The Dislocation Problem in Hilbert Spaces Exercise Sheet 4

Exercise 6.

Let $-\Delta_{\Sigma}$ denote the negative Laplacian in $L_2(\Sigma)$ and $-\Delta_{\Sigma;D}$ the negative Laplacian in $L_2(\Sigma)$ with an additional Dirichlet boundary condition at x = 0. Show that $(-\Delta_{\Sigma} + 1)^{-1} - (-\Delta_{\Sigma;D} + 1)^{-1}$ is a Hilbert-Schmidt operator.

Exercise 7.

A function $A(\cdot)$ from a measure space M to the (not necessarily bounded) self-adjoint operators on a Hilbert space \mathcal{H}' is called measurable if and only if the function $(A(\cdot) + i)^{-1}$ is measurable. Given such a function, we define an operator A on $\mathcal{H} = \int_M^{\oplus} \mathcal{H}' \, d\mu$ with domain

$$D(A) = \left\{ \psi \in \mathcal{H}; \, \psi(m) \in D(A(m)) \text{ a.e., } \int_M \|A(m)\psi(m)\|_{\mathcal{H}'}^2 \, \mathrm{d}\mu(m) < \infty \right\}$$

by

$$(A\psi)(m) = A(m)\psi(m).$$

We write $A = \int_M^{\oplus} A(m) d\mu$. Show that the operator A is self-adjoint and that

$$\lambda \in \sigma(A) \quad \Longleftrightarrow \quad \forall \varepsilon > 0: \mu\left(\{m; \, \sigma(A(m)) \cap (\lambda - \varepsilon, \lambda + \varepsilon) \neq \emptyset\}\right) > 0.$$

Hint: Use that, for any bounded Borel function F on \mathbb{R} ,

$$F(A) = \int_{M}^{\oplus} F(A(m)) \,\mathrm{d}\mu$$

The solutions will be discussed in the tutorial on 29.05.2019.