The Dislocation Problem in Hilbert Spaces Exercise Sheet 1

Exercise 1. (Existence of cut-off functions)

Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}$. We denote by

$$\operatorname{supp} f \coloneqq \overline{\{x \in U; \, f(x) \neq 0\}}$$

the support of f. Let $C_c^{\infty}(U)$ be the set of all $f \in C^{\infty}(U)$ such that supp f is a compact subset of U.

(1) Show that the function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(t) := \begin{cases} e^{-1/t}, & t > 0, \\ 0, & t \le 0, \end{cases}$$

satisfies $g \in C^{\infty}(\mathbb{R})$.

Hint: There are polynomials P_k such that $g^{(k)}(t) = P_k(\frac{1}{t})e^{-1/t}$ and $P_{k+1}(x) = x^2(P_k(x) - P'_k(x))$ for t > 0. Look at $\lim_{t \to +0} g^{(k)}(t)$.

(2) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) \coloneqq \begin{cases} \exp\left(-\frac{1}{1-x^2}\right), & |x| < 1, \\ 0, & |x| \ge 1. \end{cases}$$

Show that $f \in C_c^{\infty}(\mathbb{R})$.

Exercise 2. (IMS Localization Formula)

Let $(J_a)_{a \in A}$ be a partition of unity as in Definition 1.1 and let $H = h_0 + V$ for $h_0 = -\Delta \upharpoonright_{C_c^{\infty}(\mathbb{R}^n)}$ and a potential V belonging to the Kato class. Show that

$$H = \sum_{a \in A} J_a H J_a - \sum_{a \in A} |\nabla J_a|^2.$$

The solutions will be discussed in the tutorial on 08.05.2019.