THE PERIODIC μ -b-EQUATION AND EULER EQUATIONS ON THE CIRCLE

MARTIN KOHLMANN

ABSTRACT. In this paper, we study the μ -variant of the periodic *b*-equation and show that this equation can be realized as a metric Euler equation on the Lie group Diff[∞](S) if and only if b = 2 (for which it becomes the μ -Camassa-Holm equation). In this case, the inertia operator generating the metric on Diff[∞](S) is given by $L = \mu - \partial_x^2$. In contrast, the μ -Degasperis-Procesi equation (obtained for b = 3) is not a metric Euler equation on Diff[∞](S) for any regular inertia operator $A \in \mathcal{L}_{is}^{sym}(C^{\infty}(S))$. The paper generalizes some recent results of [13, 16, 24].

For the mathematical modelling of fluids, the so-called family of *b*-equations

(1)
$$m_t = -(m_x u + bm u_x), \quad m = u - u_{xx},$$

attracted a considerable amount of attention in recent years. Here, b stands for a real parameter, [17]. Each of these equations models the unidirectional irrotational free surface flow of a shallow layer of an inviscid fluid moving under the influence of gravity over a flat bed. In this model u(t, x) represents the wave's height at time $t \ge 0$ and position x above the flat bottom. If the wave profile is assumed to be periodic, $x \in \mathbb{S} \simeq \mathbb{R}/\mathbb{Z}$; otherwise $x \in \mathbb{R}$. For further details concerning the hydrodynamical relevance we refer to [10, 21, 22]. As shown in [11, 18, 20, 28], the b-equation is asymptotically integrable which is a necessary condition for complete integrability, but only for b = 2 and b = 3 for which it becomes the Camassa-Holm (CH) equation

$$u_t - u_{txx} + 3uu_x - 2u_x u_{xx} - uu_{xxx} = 0$$

and the Degasperis-Procesi (DP) equation

$$u_t - u_{txx} + 4uu_x - 3u_x u_{xx} - uu_{xxx} = 0$$

respectively. The Cauchy problems for CH and DP have been studied in detail: For the CH, there are global strong as well as global weak solutions. In addition, CH allows for finite time blow-up solutions which can be interpreted as breaking waves and there are no shock waves (see, e.g., [4, 5, 6]). Some recent global well-posedness results for strong and weak solutions, precise blow-up scenarios and wave breaking for the DP are discussed in [14, 15, 30, 31, 32].

Besides the various common properties of the CH and the DP there are also significant differences to report on, e.g., when studying geometric aspects of the

²⁰⁰⁰ Mathematics Subject Classification. 35Q35,58D05.

Key words and phrases. μ -b-equation, diffeomorphism group of the circle, metric and non-metric Euler equations.

family (1). The periodic equation (1) reexpresses a geodesic flow on the group $\text{Diff}^{\infty}(\mathbb{S})$ of smooth and orientation preserving diffeomorphisms of the circle, cf. [13]. If b = 2, the geodesic flow corresponds to the right-invariant metric induced by the inertia operator $1 - \partial_x^2$ whereas for $b \neq 2$, equation (1) can only be realized as a non-metric Euler equation, i.e., as geodesic flow with respect to a linear connection which is not Riemannian in the sense that it is compatible with a right-invariant metric, cf. [8, 9, 16, 24].

The idea of studying Euler's equations of motion for perfect (i.e., incompressible, homogeneous and inviscid) fluids as a geodesic flow on a certain diffeomorphism group goes back to [1, 12] and in a recent work [13], Escher and Kolev show that the theory is also valid for the general *b*-equation.

In this paper, we are interested in the following variant of the periodic family (1). Let $\mu(u) = \int_{\mathbb{S}} u(t,x) \, dx$ and $m = \mu(u) - u_{xx}$ in (1) to obtain the family of μ -b-equations, cf. [27]. The study of the μ -variant of (1) is motivated by the following key observation: Letting $m = -\partial_x^2 u$, equation (1) for b = 2 becomes the Hunter-Saxton (HS) equation, cf. [19], which possesses various interesting geometric properties, cf. [25, 26], whereas the choice $m = (1 - \partial_x^2)u$ leads to the CH as explained above. In the search for integrable equations that are obtained by a perturbation of $-\partial_x^2$, the μ -b-equation has been introduced and it could be shown that it behaves quite similarly to the b-equation; cf. [27] where the authors discuss local and global well-posedness as well as finite time blow-up and peakons. Peakons are peculiar wave forms: they are travelling wave solutions which are smooth except at their crests; the lateral tangents exist, are symmetric but different. Such wave forms are known to characterize the steady water waves of greatest height, [3, 7, 29], and were first shown to arise for the CH in [2].

The goal of this paper is to extend the work done in [16] to the family of μ -b-equations. Our main result is that the periodic μ -b-equation can be realized as a metric Euler equation on $\text{Diff}^{\infty}(\mathbb{S})$ if and only if b = 2, for which it becomes the μ CH equation. The corresponding regular inertia operator is $\mu - \partial_x^2$. Before we give a proof, we begin with some introductory remarks about Euler equations on $\text{Diff}^{\infty}(\mathbb{S})$. In a first step, we comment on the operator $\mu - \partial_x^2$.

Lemma 1. The bilinear map

$$\langle \cdot, \cdot \rangle_{\mu} : C^{\infty}(\mathbb{S}) \times C^{\infty}(\mathbb{S}) \to \mathbb{R}, \quad \langle u, v \rangle_{\mu} = \mu(u)\mu(v) + \int_{\mathbb{S}} u_x(x)v_x(x) \,\mathrm{d}x$$

defines an inner product on $C^{\infty}(\mathbb{S})$.

Proof. Clearly, $\langle \cdot, \cdot \rangle_{\mu}$ is a symmetric bilinear form and $\langle u, u \rangle_{\mu} \geq 0$. If $u \in C^{\infty}(\mathbb{S})$ satisfies $\langle u, u \rangle_{\mu} = 0$, then $u_x = 0$ on \mathbb{S} and hence u is constant. The fact that $\mu(u) = 0$ implies u = 0.

We obtain a right-invariant metric on the Lie group $G = \text{Diff}^{\infty}(\mathbb{S})$ by defining the inner product $\langle \cdot, \cdot \rangle_{\mu}$ on the Lie algebra $\mathfrak{g} \simeq \text{Vect}^{\infty}(\mathbb{S}) \simeq C^{\infty}(\mathbb{S})$ of smooth vector fields on \mathbb{S} and transporting $\langle \cdot, \cdot \rangle_{\mu}$ to any tangent space of G by using right

M. KOHLMANN

translations, i.e., if $R_{\varphi}: G \to G$ denotes the map sending ψ to $\psi \circ \varphi$, then

$$\langle u, v \rangle_{\mu;\varphi} = \left\langle D_{\varphi} R_{\varphi^{-1}} u, D_{\varphi} R_{\varphi^{-1}} v \right\rangle_{\mu},$$

for all $u, v \in T_{\varphi}G$. Observe that $\langle \cdot, \cdot \rangle_{\mu}$ can be expressed in terms of the symmetric linear operator $L: \mathfrak{g} \to \mathfrak{g}'$ defined by $L = \mu - \partial_x^2$, i.e.,

$$\langle u, v \rangle_{\mu} = \langle Lu, v \rangle = \langle Lv, u \rangle, \quad u, v \in C^{\infty}(\mathbb{S}),$$

where $\langle \cdot, \cdot \rangle$ denotes the duality pairing on $\mathfrak{g}' \times \mathfrak{g}$.

Definition 2. Each symmetric isomorphism $A: \mathfrak{g} \to \mathfrak{g}'$ is called an *inertia operator* on G. The corresponding right-invariant metric on G induced by A is denoted by ρ_A .

Let A be an inertia operator on G. We denote the Lie bracket on \mathfrak{g} by $[\cdot, \cdot]$ and write $(\mathrm{ad}_u)^*$ for the adjoint with respect to ρ_A of the natural action of \mathfrak{g} on itself given by $\mathrm{ad}_u : \mathfrak{g} \to \mathfrak{g}, v \mapsto [u, v]$. Let

$$B(u, v) = \frac{1}{2} \left[(\mathrm{ad}_u)^* v + (\mathrm{ad}_v)^* u \right].$$

We define a right-invariant linear connection on G via

(2)
$$\nabla_u v = \frac{1}{2}[u, v] + B(u, v), \quad u, v \in C^{\infty}(\mathbb{S}).$$

As explained in [13, 16], we have the following theorem.

Theorem 3. A smooth curve g(t) on the Lie group $G = \text{Diff}^{\infty}(\mathbb{S})$ is a geodesic for the right-invariant linear connection defined by (2) if and only if its Eulerian velocity $u(t) = D_{g(t)}R_{g^{-1}(t)}g'(t)$ satisfies the Euler equation

(3)
$$u_t = -B(u, u).$$

Observe that the topological dual space of $\operatorname{Vect}^{\infty}(\mathbb{S}) \simeq C^{\infty}(\mathbb{S})$ is given by the distributions $\operatorname{Vect}'(\mathbb{S})$ on \mathbb{S} . In order to get a convenient representation of the *Christoffel operator* B we restrict ourselves to $\operatorname{Vect}^*(\mathbb{S})$, the set of all regular distributions which can be represented by smooth densities, i.e., $T \in \operatorname{Vect}^*(\mathbb{S})$ if and only if there is a $\rho \in C^{\infty}(\mathbb{S})$ such that

$$T(\varphi) = \int_{\mathbb{S}} \rho(x)\varphi(x) \,\mathrm{d}x, \quad \forall \varphi \in C^{\infty}(\mathbb{S}).$$

By means of the Riesz representation theorem we may identify $\operatorname{Vect}^*(\mathbb{S}) \simeq C^{\infty}(\mathbb{S})$. This motivates the following definition.

Definition 4. Let $\mathcal{L}^{\text{sym}}_{\text{is}}(C^{\infty}(\mathbb{S}))$ denote the set of all continuous isomorphisms on $C^{\infty}(\mathbb{S})$ which are symmetric with respect to the L_2 inner product. Each $A \in \mathcal{L}^{\text{sym}}_{\text{is}}(C^{\infty}(\mathbb{S}))$ is called a *regular inertia operator* on Diff^{∞}(\mathbb{S}).

The following lemma establishes that the operator L belongs to the above defined class of regular inertia operators.

Lemma 5. The operator L is a regular inertia operator on $\text{Diff}^{\infty}(\mathbb{S})$.

Proof. One checks that applying L to

$$\left(\frac{1}{2}x^2 - \frac{1}{2}x + \frac{13}{12}\right) \int_0^1 u(a) \, \mathrm{d}a + \left(x - \frac{1}{2}\right) \int_0^1 \int_0^a u(b) \, \mathrm{d}b \, \mathrm{d}a \\ - \int_0^x \int_0^a u(b) \, \mathrm{d}b \, \mathrm{d}a + \int_0^1 \int_0^a \int_0^b u(c) \, \mathrm{d}c \, \mathrm{d}b \, \mathrm{d}a$$

gives back the function u. It is easy to see that if $u \in C^{\infty}(\mathbb{S})$, then its pre-image also belongs to $C^{\infty}(\mathbb{S})$. Assume that Lu = 0 for $u \in C^{\infty}(\mathbb{S})$. We thus can find constants $c, d \in \mathbb{R}$ such that $u = \frac{1}{2}\mu(u)x^2 + cx + d$. Since u is periodic, c = 0 and $\mu(u) = 0$ and thus also d = 0. Clearly, $L : C^{\infty}(\mathbb{S}) \to C^{\infty}(\mathbb{S})$ is bicontinuous. \Box

A proof of the following theorem can be found in [16].

Theorem 6. Given $A \in \mathcal{L}_{is}^{sym}(C^{\infty}(\mathbb{S}))$, the Christoffel operator $B = \frac{1}{2}[(ad_u^*)v + (ad_v^*)u]$ has the form

$$B(u,v) = \frac{1}{2}A^{-1} \left[2(Au)v_x + 2(Av)u_x + u(Av)_x + v(Au)_x\right],$$

for all $u, v \in C^{\infty}(\mathbb{S})$.

It may be instructive to discuss the following paradigmatic examples.

Example 7. Let $\lambda \in [0,1]$ and let A be the inertia operator for the equation $m_t = -(m_x u + 2u_x m).$

(1) The choice $A = -\partial_x^2$ yields $B(u, u) = -A^{-1}(2u_x u_{xx} + u u_{xxx})$ and $u_t = -B(u, u)$ is the Hunter-Saxton equation

$$u_{txx} + 2u_x u_{xx} + u u_{xxx} = 0.$$

(2) We choose $A = 1 - \lambda \partial_x^2$. If $\lambda = 0$, the equation $m_t = -(m_x u + 2u_x m)$ becomes the periodic inviscid Burgers equation $u_t + B(u, u) = u_t + 3uu_x = 0$. For $\lambda \neq 0$, we obtain

$$u_t + B(u, u) = u_t + 3uu_x - \lambda(2u_x u_{xx} + uu_{xxx} + u_{txx}) = 0,$$

a 1-parameter family of Camassa-Holm equations.

(3) Choosing $A = \mu - \partial_x^2$, we arrive at the μ CH equation

$$\mu(u_t) - u_{txx} + 2\mu(u)u_x = 2u_x u_{xx} + u u_{xxx},$$

which is also called μ HS in the literature, cf. [23].

Each regular inertia operator induces a metric Euler equation on $\text{Diff}^{\infty}(\mathbb{S})$. We now consider the question for which $b \in \mathbb{R}$ there is a regular inertia operator such that the μ -b-equation is the corresponding Euler equation on $\text{Diff}^{\infty}(\mathbb{S})$. Example 7 shows that, for b = 2, the operator $L \in \mathcal{L}^{\text{sym}}_{\text{is}}(C^{\infty}(\mathbb{S}))$ induces the μ CH. Our goal is to show that this works only for b = 2.

Theorem 8. Let $b \in \mathbb{R}$ be given and suppose that there is a regular inertia operator $A \in \mathcal{L}_{is}^{sym}(C^{\infty}(\mathbb{S}))$ such that the μ -b-equation

$$m_t = -(m_x u + bmu_x), \quad m = \mu(u) - u_{xx},$$

is the Euler equation on $\text{Diff}^{\infty}(\mathbb{S})$ with respect to ρ_A . Then b = 2 and A = L.

Proof. We assume that, for given $b \in \mathbb{R}$ and $A \in \mathcal{L}_{is}^{sym}(C^{\infty}(\mathbb{S}))$, the μ -b-equation is the Euler equation on the circle diffeomorphisms with respect to ρ_A . Then

$$u_t = -A^{-1}((Au)_x u + 2(Au)u_x)$$

and the μ -b-equation can be written as

$$(Lu)_t = -((Lu)_x u + b(Lu)u_x).$$

Using that $(Lu)_t = Lu_t$ and resolving both equations with respect to u_t we get that

(4)
$$A^{-1}(2(Au)u_x + u(Au)_x) = L^{-1}(b(Lu)u_x + u(Lu)_x),$$

for $u \in C^{\infty}(\mathbb{S})$. Denote by **1** the constant function with value 1. If we set $u = \mathbf{1}$ in (4), then $A^{-1}(\mathbf{1}(A\mathbf{1})_x) = 0$ and hence $(A\mathbf{1})_x = 0$, i.e., $A\mathbf{1} = c\mathbf{1}$. Scaling (4) shows that we may assume c = 1. Replacing u by $u + \lambda$ in (4) and scaling with λ^{-1} , we get on the left-hand side

$$\begin{split} &\frac{1}{\lambda}A^{-1}\big(2(A(u+\lambda))(u+\lambda)_x+(u+\lambda)(A(u+\lambda))_x\big)\\ &=\frac{1}{\lambda}A^{-1}\big(2((Au)+\lambda)u_x+(u+\lambda)(Au)_x\big)\\ &=A^{-1}\left(\frac{2(Au)u_x+u(Au)_x}{\lambda}+2u_x+(Au)_x\right)\\ &\to A^{-1}(2u_x+(Au)_x),\,\lambda\to\infty, \end{split}$$

and a similar computation for the right-hand side gives

$$\frac{1}{\lambda}L^{-1}\big(b(L(u+\lambda))(u+\lambda)_x + (u+\lambda)(L(u+\lambda))_x\big) \\ \to L^{-1}(bu_x + (Lu)_x), \, \lambda \to \infty.$$

We obtain

(5)
$$A^{-1} (2u_x + (Au)_x) = L^{-1} (bu_x + (Lu)_x).$$

We now consider the Fourier basis functions $u_n = e^{inx}$ for $n \in 2\pi \mathbb{Z} \setminus \{0\}$ and have $Lu_n = n^2 u_n$ and

$$L^{-1}(b(u_n)_x + (Lu_n)_x) = \mathrm{i}\alpha_n u_n, \quad \alpha_n = \frac{b}{n} + n.$$

We now apply A to (5) with $u = u_n$ and see that

$$2\mathrm{i}nu_n + (Au_n)_x = \mathrm{i}\alpha_n(Au_n).$$

Therefore $v_n := Au_n$ solves the ordinary differential equation

(6)
$$v' - i\alpha_n v = -2inu_n$$

If b = 0, then $\alpha_n = n$ and hence the general solution of (6) is

$$v(x) = (c - 2inx)u_n, \quad c \in \mathbb{R}$$

which is not periodic for any $c \in \mathbb{R}$. Hence $b \neq 0$ and there are numbers γ_n so that

$$v_n = Au_n = \gamma_n e^{i\alpha_n x} + \beta_n u_n, \quad \beta_n = \frac{2}{b}n^2.$$

We first discuss the case $\gamma_n = 0$ for all n and show that $\gamma_p \neq 0$ for some $p \in 2\pi \mathbb{Z} \setminus \{0\}$ is not possible. If all γ_n vanish, then $Au_n = \beta_n u_n$ and A is a Fourier multiplication operator; in particular A commutes with L. Therefore (4) with $u = u_n$ is equivalent to

$$L(2(Au_n)(u_n)_x + u_n(Au_n)_x) = A(b(Lu_n)(u_n)_x + u_n(Lu_n)_x)$$

and by direct computation

$$12in^3\beta_n u_{2n} = i(b+1)n^3\beta_{2n}u_{2n}.$$

Inserting $\beta_n = 2n^2/b$ we see that b = 2 and $\beta_n = n^2$. Therefore A = L. Assume that there is $p \in 2\pi \mathbb{Z} \setminus \{0\}$ with $\gamma_p \neq 0$. Since $v_p = Au_p$ is periodic, $\alpha_p \in 2\pi \mathbb{Z}$ and hence b = kp for some $k \in 2\pi \mathbb{Z} \setminus \{0\}$. Let $\alpha_p = m$. If m = p, then b = 0 which is impossible. We thus have $\langle u_m, u_p \rangle = 0$ and

$$\langle Au_p, u_m \rangle = \langle \gamma_p e^{\mathrm{i}mx}, u_m \rangle = \gamma_p.$$

The symmetry of A yields

$$\gamma_p = \langle Au_p, u_m \rangle = \langle u_p, Au_m \rangle = \overline{\gamma_m} \left\langle u_p, e^{\mathbf{i}\alpha_m x} \right\rangle.$$

Since $\gamma_p \neq 0$, γ_m is non-zero and periodicity implies $\alpha_m \in 2\pi\mathbb{Z}$. More precisely, $\alpha_m = p$ since otherwise $\langle u_p, e^{i\alpha_m x} \rangle = 0 = \gamma_p$. Using b = kp and the definition of α_p , we see that $m = \alpha_p = k + p$. Furthermore,

$$p(k+p) = \alpha_m(k+p) = \alpha_{k+p}(k+p) = kp + (k+p)^2$$

and hence $0 = k^2 + 2pk$. Since $k \neq 0$, it follows that k = -2p and hence $b = -2p^2$. We get $\alpha_p = -p$ and observe that $\gamma_n = 0$ for all $n \notin \{p, -p\}$, since otherwise repeating the above calculations would yield $b = -2n^2$ contradicting $b = -2p^2$. Inserting $u = u_p$ in (4) shows that

$$ip\gamma_p \mathbf{1} - \frac{3ip}{\beta_{2p}}u_{2p} = ip^3(b+1)\frac{u_{2p}}{4p^2};$$

here we have used that $Au_p = \gamma_p/u_p + \beta_p u_p$, $\beta_p = -1$ and $A^{-1}u_{2p} = u_{2p}/\beta_{2p}$, since 2p does not coincide with $\pm p$ and hence $\gamma_{2p} = 0$. It follows that $p\gamma_p = 0$ in contradiction to $p, \gamma_p \neq 0$.

Corollary 9. The μDP equation on the circle

$$m_t = -(m_x u + 3mu_x), \quad m = \mu(u) - u_{xx},$$

cannot be realized as a metric Euler equation for any $A \in \mathcal{L}_{is}^{sym}(C^{\infty}(\mathbb{S}))$.

References

- V.I. Arnold: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16, 319–361 (1966)
- [2] R. Camassa and D.D. Holm: An integrable shallow water wave equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)
- [3] A. Constantin: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

M. KOHLMANN

- [4] A. Constantin and J. Escher: Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math. 51, no. 5, 475–504 (1998)
- [5] A. Constantin and J. Escher: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, no. 2, 229–243 (1998)
- [6] A. Constantin and J. Escher: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000)
- [7] A. Constantin and J. Escher: Particle trajectories in solitary water waves. Bull. Amer. Math. Soc. 44, 423–431 (2007)
- [8] A. Constantin and B. Kolev: On the geometric approach to the motion of inertial mechanical systems. J. Phys. A, 35, no. 32, R51–R79 (2002)
- [9] A. Constantin and B. Kolev: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, no. 4, 787–804 (2003)
- [10] A. Constantin and D. Lannes: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Processi equations. Arch. Ration. Mech. Anal., 192, no. 1, 165-186 (2009)
- [11] A. Degasperis and M. Procesi: Asymptotic integrability. Symmetry and perturbation theory (Rome 1998), World Sci. Publ., River Edge, NJ, 23–37 (1999)
- [12] D.G. Ebin and J.E. Marsden: Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. of Math. 92, no. 2, 102–163 (1970)
- [13] J. Escher and B. Kolev: The Degasperis-Procesi equation as a non-metric Euler equation. arXiv:0908.0508v1 (2009)
- [14] J. Escher, Y. Liu, and Z. Yin: Global weak solutions and blow-up structure for the Degasperis-Processi equation. J. Funct. Anal. 241, 457–485 (2006)
- [15] J. Escher, Y. Liu, and Z. Yin: Shock waves and blow-up phenomena for the periodic Degasperis-Processi equation. Indiana Univ. Math. J. 56, no. 1, 87–117 (2007)
- [16] J. Escher and J. Seiler: The periodic b-equation and Euler equations on the circle. arXiv:1001.2987v1 (2010)
- [17] J. Escher and Z. Yin: Well-posedness, blow-up phenomena, and global solutions for the b-equation. J. Reine Angew. Math. 624, no. 1, 51–80 (2008)
- [18] A. Hone and J. Wang: Prolongation algebras and Hamiltonian operators for peakon equations. Inverse Problems 19, no. 1, 129–145 (2003)
- [19] J.K. Hunter and R. Saxton: Dynamics of director fields. SIAM J. Appl. Math. 51, 1498–1521 (1991)
- [20] R.I. Ivanov: On the integrability of a class of nonlinear dispersive waves equations. J. Nonlinear Math. Phys. 12, no. 4, 462–468 (2005)
- [21] R.I. Ivanov: Water waves and integrability. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365, no. 1858, 2267–2280 (2007)
- [22] R.S. Johnson: The classical problem of water waves: a reservoir of integrable and nearly integrable equations. J. Nonlinear Math. Phys., 10, no. suppl. 1, 72–92 (2003)
- [23] B. Khesin, J. Lenells, and G. Misiołek: Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. 342,

617-656 (2008)

- [24] B. Kolev: Some geometric investigations on the Degasperis-Process shallow water equation. Wave Motion 46, 412–419 (2009)
- [25] J. Lenells: The Hunter-Saxton equation describes the geodesic flow on a sphere. J. Geom. Phys. 57, 2049–2064 (2007)
- [26] J. Lenells: Weak geodesic flow and global solutions of the Hunter-Saxton equation. Disc. Cont. Dyn. Syst. 18, 643–656 (2007)
- [27] J. Lenells, G. Misiołek, and F. Tiğlay: Integrable evolution equations on spaces of tensor densities and their peakon solutions. arXiv:0903.4134v1 (2009)
- [28] A.V. Mikhailov and V.S. Novikov: Perturbative symmetry approach. J. Phys. A 35, no. 22, 4775–4790 (2002)
- [29] J.F. Toland: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)
- [30] Z. Yin: Global existence for a new periodic integrable equation. J. Math. Anal. Appl. 283, 129–139 (2003)
- [31] Z. Yin: On the Cauchy problem for an integrable equation with peakon solutions. Ill. J. Math. 47, 649–666 (2003)
- [32] Y. Zhou: Blow-up phenomenon for the integrable Degasperis-Procesi equation. Physics Letters A 328, 157–162 (2004)

Institute for Applied Mathematics, University of Hannover, D-30167 Hannover, Germany

E-mail address: kohlmann@ifam.uni-hannover.de