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Abstract. We study some spectral properties of a simple two-dimensional

model for small angle defects in crystals and alloys. Starting from a periodic

potential V : R2 → R, we let Vϑ(x, y) = V (x, y) in the right half-plane {x ≥ 0}
and Vϑ = V ◦ M−ϑ in the left half-plane {x < 0}, where Mϑ ∈ R2×2 is the

usual matrix describing rotation of the coordinates in R2 by an angle ϑ. As a

main result, it is shown that spectral gaps of the periodic Schrödinger operator

H = −Δ + V fill with spectrum of Rϑ = −Δ + Vϑ as 0 �= ϑ → 0. Moreover,

we obtain upper and lower bounds for a quantity pertaining to an integrated

density of states measure for the surface states.
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Introduction

In the quantum theory of solids one first studies periodic structures which can

often be modelled by Schrödinger operators with periodic potentials. Other models

deal with situations where periodicity holds only in subsets of the sample; more

precisely, the sample is the disjoint union of subsets such that, in each subset, the

potential is obtained by restricting different periodic potentials to the corresponding

subsets. Such zones or “grains” occur frequently in crystals and in alloys; some

typical examples are shown in Figure 1. It is an important issue to understand how

the interface between two grains will influence the energy spectrum of the sample.

Typically, the grain boundaries appear to be (piecewise) linear, and one is led to
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Small angle grain boundaries 2

study problems on R2 with a potential W = W (x, y) defined by

W (x, y) :=

{
Vr(x, y), x ≥ 0,

V�(x, y), x < 0,
(0.1)

where Vr, V� : R
2 → R are periodic. In many situations, V� is obtained from Vr by

a translation or a rotation about the origin.

Figure 1: Edge dislocation and small angle grain boundary. The pictures on the

left are from [Ki] with kind permission of the publisher. The pictures on the right

were taken with a TEM; references:

http://www.fys.uio.no/bate/?page_\,id=7

http://pruffle.mit.edu/~ccarter/NANOAM/images/

In this paper, we will use some results on a translational problem to obtain spectral

information about rotational problems in the limit of small angles. Our main the-

orem deals with the following situation. Let V : R2 → R be a Lipschitz-continuous

function which is periodic w.r.t. the lattice Z2. For ϑ ∈ (0, π/2), let

Mϑ :=

(
cosϑ − sinϑ

sinϑ cosϑ

)
∈ R2×2, (0.2)
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and

Vϑ(x, y) :=

{
V (x, y), x ≥ 0,

V (M−ϑ(x, y)), x < 0.
(0.3)

We then let H0 denote the (unique) self-adjoint extension of −Δ � C∞
c (R2), acting

in the Hilbert space L2(R
2), and

Rϑ := H0 + Vϑ, D(Rϑ) = D(H0). (0.4)

Then Rϑ is essentially self-adjoint on C∞
c (R2) and semi-bounded from below. Our

main assumption is that the periodic Hamiltonian H := H0 + V = R0 has a gap

(a, b) in the essential spectrum σess(H), i.e., we assume that there exist a < b ∈ R

that satisfy inf σess(H) < a and (a, b)∩σ(H) = ∅; we do not need to assume that a,

b are the actual gap edges. It is easy to see (using, e.g., [RS-I; Thm. VIII.25]) that

the operators Rϑ converge to Rϑ0
in the strong resolvent sense as ϑ → ϑ0 ∈ [0, π/2);

in particular, Rϑ converges to H in the strong resolvent sense as ϑ → 0. Recall

that strong resolvent convergence implies upper semi-continuity of the spectrum

while the spectrum may contract considerably when the limit is reached. In the

present paper, we are dealing with a situation where the spectrum in fact behaves

discontinuously at ϑ = 0 since, counter to first intuition, the spectrum of Rϑ “fills”

the gap (a, b) as ϑ → 0 with ϑ > 0. This implies, in particular, that Rϑ cannot

converge to H in the norm resolvent sense, as ϑ → 0.

0.1. Theorem. Let H, Rϑ and (a, b) as above. Then, for any ε > 0 there exists

0 < ϑε < π/2 such that for any E ∈ (a, b) we have

σ(Rϑ) ∩ (E − ε, E + ε) �= ∅, ∀0 < ϑ < ϑε. (0.5)

0.2. Remarks. (i) Roughly speaking, the moment we start rotating the potential

on the left-hand side by a tiny angle the gap (a, b) is suddenly full of spectrum of

Rϑ in the sense that, for 0 < ϑ < ϑε, no gap of Rϑ in the interval (a, b) can have

length larger than 2ε. It is conceivable that for most ϑ the spectrum of Rϑ covers

the interval (a, b), but there are examples (cf. Section 4) where Rϑ has gaps in (a, b)

for some ϑ.

(ii) It seems to be quite hard to determine the nature of the spectrum of Rϑ

for general ϑ ∈ (0, π/2); however, there are some special angles for which a result

from [DS] excludes singular continuous spectrum (cf. Section 5).

(iii) In addition to what is stated in Theorem 0.1 we obtain lower and upper

bounds for the spectral densities in the intervals (E − ε, E + ε) on a scale that is

appropriate to surface states (without knowing that an integrated surface density

of states as in [EKSchrS, KS] exists for Rϑ); cf. Theorems 3.1 and 3.2.

There is a simple, intuitive connection between the rotational problem and the

related translational problem, given as follows: Starting from the same periodic

potential V as above, we now look at

Wt(x, y) :=

{
V (x, y), x ≥ 0,

V (x+ t, y), x < 0,
0 ≤ 1 ≤ t, (0.6)
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and define Dt := −Δ + Wt, acting in L2(R
2). In the 1-dimensional case, this

problem has been studied in great detail by Korotyaev [Kor1, Kor2]. A different

approach was most recently implemented in [HK] where it is shown that some of the

results of [Kor1, Kor2] can be recovered with a rather crude variational technique.

This method can be easily generalized to the dislocation problem on a strip R×(0, 1)

and then to the plane R2; one finds that spectrum of Dt crosses the gap as t varies

between 0 and 1. Now our key observation consists in the following: for any given

ε > 0 and n ∈ N, we can find points (0, η) on the y-axis such that

|Vϑ(x, y)−Wt(x, y)| < ε, (x, y) ∈ Qn(0, η), (0.7)

with Qn(0, η) = (−n, n)×(η−n, η+n), provided ϑ > 0 is small enough and satisfies

a condition which ensures an appropriate alignment of the period cells on the y-

axis. This basic observation is somewhat reminiscent of a key idea in [HHK] where

rotationally symmetric Schrödinger operators of the type −Δ + U(|x|) in L2(R
n)

with U : R → R periodic and Lipschitz-continuous are considered: here, far away

from the origin, the potential U(|x|) looks very much like a potential depending

only on the x1-coordinate if we restrict our attention to balls of fixed size with

centers far out on the x1-axis.

The paper is organized as follows. In Section 1, we briefly summarize some

results of [HK] on translational lattice dislocations for the strip and for the plane.

What we will use in the sequel is the simple fact that, for any E ∈ (a, b), there

is some t = tE ∈ (0, 1) with the following property: for any ε > 0, there is a

compactly supported approximate eigenfunction u in the domain ofDt that satisfies

||(Dt − E)u|| < ε and ||u|| = 1.

In Section 2, we first employ the Birkhoff Ergodic Theorem to obtain a set

Θ ⊂ (0, π/2) with countable complement so that (0.7) can be established for small

ϑ ∈ Θ and suitable η ∈ R. Then the above approximate eigenfunctions u will

also be approximate eigenfunctions of Rϑ for small ϑ ∈ Θ, after an appropriate

(ϑ-dependent) translation along the y-axis. This then gives Theorem 0.1.

Suitable points (0, η) for the construction of Section 2 occur with a certain density

and we expect a lower bound for the integrated surface density of states. Since we

do not know whether the i.d.s. measure or the integrated surface density of states

measure exist, we only provide lower and upper bounds for the number of Dirichlet

eigenvalues in subintervals of the gap (a, b) for our operators Rϑ, restricted to large

squares Qn = (−n, n)2. Theorem 3.1 in Section 3 provides a lower bound of the

form c1n for n large with a positive constant c1, while Theorem 3.2 gives an upper

bound by c2n logn, for n large. Note that Theorem 3.2 deals with a much more

general situation: in fact, we allow here for two different potentials V� and Vr on

the left and right which are not required to be periodic; all we need is a common

gap.

In Section 4 we discuss examples of “muffin tin”-type which come in three ver-

sions: in the simplest case, the muffin tins are circular wells, arranged on a periodic

grid, with infinitely high walls (so that the Schrödinger operator is just the direct

sum of a countable number of Dirichlet Laplacians on circles). We then approximate



R. HEMPEL, M. KOHLMANN 5

by muffin tins of finite height, and, finally, by muffin tins with Lipschitz potentials.

We obtain spectral results for the rotation problem for all three versions.

In Section 5, finally, we first explain a simplified model for small angle grain

boundaries where we assume rotation by an angle ϑ/2 in both half-planes in opposite

direction; this problem is somewhat easier to deal with. We furthermore discuss

special rotation angles ϑ for which the operators Rϑ are periodic in the y-direction

and thus have no singular continuous spectrum [DS]. All these question hinge on an

approximate or exact matching up between the given periodic potential in the right

half-plane and its rotated version in the left half-plane. This is somewhat connected

with the question of coincidence between a lattice and some of its rotated versions

(CSL-lattices).

For basic results on the spectral theory of self-adjoint operators or, more specif-

ically, periodic Schrödinger operators, we refer to [K], [RS-IV], [E] and [Ku]. We

will use results from these sources mostly without specific reference.

Acknowledgements. The authors would like to thank Andreas Ruschhaupt, Univ.

Hannover, for several fruitful discussions and the unknown referee for suggestions

that helped to improve the presentation.

1. The dislocation problem on a strip and for the plane

Let V : R2 → R be Z2-periodic and Lipschitz-continuous, let I := (0, 1), and

let Σ := R × (0, 1) = R × I denote the infinite strip of width 1. As above, we

write H := −Δ + V for the (self-adjoint) Schrödinger operator with potential V

acting in L2(R
2). Then σ(H), the spectrum of H , has band structure, i.e., it is the

(locally finite) union of compact intervals [RS-IV]. The intervals of spectrum, the

bands, may be separated by (open) intervals, the gaps. Moreover, σ(H) is purely

absolutely continuous. For 0 ≤ t ≤ 1, we introduce the self-adjoint operators

St := −Δ+Wt, acting in L2(Σ),

Dt := −Δ+Wt, acting in L2(R
2),

(1.1)

where St has periodic boundary conditions in the y-variable and Wt is as in (0.6).

Since V is bounded, the domainsD(.) of the above operators satisfy D(Dt) = D(H)

and D(St) = D(H0,Σ), for all t, where H0,Σ denotes the Laplacian on Σ with

periodic boundary conditions in y. The operator −Δ+Wt in L2(Σ) with ϑ-periodic

boundary conditions in y is denoted by St(ϑ), for 0 ≤ ϑ ≤ 2π. As usual, Dt can be

obtained from the St(ϑ) as a direct fiber integral,

Dt =

∫ ⊕

0≤ϑ≤2π

St(ϑ)
dϑ

2π
; (1.2)

direct fiber integrals are discussed, e.g., in [RS-IV, DS]. As a consequence, for any

ϑ the spectrum of St(ϑ) is a subset of σ(Dt). Furthermore, using the periodicity

in the x-direction, each St(ϑ) can itself be written as a direct fiber integral and so

the spectrum of St(ϑ) is purely essential spectrum with a band-gap structure.
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We now give a condensed account of some of the results in [HK] concerning the

operators St and Dt. We begin with St where we first note the following well-known

basic facts:

(1) Adding in a Dirichlet boundary condition on any given vertical line segment

{(x, y) ∈ Σ ; x = ξ}, for some ξ ∈ R, leads to a compact perturbation of the

resolvent of St, for all t. In fact, if H0,Σ,D is defined as H0,Σ above, but now with

an additional Dirichlet boundary condition at x = ξ, one can write down explicit

formulae for the integral kernels of the resolvents by using the reflection principle.

One finds that the operator (H0,Σ + 1)−1 − (H0,Σ,D + 1)−1 is Hilbert-Schmidt. It

is then easy to show that (H0,Σ +Wt + c)−1 − (H0,Σ,D +Wt + c)−1 is compact for

all sufficiently large c ≥ 0.

(2) It follows from (1) that σess(St) = σess(S0). To see this, just add in Dirichlet

boundary conditions at x = 0 into S0 and St, and another Dirichlet boundary

condition at x = −t into St to obtain the operators S0,D and St,D. Then the

parts of S0,D and St,D on (0,∞)× I are equal while the contribution to St,D from

(−∞,−t)× I is unitarily equivalent to the part of S0,D in (−∞, 0)× I. Finally, the

part of St,D associated with (−t, 0)× I has compact resolvent.

(3) The eigenvalues of St in the gaps of S0 are continuous functions of the

parameter t. (A simple proof can be obtained by scaling the interval (−n− t, n) in

such a way that we can use L2((−n, n)× I) as a common Hilbert space).

The following result shows that there is non-trivial spectral flow of the family St

through the gaps of S0:

1.1. Proposition. Let (a, b) denote a spectral gap of H and let E ∈ (a, b). Then

there exists some t = tE ∈ (0, 1) such that E is a (discrete) eigenvalue of StE .

Moreover, for any n ∈ N there are functions vn = vn(x, y) in the domain of St

that satisfy ||vn|| = 1, supp vn ⊂ [−n, n]× [0, 1] and (StE − E)vn → 0 as n → ∞.

For the proof of Proposition 1.1, we use an approximation by operators with

compact resolvent on finite sections of Σ (the basic idea is somewhat reminiscent

of [DH, ADH]): For n ∈ N, let S
(n)
t denote the operators −Δ + Wt on Σ

(n)
t :=

(−n− t, n)× I with periodic boundary conditions in both variables. The spectrum

of the operators S
(n)
t is purely discrete. Again, the eigenvalues of S

(n)
t depend

continuously on t. Furthermore, routine arguments from Floquet-theory imply

that

(i) σ(S
(n)
0 ) ⊂ σ(S0), for all n ∈ N,

and

(ii) for any gap (a, b) of S0 there exists a fixed number m ∈ N such that the op-

erators S
(n)
0 (respectively, S

(n)
1 ) have precisely 2nm (respectively, (2n+1)m) eigen-

values below a, counting multiplicities (cf., e.g., [RS-IV; proof of Thm. XIII.101] or

[E; Thm. 6.2.1]).
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As t increases from 0 to 1, the operators S
(n)
0 are transformed into S

(n)
1 . It is

now immediate from property (ii) and the continuity of the eigenvalues that, as t

grows from 0 to 1, at least one eigenvalue of S
(n)
t must cross E.

We have thus shown that, for each n ∈ N, there is some tn ∈ (0, 1) and an

eigenfunction un ∈ D(S
(n)
tn ) such that ||un|| = 1 and S

(n)
tn un = Eun. Since the un

obey periodic boundary conditions with respect to the x-variable on Σ
(n)
tn = (−n−

tn, n)× I, we can use routine arguments to show that the parts of un (and of ∇un)

outside of (−n/2, n/2) go to zero, as n → ∞. Indeed, let us fix cut-off functions

ϕn = ϕn(x) ∈ C∞
c (−n/2, n/2) that satisfy ϕn(x) = ϕ1(x/n) and ϕ1(x) = 1 for

−1/4 ≤ x ≤ 1/4. Then rn := (1 − ϕn)un vanishes in (−n/4, n/4) × I. We now

define r̃n by r̃n(x, y) := rn(x, y), for 0 < x < n, and r̃n(x, y) := rn(x− 2n− tn, y),

for x > n, i.e., we translate the part of rn in (−n− tn, 0)× I to the right by 2n+ tn.

Since rn satisfies periodic boundary conditions, it is clear that r̃n belongs to the

domain of the periodic operator S0 and that (S0 − E)r̃n → 0, as n → ∞. As E is

in a gap of S0, this implies r̃n → 0 and then also rn → 0. We therefore see that

vn := ϕnun satisfies

||vn|| → 1, (S
(n)
tn − E)vn → 0, (1.3)

as n → ∞. Without loss of generality we may assume that the tn converge to

some t = tE ∈ (0, 1). But vn ∈ D(Stn) and Stnvn = S
(n)
tn vn, and we find that

(StE − E)vn → 0, as n → ∞ (recall that V is Lipschitz-continuous). Now the

Spectral Theorem implies E ∈ σ(StE ), as required. Furthermore, the functions vn
clearly enjoy the property stated in the second part of Proposition 1.1.

The functions vn constructed above satisfy periodic boundary conditions with

respect to y and may thus be extended to y-periodic functions ṽn on R2. Applying

also cut-offs ψn = ϕn(y) in the y-direction, we let

wn :=
1

||ψnṽn||ψnṽn; (1.4)

the wn satisfy ||wn|| = 1, wn ∈ Dtn and (Dtn −E)wn → 0 as n → ∞. By the same

argument as above this leads to E ∈ σ(DtE ) (where, again tE = lim tn) and we

have thus obtained:

1.2. Proposition. Let (a, b) denote a spectral gap of H and let E ∈ (a, b). Then

there exists t = tE ∈ (0, 1) such that E ∈ σ(DtE ).

Moreover, for any n ∈ N there are functions wn = wn(x, y) in the domain of Dt

that satisfy ||wn|| = 1, supp wn ⊂ [−n, n]2 and (DtE − E)wn → 0 as n → ∞.

Note that the spectrum of Dt inside (a, b) will again consist of bands which we

could find by repeating the above process for all ϑ-periodic boundary conditions

w.r.t. y. For a detailed discussion and further results, we refer to [HK].
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2. The rotation problem for small angles

In this section, we study the spectrum of the operators Rϑ, for 0 < ϑ < π/2,

where the Rϑ are defined in (0.4) as self-adjoint operators in the Hilbert space

L2(R
2).

In view of a proof of Theorem 0.1, consider a fixed E ∈ (a, b). Then, by Propo-

sition 1.1, there is some t ∈ (0, 1) such that E is in the spectrum of the dislocation

operator Dt on the plane. We wish to find angles ϑ with the property that the

potential Vϑ is approximately equal to Wt on a sufficiently large square Qn(0, η)

of side-length 2n, centered at some point (0, η) on the y-axis. This leads to the

following requirements: If we imagine the grid Γ = {(x, y) ∈ R2 ; x ∈ Z or y ∈ Z}
of lines describing the period cells, we have to make sure that, inside Qn(0, η), the

alignment between the horizontal lines of Γ in the right half-plane with the rotated

horizontal lines of MϑΓ in the left half-plane is nearly perfect on the y-axis and

that the rotated vertical lines of MϑΓ in the left half-plane have, roughly, distance

t (modulo Z) from the y-axis. More precisely, we wish to find m ∈ N such that

m/ cosϑ is integer, up to a small error, and m tanϑ = t (mod Z), again up to a

small error, inside Qn(0, η).

We first prepare a lemma which deals with ergodicity on the flat torus T2 =

R2/Z2, as in [RS-I], [CFS]. We consider transformations Tϑ : T
2 → T2 defined by

Tϑ(x, y) := (x + tanϑ, y + 1/ cosϑ). (2.1)

2.1. Lemma. There is a set Θ ⊂ (0, π/2) with countable complement such that the

transformation Tϑ in (2.1) is ergodic for all ϑ ∈ Θ.

Proof. Tϑ is ergodic if and only if the numbers 1, tanϑ, and 1/ cosϑ are indepen-

dent over the rationals, i.e., (n1, n2, n3) ∈ Z3 and

n1 + n2 tanϑ+
n3

cosϑ
= 0 (2.2)

implies n1 = n2 = n3 = 0. Write Z3 := Z3 \ {(0, 0, 0)}. For any triple (n1, n2, n3) ∈
Z3 the set of points (x, y) ∈ R2 that satisfy n1 + n2x + n3y = 0 is a line 
 =


(n1,n2,n3) ⊂ R2. Consider the (countable) set

Λ := {
(n1,n2,n3); (n1, n2, n3) ∈ Z3}. (2.3)

In (2.2), the variables x and y are of the special form x = tanϑ, y = 1/ cosϑ and

so y =
√
1 + x2. Since F (x) :=

√
1 + x2 is convex, each 
 ∈ Λ has at most two

intersection points with the graph G(F ) of F . Then

S := ∪�∈Λ{
 ∩G(F )} (2.4)

is countable and so G(F ) \ S has full 1-dimensional measure. Let G(F )+ :=

G(F ) ∩ {x > 0}. We map G(F )+\S to (0, π/2) by h : (x, F (x)) �→ arctanx. Since

h : G(F )+ → (0, π/2) is diffeomorphic, Θ := h(G(F )+\S) is as desired. �

Let us write x∼ for the fractional part of x > 0, i.e., x∼ = x − �x� if x > 0.

In the proof of our main theorem, we will need natural numbers m such that, for
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t ∈ (0, 1) given, (m tanϑ)∼ is approximately equal to t and (m/ cosϑ)∼ almost

equals 0. The existence of such numbers m follows from Lemma 2.1 and Birkhoff’s

Ergodic Theorem. Let ϑ ∈ Θ, ε > 0, and let us denote by χQ the characteristic

function of the set Q := (t− ε, t+ ε)× (−ε, ε) ⊂ T2. Then, for all (x, y) ∈ T2,

lim
n→∞

1

n

n−1∑
m=0

χQ(T
m
ϑ (x, y)) =

∫
Q

dxdy = 4ε2 > 0, (2.5)

and we may take (x, y) := (0, 0) to arrive at the desired result.

We add the following remarks to the above argument:

(1) Translation on the torus is a particularly simple ergodic transformation: for

ϑ given, it can equivalently be seen as linear motion on parallel lines in R2, factored

by Z2. In particular, two nearby points (x, y) and (x′, y′) will forever keep their

relative position under the action of Tm
ϑ , and thus the statement of Birkhoff’s

Theorem holds for any point (x, y), not just for a.e. (x, y) (cf., e.g., [CFS; Ch. 3,

Par. 1]).

(2) In some sense, the Birkhoff Theorem is the strongest result one can use in

this context. Similar results are obtained from Dirichlet’s Theorem on the approx-

imation of irrational numbers by rationals.

We are now ready for a first main result which establishes the existence of surface

states in the gaps of H and shows that, in fact, any gap (a, b) of H is filling up

with spectrum of Rϑ as ϑ → 0.

2.2. Proposition. Let (a, b) be a spectral gap of H and let [α, β] ⊂ (a, b), α < β.

Then there is a ϑ0 = ϑ0(α, β) > 0 such that

σ(Rϑ) ∩ (α, β) �= ∅, ∀ϑ ∈ (0, ϑ0). (2.6)

Proof. (1) We first restrict our attention to ϑ ∈ Θ with Θ as in Lemma 2.1. Let

E ∈ (α, β) and ε := min{E − α, β − E}/2. By Proposition 1.1, we can find n =

nε ∈ N and a function un of norm 1 in the domain of Dt with supp un ⊂ [−n, n]2

such that ||(Dt − E)un|| < ε. Obviously un,k(x, y) := un(x, y− k) satisfies the same

estimate for any k ∈ N. If we can show that, for appropriate k ∈ N,

|Vϑ(x, y)−Wt(x, y)| < ε, (x, y) ∈ Qn(0, k) (2.7)

(recall the definition of Qn(0, k) = (−n, n)× (k− n, k+ n)), we may conclude that

||(Rϑ − E)un,k|| < 2ε; (2.8)

but then the Spectral Theorem implies that Rϑ has spectrum inside the interval

(E − 2ε, E + 2ε) ⊂ (α, β).

For a proof of (2.7), we first observe that by the properties of V and the defini-

tions of Vϑ and Wt, we have the following estimate:

|Vϑ(x, y)−Wt(x, y)|2 ≤ min
j1,j2∈Z

L2((X − j1)
2 + (Y − j2)

2), ∀(x, y) ∈ R2, (2.9)
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with

X := x(cosϑ− 1)− t+ y sinϑ, Y := −x sinϑ+ y(cosϑ− 1) (2.10)

and L the Lipschitz constant of V . Now for ϑ ∈ Θ given, there is some m = mϑ ∈ N

such that ( m

cosϑ

)
∼
< ε/4, |(m tanϑ)∼ − t| < ε/4; (2.11)

in particular, there is some N ∈ N s.th. |m/ cosϑ−N | < ε/4.

We may now apply the estimate (2.9) to the points (x, y) ∈ Qn(0, N) to find

|Vϑ(x, y)−Wt(x, y)|2 ≤ L2
(
(X − �m tanϑ�)2 + (Y +N −m)2

)
, (2.12)

for all (x, y) ∈ Qn(0, N). Here

|X−�m tanϑ�| ≤ n(1−cosϑ)+nϑ+|m tanϑ−�m tanϑ�−t| ≤ 2nεϑ+|(m tanϑ)∼−t|
(2.13)

and

|Y +N −m| ≤ 2nεϑ+ |N −m/ cosϑ|. (2.14)

We choose ϑ0 > 0 small enough to have 2nεϑ0 < ε/4 and (2.7) follows if we pick

k := N . We have thus shown that Rϑ has spectrum in (α, β) for all ϑ ∈ Θ∩ (0, ϑ0).

(2) In order to remove the restriction ϑ ∈ Θ we note that with each ϑ ∈ Θ there

comes a positive number ηϑ > 0 such that

||(Rσ − E)un,k|| < 3ε, ∀σ ∈ (ϑ− ηϑ, ϑ+ ηϑ), (2.15)

since

||(Vσ − Vϑ) � supp un,k||∞ → 0, σ → ϑ. (2.16)

As the intervals (ϑ− ηϑ, ϑ+ ηϑ) with ϑ ranging between 0 and ϑ0 cover the interval

(0, ϑ0), the desired result follows. �

Now it is easy to obtain Theorem 0.1 in the Introduction from Proposition 2.2:

Proof of Theorem 0.1. For ε > 0 given, we consider points a = γ0 < γ1 < γ2 <

. . . < γN = b such that γj − γj−1 < ε/2, for j = 1, . . . , N . For each of the intervals

Ij := (γj−1, γj), 2 ≤ j ≤ N − 1, Proposition 2.2 yields a constant ϑj > 0 with

the property that Rϑ has spectrum in the interval Ij for all 0 < ϑ < ϑj . Then

ϑ0 := min2≤j≤N−1 ϑj has the required properties. �

3. Integrated density of states bounds

It is clear that ergodicity gives us not just a single m as in (2.11), for ϑ ∈ Θ;

in fact, eqn. (2.5) guarantees that suitable m will appear with a certain frequency.

We will use this observation to obtain lower bounds for a quantity which, in the

limit, would translate into a (positive) lower bound for the surface i.d.s. measure

if we knew that the required limit exists. This will be complemented by a similar

upper bound which is of the expected order, up to a logarithmic factor. A detailed

and rather complete account of the i.d.s. for (random) Schrödinger operators can

be found in [V] which also contains a wealth of references. [EKSchrS] and [KS]
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specifically discuss the existence of a surface i.d.s. as a distribution or a measure.

Some results on the surface i.d.s. measure for the translational dislocation problem

can be found in [HK].

Let R
(n)
ϑ denote the operator −Δ+Vϑ, acting in L2(Qn) with Dirichlet boundary

conditions, where Qn := (−n, n)2 ⊂ R2. For any interval I ⊂ R, we denote by

NI(R
(n)
ϑ ) the number of eigenvalues of R

(n)
ϑ in I, each eigenvalue being counted

according to its multiplicity. The existence of a surface i.d.s. measure in the gap

(a, b) would correspond to the existence of a finite limit limn→∞
1
nNI(R

(n)
ϑ ), for any

interval I with I ⊂ (a, b). Theorem 3.1 provides lower bounds of the form

lim inf
n→∞

1

n
NI(R

(n)
ϑ ) > 0, (3.1)

for (non-degenerate) subintervals I and small ϑ ∈ Θ, while Theorem 3.2 yields an

upper bound

lim sup
n→∞

1

n logn
NI(R

(n)
ϑ ) < ∞. (3.2)

We begin with a lower bound.

3.1. Theorem. Let H, Rϑ as above and suppose that (a, b) is a spectral gap of H.

Let Θ as in Lemma 2.1.

Then, for any ε > 0 there exists a ϑε > 0 such that (3.1) holds for all ϑ ∈
Θ ∩ (0, ϑε) and for any interval I ⊂ (a, b) of length greater than ε.

Proof. (1) Let [α, β] ⊂ (a, b), fix E ∈ (α, β), and let 0 < ε < min{E−α, β−E}. Let
u0 in the domain ofDt with compact support satisfy ||u0|| = 1 and ||(Dt − E)u0|| < ε,

as in Prop. 1.1. Let ν ∈ N be such that supp u0 ⊂ Qν = (−ν, ν)2; note that, in

this proof, ν corresponds to the parameter n of Section 2.

Let ϑ ∈ Θ ∩ (0, π/4] so that, in particular, 1/
√
2 ≤ cosϑ ≤ 1. By ergodicity,

there exists a constant c0 = c0(ϑ) > 0 with the following properties: for n ∈ N

large, there are at least Jn := �c0n� natural numbers m1, . . . ,mJn
∈ (0, n/4) such

that (2.11) holds for m = ms, s = 1, . . . , Jn, and such that

|ms −mr| ≥ 2ν, s �= r, 1 ≤ s, r ≤ Jn; (3.3)

here Jn and m1, . . . ,mJn
depend on n and ϑ. It follows that for each j = 1, . . . , Jn

there is some Nj ∈ N such that |ms/ cosϑ−Nj | < ε/4 and |ms tanϑ− t|∼ < ε/4.

We then see that the functions ϕj , defined by ϕj(x, y) := u0(x, y−Nj), are of norm

1 and have mutually disjoint supports contained in (−n, n)2. Furthermore, for ϑ

small enough, 0 < ϑ < ϑε, say, we can show (as in the proof of Proposition 2.2)

that an estimate (2.7) holds on each square (−ν, ν)× (Nj − ν,Nj + ν). Thus (2.7)

holds on the support of each ϕj and it follows that∣∣∣∣∣∣(R(n)
ϑ − E)ϕj

∣∣∣∣∣∣ < ε, 0 < ϑ < ϑε, j = 1, . . . , Jn. (3.4)

Then M := span {ϕj ; j = 1, . . . , Jn} has dimension Jn. Let N denote the range

of the spectral projection P(α,β)(R
(n)
ϑ ) of R

(n)
ϑ associated with the interval (α, β)

and assume for a contradiction that dimN < Jn. Then we can find a function
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v ∈ M ∩ N⊥ of norm 1. By the Spectral Theorem,
∣∣∣∣∣∣(R(n)

ϑ − E)v
∣∣∣∣∣∣ ≥ ε. On the

other hand, (3.4) and v =
∑N

i=1 aiϕi implies
∣∣∣∣∣∣(R(n)

ϑ − E)v
∣∣∣∣∣∣ < ε because the ϕj

have mutually disjoint supports.

We have therefore shown that for any interval I = [α, β] there exists some ϑ0 > 0

such that (3.1) holds for all ϑ ∈ Θ ∩ (0, ϑ0).

(2) Now let ε > 0. As in the proof of Theorem 0.1, given at the end of Section

2, we may cover the interval (a, b) by a finite number of subintervals of length ε;

applying the result of part (1) we then obtain the desired statement. �

Remarks. (a) It appears that the argument used at the end of the proof of

Proposition 2.2 to remove the restriction ϑ ∈ Θ does not work in the context of

Theorem 3.1.

(b) It follows from the proof of Thm. 3.1 that σess(Rϑ) ∩ I �= ∅ for all ϑ ∈
Θ ∩ (0, ϑε) and for any interval I ⊂ (a, b) of length greater than ε.

We now complement the lower estimate established in Theorem 3.1 by an upper

bound which is of the expected order, up to a logarithmic factor. Note that we

treat a situation which is far more general than the rotation or dislocation problems

studied so far. In fact, we will allow for different potentials V1 on the left and V2 on

the right which are only linked by the assumption that there is a common spectral

gap; neither V1 nor V2 are required to be periodic. The proof uses technology which

is fairly standard and based on exponential decay estimates for resolvents.

3.2. Theorem. Let V1, V2 ∈ L∞(R2,R) and suppose that the interval (a, b) ⊂ R

does not intersect the spectra of the self-adjoint operators Hk := −Δ+Vk, k = 1, 2,

both acting in the Hilbert space L2(R
2). Let

W := χ{x<0} · V1 + χ{x≥0} · V2 (3.5)

and define H := −Δ+W , a self-adjoint operator in L2(R
2). Finally, we let H(n)

denote the self-adjoint operator −Δ+W acting in L2(Qn) with Dirichlet boundary

conditions. Then, for any interval [a′, b′] ⊂ (a, b), we have

lim sup
n→∞

1

n logn
N[a′,b′](H

(n)) < ∞. (3.6)

Proof. (1) We write N(n) := N[a′,b′](H
(n)) and note that there is a constant c0 ≥ 0

such that

N(n) ≤ c0n
2, n ∈ N; (3.7)

this follows by routine min-max arguments as in [RS-IV; Section XIII.15].

(2) Let us consider the (normalized) eigenfunctions ui,n of H(n) associated with

the eigenvalues Ei,n ∈ [a′, b′], for i = 1, . . . , N(n). The main idea of the proof is to

show that the ui,n are concentrated near the boundary of Qn or near the y-axis.

To obtain the corresponding estimates, we introduce the sets

Ωj(n) := Ω−
j (n) ∪ Ω+

j (n), j ∈ {1, 2, 3, 4}, (3.8)
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where Ω−
j (n) :=

(−n
2 + 2j

α logn,− 2j
α logn

) × (−n
2 + 2j

α logn, n
2 − 2j

α logn
)
, and

Ω+
j (n) := −Ω−

j (n) is the mirror-image of Ω−
j (n) with respect to the y-axis; the

parameter α > 0 will be chosen as in eqn. (3.9) below. Note that, for α > 0 fixed,

the sets Ω1(n), . . . ,Ω4(n) are non-empty for n large. We have the trivial inclusions

Ωj+1(n) ⊂ Ωj(n) for j = 1, 2, 3.

We will use the following exponential decay estimate for the resolvent of the

operators Hk: There are constants C ≥ 0, α > 0 such that for any E ∈ [a′, b′] and

(measurable) sets K1,K2 ⊂ R2 we have (cf., e.g., [AADH; Prop. 2.4])

∣∣∣∣χK1
∂p
j (Hk − E)−1χK2

∣∣∣∣ ≤ Ce−αdist(K1,K2), j, p ∈ {0, 1}, k ∈ {1, 2}; (3.9)

here ∂1 = ∂x, ∂2 = ∂y. We also choose cut-off functions ϕn, ψn ∈ C∞
c (R2;R)

satisfying

suppϕn ⊂ Ω1(n), ϕn � Ω2(n) = 1, suppψn ⊂ Ω3(n), ψn � Ω4(n) = 1, (3.10)

and |∇ϕn|, |∇ψn|, |∂ijϕn|, |∂ijψn| ≤ c(logn)−1 with some constant c ≥ 0; here ϕn =

ϕn,� + ϕn,r with ϕn,� and ϕn,r being supported in Ω−
1 (n) and Ω+

1 (n), respectively.

By a well-known argument we can now derive the desired localization property: by

the Leibniz rule, we have for i = 1, . . . , N(n)

(H1−Ei)(ϕn,�ui,n) = (H(n)−Ei)(ϕn,�ui,n) = −2∇ϕn,� ·∇ui,n−Δϕn,�ui,n (3.11)

so that

χΩ−

3
(n)ui,n = −χΩ−

3
(n)(H1 − Ei)

−1χsupp∇ϕn,�
[2∇ϕn,� · ∇ui,n +Δϕn,�ui,n]. (3.12)

Using that dist(Ω3(n), supp∇ϕn) ≥ 2α−1 logn and |∇ϕn|, |Δϕn| ≤ c(logn)−1, the

estimate (3.9) implies that

∣∣∣∣χΩ3(n)ui,n

∣∣∣∣ , ∣∣∣∣χΩ3(n)∇ui,n

∣∣∣∣ ≤ C(n2 logn)−1, i = 1, . . . , N(n). (3.13)

We now define vi,n := (1− ψn)ui,n and let Mn := span{vi,n; i = 1, . . . , N(n)}. We

claim that

dimMn = N(n), n ≥ n0, (3.14)

for some n0 ∈ N. Let HQn\Ω4(n) be the operator −Δ + W on Qn\Ω4(n) with

Dirichlet boundary conditions. The functions vi,n := (1− ψn)ui,n are approximate

eigenfunctions of HQn\Ω4(n): in fact, using (3.13), one easily checks that

∣∣∣∣(HQn\Ω4(n) − Ei,n)vi,n
∣∣∣∣ ≤ C(n2 log2 n)−1 (3.15)

and

||vi,n − ui,n|| ≤ C(n2 logn)−1, (3.16)

for i = 1, . . . , N(n). Now (3.7) and (3.16) imply
∑N(n)

i=1 ||ui,n − vi,n||2 < 1 for n

large and we obtain (3.14).

(3) We next show that there is n1 ≥ n0 ∈ N such that

〈
HQn\Ω4(n)w,w

〉
< b ||w||2 , w ∈ Mn, n ≥ n1. (3.17)
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For a proof, consider an arbitrary w =
∑N(n)

i=1 γivi,n ∈ Mn with ||w|| = 1. Here

we first observe that the coefficients γi satisfy a bound |γi| ≤ 2, for n large, since

(writing γ2 :=
∑

i |γi|2 and η2n :=
∑

i ||vi,n − ui,n||2)

1 = ||w|| ≥ ||
N(n)∑
i=1

γiui,n|| −
N(n)∑
i=1

|γi| · ||vi,n − ui,n|| ≥ γ(1− ηn), (3.18)

where ηn → 0 as n → ∞ by (3.16). Using (3.16) and the fact that ∇ψn and Δψn

have support in Ω3(n) \ Ω4(n), it follows that for n large

||w||2 =

N(n)∑
i=1

|γi|2 + r,
〈
HQn\Ω4(n)w,w

〉
=

N(n)∑
i=1

Ei|γi|2 + r′, (3.19)

where r, r′ ≤ C(log n)−2, so that〈
HQn\Ω4(n)w,w

〉 ≤ b′ ||w||2 + r′′, (3.20)

with r′′ ≤ C(logn)−2, for n large, and we obtain (3.17).

(4) We conclude from (3.17) that Mn ⊂ P(−∞,b)(HQn\Ω4(n)) and then (3.14)

implies that dimP(−∞,b)(HQn\Ω4(n)) ≥ dimMn = N(n). On the other hand,

min-max arguments yield an upper bound for dimP(−∞,b)(HQn\Ω4(n)) of the form

cn logn, and we are done. �

It seems to be possible, using more powerful methods, to remove the logarithmic

factor in (3.2) and (3.6) (H. Cornean, private communication, 2010).

4. Muffin tin potentials

In this section, we present a class of examples where one can arrive at rather

precise statements that illustrate some of the phenomena described before. Note

that the results given below are derived directly, without recourse to Section 2. We

will look at three types of muffin tin potentials and discuss the effect of the “filling

up” of the gaps at small angles of rotation. We begin with muffin tins with walls

of infinite height, then approximate by muffin tin potentials of height n, for n ∈ N

large. By another approximation step, one may obtain examples with Lipschitz-

continuous potentials. These examples show, among other things, that Schrödinger

operators of the form Rϑ may in fact have spectral gaps for some ϑ > 0.

We consider the lattice Z2 ⊂ R2 where we first introduce the Laplacian of a

periodic muffin tin with infinitely high walls separating the wells: for 0 < r < 1/2,

we let Dr := Br( 1

2
, 1

2
) denote the disc of radius r centered at the point ( 1

2
, 1

2
) ∈ R2,

and generate from Dr the periodic sets

Ωr := ∪(i,j)∈Z2(Dr + (i, j)), 0 < r < 1/2. (4.1)

The Dirichlet LaplacianHr of Ωr is the direct sum of a countable number of copies of

the Dirichlet Laplacian on Dr; therefore, the spectrum of Hr consists in a sequence

of positive eigenvalues (μk(r))k∈N with μk(r) → ∞ as k → ∞; we may assume

that μk(r) < μk+1(r) for all k ∈ N. The eigenvalues μk = μk(r) of Hr have infinite
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multiplicity. The μk correspond to the bands of a periodic problem: in fact, defining

Vr : R
2 → R by

Vr(x, y) :=

{
0, (x, y) ∈ Ωr,

1, (x, y) /∈ Ωr,
(4.2)

the periodic Schrödinger operators Hr,n := H0 + nVr have purely a.c. spectrum

with a band/gap structure. Furthermore, norm resolvent convergence Hr,n → Hr,

obtained as in [HH], implies that the bands of Hr,n converge to the eigenvalues μk

of Hr. In the sequel, denote by (a, b) one of the gaps (μk, μk+1). We next look at

the rotation problem where we define

Ωr,ϑ := (Ωr ∩ {x ≥ 0}) ∪ ((MϑΩr) ∩ {x < 0}) ; (4.3)

we also let Hr,ϑ denote the Dirichlet Laplacian on Ωr,ϑ, for 0 < r < 1/2 and

0 ≤ ϑ ≤ π/4.

The set (MϑΩr)∩{x < 0} comes with two types of connected components: most

(or, in some cases, all) components are discs, but typically there are also discs

in MϑΩr with center at a distance less than r from the y-axis; those appear in

(MϑΩr) ∩ {x < 0} in a truncated form. It is then clear that Hr,ϑ has pure point

spectrum.

Let us comment on some special cases before we proceed: for tanϑ rational,

these truncated discs form a periodic pattern; furthermore, we will find a half-disc

in (MϑΩr)∩{x < 0} if and only if there is a disc in MϑΩr with center on the y-axis

which happens if and only if tanϑ = 1/(2k+ 1) for some k ∈ N. It follows that for

any tanϑ ∈ Q with tanϑ /∈ {1/(2k+ 1) ; k ∈ N} there is some r0 > 0 such that no

component of MϑΩr meets the y-axis, for 0 < r < r0; in other words, in this case

all components of Ωr,ϑ are discs.

Figure 2: The domain Ω1/4,π/8 (shaded).

We now return to the general situation. Moving up the y-axis from the origin, we

denote the discs in MϑΩr that intersect the y-axis by Dj;r,ϑ, j ∈ Jϑ, with centers

(ξj;ϑ, ηj;ϑ); here Jϑ = ∅ or Jϑ = N according to the cases discussed above. Without

restriction, we may assume that the ηj;ϑ are monotonically increasing. Let

Cj;r,ϑ := Dj;r,ϑ ∩ {x < 0}, j ∈ Jϑ. (4.4)
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Clearly, the Dirichlet eigenvalues of the components Cj;r,ϑ are the surface states in

this model. Since the eigenvalues of the Cj;r,ϑ only depend on r and ξj;ϑ (but not

on ηj;ϑ), it is enough to study the eigenvalues of the following sample domains: For

r > 0 and −r < ξ ≤ r, we denote

Cr,ξ := {(x, y) ∈ Dr ; x < 1/2 + ξ}. (4.5)

The Dirichlet Laplacian of Cr,ξ has eigenvalues λk(r, ξ), k ∈ N, which depend

continuously on ξ, for k ∈ N and r > 0 fixed. Furthermore, λk(r, ξ) → ∞ as

ξ → −r and λk(r, ξ) → μk(r), as ξ → r. Therefore, for each k ∈ N, the eigenvalues

λk(r, ξ) range over the interval [μk(r),∞).

We now combine the above properties of λk(r, ξ) with information on the distri-

bution of the coordinates ξj;ϑ. It is easy to see that, as 0 �= ϑ → 0, the ξj;ϑ partition

the interval (−r, r) into subintervals of smaller and smaller length. Therefore, for

ε > 0 given, any interval (α, β) ⊂ (a, b) of length ≥ ε will contain an eigenvalue of

Hr,ϑ for all sufficiently small ϑ > 0.

We expect stronger properties for angles ϑ for which the set {ξj;ϑ ; j ∈ N} is

dense in (−r, r). As in Section 2, ergodic theory gives us a set Θ ⊂ (0, π/2) of full

measure such that for each ϑ ∈ Θ the set {(m tanϑ)∼ ; m ∈ N} is dense in (0, 1),

which implies the desired property for the ξj;ϑ. It follows that, for any ϑ ∈ Θ, the

eigenvalues of Hr,ϑ will be dense in [μ1(r),∞).

Finally, for tanϑ rational the ξj;ϑ form a periodic set and then Hr,ϑ will only

have a finite number of eigenvalues (each of infinite multiplicity) in the gap (a, b).

We thus have the following result:

4.1. Proposition. Let 0 < r < 1/2 be fixed.

(a) Each μk(r), k = 1, 2, . . ., is an eigenvalue of infinite multiplicity of Hr,ϑ, for

all 0 ≤ ϑ ≤ π/4. The spectrum of Hr,ϑ is pure point, for all 0 ≤ ϑ ≤ π/4.

(b) For any ε > 0 there is a ϑε = ϑε(r) > 0 such that any interval (α, β) ⊂ (a, b)

with β − α ≥ ε contains an eigenvalue of Hr,ϑ for any 0 < ϑ < ϑε.

(c) There exists a set Θ ⊂ (0, π/2) of full measure such that σ(Hr,ϑ) = [μ1(r),∞).

The eigenvalues different from the μk(r) are of finite multiplicity.

4.2. Remark. Let Λ := {ϑ ∈ (0, π/2) ; tanϑ ∈ Q} denote the set of angles where

tanϑ is rational; clearly, Θ ∩ Λ = ∅. It is easy to see that Hr,ϑ, for ϑ ∈ Λ, has at

most a finite number of eigenvalues in (a, b), each of them of infinite multiplicity.

Hence we see a drastic change in the spectrum for ϑ ∈ Λ as compared with ϑ ∈ Θ.

Furthermore, if ϑ ∈ Λ with tanϑ /∈ {1/(2k+1) ; k ∈ N}, then there is some rϑ > 0

such that σ(Hr,ϑ) = σ(Hr) for all 0 < r < rϑ.

We next turn to muffin tin potentials of finite height. Here we define the potential

Vr,ϑ to be zero on Ωr,ϑ and Vr,ϑ = 1 on the complement of Ωr,ϑ, where 0 < r < 1/2

and 0 ≤ ϑ ≤ π/4; we also let Hr,n,ϑ := H0 + nVr,ϑ. The periodic operators Hr,n,0

have purely absolutely continuous spectrum.

We first show that, for r, ϑ fixed, the operators Hr,n,ϑ converge to Hr,ϑ in the

sense of norm resolvent convergence. This can be seen as follows: In view of
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Theorem A.1, we introduce an additional Dirichlet boundary condition on a (closed)

set S = Sϑ ⊂ R2 \ Ωr,ϑ, which we now define: Let Γ ⊂ R2 denote the grid

{(x, y) ∈ R2 ; x ∈ Z or y ∈ Z}, and let Γϑ := MϑΓ denote the rotated grid.

For ρ := (1/2 − r)/2, we let S consist of Γ ∩ {(x, y) ; x > ρ}, Γϑ ∩ {x < ρ} plus

the vertical line {x = ρ}. Note that S has distance ρ > 0 from Ωr,ϑ. Let Hr,n,ϑ;S

denote the operator −Δ+ nVr,ϑ with Dirichlet boundary condition on S. We now

have

∣∣∣∣(Hr,ϑ + 1)−1 ⊕ 0− (Hr,n,ϑ + 1)−1
∣∣∣∣ ≤ ∣∣∣∣(Hr,ϑ + 1)−1 ⊕ 0− (Hr,n,ϑ;S + 1)−1

∣∣∣∣
+
∣∣∣∣(Hr,n,ϑ;S + 1)−1 − (Hr,n,ϑ + 1)−1

∣∣∣∣
(4.6)

where 0 denotes the zero operator on L2(R
2 \Ωr,ϑ). By Theorem A.1, applied with

U := R2 \Ωr,ϑ, we can find n0 ∈ N such that the second term on the RHS is smaller

than any given ε > 0, for n ≥ n0. The first term on the RHS is a direct sum of

operators living on the components of R2\Sϑ. By routine arguments, we have norm

resolvent convergence on each of the components, as n → ∞, and all we have to do

is to convince ourselves that this convergence holds uniformly on all components.

The components of R2 \ Sϑ fall into 4 classes: there are unrotated and rotated

squares, there are rectangles in the right half-plane of the form (ρ, 1)× (
, 
+1) for


 ∈ Z, and there are polygons (triangles, quadrangles, and pentagons) in the set

{x < ρ} that are bounded to the right by the line x = ρ. We have no problem with

uniform convergence for the first three classes and Lemma A.2 takes care of the

fourth class. It is easy to see that the norm resolvent convergence Hr,n,ϑ → Hr,ϑ

as n → ∞ is uniform in ϑ ∈ [0, π/4]. We then obtain from Proposition 4.1 (b) and

Remark 4.2 the following results:

4.3. Proposition.

(a) For tanϑ ∈ Q the spectrum of Hr,n,ϑ has gaps inside the interval (a, b) for n

large. More precisely, if Hr,ϑ has a gap (a′, b′) ⊂ (a, b), then, for ε > 0 given, the

interval (a′ + ε, b′ − ε) will be free of spectrum of Hr,n,ϑ for n large.

(b) For any ε > 0 there are ϑ0 > 0 and n0 > 0 such that any interval (c− ε, c+

ε) ⊂ (a, b) contains spectrum of Hr,n,ϑ for all 0 < ϑ < ϑ0 and n ≥ n0.

By similar arguments, we can approximate Vr,ϑ by Lipschitz-continuous muffin

tin potentials that converge monotonically (from below) to Vr,ϑ in such a way that

norm resolvent convergence holds for the associated Schrödinger operators (again

uniformly in ϑ ∈ [0, π/4]). The spectral properties obtained are analogous to the

ones stated in Proposition 4.3. Note, however, that the statement corresponding

to part (b) in Proposition 4.3 is weaker than the result of our main Theorem 0.1.

A brief study of translational dislocation problems for muffin tin potentials can

be found in [HK].
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5. Some extensions and remarks

(1) A simple variant of the rotation problem consists in rotations in the left and

the right half planes through angles ϑ/2 and −ϑ/2, respectively, i.e., we study

Ṽϑ(x, y) =

{
(V ◦M−ϑ/2)(x, y), x ≥ 0,

(V ◦Mϑ/2)(x, y), x < 0;
(5.1)

this potential might be rather close to the physical situation shown in Figure 1.

Here we consider the accompanying translational dislocation potentials

W̃t(x, y) =

{
V (x− t/2, y), x ≥ 0,

V (x+ t/2, y), x < 0.
(5.2)

We may then obtain results as in Theorem 0.1 without the use of Birkhoff’s theorem:

here we only need to take care of the second condition in eqn. (2.11) since the

horizontal alignment between the left- and right-hand part of Vϑ on the y-axis is

guaranteed by the definition of Ṽϑ.

(2) We have shown that the spectral gaps of H fill with spectrum of Rϑ as ϑ → 0

in the sense that any interval of length ε > 0 inside a gap ofH will contain spectrum

of Rϑ for sufficiently small angles. In general, we do not know whether the spectrum

of Rϑ in the gaps of H0 is pure point, absolutely continuous or singular continuous.

However, there are some special angles where we can exclude singular continuous

spectrum: if we assume that cosϑ is a rational number, cosϑ = q/p with p, q ∈ N,

and p and q belong to a Pythagorean triple (p2 − q2 = r2 for some r ∈ N), then Vϑ

has period p in y-direction. In this case, a result in [DS] implies that σ(Hϑ) has no

singular continuous part.

(3) It is natural to ask about higher dimensions. Suppose we are given a potential

V : R3 → R, periodic with respect to the lattice Z3. We may then simply consider

rotations of the (x, y)-plane by an angle ϑ, i.e., we let Vϑ(x, y, z) = V (x, y, z) in

{(x, y, z) ; x ≥ 0} and Vϑ(x, y, z) = V (M−ϑ(x, y), z) in {(x, y, z) ; x < 0}, in which

case our methods should apply. However, in R3 there are many other rotations for

which our methods may or may not work.

(4) Of course, taking the limit ϑ → 0 is a mathematical idealization. In real

crystals or alloys the lattice and its rotated version have to match up according

to certain rules. This is usually only possible for a small number of angles. Re-

lated questions in higher dimensions are studied under the name of coincidence site

lattices (CSL); cf. [B, Z].

6. Appendix

In this brief appendix we prove a—rather general—result on decoupling by

Dirichlet boundary conditions placed on a set inside a high barrier. The method of

proof is fairly standard but we have been unable to find a suitable reference which

would have covered our situation. Let d ∈ N. For some open set U ⊂ Rd and a

closed set S ⊂ U of measure zero, we consider for n ∈ N the Schrödinger operators

Hn := −Δ+nχU , acting in L2(R
d), and Hn,S := −Δ+nχU in L2(R

d\S) = L2(R
d),
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whereHn,S is assumed to obey Dirichlet boundary conditions on the set S. In other

words, the associated quadratic forms hn and hn,S have C∞
c (Rd) and C∞

c (Rd \ S)
as form cores. We then show that the resolvent difference (Hn+1)−1−(Hn,S+1)−1

goes to zero in norm, as n → ∞, provided the set S has a positive distance to the

boundary of U ; note that the set S need not be bounded.

A.1. Theorem. Let Hn and Hn,S as above and suppose that dist(S, ∂U) > 0.

Then ∣∣∣∣(Hn + 1)−1 − (Hn,S + 1)−1
∣∣∣∣ → 0, n → ∞. (A.1)

Proof. For f ∈ L2(R
d) with ||f || ≤ 1, let un := (Hn + 1)−1f and vn := (Hn,S +

1)−1f . We then have the trivial estimates ||un|| ≤ 1 and

||∇un||2 + n

∫
U

|un|2dx = hn[un] ≤ 〈(Hn + 1)un, un〉 = 〈f, un〉 ≤ 1, (A.2)

so that ||∇un|| ≤ 1 and
∫
U
|un|2dx ≤ 1/n, for all n ∈ N; analogous estimates hold for

vn. We let F denote the set of all functions ϕ ∈ C∞(Rd) that satisfy supp ϕ ⊂ U ,

dist(supp ϕ, ∂U) > 0, 0 ≤ ϕ ≤ 1, and ∇ϕ, Δϕ bounded. For any ϕ ∈ F , we then

have ϕun ∈ D(Hn) and (Hn +1)(ϕun) = ϕf − 2∇un∇ϕ− unΔϕ. We immediately

see from the above estimates that there is a constant cϕ ≥ 0 such that

||Hn(ϕun)|| ≤ cϕ. (A.3)

We now derive a crucial estimate for ||∇(ϕun)||: Since ||∇(ϕun)||2 ≤ hn[ϕun] =

〈Hn(ϕun), ϕun〉, for any ε > 0 there are constants Cε, C
′
ε ≥ 0 such that

||∇(ϕun)||2 ≤ ε ||Hn(ϕun)||2 + Cε ||ϕun||2 ≤ εc2ϕ + C′
ε/n. (A.4)

Analogous estimates hold for Hn,S and vn.

We let ρ := dist(S, ∂U), Uρ := {x ∈ U ; dist(x, S) < ρ/2} and fix some function

ψ ∈ F with ψ = 1 on Uρ. Let η := 1 − ψ and choose another function ϕψ ∈ F
satisfying ϕψ = 1 on the support of ∇ψ. Writing wn = un − vn = (Hn + 1)−1f −
(Hn,S + 1)−1f it is then clear that ψwn → 0, as n → ∞, uniformly for all f

with ||f || ≤ 1, and it remains to consider ηwn. Since η vanishes on Uρ, we have

ηwn ∈ D(Hn) and

(Hn + 1)(ηwn) = −2∇η · ∇wn − (Δη)wn =: zn, (A.5)

so that, in particular,

ηwn = (Hn + 1)−1zn, ||ηwn|| ≤ ||zn|| . (A.6)

We finally show that zn → 0, uniformly for ||f || ≤ 1. Here we know already that

(Δη)wn → 0 since Δη is supported inside U . Applying the estimate (A.4) we find

that

||∇η · ∇wn|| ≤ Cη ||∇(ϕψwn)|| ≤ εcψ + C′
ε,ψ/n, (A.7)

with cψ as in (A.3), (A.4). For δ > 0 given, we can find ε > 0 s.th. εcψ < δ/2 and

then n0 ∈ N s.th. C′
ε,ψ/n < δ/2 for all n ≥ n0, and we are done. �
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Remarks. (a) The assumption that S has measure zero is made chiefly for sim-

plicity of notation.

(b) The same result holds for Schrödinger operators −Δ+nV where V : Rd → R

is a non-negative, bounded potential satisfying V ≥ χU . Our method of proof yields

a bound on the norm of the resolvent difference which is independent of V .

(c) It is well-known that Hn and Hn,S converge to a suitably defined Dirichlet

Laplacians in the sense of strong resolvent convergence, cf. [HZh]. For periodic U

the convergence would even be in the norm resolvent sense, cf. [HH].

We finally discuss uniform norm resolvent convergence for Schrödinger operators

on domains of the type encountered at the end of Section 4. Here we will use the

well-known fact that a monotonic sequence (An)n∈N of compact operators which

converges strongly to a (compact) operatorA converges in norm, i.e., ||An −A|| → 0.

For simplicity of notation, we consider an equivalent geometric situation with a

family of domains in the first quadrant given as follows:

We fix 0 < ϑ < π/4 and 0 < r, d < 1/2. Then, for s ∈ R, we consider two

parallel lines 
1,s, 
2,s defined, respectively, by the equations y = (x − s) cotϑ and

y = (x− s) cotϑ+ d/ sinϑ so that 
1,s and 
2,s have distance d. We let

Gs := [0, 1]2 ∩ {(x, y) ; y > 
1,s(x)}, Dr,s := Br( 1

2
, 1

2
) ∩ {(x, y) ; y > 
2,s(x)};

(A.8)

cf. Figure 3. Note that Dr,s (if it is non-empty) has distance min{d, 1− r} to the

boundary of Gs.

Figure 3: A typical domain Dr,s (shaded).

Dr,s

Gs

d


2,s 
1,s

We next define quadratic forms on the domains Gs: for n ∈ N, we let Vr,s,n := 0

on Dr,s and Vr,s,n := n on Gs \ Dr,s. As s increases, the sets Gs and Dr,s both

increase and we therefore see that the quadratic forms

hr,s,n[ϕ] := ||∇ϕ||2 +
∫
Gs

Vn|ϕ|2 dx, ϕ ∈ C∞
c (Gs), (A.9)
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depend monotonically on s. It is easy to include the case n = ∞ by setting

hr,s,∞[ϕ] := ||∇ϕ||2 , ϕ ∈ C∞
c (Dr,s). (A.10)

The self-adjoint operators Hr,s,n and Hr,s,∞ associated with (the closure of) these

quadratic forms have compact resolvent. We have the following result:

A.2. Lemma. With the above definitions and assumptions, we have

sup
s

∣∣∣∣H−1
r,s,n −H−1

r,s,∞

∣∣∣∣ → 0, n → ∞. (A.11)

Proof. Obviously, we may restrict our attention to parameters s from a compact

interval J ⊂ R. Writing

fn(s) :=
∣∣∣∣H−1

r,s,n −H−1
r,s,∞

∣∣∣∣ , s ∈ J, (A.12)

monotonicity and compactness imply that the functions fn are continuous with

fn(s) → 0 monotonically as n → ∞, for each fixed s. Now the desired result

follows by Dini’s Theorem. �

References

[AADH] S Alama, M Avellanda, PA Deift, and R Hempel, On the existence of eigenvalues of

a divergence form operator A+ λB in a gap of σ(A), Asymptotic Analysis 8 (1994),

311–344

[ADH] S Alama, PA Deift, and R Hempel, Eigenvalue branches of the Schrödinger operator

H − λW in a gap of σ(H), Commun. Math. Phys. 121 (1989), 291–321

[B] M Baake, Solution of the coincidence problem in dimensions d ≤ 4, The Mathematics

of Long-Range Aperiodic Order, ed. R. V. Moody, Kluwer, Dordrecht (1997), 9–44

[CFS] IP Cornfield, SV Fomin, and YG Sinai, Ergodic theory, Springer, New York, 1982

[DS] EB Davies and B Simon, Scattering theory for systems with different spatial asymp-

totics on the left and right, Commun. Math. Phys. 63 (1978), 277–301

[DH] PA Deift and R Hempel, On the existence of eigenvalues of the Schrödinger operator

H − λW in a gap of σ(H), Commun. Math. Phys. 103 (1986), 461–490

[E] MSP Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Aca-

demic Press, Edinburgh-London, 1973
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