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Abstract. In this paper, we study the µ-variant of the periodic b-equation

and show that this equation can be realized as a metric Euler equation on the

Lie group Diff∞(S) if and only if b = 2 (for which it becomes the µ-Camassa-

Holm equation). In this case, the inertia operator generating the metric on

Diff∞(S) is given by L = µ−∂2
x. In contrast, the µ-Degasperis-Procesi equation

(obtained for b = 3) is not a metric Euler equation on Diff∞(S) for any regular

inertia operator A ∈ Lsym
is (C∞(S)). The paper generalizes some recent results

of [13, 16, 24].

For the mathematical modelling of fluids, the so-called family of b-equations

mt = −(mxu+ bmux), m = u− uxx,(1)

attracted a considerable amount of attention in recent years. Here, b stands for a

real parameter, [17]. Each of these equations models the unidirectional irrotational

free surface flow of a shallow layer of an inviscid fluid moving under the influence

of gravity over a flat bed. In this model u(t, x) represents the wave’s height at

time t ≥ 0 and position x above the flat bottom. If the wave profile is assumed

to be periodic, x ∈ S ≃ R/Z; otherwise x ∈ R. For further details concerning the

hydrodynamical relevance we refer to [10, 21, 22]. As shown in [11, 18, 20, 28], the

b-equation is asymptotically integrable which is a necessary condition for complete

integrability, but only for b = 2 and b = 3 for which it becomes the Camassa-Holm

(CH) equation

ut − utxx + 3uux − 2uxuxx − uuxxx = 0

and the Degasperis-Procesi (DP) equation

ut − utxx + 4uux − 3uxuxx − uuxxx = 0

respectively. The Cauchy problems for CH and DP have been studied in detail: For

the CH, there are global strong as well as global weak solutions. In addition, CH

allows for finite time blow-up solutions which can be interpreted as breaking waves

and there are no shock waves (see, e.g., [4, 5, 6]). Some recent global well-posedness

results for strong and weak solutions, precise blow-up scenarios and wave breaking

for the DP are discussed in [14, 15, 30, 31, 32].

Besides the various common properties of the CH and the DP there are also

significant differences to report on, e.g., when studying geometric aspects of the
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family (1). The periodic equation (1) reexpresses a geodesic flow on the group

Diff∞(S) of smooth and orientation preserving diffeomorphisms of the circle, cf.

[13]. If b = 2, the geodesic flow corresponds to the right-invariant metric induced

by the inertia operator 1−∂2x whereas for b ̸= 2, equation (1) can only be realized as

a non-metric Euler equation, i.e., as geodesic flow with respect to a linear connection

which is not Riemannian in the sense that it is compatible with a right-invariant

metric, cf. [8, 9, 16, 24].

The idea of studying Euler’s equations of motion for perfect (i.e., incompressible,

homogeneous and inviscid) fluids as a geodesic flow on a certain diffeomorphism

group goes back to [1, 12] and in a recent work [13], Escher and Kolev show that

the theory is also valid for the general b-equation.

In this paper, we are interested in the following variant of the periodic family

(1). Let µ(u) =
∫
S u(t, x) dx and m = µ(u) − uxx in (1) to obtain the family

of µ-b-equations, cf. [27]. The study of the µ-variant of (1) is motivated by the

following key observation: Letting m = −∂2xu, equation (1) for b = 2 becomes the

Hunter-Saxton (HS) equation, cf. [19], which possesses various interesting geometric

properties, cf. [25, 26], whereas the choice m = (1 − ∂2x)u leads to the CH as

explained above. In the search for integrable equations that are obtained by a

perturbation of −∂2x, the µ-b-equation has been introduced and it could be shown

that it behaves quite similarly to the b-equation; cf. [27] where the authors discuss

local and global well-posedness as well as finite time blow-up and peakons. Peakons

are peculiar wave forms: they are travelling wave solutions which are smooth except

at their crests; the lateral tangents exist, are symmetric but different. Such wave

forms are known to characterize the steady water waves of greatest height, [3, 7, 29],

and were first shown to arise for the CH in [2].

The goal of this paper is to extend the work done in [16] to the family of µ-b-

equations. Our main result is that the periodic µ-b-equation can be realized as a

metric Euler equation on Diff∞(S) if and only if b = 2, for which it becomes the

µCH equation. The corresponding regular inertia operator is µ − ∂2x. Before we

give a proof, we begin with some introductory remarks about Euler equations on

Diff∞(S). In a first step, we comment on the operator µ− ∂2x.

Lemma 1. The bilinear map

⟨·, ·⟩µ : C∞(S) × C∞(S) → R, ⟨u, v⟩µ = µ(u)µ(v) +

∫
S
ux(x)vx(x) dx

defines an inner product on C∞(S).

Proof. Clearly, ⟨·, ·⟩µ is a symmetric bilinear form and ⟨u, u⟩µ ≥ 0. If u ∈ C∞(S)

satisfies ⟨u, u⟩µ = 0, then ux = 0 on S and hence u is constant. The fact that

µ(u) = 0 implies u = 0. �

We obtain a right-invariant metric on the Lie group G = Diff∞(S) by defining

the inner product ⟨·, ·⟩µ on the Lie algebra g ≃ Vect∞(S) ≃ C∞(S) of smooth

vector fields on S and transporting ⟨·, ·⟩µ to any tangent space of G by using right
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translations, i.e., if Rφ : G→ G denotes the map sending ψ to ψ ◦ φ, then

⟨u, v⟩µ;φ =
⟨
DφRφ−1u,DφRφ−1v

⟩
µ
,

for all u, v ∈ TφG. Observe that ⟨·, ·⟩µ can be expressed in terms of the symmetric

linear operator L : g → g′ defined by L = µ− ∂2x, i.e.,

⟨u, v⟩µ = ⟨Lu, v⟩ = ⟨Lv, u⟩ , u, v ∈ C∞(S),

where ⟨·, ·⟩ denotes the duality pairing on g′ × g.

Definition 2. Each symmetric isomorphism A : g → g′ is called an inertia operator

on G. The corresponding right-invariant metric on G induced by A is denoted by

ρA.

Let A be an inertia operator on G. We denote the Lie bracket on g by [·, ·] and

write (adu)∗ for the adjoint with respect to ρA of the natural action of g on itself

given by adu : g → g, v 7→ [u, v]. Let

B(u, v) =
1

2
[(adu)∗v + (adv)∗u] .

We define a right-invariant linear connection on G via

∇uv =
1

2
[u, v] +B(u, v), u, v ∈ C∞(S).(2)

As explained in [13, 16], we have the following theorem.

Theorem 3. A smooth curve g(t) on the Lie group G = Diff∞(S) is a geodesic

for the right-invariant linear connection defined by (2) if and only if its Eulerian

velocity u(t) = Dg(t)Rg−1(t)g
′(t) satisfies the Euler equation

ut = −B(u, u).(3)

Observe that the topological dual space of Vect∞(S) ≃ C∞(S) is given by the

distributions Vect′(S) on S. In order to get a convenient representation of the

Christoffel operator B we restrict ourselves to Vect∗(S), the set of all regular dis-

tributions which can be represented by smooth densities, i.e., T ∈ Vect∗(S) if and

only if there is a ρ ∈ C∞(S) such that

T (φ) =

∫
S
ρ(x)φ(x) dx, ∀φ ∈ C∞(S).

By means of the Riesz representation theorem we may identify Vect∗(S) ≃ C∞(S).

This motivates the following definition.

Definition 4. Let Lsym
is (C∞(S)) denote the set of all continuous isomorphisms

on C∞(S) which are symmetric with respect to the L2 inner product. Each A ∈
Lsym
is (C∞(S)) is called a regular inertia operator on Diff∞(S).

The following lemma establishes that the operator L belongs to the above defined

class of regular inertia operators.

Lemma 5. The operator L is a regular inertia operator on Diff∞(S).
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Proof. One checks that applying L to(
1

2
x2 − 1

2
x+

13

12

)∫ 1

0

u(a) da+

(
x− 1

2

)∫ 1

0

∫ a

0

u(b) db da

−
∫ x

0

∫ a

0

u(b) dbda+

∫ 1

0

∫ a

0

∫ b

0

u(c) dcdbda

gives back the function u. It is easy to see that if u ∈ C∞(S), then its pre-image

also belongs to C∞(S). Assume that Lu = 0 for u ∈ C∞(S). We thus can find

constants c, d ∈ R such that u = 1
2µ(u)x2 + cx + d. Since u is periodic, c = 0 and

µ(u) = 0 and thus also d = 0. Clearly, L : C∞(S) → C∞(S) is bicontinuous. �

A proof of the following theorem can be found in [16].

Theorem 6. Given A ∈ Lsym
is (C∞(S)), the Christoffel operator B = 1

2 [(ad∗
u)v +

(ad∗
v)u] has the form

B(u, v) =
1

2
A−1 [2(Au)vx + 2(Av)ux + u(Av)x + v(Au)x] ,

for all u, v ∈ C∞(S).

It may be instructive to discuss the following paradigmatic examples.

Example 7. Let λ ∈ [0, 1] and let A be the inertia operator for the equation

mt = −(mxu+ 2uxm).

(1) The choice A = −∂2x yields B(u, u) = −A−1(2uxuxx + uuxxx) and ut =

−B(u, u) is the Hunter-Saxton equation

utxx + 2uxuxx + uuxxx = 0.

(2) We choose A = 1 − λ∂2x. If λ = 0, the equation mt = −(mxu + 2uxm)

becomes the periodic inviscid Burgers equation ut+B(u, u) = ut+3uux = 0.

For λ ̸= 0, we obtain

ut +B(u, u) = ut + 3uux − λ(2uxuxx + uuxxx + utxx) = 0,

a 1-parameter family of Camassa-Holm equations.

(3) Choosing A = µ− ∂2x, we arrive at the µCH equation

µ(ut) − utxx + 2µ(u)ux = 2uxuxx + uuxxx,

which is also called µHS in the literature, cf. [23].

Each regular inertia operator induces a metric Euler equation on Diff∞(S). We

now consider the question for which b ∈ R there is a regular inertia operator such

that the µ-b-equation is the corresponding Euler equation on Diff∞(S). Example 7

shows that, for b = 2, the operator L ∈ Lsym
is (C∞(S)) induces the µCH. Our goal

is to show that this works only for b = 2.

Theorem 8. Let b ∈ R be given and suppose that there is a regular inertia operator

A ∈ Lsym
is (C∞(S)) such that the µ-b-equation

mt = −(mxu+ bmux), m = µ(u) − uxx,

is the Euler equation on Diff∞(S) with respect to ρA. Then b = 2 and A = L.
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Proof. We assume that, for given b ∈ R and A ∈ Lsym
is (C∞(S)), the µ-b-equation is

the Euler equation on the circle diffeomorphisms with respect to ρA. Then

ut = −A−1((Au)xu+ 2(Au)ux)

and the µ-b-equation can be written as

(Lu)t = −((Lu)xu+ b(Lu)ux).

Using that (Lu)t = Lut and resolving both equations with respect to ut we get that

A−1 (2(Au)ux + u(Au)x) = L−1 (b(Lu)ux + u(Lu)x) ,(4)

for u ∈ C∞(S). Denote by 1 the constant function with value 1. If we set u = 1 in

(4), then A−1(1(A1)x) = 0 and hence (A1)x = 0, i.e., A1 = c1. Scaling (4) shows

that we may assume c = 1. Replacing u by u + λ in (4) and scaling with λ−1, we

get on the left-hand side

1

λ
A−1

(
2(A(u+ λ))(u+ λ)x + (u+ λ)(A(u+ λ))x

)
=

1

λ
A−1

(
2((Au) + λ)ux + (u+ λ)(Au)x

)
= A−1

(
2(Au)ux + u(Au)x

λ
+ 2ux + (Au)x

)
→ A−1(2ux + (Au)x), λ→ ∞,

and a similar computation for the right-hand side gives

1

λ
L−1

(
b(L(u+ λ))(u+ λ)x + (u+ λ)(L(u+ λ))x

)
→ L−1(bux + (Lu)x), λ→ ∞.

We obtain

A−1 (2ux + (Au)x) = L−1(bux + (Lu)x).(5)

We now consider the Fourier basis functions un = einx for n ∈ 2πZ\{0} and have

Lun = n2un and

L−1(b(un)x + (Lun)x) = iαnun, αn =
b

n
+ n.

We now apply A to (5) with u = un and see that

2inun + (Aun)x = iαn(Aun).

Therefore vn := Aun solves the ordinary differential equation

v′ − iαnv = −2inun.(6)

If b = 0, then αn = n and hence the general solution of (6) is

v(x) = (c− 2inx)un, c ∈ R,

which is not periodic for any c ∈ R. Hence b ̸= 0 and there are numbers γn so that

vn = Aun = γne
iαnx + βnun, βn =

2

b
n2.
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We first discuss the case γn = 0 for all n and show that γp ̸= 0 for some p ∈ 2πZ\{0}
is not possible. If all γn vanish, then Aun = βnun and A is a Fourier multiplication

operator; in particular A commutes with L. Therefore (4) with u = un is equivalent

to

L(2(Aun)(un)x + un(Aun)x) = A(b(Lun)(un)x + un(Lun)x)

and by direct computation

12in3βnu2n = i(b+ 1)n3β2nu2n.

Inserting βn = 2n2/b we see that b = 2 and βn = n2. Therefore A = L. Assume

that there is p ∈ 2πZ\{0} with γp ̸= 0. Since vp = Aup is periodic, αp ∈ 2πZ and

hence b = kp for some k ∈ 2πZ\{0}. Let αp = m. If m = p, then b = 0 which is

impossible. We thus have ⟨um, up⟩ = 0 and

⟨Aup, um⟩ =
⟨
γpe

imx, um
⟩

= γp.

The symmetry of A yields

γp = ⟨Aup, um⟩ = ⟨up, Aum⟩ = γm
⟨
up, e

iαmx
⟩
.

Since γp ̸= 0, γm is non-zero and periodicity implies αm ∈ 2πZ. More precisely,

αm = p since otherwise
⟨
up, e

iαmx
⟩

= 0 = γp. Using b = kp and the definition of

αp, we see that m = αp = k + p. Furthermore,

p(k + p) = αm(k + p) = αk+p(k + p) = kp+ (k + p)2

and hence 0 = k2 + 2pk. Since k ̸= 0, it follows that k = −2p and hence b = −2p2.

We get αp = −p and observe that γn = 0 for all n /∈ {p,−p}, since otherwise

repeating the above calculations would yield b = −2n2 contradicting b = −2p2.

Inserting u = up in (4) shows that

ipγp1− 3ip

β2p
u2p = ip3(b+ 1)

u2p
4p2

;

here we have used that Aup = γp/up + βpup, βp = −1 and A−1u2p = u2p/β2p,

since 2p does not coincide with ±p and hence γ2p = 0. It follows that pγp = 0 in

contradiction to p, γp ̸= 0. �

Corollary 9. The µDP equation on the circle

mt = −(mxu+ 3mux), m = µ(u) − uxx,

cannot be realized as a metric Euler equation for any A ∈ Lsym
is (C∞(S)).
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