (u0, v0) obtained in Theorem 2 is denoted by (uε, vε, ϕε).

The maximal interval of existence is [0, Tε). Then there are τ > 0, ε∗ > 0 and

κ1 ∈ (0, 1/2) depending only on q and κ such that Tε ≥ τ and (uε, vε)(t) ∈ Sq(κ1)

for all (t, ε) ∈ [0, τ ] × (0, ε∗). Moreover, the small aspect ratio model (9)–(15) has

a unique solution (u∗, v∗, ϕ∗) so that

u∗, v∗ ∈ C([0, τ ],W 2
q (I)) ∩ C1([0, τ ], Lq(I)),

−1 ≤ v∗(t) < u∗(t) ≤ 0 and u∗(t) − v∗(t) ≥ 2κ1 for t ∈ [0, τ ], and such that, for a

null sequence (εn)n∈N ⊂ (0, ε∗),

(uεn , vεn) → (u∗, v∗) in C1−θ([0, τ ],W 2θ
q (I)), θ ∈ (0, 1),

ϕεn(t)1Ωuεn (t),vεn (t)
→ ϕ∗(t)1Ωu∗(t),v∗(t)

in L2(I × (−1, 0)), t ∈ [0, τ ],

as n → ∞. Furthermore, there is Λ(κ) > 0 such that, for λ, μ < Λ(κ), the state-

ments of the theorem hold true for any τ > 0.

Proof. Let τ and ε∗ be as in Lemma 9. Computing the Lq(I)-norm of (25) and (26)

and using the reverse triangle inequality and the embedding W
1/2
2 (I) ↪→ L2q(I),

we have, for any t ∈ [0, τ ],

‖∂tuε(t)‖Lq(I)
− ∥∥∂2xuε(t)∥∥Lq(I)

≤ K3λ

∥∥∥∥1 + ε2|∂xuε(t)|2
(uε(t)− vε(t))2

∥∥∥∥
L∞(I)

‖∂z′ ϕ̃ε(t, ·, 1)‖2W 1/2
2 (I)
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and

‖∂tvε(t)‖Lq(I)
− ∥∥∂2xvε(t)∥∥Lq(I)

≤ K3μ

∥∥∥∥1 + ε2|∂xvε(t)|2
(uε(t)− vε(t))2

∥∥∥∥
L∞(I)

‖∂z′ ϕ̃ε(t, ·, 0)‖2W 1/2
2 (I)

,

where K3 > 0 is a constant. Since ‖∂z′ ϕ̃ε(t, ·, 1)‖W 1/2
2 (I)

is bounded by a positive

constant, cf. Lemma 8, we can proceed as in the proof of [9, Thm. 1.4] to conclude

from the boundedness of uε in C([0, τ ],W 2
q (I)) ∩ C1([0, τ ], Lq(I)) that there exists

a sequence (uεk)k∈N ⊂ {uε; ε < ε∗}, εk → 0, such that, for k → 0,

uεk → u∗ in C1−θ([0, τ ],W 2θ
q (I))

for some function u∗ ∈ C1−θ([0, τ ],W 2θ
q (I)) and θ ∈

(
q+1
2q , 1

)
. The bounded-

ness of ‖∂z′ ϕ̃εk(t, ·, 0)‖W 1/2
2 (I)

, see again Lemma 8, implies that vεk is bounded in

C([0, τ ],W 2
q (I)) ∩ C1([0, τ ], Lq(I)) so that we may extract another null sequence

(εkj )j∈N ⊂ (εk)k∈N such that

vεkj → v∗ in C1−θ([0, τ ],W 2θ
q (I)),

for some function v∗ ∈ C1−θ([0, τ ],W 2θ
q (I)) and θ ∈

(
q+1
2q , 1

)
. As any subsequence

of a convergent sequence is convergent with the same limit, we get that

uεkj → u∗ in C1−θ([0, τ ],W 2θ
q (I)) and

vεkj → v∗ in C1−θ([0, τ ],W 2θ
q (I))

as j → ∞. According to the continuous embedding W 2θ
q (I) ↪→ W 1

∞(I), we also

have that

uεkj → u∗ in C([0, τ ],W 1
∞(I)) and

vεkj → v∗ in C([0, τ ],W 1
∞(I)).

In view of the inequality (48) and the continuous embedding W
1/2
2 (I) ↪→ L2q(I) we

observe that

lim
ε→0

sup
t∈[0,τ ]

∥∥∥|∂z′ϕ̃ε(t, ·, 0)|2 − 1
∥∥∥
Lq(I)

= lim
ε→0

sup
t∈[0,τ ]

∥∥∥|∂z′ ϕ̃ε(t, ·, 1)|2 − 1
∥∥∥
Lq(I)

= 0,

and conclude that

gεkj (uεkj (t), vεkj (t)) →
1

(u∗ − v∗)2
(1, 1) in C([0, τ ], Lq(I)),

u∗(t, x) ≤ 0,

v∗(t, x) ≥ −1,

u∗(t, x)− v∗(t, x) ≥ 2κ1,

(u∗, v∗)(t,±1) = (0,−1) and

(u∗, v∗)(0, x) = (u0, v0)(x) for (t, x) ∈ [0, τ ]× I.
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Moreover, for any t ∈ [0, τ ], the left-hand side of the equation

uεkj (t) = e−tAu0 − λ

∫ t

0

e−(t−s)Agεkj ,1(uεkj (s), vεkj (s)) ds

converges to u∗(t) while on the right-hand side the fact that A generates the heat

semigroup on Lq(I) implies that∫ t

0

e−(t−s)Agεkj ,1(uεkj (s), vεkj (s)) ds →
∫ t

0

e−(t−s)A 1

(u∗(s)− v∗(s))2
ds, j → ∞.

Arguing similarly for v∗, we conclude that u∗(t), v̂∗(t) ∈ D(A) =W 2
q,D(I) and that

(u∗, v∗)(t) is the unique solution to (10)–(15) satisfying the properties stated in the

theorem, for all t ∈ [0, τ ]. Letting

ϕ∗ =
z − v∗
u∗ − v∗

and using Lemma 8, the proof is completed by similar arguments as in the proof of

[23, Thm. 2]. �

6. Discussion and Outlook

From the physical point of view, the effectiveness of a MEMS device is limited

by the pull-in stability which corresponds to smash-up of both membranes in our

idealized model. Intuitively, it is clear that this phenomenon occurs for large voltage

values and thus, as the parameters λ and μ are proportional to the square of the

source voltage, cf. the Appendix, for large values of λ and μ. For the small aspect

ratio model of a stationary MEMS device with a one-dimensional displacement of

a single membrane suspended above a fixed ground plate, i.e.,

(52) wxx =
λ

(1 + w)2
, x ∈ (−1/2, 1/2), w(±1/2) = 0,

it is well-known that there is a threshold λ∗ such that for 0 < λ < λ∗ there exist

two solutions w1(x;λ) and w2(x;λ) coalescing as λ → λ∗ and there is no solution

if λ > λ∗. Moreover, only one of the solutions in the small voltage regime is

stable under perturbations; the other one is unstable, cf. [5, 33]. Thus for this type

of model, λ∗ corresponds indeed to the pull-in voltage. In [5], the authors have

computed the numerical value λ∗ = 1.40001647737100.

In Section 2 we have first shown that, for any pair of sufficiently small parameters,

there exists a solution (uε, vε, ϕε) to (1)–(8), at least locally in time. Moreover, we

have proven that there exists m1(ε) > 0 such that (uε, vε, ϕε) is in fact a global

solution, i.e., Tε = ∞, for λ, μ < m1(ε). In Section 3 we have shown that there

is m2(ε) > 0 such that there is no global solution, i.e., Tε < ∞, for λ > m2(ε) or

μ > m2(ε). Note that our results do not provide information about the precise value

of the pull-in voltage for this type of model. For instance, it is an open problem

to find out whether the values m1 and m2 coincide or not. While Theorem 2 and

Theorem 4 show that the sets

Sε = {(λ, μ) ∈ (0,∞)2; (1)–(8) has a global solution}
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contain a neighborhood of zero in the relative topology of (0,∞)2 and are bounded

by an ε-dependent constant, we do not have further information on the structure

of the Sε; e.g., is not clear that Sε is the product of two intervals.

Moreover, it is not clear that Tε < ∞ implies that the membranes collide. One

could also imagine that one component of the solution blows up in the corresponding

W 2
q -norm; note that in the W 2

q -setting, q ∈ (2,∞), second order derivatives may

become unbounded.

Concerning stability, we have already shown that there exists a steady state of

(1)–(8) for sufficiently small parameters in [23]. The present paper extends this

result by proving uniqueness of the steady state (with first components in a set

Sq(κ)) as well as its local asymptotic stability. It is an open problem whether there

are other smooth branches of steady states emanating from (λ, μ) = (0, 0) and what

one can say about their stability or instability, cf. the discussion of the model (52)

above.

Finally, the small aspect ratio limit has been discussed: We have first proven

that the maximal existence times Tε are bounded from below by a positive constant

when sending ε→ 0. Then refining the arguments of [9, Thm. 1.4] and [23, Thm. 2]

we have given a rigorous justification of the model (9)–(15) by proving convergence

of the solutions (uε, vε, ϕε) towards a solution of (9)–(15) in the vanishing aspect

ratio limit. Again, a cornerstone of our proof was to show that the arguments

for the small aspect ratio limit of the stationary problem can be adopted for the

evolution model and the W 2
q -setting.

7. Appendix

The mathematical model for an idealized electrostatic MEMS, considered in this

paper, can be obtained as follows: There are two elastic membranes of length � > 0

and width w > 0 which are assumed to be perfect conductors and they should be

fixed along their boundary so that their initial distance is d > 0. We assume that a

voltage Vs is applied to the device so that an electric field with the potential ψ sets

up in the region bounded by the two membranes. Finally, let ũ(x̃) and ṽ(x̃) denote

the displacements of the membranes so that (ũ, ṽ) ≡ (0,−d) for Vs = 0; see Fig. 2.

We introduce coordinates (x̃, ỹ, z̃) ∈ R
3 so that the upper membrane is modeled by

the set

M1 = {(x̃, ỹ, z̃) ∈ R
3; −�/2 ≤ x̃ ≤ �/2, −w/2 ≤ ỹ ≤ w/2, z̃ = ũ(x̃)}

and the second membrane corresponds to

M2 = {(x̃, ỹ, z̃) ∈ R
3; −�/2 ≤ x̃ ≤ �/2, −w/2 ≤ ỹ ≤ w/2, z̃ = ṽ(x̃)}.

The region bounded by M1 and M2 is

R = {(x̃, ỹ, z̃) ∈ R
3; −�/2 ≤ x̃ ≤ �/2, −w/2 ≤ ỹ ≤ w/2, ṽ(x̃) < z̃ < ũ(x̃)}.

The electrostatic potential satisfies the Laplace equation in R and we may choose

M2 to be the set where ψ = 0. Next, the potential on M1 is proportional to Vs
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and there is a dimensionless function f such that

∂2ψ

∂x̃2
+
∂2ψ

∂ỹ2
+
∂2ψ

∂z̃2
= 0 in R,(53)

ψ(x̃, ỹ, z̃) = Vsf(ũ/d) on M1,(54)

ψ(x̃, ỹ, z̃) = 0 on M2.(55)

The function f embodies the fact that the voltage drop across our device when

embedded in a circuit may depend upon ũ, see also [34]. The ratio of the energy

density of the electric field in R to the curvature of M1 and M2 is modeled by the

surface tension coefficients T1, T2 > 0. With ε0 the permittivity of free space and

εr the permittivity of the medium that fills R we thus have

T1
∂2ũ

∂x̃2
=

1

2
ε0εr

((
∂ψ

∂x̃

)2

+

(
∂ψ

∂ỹ

)2

+

(
∂ψ

∂z̃

)2
)

on M1,(56)

T2
∂2ṽ

∂x̃2
= −1

2
ε0εr

((
∂ψ

∂x̃

)2

+

(
∂ψ

∂ỹ

)2

+

(
∂ψ

∂z̃

)2
)

on M2.(57)

The sign in (57) is a consequence of the fact that both membranes should attract

each other, and since M1 and M2 are fixed along the boundary, we have to impose

the boundary conditions

ũ(�/2) = ũ(−�/2) = 0,(58)

ṽ(�/2) = ṽ(−�/2) = −d.(59)

The model (53)–(59) is a free boundary problem, since the domainR and its bound-

ary components M1 and M2 depend on the unknown functions ũ and ṽ that also

appear in the model equations. For T2 → ∞, Eq. (57) takes the form ṽ′′(x̃) = 0

and together with the boundary conditions (59) one immediately concludes that

ṽ ≡ −d. We thus recover the MEMS model with a fixed ground plate for T2 → ∞
from the enhanced model presented here.

M1

M2

R

Figure 2: Geometry of a three-dimensional MEMS device with two free boundaries

M1 and M2 and a one-dimensional displacement.
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To obtain dimensionless equations, we apply the transformation

ϕ = ψ/Vs, u = ũ/d, v = ṽ/d, x = 2x̃/�, y = 2ỹ/w, z = z̃/d

and introduce the dimensionless parameters

ε = 2d/�, a = �/w, λ =
ε0εrV

2
s �

2

8T1d3
, μ =

ε0εrV
2
s �

2

8T2d3

to rewrite the problem (53)–(59) as

0 = ε2
∂2ϕ

∂x2
+ (εa)2

∂2ϕ

∂y2
+
∂2ϕ

∂z2
,(60)

ϕ(x, y, u(x)) = f(u),(61)

ϕ(x, y, v(x)) = 0,(62)

∂2u

∂x2
= λ

(
ε2
(
∂ϕ

∂x

)2

+ (εa)2
(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2
)∣∣∣∣∣

z=u(x)

,(63)

∂2v

∂x2
= −μ

(
ε2
(
∂ϕ

∂x

)2

+ (εa)2
(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2
)∣∣∣∣∣

z=v(x)

,(64)

(u, v)(±1) = (0,−1).(65)

The parameter ε is the small aspect ratio comparing gap size to device length, a

is the aspect ratio of the device itself and λ and μ interrelate the strengths of the

electrostatic and mechanical forces in the device. We did not discuss the case where

the MEMS is embedded into a circuit so that we can set f ≡ 1 in the following.

Moreover, the fact that we have assumed a one-dimensional displacement of the

membranes motivates to assume that ϕ is a function of x and z only.

Assuming that u and v are functions of time t̃ and applying Newton’s second

law on both membranes, we obtain that the sum of all forces equals ρ1δ1
∂2u
∂t̃2

and

ρ2δ2
∂2v
∂t̃2

, where ρ1, ρ2 and δ1, δ2 denote the mass density per unit volume of the

membranes and the membrane thicknesses. With a damping force term of the form

−σ ∂u
∂t̃

and −σ ∂v
∂t̃

respectively, Eq. (63) and Eq. (64) take the form

ρ1δ1
∂2u

∂t̃2
+ σ

∂u

∂t̃
=
∂2u

∂x2
− λ

(
ε2
(
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
)∣∣∣∣∣

z=u(x)

,(66)

ρ2δ2
∂2v

∂t̃2
+ σ

∂v

∂t̃
=
∂2v

∂x2
+ μ

(
ε2
(
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
)∣∣∣∣∣

z=v(x)

.(67)

Setting t = t̃/σ, γ1 =
√
ρ1δ1/σ and γ2 =

√
ρ2δ2/σ, one finally has

γ21
∂2u

∂t2
+
∂u

∂t
=
∂2u

∂x2
− λ

(
ε2
(
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
)∣∣∣∣∣

z=u(x)

,(68)

γ22
∂2v

∂t2
+
∂v

∂t
=
∂2v

∂x2
+ μ

(
ε2
(
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
)∣∣∣∣∣

z=v(x)

.(69)
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In this paper, we have assumed that γ1, γ2 � 1 to obtain the problem (1)–(8) with

parabolic equations on the free boundaries. To study the hyperbolic-elliptic free

boundary problem with γ1, γ2 > 0 is a task for further research.
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16. Birkhäuser, Basel, 1995.
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