The Dislocation Problem in Hilbert Spaces
 Exercise Sheet 3

Exercise 5. (An eigenvalue branch for a 1D step potential)

Let

$$
V(x):= \begin{cases}-1, & x \in[0, \pi] \\ 1, & x \in(\pi, 2 \pi)\end{cases}
$$

Use Mathematica to perform the following numerical computations:
(1) Compute the eigenvalues and the eigenvectors of the monodromy ma$\operatorname{trix} M(E)=\left(m_{i j}\right)_{1 \leq i, j \leq 2}$ for the problem $-u^{\prime \prime}+(V-E) u=0$.
(2) Compute a solution to the initial value problem for $-u^{\prime \prime}+(V-E) u=0$ on $[0, \pi]$ where $\left(u(0), u^{\prime}(0)\right)=\left(m_{11}, m_{12}\right)$. Secondly, compute a solution to the initial value problem for $-\tilde{u}^{\prime \prime}+(V-E) \tilde{u}=0$ on $(\pi, 2 \pi)$ where $\left(\tilde{u}(\pi), \tilde{u}^{\prime}(\pi)\right)=\left(u(\pi), u^{\prime}(\pi)\right)$.
(3) Let $w(x)=u(x) \chi_{[0, \pi]}(x)+\tilde{u}(x) \chi_{(\pi, 2 \pi)}(x)$. Compute the error function $F(x)=w(x) m_{22}-w^{\prime}(x) m_{21}$. Let $\varepsilon=0.001$, divide $[-1 / 2,1 / 2]$ equidistantly into 100 subintervals and let t increase from zero by 0.001 in each iteration. Solve $|F(x)|<\varepsilon$ numerically and perform a ListPlot of the pairs (t, E). The trajectory $t \mapsto E(t)$ is an eigenvalue branch for the dislocation problem for the potential V.

The solutions will be discussed in the tutorial on 22.05.2019.

