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Chapter 1

Classical particle scattering

Scattering occurs in a variety of physical situations. It normally involves a compar-

ison of two different dynamics for the same system: the given dynamics and a “free”

dynamics. It is hard to give a precise definition of “free dynamics” but important

characteristics of a free dynamical system are that it is simpler than the given dy-

namics and that it conserves the momentum of the “individual constituents” of the

physical system.

The simplest system with which to illustrate the ideas of scattering theory is the

classical mechanics of a single particle moving in an external force field f(x), x ∈ R3.

This theory is equivalent to the scattering of two particles interacting with each other

through a force field f(x1 − x2) because the center of mass motion of such a two-

body system separates from the motion of x12 = x1−x2. The states of such a single

particle system are points in phase space R3 ×R3, i.e. pairs u(t) = (x(t), ẋ(t)) ∈ R6

representing the position and the velocity of the particle. The evolution is given by

the equation

d

dt
u(t) = F (u(t)). (1.1)

The force field is obtained from a potential V (x) and equals −grad V (x). The

right-hand side of the evolution equation (1.1) thus reads

F (u(t)) = F

(
x(t)

ẋ(t)

)
=

(
ẋ(t)

− 1
m
grad V (x(t))

)
.

Let us assume for simplicity that V has compact support and that the particle

moves outside the support of V (and hence outside of the corresponding force field)

for large |t|. We can then expect that

x(t) = x− + tv−, t→ −∞,

x(t) = x+ + tv+, t→ +∞.

Conservation of the energy E implies that |v+| = |v−|. Furthermore, integrating the

conservation law 1
2
mẋ(t)2 = E−V (x(t)) with a given initial condition (x(t0), ẋ(t0)) =
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(x− + t0v−, v−), for t0 sufficiently near −∞ so that {x− + tv−, t < t0} ∩ supp V = ∅,
we observe that x+ and v+ are functions of x− and v−. This motivates to define the

scattering map

S : R6 → R6,

(
x−
v−

)
7→
(
x+
v+

)
.

Let us consider a particle moving in one spatial direction and assume that V is

bounded, V (x) ≤ E0 = maxV . For energies E < E0, the particle will be reflected

by the potential; its velocity will change sign (and vary temporarily while the particle

is moving inside the support of V ). The scattering map thus is of the form(
x−
v−

)
7→
(
x+(x−, v−)

−v−

)
.

For E > E0 the particle moves through and we expect a time delay compared with

the free dynamics and again a temporary change of the velocity such that finally

v+ = v−. The scattering map now has the form(
x−
v−

)
7→
(
x+(x−, v−)

v−

)
.

In the case E = E0 the particle stops at x0 with V (x0) = E0 (if this point is reached

in finite time).

Next, let us suppose that supp V is not compact but that V and grad V are

sufficiently small for |x| → ∞. Then we expect that the position of the particle will

not exactly but asymptotically be of the form x± + tv±, i.e.

∃(x±, v±) ∈ R6 : |x(t)− x± − tv±| → 0, t→ ±∞. (1.2)

Observe that the potential must indeed be very small at ±∞; even for the Coulomb

potential, the particle will not be asymptotically free.

Let us now consider a one-dimensional particle with positive energy E in a force

field with the potential

V (x) = C(1 + |x|)−α, α > 0, C ̸= 0.

We show that the particle moves asymptotically free in the sense of (1.2) if α > 1.

For simplicity, let m = 2. It suffices to consider the case t → +∞. We can

choose an initial condition such that x(t) → ∞, t→ ∞. By conservation of energy,

ẋ(t)2 = E − V (x(t)) so that

ẋ(t) =
√
E − V (x(t)) →

√
E, t→ +∞. (1.3)

In particular, ẋ(t) does not change sign for large t and hence ẋ(t) > 0.
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(1) Let α > 1; here, it suffices to suppose that |V (x)| ≤ C(1 + |x|)−α. By (1.3),

there are constants t0 ∈ R, x1 ∈ R and v1 > 0 such that for t ≥ t0

v1 ≤ ẋ(t) and

x1 + v1t ≤ x(t).

For any y > 0, the mean value theorem ensures the existence of η ∈ (0, y) such

that √
E − y =

√
E − 0 + y

[
d

ds

√
E − s

]
s=η

=
√
E − y

2
√
E − η

.

For sufficiently large t, E − V (x(t)) is bounded away from zero so that there is a

function η(t) satisfying |η(t)| ≤ c(1 + t)−α for some constant c > 0 and

ẋ(t) =
√
E − V (x(t)) =

√
E + η(t) and

x(t) = x0 +
√
E t+

∫ t

t0

η(τ) dτ

= x0 +
√
E t+

∫ ∞

t0

η(τ) dτ −
∫ ∞

t

η(τ) dτ

= x̃0 +
√
E t+ η̃(t)

with |η̃(t)| ≤ c̃ t1−α. This is the desired result with x+ = x̃0 and v+ =
√
E.

(2) Assume that α ≤ 1. By (1.3) there are c1, c2 > 0 (for C > 0) or c1, c2 < 0 (for

C < 0) so that for α < 1 and large t

ẋ(t) =
√
E − V (x(t))

{
≤

√
E − c1(1 + t)−α

≥
√
E − c2(1 + t)−α

and

x(t)

{
≤

√
E t+ c3 − c1

1−α(1 + t)1−α

≥
√
E t+ c4 − c2

1−α(1 + t)1−α.

For α = 1, the term 1
1−α(1 + t)1−α has to be replaced by ln(1 + t). Let us assume

for a contradiction that (1.2) holds true. Let α < 1. Then, for sufficiently large t,

√
E t+ c4 −

c2
1− α

(1 + t)1−α − 1 ≤ x+ + v+t ≤
√
E t+ c3 −

c1
1− α

(1 + t)1−α + 1.

Dividing by t and computing the limit t → ∞, this implies that
√
E ≤ v+ ≤

√
E,

i.e. v+ =
√
E. Hence c1 = 0, a contradiction. Similarly, a contradiction is obtained

in the case α = 1.

Assume that the particle is asymptotically free in the sense of (1.2). The maps

Ω± : (x±, v±) 7→ (x(t), v(t))
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have an important analogy in the quantum mechanical setting where they are called

the (Møller)-wave operators. The scattering map thus satisfies

S = Ω−1
+ Ω−.

It describes the process of scattering without comprising the time-dependent details

of the event. One of the most important and most difficult problems in scattering

theory yet is the inverse problem: given the scattering map S what can we say about

the scattering center or the potential respectively?

Concerning Coulomb scattering, we will observe a similar phenomenon in the

quantum mechanical setting: the wave operators exist in general only for potentials

that decay faster than the Coulomb potential.

Finally, to make contact with physical experiments, we comment briefly on the

notions cross section and scattering angles : A beam of constant energy is sent

towards a target. The beam has a wide spread and an approximately uniform

density ρ of particles per unit area of the plane R2 orthogonal to the beam. A

detector sits at some scattering angle (ϑ, φ) far away from the target and collects

(and counts) all particles that leave the target within some angular region of size

∆Ω about (ϑ, φ). The measured quantity is

number of particles hitting the detector

(∆Ω)ρ
.

If ∆Ω is very small and the detector and source of particles are very far from the

target, this quantity is called the differential cross section. The integral of the

differential cross section over all spatial directions yields the total cross section.
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Chapter 2

Basic principles of scattering in

Hilbert spaces

We begin with a brief overview about some relevant aspects of spectral theory in

Hilbert spaces. For more details, we refer to [K-I, K-II] and of course [RS-I].

Let (An)n∈N be a sequence of bounded operators on the Hilbert space H, (An)n∈N ⊂
L(H), and let A ∈ L(H) be given. We say:

An → A weakly :⇐⇒ ⟨Anf, g⟩ → ⟨Af, g⟩ , ∀f, g ∈ H,
An → A strongly :⇐⇒ Anf → Af, ∀f ∈ H,
An → A in norm :⇐⇒ ||An − A|| = sup{||Anf − Af || ; ||f || ≤ 1} → 0.

Clearly, norm convergence =⇒ strong convergence =⇒ weak convergence. For the

purposes of scattering theory, we will see that strong convergence is the appropriate

notion.

Lemma 2.1. Assume that An, Bn, A,B ∈ L(H), n ∈ N, and that An → A strongly

and Bn → B strongly. Then AnBn → AB strongly.

Proof. By the Uniform Boundedness Principle, there exists a constant c ≥ 0 with

||An|| ≤ c for all n ∈ N. Thus

||AnBnf − ABf || ≤ ||AnBf − ABf ||+ ||AnBnf − AnBf ||
≤ ||(An − A)Bf ||+ ||An|| ||(Bn −B)f ||
→ 0

as n→ ∞.

Let H be a Hilbert space and let A : D(A) → H be a self-adjoint operator. By

the spectral theorem, there exists a unique spectral family (E(λ))λ∈R such that

A =
∫
R λ dE(λ). The operators E(λ) are bounded, E(λ) ∈ L(H) for any λ ∈ R,
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and projections, E(λ)2 = E(λ) = E(λ)∗ for any λ ∈ R, and satisfy the following

properties:

(i) Monotonicity: λ ≤ µ =⇒ E(λ) ≤ E(µ).

(ii) Strong right continuity: ∀λ ∈ R ∀f ∈ H : E(λ+ ε)f → E(λ)f , ε ↓ 0.

(iii) For all f ∈ H, we have that E(λ)f → f , λ→ ∞, and E(λ)f → 0, λ→ −∞.

For any φ, ψ ∈ H, the sesquilinear form ⟨Aφ,ψ⟩ is the Riemann-Stieltjes integral

⟨Aφ,ψ⟩ =
∫
R
λ d ⟨E(λ)φ, ψ⟩ . (2.1)

The function λ 7→ ⟨E(λ)φ, φ⟩ = ||E(λ)φ||2 is the spectral measure µφ associated with

the vector φ. The spectral theorem also says that given a spectral family (E(λ))λ∈R,

there exists a unique self-adjoint operator A such that A =
∫
R λ dE(λ). In fact, the

domain of integration in (2.1) is σ(A) ⊂ R, the spectrum of A, as E(·) is locally

constant on the resolvent set ρ(A).

The spectral theorem also allows to study functions of operators; we say that

there exists a functional calculus in the following sense: For A ∈ L(H) there is a

unique map Φ: C(σ(A)) → L(H) such that

(i) Φ is an algebraic ∗-homomorphism, that is

Φ(fg) = Φ(f)Φ(g),

Φ(λf) = λΦ(f),

Φ(1) = I,

Φ(f) = Φ(f)∗.

(ii) Φ is continuous, i.e. ||Φ(f)||L(H) ≤ C ||f ||∞.

(iii) Let f be the function f(x) = x. Then Φ(f) = A.

For unbounded operators one has a map Φ̂ from the bounded Borel functions on R
into L(H) with similar properties. We then write Φ(f) = f(A) and have that

⟨f(A)φ, φ⟩ =
∫
σ(A)

f(λ) dµφ, ∀φ ∈ H.

We will see that e−itA, t ∈ R, generates a strongly continuous group of uni-

tary operators and that u(t) := e−itAu0 solves the Schrödinger equation with initial

value u0 ∈ L2(Rd), provided A = −∆ + V is a self-adjoint operator in the Hilbert

space L2(Rd). On the other hand, e−tA, t ≥ 0 and A ≥ 0, is a strongly continuous

semi-group of operators and v(t) := e−tAv0 is a solution to the initial value problem
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for the heat equation, provided A is a self-adjoint extension of −∆. Characteristic

functions χ(a,b](A) = E((a, b]) = E(b) − E(a) yield spectral projections associated

with intervals. The operator
√
A is the square root of A provided A ≥ 0.

Concerning the spectrum σ(A), we comment on three different decompositions:

σ(A) = σp(A) ∪̇σcont(A) ∪̇ σres(A) (2.2)

= σdisc(A) ∪̇σess(A) (2.3)

= σpp(A) ∪ σac(A) ∪ σsc(A). (2.4)

If A − λ is not injective, i.e. (A − λ)u = 0 for some u ∈ D(A)\{0} or equivalently

N(A − λ) ̸= {0}, then λ ∈ σp(A) (point spectrum). If A − λ is injective (but

not surjective), one distinguishes between R(A− λ) = H (λ ∈ σcont(A), continuous

spectrum) and R(A − λ) is not dense in H (λ ∈ σres(A), residual spectrum). In

fact, for a self-adjoint operator, σres(A) = ∅. The discontinuities of the spectral

family correspond precisely to the point spectrum σp(A) whereas E(λ) is strongly

continuous at λ0 ∈ σ(A) if and only if λ0 ∈ σcont(H).

In the second decomposition, the discrete spectrum σdisc(A) comprises the eigen-

values of A having finite multiplicity and being isolated points of the spectrum. In

other words, λ ∈ σdisc(A) if and only if 0 < dimN(A − λ) < ∞ and if there is

ε > 0 with the property σ(A)∩ (λ− ε, λ+ ε) = {λ}. The essential spectrum σess(A)

contains the eigenvalues of infinite multiplicity and the accumulation points of the

spectrum.

The third decomposition refers to Lebesgue’s decomposition of a monotonic func-

tion f : R → R into a jump function fpp, an absolutely continuous function fac and

a singularly continuous function fsc in the sense that f = fpp + fac + fsc. For

a spectral family (E(λ))λ∈R, the function λ 7→ ⟨E(λ)φ, φ⟩ is monotonic and thus

Lebesgue’s decomposition applies to the associated spectral measure µφ. We define

the following subspaces of H:

Hpp := span{u ∈ D(A)\{0};∃λ ∈ R : Au = λu},
Hac := {f ∈ H; ||E(·)f ||2 is absolutely continuous},
Hsc := {f ∈ H; ||E(·)f ||2 is singularly continuous};

here, the abbreviation pp stands for “pure point”. These are closed subspaces of H
and

H = Hpp ⊕Hac ⊕Hsc.

Moreover, the subspaces Hpp, Hac and Hsc reduce A, i.e. if Ppp, Pac and Psc denote

the projections on Hpp, Hac and Hsc, then for P ∈ {Ppp, Pac, Psc},

PA ⊂ AP
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i.e. u ∈ D(A) implies Pu ∈ D(A) and APu = PAu. Furthermore, one defines, for

M ∈ {Hpp,Hac,Hsc}, operators

D(AM) := D(A) ∩M, AMu := Au, ∀u ∈ D(AM),

inM . Setting σpp(A) := {λ ∈ R; ∃u ∈ D(A)\{0} : Au = λu}, σac(A) := σ(AHac) and

σsc(A) := σ(AHsc), we obtain the decomposition (2.4).

Finally, let us recall some elementary results on strongly continuous one-parameter

groups: Let {U(t); t ∈ R} be unitary operators with the properties

(i) U(t+ s) = U(t)U(s), for all s, t ∈ R, and

(ii) for all f ∈ H and all sequences (tn)n∈N ⊂ R with tn → t0 one has the strong

convergence U(tn)f → U(t0)f .

Then we have the following important theorems.

Theorem 2.2. Let A be a self-adjoint operator in the Hilbert space H and let

(E(λ))λ∈R be the associated spectral family.

(1) The operator

U(t) :=

∫ ∞

−∞
eiλt dE(λ), t ∈ R,

is unitary and {U(t); t ∈ R} is a strongly continuous unitary group.

(2) For all ψ ∈ D(A),

lim
t→0

1

t
(U(t)ψ − ψ) = iAψ.

(3) If limt→0
1
t
(U(t)ψ − ψ) exists for some ψ ∈ H, then ψ ∈ D(A).

Proof. See [RS-I, Thm. VIII.7].

Theorem 2.3 (Stone). Let {U(t); t ∈ R} be a strongly continuous unitary group.

Then there is a unique self-adjoint operator A satisfying

U(t) = eitA, t ∈ R.

Proof. See [RS-I, Thm. VIII.8].

We will also make use of the following lemma.

Lemma 2.4. a

(1) Let A be a self-adjoint operator in the Hilbert space H with the spectral family

(E(λ))λ∈R and let B ∈ L(H). Then:

[A,B] = 0, ⇐⇒ [B,E(λ)] = 0, ∀λ ∈ R.
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(2) Let A be a self-adjoint operator in the Hilbert space H and let M ⊂ H be a

closed subspace with the associated orthogonal projection P . Then:

PA ⊂ AP ⇐⇒ eitAP = P eitA,∀t ∈ R.

Proof. Exercises 2 (for the case A ∈ L(H)) and 4.

The motion of a quantum mechanical particle which is shot towards a fixed target

(of infinite mass) is described by the Schrödinger equation

∂

∂t
f(·, t) = 1

i
Hf(·, t), (2.5)

f(·, 0) = f0(·), (2.6)

where H = −∆+ V is a suitable Schrödinger operator in the Hilbert space L2(Rd).

Here, f0 ∈ L2(Rd) with ∫
Rd

|f0(x)|2 dx = 1,

i.e. we may interpret |f(·, t)|2 as a probability density so that
∫
Q
|f(x, t)|2 dx is the

probability to localize the quantum mechanical particle at time t in the (measurable)

set Q ⊂ Rd. Hence we also claim that∫
Rd

|f(x, t)|2 dx = 1, ∀t ∈ R. (2.7)

The solution to the IVP (2.5)–(2.6) is given by

f(·, t) =
[
e−itHf0

]
(·), t ∈ R.

As the operators e−itH are unitary, the claim (2.7) is satisfied.

We now distinguish between three different types of solutions that stem from the

decomposition H = Hpp ⊕Hac ⊕Hsc of the Hilbert space.

(1) f0 ∈ Hpp: Bound state. The particle is quasi-localized and moves on some

trajectory (not necessarily periodic) within the potential.

(2) f0 ∈ Hac: Scattering state. The particle is deflected and emerges (in R2) under

a certain angle of deflection. However, some special phenomena are possible: if

the so-called wave operators are not complete, it is possible that the particle is

captured or that a particle is emitted.

(3) f0 ∈ Hsc: The particle can heuristically speaking not decide to stay in or to

leave the scattering center. The physicist hopes that Hsc = {0}.

9



Of particular interest for the issues discussed here is the case (2): Our aim is to

describe the asymptotic behavior of the solution e−itHf0 as t→ ±∞ in terms of the

free dynamics given by
(
e−itH0

)
t∈R with

H0 := −∆�C∞
c (Rd).

We will see that this will only be successful if f0 ⊥ Hpp(H) and if the potential V

has a short range,

|V (x)| ≤ c(1 + |x|)−α, x ∈ Rd,

with some α > 1. If a state f0 evolves to ∞ according to e−itHf0 as t → ±∞, we

expect that the influence of the potential V will be negligible. Note that the assump-

tion f0 ⊥ Hpp(H) does not necessarily guarantee that the state e−itHf0 evolves to ∞
in space as t→ ±∞; indeed we will need the stronger assumption that f0 ∈ Hac(H).

What does it mean when we say that e−itHf evolves as a free particle for t→ ∞?

We thereby mean that there exists f+ ∈ H with

lim
t→∞

∣∣∣∣e−itHf − e−itH0f+
∣∣∣∣ = 0. (2.8)

As the e−itH are unitary, (2.8) is equivalent to

lim
t→∞

∣∣∣∣f − eitHe−itH0f+
∣∣∣∣ = 0.

Thus our first goal is to prove the existence of the strong limit s−limt→±∞ eitHe−itH0 .

We will also see that it is necessary to study f± ∈ Hac(H0). Nevertheless, for

H0 = −∆ in Rd this is no restriction, as Hac(H0) = L2(Rd), see Exercise 10. Thus,

we are interested in the existence of the wave operators

Ω± := s− lim
t→±∞

eitHe−itH0Pac(H0),

which interrelate f± and f0. The operator S := Ω∗
+Ω− is the scattering operator

which figuratively speaking maps the direction of arrival to the direction of deflec-

tion. Apart from existence, completeness of the wave operators (R(Ω−) = R(Ω+) or

more strongly R(Ω±) = Hac) is a key issue. These questions are related to aspects

of the spectral theory of Schrödinger operators, for instance:

• σac(H) = σac(H0)?

• σsc(H) = ∅?

• How many positive eigenvalues can H have? . . .

As an example for an important result in this context, we cite a theorem of

Volker Enß.
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Theorem 2.5 (Enß, 1978/79). Let V : R3 → R with |V (x)| ≤ cρ−α be given, with

some α > 1 and ρ(x) :=
√
1 + |x|2. Then:

(1) The wave operators Ω±(H,H0) exist and are complete.

(2) The singularly continuous spectrum of H is empty.

(3) The eigenvalues of H accumulate at most at zero. The eigenvalues different of

zero have finite multiplicity.

Remark 2.6. As in Chapter 1, the decay property in Theorem 2.5 excludes Coulomb

potentials. We have to modify the wave operators in order to discuss potentials that

are ρ(x)−1-like at ∞. Note that the singularity of the Coulomb potential at x = 0

does not lead to substantial difficulties.
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Chapter 3

Wave operators

A major difficulty in Scattering Theory is the problem of comparing two different

strongly continuous unitary groups. Under which assumptions can one expect that

for two self-adjoint operators A and B the strong limits

s− lim
t→±∞

eitAe−itB

exist? First of all, we motivate why we can exclude eigenfunctions of B for the

following considerations:

Assume that λ ∈ R is an eigenvalue of B with eigenvector u ∈ D(B)\{0}, i.e.
Bu = λu. Let W (t) := eitAe−itB. Then

W (t)u = eitA
(
e−itBu

)
= eitA

(
e−itλu

)
= eit(A−λ)u.

We assume that the strong limit limt→∞W (t)u exists so that

||W (t+ a)u−W (t)u|| → 0, t→ ∞,

for all a ∈ R. As eit(A−λ) is unitary,∣∣∣∣eia(A−λ)u− u
∣∣∣∣ = ∣∣∣∣ei(a+t)(A−λ)u− eit(A−λ)u

∣∣∣∣ = ||W (t+ a)u−W (t)u|| → 0, t→ ∞,

so that

eia(A−λ)u = u, ∀a ∈ R,

meaning that

lim
a→0

1

a

(
eia(A−λ)u− u

)
= 0.

In view of Stones Theorem, u ∈ D(A− λ) = D(A) and (A− λ)u = 0.

We conclude: If u is an eigenvector of B then the strong limit limt→∞ eitAe−itB

exists if and only if u is an eigenvector of A (with the same eigenvalue). As such a

harmonic relationship between the operators A and B can usually not be expected we

therefore define the wave operators by first projecting onto the absolutely continuous

subspace of B. When we will discuss completeness, it will be clear that this is a

very clever choice.
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Definition 3.1. Let A and B be self-adjoint operators in the Hilbert space H and

let Pac(B) be the projection onto Hac(B), the absolutely continuous subspace of H
with respect to B. We say that the generalized wave operators Ω±(A,B) exist if the

strong limits

Ω±(A,B) := s− lim
t→±∞

eitAe−itBPac(B) (3.1)

exist. When Ω±(A,B) exist, we define

Hin := R(Ω−), Hout := R(Ω+).

For notational convenience, we sometimes use H− for Hin and H+ for Hout.

Remark 3.2. a

(1) The existence of Ω−(A,B) means that for any f− ∈ Hac(B) there is f ∈ H such

that

lim
t→−∞

∣∣∣∣e−itAf − e−itBf−
∣∣∣∣ = 0,

precisely f = Ω−(A,B)f−, and similarly for Ω+.

(2) If Pac(B) = I, the norm limit in (3.1) exists if and only if A = B, see Exercise 8.

(3) If A has purely discrete spectrum, the weak limit in (3.1) exists (and is 0) though

A and B are very dissimilar. Thus the strong limit turns out to be the right one

to take.

Definition 3.3. An operator D ∈ L(H) is called partially isometric or a partial

isometry if there is a closed subspace M ⊂ H with

||Du|| = ||u|| , ∀u ∈M, Du = 0, ∀u ∈M⊥.

We call M the initial subspace of D and D(M) the final subspace of D.

Proposition 3.4. Assume that Ω±(A,B) exist. Then:

(1) Ω±(A,B) are partial isometries with initial subspace Pac(B)H = Hac(B) and

final subspace H±.

(2) The subspaces H± reduce A and

Ω±[D(B)] ⊂ D(A), AΩ±(A,B) = Ω±(A,B)B. (3.2)

(3) H± ⊂ R(Pac(A)) = Hac(A).
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Proof. a

(1) For u ∈ Hac(B)⊥ clearly Ω±u = 0. For u ∈ Hac(B) we find that∣∣∣∣eitAe−itBPac(B)u
∣∣∣∣ = ||u|| , t ∈ R,

and hence

||Ω±(A,B)u|| = ||u|| ;

note that we assume the existence of the strong limits (3.1).

(2) For any fixed s ∈ R,

s− lim
t→±∞

eitAe−itBPac(B) = s− lim
t→±∞

ei(t+s)Ae−i(t+s)BPac(B).

As [e−isB, Pac(B)] = 0,

Ω±(A,B) = eisAΩ±(A,B)e−isB

or equivalently

e−isAΩ±(A,B) = Ω±(A,B)e−isB, s ∈ R. (3.3)

Let f ∈ D(B). Then

−iBf = lim
s→0

1

s

(
e−isBf − f

)
so that

lim
s→0

Ω±(A,B)

(
1

s

(
e−isB − I

))
f = Ω±(A,B)

[
lim
s→∞

(
1

s

(
e−isB − I

))
f

]
= −iΩ±(A,B)Bf.

By (3.3), (
1

s

(
e−isA − I

))
Ω±(A,B)f = Ω±(A,B)

(
1

s

(
e−isB − I

))
f.

As the limit on the right hand side exists, the limit on the left hand side must also

exist and both limits are equal. Furthermore,

Ω±(A,B)f ∈ D(A), ∀f ∈ D(B),

and

−iAΩ±(A,B)f = lim
s→0

(
1

s

(
e−isA − I

))
Ω±(A,B)f

= lim
s→0

Ω±(A,B)

(
1

s

(
e−isB − I

))
f

14



= −iΩ±(A,B)Bf.

Finally, we show that the subspaces H± = R(Ω±) reduce the operator A: By (3.3),

H± are invariant under e−isA, for all s ∈ R,

e−isA (H±) ⊂ H±.

Applying Lemma 2.4, we are done.

(3) By (2), A�H± is a self-adjoint operator in the Hilbert space H±; note that

H± = R(Ω±) is closed as Ω± is a partial isometry. Furthermore,

Ω±(A,B) : Pac(B)H = Hac(B) → H±

is unitary. By means of (3.2), we see that A�H± is unitarily equivalent to B �Hac(B)

where the unitary equivalence is given by Ω±(A,B). Hence A �H± is purely abso-

lutely continuous,

H± ⊂ Hac(A) = Pac(A)H,

which completes our proof.

Remark 3.5. The second identity in (3.2) is called intertwining relation.

Proposition 3.6 (Chain rule for wave operators). Let A, B, and C be self-

adjoint operators. If Ω±(A,B) and Ω±(B,C) exist, then Ω±(A,C) exist and

Ω±(A,C) = Ω±(A,B)Ω±(B,C).

Proof. By Proposition 3.4, (3),

R(Ω±(B,C)) ⊂ R(Pac(B)) = Hac(B)

and hence for all φ ∈ H

(I − Pac(B))eitBe−itCPac(C)φ→ 0, t→ ±∞.

Then

eitAe−itCPac(C)φ = eitAe−itBeitBe−itCPac(C)φ

= eitAe−itBPac(B)eitBe−itCPac(C)φ

+ eitAe−itB(I − Pac(B))eitBe−itCPac(C)φ

converges to Ω±(A,B)Ω±(B,C)φ as t→ ±∞ by Lemma 2.1 as

eitAe−itBPac(B) → Ω±(A,B) strongly, eitBe−itCPac(C) → Ω±(B,C) strongly.

15



Definition 3.7. Let A and B be self-adjoint operators in the Hilbert space H.

Assume that the wave operators Ω±(A,B) exist.

(1) The wave operators are called weakly (asymptotically) complete if

Hin = Hout.

(2) The wave operators are called asymptotically complete if

Hin = Hout = (Hpp(A))
⊥.

(3) The wave operators are called complete if

Hin = Hout = Hac(A).

Remark 3.8. a

(1) Asymptotic completeness is equivalent to the pair of statements: Ω±(A,B) are

complete and σsc(A) = ∅.
(2) Asymptotic completeness =⇒ completeness =⇒ weak completeness.

(3) We will only deal with the notion of completeness henceforth.

(4) Asymptotic completeness means that

Hin ⊕Hpp(A) = Hout ⊕Hpp(A),

in other words,

incoming states⊕ bound states = outgoing states⊕ bound states.

(5) Weak asymptotic completeness only means that the spaces of incoming and

outgoing states are identical.

The following remarkable fact reduces completeness to an existence question.

Proposition 3.9. Let A and B be self-adjoint operators and assume that the wave

operators Ω±(A,B) exist. Then Ω±(A,B) are complete if and only if Ω±(B,A) exist.

Proof. a

(1) We assume that both Ω±(A,B) and Ω±(B,A) = s − limt→±∞ eitBe−itAPac(A)

exist. By the chain rule (Proposition 3.6)

Pac(A) = Ω±(A,A) = Ω±(A,B)Ω±(B,A)

so that

Hac(A) = R(Pac(A)) ⊂ R(Ω±(A,B)).

In view of Proposition 3.4,

H± = R(Ω±(A,B)) ⊂ Hac(A),

so that H± = Hac(A).

16



(2) Conversely, suppose that Ω±(A,B) exist and are complete. Let φ ∈ Hac(A) =

R(Pac(A)) = Pac(A)H. As Ω±(A,B) are complete, there is ψ± ∈ H such that

φ = Ω±(A,B)ψ±. This implies that∣∣∣∣φ− eitAe−itBPac(B)ψ±
∣∣∣∣→ 0, t→ ±∞.

As eitA and e−itB are unitary,∣∣∣∣eitBe−itAφ− Pac(B)ψ±
∣∣∣∣→ 0, t→ ±∞.

This shows that limt→±∞ eitBe−itAφ exists and is equal to Pac(B)ψ±.

Remark 3.10. At first sight Proposition 3.9 seems to say that completeness is no

harder than existence. In fact, usually completeness is much harder.

One essential tool to prove the existence of Ω± is Cook’s method which is based

on the observation that if f is a C1-function on R with f ′ ∈ L1(R), then limt→±∞ f(t)

exists since

|f(t)− f(s)| =
∣∣∣∣∫ s

t

f ′(u) du

∣∣∣∣ ≤ ∫ s

t

|f ′(u)| du→ 0, s, t→ ∞.

Theorem 3.11 (Cook’s method). Let A and B be self-adjoint operators in the

Hilbert space H with D(A) = D(B). Suppose that there is a set

D ⊂ D(B) ∩Hac(B)

which is dense in Hac(B) so that for any φ ∈ D there is a T0 ∈ R satisfying∫ ∞

T0

∣∣∣∣(B − A)e±itBφ
∣∣∣∣ dt <∞. (3.4)

Then Ω±(A,B) exist.

Proof. a

(1) Let φ ∈ D and η(t) := eitAe−itBφ. We first show that η(t) is differentiable and

that

η′(t) = −ieitA(B − A)e−itBφ. (3.5)

As φ ∈ D(B) we conclude that e−itBφ ∈ D(B) = D(A). For u, v ∈ R, u ̸= v, u

fixed, we consider the limit v → u of

η(v)− η(u)

v − u
=

1

v − u

(
eivAe−ivBφ− eiuAe−iuBφ

)
=

1

v − u

((
eivA − eiuA

)
e−ivBφ+ eiuA

(
e−ivB − e−iuB

)
φ
)

17



=
1

v − u

(
eivA − eiuA

)
e−iuBφ+

1

v − u

(
eivA − eiuA

) (
e−ivB − e−iuB

)
φ

+
1

v − u
eiuA

(
e−ivB − e−iuB

)
φ.

Using Theorem 2.2 we get that

1

v − u

(
eivA − eiuA

)
e−iuBφ→ ieiuAAe−iuB, v → u,

and
1

v − u

(
e−ivB − e−iuB

)
φ→ −iBe−iuBφ, v → u,

so that
1

v − u
eiuA

(
e−ivB − e−iuB

)
φ→ −ieiuABe−iuBφ, v → u.

The second term may be rewritten as

1

v − u

(
eivA − eiuA

) (
e−ivB − e−iuB

)
φ =

(
eivA − eiuA

) 1

v − u

(
e−ivB − e−iuB

)
φ.

Here,
(
eivA − eiuA

)
converges strongly to 0 and 1

v−u

(
e−ivB − e−iuB

)
φ→ −ie−iuBBφ

so that the second term in fact converges to zero. This achieves a proof of (3.5).

(2) We claim that for all t > s > T0

||η(t)− η(s)|| ≤
∫ t

s

||η′(u)|| du =

∫ t

s

∣∣∣∣(B − A)e−iuBφ
∣∣∣∣ du. (3.6)

For ψ ∈ H, the map

R → C, t 7→ ⟨η(t), ψ⟩

is continuous and differentiable and, in view of (3.5), its derivative is given by

dψ(t) :=
⟨
(B − A)e−itBφ, ie−itAψ

⟩
.

Clearly, dψ(·) depends continuously on t for ψ ∈ D(A) as

dψ(t) =
⟨
Be−itBφ, ie−itAψ

⟩
−
⟨
Ae−itBφ, ie−itAψ

⟩
=
⟨
e−itBBφ, ie−itAψ

⟩
−
⟨
e−itBφ, ie−itAAψ

⟩
is obviously continuously in t. In view of the Fundamental Theorem of Calculus,

⟨(η(t)− η(s))φ, ψ⟩ =
∫ t

s

⟨
(B − A)e−iuBφ, ie−iuAψ

⟩
du.

As D(A) ⊂ H is dense,

||(η(t)− η(s))φ|| = sup
||ψ||≤1, ψ∈D(A)

|⟨(η(t)− η(s))φ, ψ⟩|
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≤ sup
||ψ||≤1, ψ∈D(A)

∫ t

s

∣∣⟨(B − A)e−iuBφ, ie−iuAψ
⟩∣∣ du

≤
∫ t

s

∣∣∣∣(B − A)e−iuBφ
∣∣∣∣ du.

This achieves a proof of (3.6). Using (3.4) we infer that

||(η(t)− η(s))φ|| → 0, s, t→ ∞,

and see that

lim
t→∞

eitAe−itBPac(B)φ = lim
t→∞

η(t)

exists for all φ ∈ D.

(3) For ψ ∈ Hac(B)⊥ = D⊥ (as D ⊂ Hac(B) is dense),

eitAe−itBPac(B)ψ = 0

so that limt→∞ eitAe−itBPac(B)ψ exists trivially. We thus know that

lim
t→∞

eitAe−itBPac(B)f

exists for all f ∈ D ⊕ D⊥. Let g ∈ H and ε > 0. There is f ∈ D ⊕ D⊥ with

||f − g|| < ε. We write

W (t) := eitAe−itBPac(B), t ∈ R.

Thus

||W (t)g −W (s)g|| ≤ ||W (t)f −W (s)f ||+ ||W (t)(f − g)||+ ||W (s)(f − g)||
≤ ||W (t)f −W (s)f ||+ 2ε

≤ 3ε,

for s, t ≥ t0, as ||W (t)f −W (s)f || → 0, s, t→ ∞.

We now apply Cook’s method to

A = −∆+ V, B = −∆

in R3. It will be crucial to obtain control on the term
∣∣(eit∆φ) (x)∣∣.

Proposition 3.12. Let H0 := −∆�C∞
c (R3), V ∈ L2(R3) and V bounded, and let

H := H0 + V (so that H0 and H are self-adjoint with D(H) = D(H0)). Then H0 is

purely absolutely continuous, i.e. Hac(H0) = L2(R3), and the wave operators

Ω±(H,H0) = s− lim
t→±∞

eitHe−itH0

exist.

19



Lemma 3.13. Assume that h ∈ C∞(Rd) is real-valued with ∇h(x) ̸= 0 for almost

all x ∈ Rd. Then the multiplication operator Mh in L2(Rd) has purely absolutely

continuous spectrum. In particular: Any non-trivial self-adjoint differential operator

in Rd with constant coefficients has purely absolutely continuous spectrum.

Proof. Exercise 9.

The proof of the first part of Lemma 3.13 uses the Inverse Function Theorem

(and the derivation of the Implicit Function Theorem from the Inverse Function

Theorem). The second part is obtained via the Fourier transform: any (non-trivial)

differential operator is unitarily equivalent to multiplication with a polynomial (dif-

ferent from the zero polynomial). Any non-trivial polynomial however satisfies the

assumption of the first part of Lemma 3.13.

Lemma 3.14. The free propagator e−itH0 in R3 possesses a weak integral kernel

Kt(x, y) :=
1

(4πit)3/2
e−

|x−y|2
4πit , x, y ∈ R3, t ∈ R\{0},

in the sense that, for f ∈ L2(R3),

(
e−itH0f

)
(x) = L2 − lim

R→∞

1

(4πit)3/2

∫
|y|<R

e−
|x−y|2
4πit f(y) dy, a.e.

Proof. Exercise 13.

We will only apply this Lemma for f ∈ C∞
c (R3) where we do not need the

L2-limit.

Corollary 3.15. For t ̸= 0, e−itH0 maps the space L1(R3) continuously to L∞(R3)

and ∣∣∣∣e−itH0u
∣∣∣∣
∞ ≤ c

t3/2
||u||L1(R3) , u ∈ C∞

c (R3).

Proof. For u ∈ C∞
c (R3),

(
e−itH0u

)
(x) =

1

(4πit)3/2

∫
R3

e−
|x−y|2
4πit u(y) dy.

Hence∣∣∣∣e−itH0u
∣∣∣∣
∞ = sup

x∈R3

∣∣e−itH0u(x)
∣∣ ≤ 1

(4πt)3/2

∫
R3

|u(y)| dy ≤ c

t3/2
||u||L1(R3) .
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Proof of Proposition 3.12: We apply Cook’s theorem with D := C∞
c (R3). For

u ∈ C∞
c (R3) we have that∣∣∣∣V e−itH0u

∣∣∣∣ ≤ ||V ||L2(R3)

∣∣∣∣e−itH0u
∣∣∣∣
∞ ≤ c

t3/2
||V ||L2(R3) ||u||L1(R3) .

The function t 7→ t−3/2 is integrable at ±∞ so that the condition (3.4) in Cook’s

theorem is satisfied. �

Suppose that

|V (x)| ≤ c(1 + |x|)−β, x ∈ R3.

If β > 3/2, then V ∈ L2(R3) as
∫∞
0

r2

(1+r)2β
dr <∞. By a suitable choice of the space

D, the result of Proposition 3.12 can be improved regarding the case β > 1.

Theorem 3.16 (Cook-Hack). Let V ∈ L2(R3) + Lr(R3) for some r ∈ (2, 3] and

let V be bounded. Let H0 = −∆�C∞
c (R3) in the Hilbert space H = L2(R3) and

H = H0 + V . Then the wave operators Ω±(H,H0) exist.

Proof. For γ > 0, we consider the functions

φγ(x) := γ3/4e−γ|x|
2/2, x ∈ R3,

and define

D = span
{
φγ(· − a); γ > 0, a ∈ R3

}
.

Then D ⊂ D(H0) = D(H) and D = H, cf. Exercise 12.

(1) We first show that(
e−itH0φγ

)
(x) = α(t)3/4e−

1
2
(α(t)+iβ(t))|x|2 (3.7)

with

α(t) :=
γ

(1 + 4t2γ2)
, t ≥ 0,

and some β : R → R (which is not interesting). To prove (3.7) we make use of the

fact that

(Fφγ)(k) = φ̂γ(k) = cγe
− |k|2

2γ , k ∈ R3,

with suitable numbers cγ, see Exercise 11; here F denotes the Fourier transform in

L2(R3) given by

(Fφ)(k) = φ̂(k) = L2 − lim
R→∞

(2π)−3/2

∫
|x|<R

e−ik·xφ(x) dx,

for φ ∈ L2(R3). By Plancherel’s Theorem, F is unitary with

(F−1ψ)(x) = (F∗ψ)(x) = L2 − lim
R→∞

(2π)−3/2

∫
|k|<R

eik·xψ(k) dk.
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The Fourier transform allows for a functional calculus for the Laplacian, precisely

H0 = F−1M|k|2F , e−itH0 = F−1Me−it|k|2F .

We infer that

Fe−itH0φγ = e−it|k|2φ̂γ(k) = cγe
−|k|2(it+ 1

2γ
) = cγe

− |k|2
2γ(t)

with γ(t) := (γ−1 + 2it)−1. Hence

e−itH0φγ = F−1

(
cγe

− |k|2
2γ(t)

)
= cγc1/γ(t)e

− γ(t)
2

|x|2 .

We set c̃γ(t) := cγc1/γ(t) and compute the real and imaginary part of γ(t):

γ(t) =
1

1
γ
+ 2it

=
γ−1 − 2it

γ−2 + 4t2
=

γ

1 + 4t2γ2︸ ︷︷ ︸
=α(t)

+i
−2t

γ−2 + 4t2︸ ︷︷ ︸
=β(t)

.

As e−itH0 : H → H is unitary, we obtain the constant c̃γ(t) from∣∣∣∣e−itH0φγ
∣∣∣∣ = ||φγ|| ,

where

||φγ||2 = γ3/2
∫
R
e−γ|x|

2

dx =

∫
R
e−|x|2 dx

and ∣∣∣∣e−itH0φγ
∣∣∣∣2 = c̃2γ(t)

∫
R
e−α(t)|x|

2

dx = c̃2γ(t)α(t)
−3/2

∫
R
e−|x|2 dx

so that

c̃2γ(t)α(t)
−3/2 = 1 ⇐⇒ c̃γ(t) = α(t)3/4.

This achieves a proof of (3.7).

(2) Using (3.7) we obtain for M > 0 and |t| ≥ 1/γ the bound∣∣∣∣(1 + |x|)Me−itH0φγ
∣∣∣∣
∞ ≤ c(γ)(1 + |t|)M−3/2. (3.8)

This follows from∣∣∣∣(1 + |x|)Me−itH0φγ
∣∣∣∣
∞ ≤(3.7) sup

x∈R3

(
(1 + |x|)Mα(t)3/4e−

1
2
α(t)|x|2

)
≤ c1

(1 + |t|)3/2
sup
x∈R3

(
(1 + |x|)Me−

1
2
α(t)|x|2

)
and, for |t| ≥ γ−1,

sup
x∈R3

∣∣∣(1 + |x|)Me−
1
2
α(t)|x|2

∣∣∣ ≤ sup
y∈R3

∣∣∣(1 + |t||y|)Me−
1
2
α(t)t2|y|2

∣∣∣
≤ sup

y∈R3

∣∣∣(1 + |t||y|)Me−
1

10γ
|y|2
∣∣∣

≤ c2|t|M .

This proves (3.8).
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(3) We write V = V2 + Vr and deduce that∣∣∣∣V e−itH0φγ
∣∣∣∣
2
≤
∣∣∣∣(1 + |x|)−MV

∣∣∣∣
2

∣∣∣∣(1 + |x|)Me−itH0φγ
∣∣∣∣
∞

≤
(∣∣∣∣(1 + |x|)−MV2

∣∣∣∣
2
+
∣∣∣∣(1 + |x|)−MVr

∣∣∣∣
2

)
c(γ)(1 + |t|)M−3/2

≤ c′(γ)(||V2||2 + ||Vr||r)(1 + |t|)M−3/2,

for all M ∈ (0, 1
2
). Here we have used the trivial estimate∣∣∣∣(1 + |x|)−MV2

∣∣∣∣
2
≤ ||V2||2

and ∣∣∣∣(1 + |x|)−MVr
∣∣∣∣
2
≤
∣∣∣∣(1 + | · |)−M

∣∣∣∣
s
||Vr||r

provided
1

2
=

1

r
+

1

s
;

as r ∈ (2, 3], this defines some s > 6. We now choose M ∈ (0, 1
2
) with Ms > 3 so

that (1+ |x|)−M ∈ Ls(R3). Furthermore M − 3
2
< −1 and we see that

∣∣∣∣V e−itH0φ
∣∣∣∣
2

is integrable at t = ±∞ for all φ ∈ D. The desired result now follows from Cook’s

theorem.

Remark 3.17. a

(1) The proof of Theorem 3.16 shows that it is crucial to obtain precise estimates on

e−itH0φ. A systematic method to produce such estimates is the idea of stationary

phase, cf. [RS-III, pp. 37-46].

(2) The Cook-Hack theorem enables to discuss potentials in R3 that satisfy

|V (x)| ≤ c(1 + |x|)−1−ε, x ∈ R3,

with some ε > 0. Simple scattering theory yet breaks down at the Coulomb

potential, cf. Section 9 in [RS-III] for how to modify quantum scattering theory

to handle the Coulomb case.
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Chapter 4

Kato-Birman Theory

We now turn to the complex of results that we designate as the Kato-Birman Theory.

This theory uses the notion of trace class operators and aims at proving completeness

of the wave operators. Typical assumptions on the perturbation are that B − A or

(B+i)−1− (A+i)−1 are trace class operators. A consequence of the completeness of

the wave operators is that the absolutely continuous parts Aac and Bac are unitarily

equivalent so that in particular σac(A) = σac(B). This situation is quite similar

to Weyl’s essential spectrum theorem; however, instead of assuming that A − B is

compact, we need the much stronger assumption that A − B is trace class here.

From the technical point of view, the following results of the Kato-Birman Theory

are obtained from Pearson’s Theorem.

We begin with a brief overview about the trace class.

Definition 4.1. For 1 ≤ p <∞ let

Bp(H) :=

{
A ∈ B∞(H);

∞∑
j=1

µpj <∞

}
be the p-th Schatten-von Neumann class. Here, B∞(H) denotes the class of compact

operators on H and (µj)j∈N is the sequence of singular values of A ∈ B∞(H), i.e. the

µ2
j are the eigenvalues of A∗A repeated according to their multiplicities and µj ≥ 0

(w.l.o.g.). We call B1(H) the trace class and B2(H) the Hilbert-Schmidt class.

Remark 4.2. There is an analogy between the spaces Bp(H) and ℓp, 1 ≤ p ≤ ∞.

However, ℓ∞ corresponds to L(H) and not to the space of compact operators B∞(H);

in this regard, the notation B0 for the class of compact operators would be more

appropriate.

Theorem 4.3. For 1 ≤ p <∞, Bp(H) is a two-sided ∗-ideal in L(H),

A ∈ Bp(H), λ ∈ C =⇒ A∗ ∈ Bp(H), λA ∈ Bp(H),

A,B ∈ Bp(H) =⇒ A+B ∈ Bp(H),

A ∈ Bp(H), B ∈ L(H) =⇒ AB,BA ∈ Bp(H).
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Proof. See [RS-I, Thm. VI.19] for a proof for p = 1.

The space of compact operators B∞ is closed with respect to the usual operator

norm ||·||L(H). However, the ideals Bp(H) only are closed with respect to certain

stronger norms.

Theorem 4.4. Let 1 ≤ p <∞ and define, for A ∈ Bp(H),

||A||Bp
:=

(
∞∑
j=1

µpj

)1/p

.

Then ||·||Bp
is a norm on Bp and Bp is closed with respect to this norm.

Proof. See [W-I, Thm. 3.22b].

The spaces B1 and B2 have the following remarkable properties.

Theorem 4.5. a

(1) Let A ∈ L(H) and let (ej)j∈N be an orthonormal basis for H. Then the sum∑
j∈N ||Aej||

2 ∈ [0,∞] is independent of the choice of the (ej)j∈N.

(2) For A ∈ B2(H), ||A||2B2
=
∑

j∈N ||Aej||
2 for any orthonormal basis (ej)j∈N for H.

(3) A ∈ B2(H) if and only if
∑

j∈N ||Aej||
2 <∞ for some orthonormal basis (ej)j∈N

for H.

Proof. Exercise 14.

Theorem 4.6. Let Ω ⊂ Rd be open and let A ∈ L(H) with H = L2(Ω). Then A is

a Hilbert-Schmidt operator if and only if there is an integral kernel K ∈ L2(Ω× Ω)

such that

(Af)(x) =

∫
Ω

K(x, y)f(y) dy a.e.

Proof. See [W-I, Thm. 6.11], [RS-I, Thm. VI.23].

Theorem 4.7. A ∈ B1(H) if and only if there are B,C ∈ B2(H) with A = BC.

Proof. Exercise 15.

Given a compact operator A with the singular values µj and the expansion

A∗A =
∞∑
j=1

µ2
j ⟨·, xj⟩xj,

for some orthonormal system (xj)j∈N, we define the absolute value |A| by

|A| :=
∞∑
j=1

µj ⟨·, xj⟩ xj =
√
A∗A.
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Theorem 4.8. a

(1) A ∈ B1(H) if and only if for any orthonormal basis (ej)j∈N for H,∑
j∈N

⟨|A|ej, ej⟩ <∞.

(2) For A ∈ B1(H) and an orthonormal basis (ej)j∈N of H, the trace

tr(A) :=
∑
j∈N

⟨Aej, ej⟩

is well-defined, i.e. the sum converges absolutely and is independent of the choice

of the orthonormal basis (ej)j∈N of H.

Proof. Exercise 16.

Remark 4.9. We denote the eigenvalues of a compact operator A by Λj ∈ C,
j ∈M , where M = ∅, M = N or M = {1, . . . , K} ⊂ N. Note that a non-symmetric

compact operator A may obtain no or only a very small number of eigenvalues. We

denote the algebraic multiplicity of Λj by mj,

mj := sup
k∈N

dimN
[
(A− ΛjI)

k
]
;

this supremum is finite for any j as far as Λj ̸= 0. More precisely: For any Λj ̸= 0

there is a kj ∈ N with

N
[
(A− ΛjI)

kj+1
]
= N

[
(A− ΛjI)

kj
]
,

meaning that for k ≥ kj, the null spaces of (A − ΛjI)
k are equal. By Lidskii’s

theorem, for A ∈ B1(H),

tr(A) =
∑
j∈M

mjΛj,

see [RS-IV, p. 328]. However, we will not apply Lidskii’s theorem henceforth.

Definition 4.10. Let A : D(H) → H be self-adjoint. A vector φ ∈ D(A) is called

a cyclic vector of A if φ ∈ D(Ak) for all k ∈ N and span{φ,Aφ,A2φ, . . . } is dense

in H.

Remark 4.11. The existence of a cyclic vector is a strong claim. Nevertheless,

for A self-adjoint and H separable, one always has a direct sum decomposition

H = ⊕N
n=1Hn, N ∈ N or N = ∞, so that A leaves each Hn invariant and for any n,

there is φn which is cyclic for A�Hn .

Let us provide the following version of the spectral theorem (multiplication oper-

ator form). We establish the unitary equivalence to multiplication with the variable

λ in a suitable L2-space. We assume that H is separable.
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Theorem 4.12 (Spectral theorem). Let A : D(A) → H be a self-adjoint operator

with the spectral family (E(λ))λ∈R and assume that A has a cyclic vector φ. Let µφ
be the Borel measure associated with the function R → C, λ 7→ ⟨E(λ)φ, φ⟩, i.e.

µφ((−∞, t]) = ⟨E(t)φ, φ⟩, t ∈ R. Then there is a unitary operator

U : H → L2(R, dµφ)

with

Ax = U−1MλUx, ∀x ∈ D(A).

Proof. We define the operator U by

U [f(A)φ] := f, f ∈ Cc(R)

and apply the spectral theorem (functional calculus version) to arrive at

||f(A)φ||2 = ⟨f(A)∗f(A)φ, φ⟩
=
⟨
|f(A)|2φ, φ

⟩
=

∫
R
|f(λ)|2 d ⟨E(λ)φ, φ⟩

=

∫
R
|f(λ)|2 dµφ(λ)

= ||f ||2L2(R, dµφ) .

Let f, g ∈ Cc(R) with f(A) = g(A). By the arguments above, f(x) = g(x) a.e.;

precisely, there is a Borel null set N ⊂ R with µφ(N) = 0 so that f(x) = g(x) for

all x /∈ N . This defines an equivalence relation on Cc(R) so that U as a map on

{f(A)φ; f ∈ Cc(R)} to the set of equivalence classes is well-defined and isometric.

As φ is cyclic, {f(A)φ; f ∈ Cc(R)} is dense in H, and by the B.L.T. theorem, we

can extend U to an isometric mapH → L2(R, dµφ). As Cc(R) is dense in L2(R, dµφ),
the range R(U) is dense in L2(R, dµφ). As U is isometric, its range is closed so that

R(U) = L2(R, dµφ)

and U is unitary.

For f ∈ Cc(R), the fact that U−1f = f(A)φ implies that

(UAU−1f)(λ) = [UAf(A)φ](λ).

We now define f̃ ∈ Cc(R) by f̃(λ) = λf(λ), λ ∈ R, so that f̃(A) = Af(A) and

(UAU−1f)(λ) = [Uf̃(A)φ](λ) = f̃(λ) = λf(λ).

As Cc(R) ⊂ L2(R, dµφ) is dense, this extends to all f ∈ L2(R, dµφ).
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Remark 4.13. If there is no cyclic vector for A, there are Borel measures µn and

there is a unitary operator

U : H →
N⊕
n=1

L2(R, dµn),

with N ∈ N or N = ∞, that provides a spectral representation of A,

(UAU−1φ)n(λ) = λφn(λ),

so that any φ ∈
⊕N

n=1 L2(R, dµn) may be written as an N -tuple (φ1(λ), φ2(λ), . . . ),

cf. [RS-I, Thm. VII.3]. If A has purely discrete spectrum, each eigenvector of A is

associated with one copy of the L2(R, dµn) and µn is a point measure concentrating

its mass on the corresponding eigenvalue.

Let us recall some elementary properties of the Fourier transform: Let

S (Rd) :=
{
φ ∈ C∞(Rd); (1 + |x|)nDαφ(x) is bounded, ∀n ∈ N, α ∈ Nd

0

}
be the Schwartz space and define the Fourier transform F : S (Rd) → S (Rd) by

(Fφ)(k) := (2π)−d/2
∫
Rd

e−ik·xφ(x) dx.

By Plancherel’s Theorem,

||Fφ|| = ||φ|| , φ ∈ S (Rd).

Furthermore, for any ψ ∈ S , there is φ ∈ S with Fφ = ψ; this defines the inverse

F−1 by

φ = F−1ψ := (2π)−d/2
∫
Rd

eik·xψ(k) dk.

As S (Rd) ⊂ L2(Rd) is dense, the B.L.T. theorem yields a unique extension to an

operator F : L2(Rd) → L2(Rd). Here,

(Fu)(k) = L2 − lim
R→∞

(2π)−d/2
∫
|x|<R

e−ik·xu(x) dx, ∀u ∈ L2(Rd).

The Fourier transformation allows for a diagonalization of H0 := −∆�C∞
c (Rd), pre-

cisely

FH0F−1 =M|·|2 ,

whereM|·|2 denotes the maximal multiplication operator in L2(Rd) corresponding to

the function q(k) := |k|2. For all continuous and bounded functions f : R → C,

Ff(H0)F−1 =Mf(|·|2).
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Theorem 4.14 (Riemann-Lebesgue). The Fourier transform F maps L1(Rd)

continuously to (C0(Rd), ||·||∞) where

C0(Rd) :=
{
u ∈ C(Rd);u(x) → 0, |x| → ∞

}
and ||u||∞ = supx∈Rd |u(x)|.

Remark 4.15. Note that F : L1(Rd) → C0(Rd) is not surjective.

We now aim at proving the following two results: Let A and B be self-adjoint

operators with D(A) = D(B). Then:

• A − B ∈ B1(H) =⇒ The wave operators Ω±(A,B) exist and are complete.

(Kato-Rosenblum)

• (A+i)−1− (B+i)−1 ∈ B1(H) =⇒ The wave operators Ω±(A,B) exist and are

complete. (Kuroda-Birman)

Both theorems will be derived from Pearson’s theorem. Regarding Proposition 3.9,

we know that it suffices to show that Ω±(A,B) and Ω±(B,A) exist. Nevertheless,

the methods presented so far are not appropriate as they require that B is “simple”

(cf. the Cook-Hack theorem).

To give a motivation for our approach, we consider the case that B − A is an

operator of rank 1, i.e.

(B − A)φ = ⟨φ, ψ⟩ψ, φ ∈ D(A) = D(B),

for some fixed ψ ∈ H. In order to apply Cook’s method, we seek for φ ∈ Hac(B)

satisfying ⟨
e−itBφ, ψ

⟩
∈ L1(R).

Since φ ∈ Hac(B), the measure d ⟨E(λ)φ, φ⟩ is absolutely continuous. Hence there

is a measurable function f : R → R with |f |2 ∈ L1(R) so that

d ⟨E(λ)φ, φ⟩ = |f(λ)|2 dλ,

where dλ denotes the Lebesgue measure. Using Theorem 4.12 (for B) and the fact

that Uφ = 1 (from the identity Uf(B)φ = f) we get that

⟨
e−itBφ, ψ

⟩
=

∫
R
e−itλg(λ)|f(λ)|2 dλ

where g := Uψ ∈ L2(R, |f(λ)|2 dλ). Therefore,
⟨
e−itBφ, ψ

⟩
is the Fourier transform

of (2π)1/2g|f |2. In general, it is not easy to see when a Fourier transform is in L1

but to get it in L2 is easy. We therefore begin by finding a set of φ ∈ Hac(B) with⟨
e−itBφ, ψ

⟩
∈ L2(R).
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Definition 4.16. LetB be a self-adjoint operator with the spectral family (E(λ))λ∈R.

We denote by M(B) the set of all φ ∈ Hac(B) for which there is R = Rφ > 0 and

f ∈ L∞(R) with supp f ⊂ [−R,R] so that

E(−R)φ = 0, E(R)φ = φ and d ⟨E(λ)φ, φ⟩ = |f(λ)|2 dλ,

where dλ denotes the Lebesgue measure. Furthermore, we define

|||φ||| := ||f ||∞ , φ ∈ M.

Remark 4.17. For any φ ∈ Hac(B) there is f ∈ L2(R) such that d ⟨E(λ)φ, φ⟩ =
|f(λ)|2 dλ, as λ 7→ ⟨E(λ)φ, φ⟩ is absolutely continuous. Hence M is the subspace of

Hac(B) where the densities f are bounded and compactly supported.

Theorem 4.18. M(B) is a linear subspace of Hac(B) and M(B) is dense in Hac(B)

(in the H-norm). Furthermore, |||·||| is a norm on M(B).

Proof. Exercise 18.

Lemma 4.19. For φ ∈ M(B) and ψ ∈ H,∫
R

∣∣⟨e−itBφ, ψ
⟩∣∣2 dt ≤ 2π ||ψ||2 |||φ|||2 .

Proof. Given φ ∈ M(B), there is R > 0 with φ = (E(R) − E(−R))φ. Hence Bkφ

is defined for all k ∈ N. Let

Φ := span{φ,Bφ,B2φ, . . . }

and let Q be the projection on Φ. Trivially, QH = R(Q) = Φ is an invariant

subspace for B, i.e. QB ⊂ BQ and B �Φ∩D(B) is self-adjoint. In Φ, the vector φ is

cyclic for B �Φ∩D(B). As φ ∈ M(B), there is f ∈ L∞(R) with f(λ) = 0 for |λ| > R

and

d ⟨E(λ)φ, φ⟩ = |f(λ)|2 dλ.

According to Theorem 4.12 there is a unitary map

U : QH → L2(R, |f |2 dλ)

with

Uφ = 1,

Ue−itBv = e−itλUv, v ∈ QH.

Let η := UQψ ∈ L2(R, |f |2 dλ) so that⟨
e−itBφ, ψ

⟩
=
⟨
e−itBφ,Qψ

⟩
30



=
⟨
Ue−itBφ,UQψ

⟩
L2(R,|f |2 dλ)

=
⟨
e−itλUφ, η

⟩
L2(R,|f |2 dλ)

=

∫
R
e−itλη(λ)|f(λ)|2 dλ

= (2π)1/2 η̂|f |2(t).

Plancherel’s Theorem now implies that∫
R

∣∣⟨e−itBφ, ψ
⟩∣∣2 dt = 2π

∣∣∣∣∣∣η̂|f |2∣∣∣∣∣∣2
= 2π

∣∣∣∣η|f |2∣∣∣∣2
≤ 2π ||f ||2∞

∫
R
|η(λ)|2|f(λ)|2 dλ.

Now ||f ||∞ = |||φ||| and the fact that∫
R
|η(λ)|2|f(λ)|2 dλ = ||η||2L2(R,|f |2 dλ) = ||Qψ||2 ≤ ||ψ||2

yield the desired result.

Lemma 4.20. For any φ ∈ M(B), e−itBφ
w−→ 0 as t → ±∞. If C is compact,

then
∣∣∣∣Ce−itBφ

∣∣∣∣→ 0 as t→ ±∞.

Proof. Let Q, U and f ∈ L2(R) be as in the proof of Lemma 4.19. Given ψ ∈ H,

we write η := UQψ ∈ L2(R, |f |2 dλ) again and recall that⟨
e−itBφ, ψ

⟩
= (2π)1/2 η̂|f |2(t).

As η ∈ L2(R, |f |2 dλ), we infer that η|f | ∈ L2(R, dλ) and, as f ∈ L2(R, dλ), the
Cauchy-Schwarz inequality implies that η|f |2 ∈ L1(R, dλ). Hence

⟨
e−itBφ, ψ

⟩
is the

Fourier transform of an L1-function. By the Riemann-Lebesgue Lemma,⟨
e−itBφ, ψ

⟩
→ 0, t→ ±∞,

and as ψ ∈ H is arbitrary,

e−itBφ
w−→ 0, t→ ±∞.

Let C be compact and assume for a contradiction that lim supt→∞
∣∣∣∣Ce−itBφ

∣∣∣∣ > 0.

Then there exist δ > 0 and a sequence tk → ∞ with
∣∣∣∣Ce−itkBφ

∣∣∣∣ > δ for all k ∈ N.
The compactness of C and

⟨
e−itBφ, ψ

⟩
→ 0 however imply that Ce−itkBφ → 0 as

k → ∞.
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Lemma 4.21. Let A and B be self-adjoint operators and let C ∈ B1(H). Then the

operator K defined by

Kφ :=

∫ 1

0

(
eiuACe−iuBφ

)
du, φ ∈ H,

is compact.

Proof. Let (φn)n∈N with φn
w−→ 0 and ||φn|| ≤ 1 be given. We show that

sup
||w||≤1

| ⟨Kφn, w⟩ | → 0, n→ ∞.

Assume that ||w|| ≤ 1 henceforth. Given C ∈ B1(H), we can find (λk)k∈N ⊂ (0,∞)

so that
∑

k∈N λk <∞ and orthonormal systems (xk)k∈N, (yk)k∈N so that

C =
∑
k∈N

λk ⟨·, xk⟩ yk.

We now conclude that⟨∫ 1

0

(
eiuACe−iuBφn

)
du,w

⟩
=

∫ 1

0

⟨
eiuACe−iuBφn, w

⟩
du

=

∫ 1

0

⟨
Ce−iuBφn, e

−iuAw
⟩
du

=

∫ 1

0

∑
k∈N

λk
⟨
e−iuBφn, xk

⟩ ⟨
yk, e

−iuAw
⟩
du

and, as |
⟨
yk, e

−iuAw
⟩
| ≤ ||yk||

∣∣∣∣e−iuAw
∣∣∣∣ ≤ 1,∣∣∣∣⟨∫ 1

0

(
eiuACe−iuBφn

)
du,w

⟩∣∣∣∣ ≤ ∫ 1

0

∑
k∈N

λk
∣∣⟨e−iuBφn, xk

⟩∣∣ du.
Given ε > 0, we find N ∈ N so that

∑
k>N λk < ε. Let Λ := maxk∈N λk so that

| ⟨Kφn, w⟩ | ≤ Λ
N∑
k=1

∫ 1

0

∣∣⟨e−iuBφn, xk
⟩∣∣ du+ ε.

For any k ∈ N and all u ∈ [0, 1],
⟨
e−iuBφn, xk

⟩
=
⟨
φn, e

iuBxk
⟩
→ 0 as n → ∞. By

Lebesgue’s dominated convergence theorem,∫ 1

0

∣∣⟨e−iuBφn, xk
⟩∣∣ du→ 0, n→ ∞.

This completes the proof.
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Remark 4.22. In the proof of Lemma 4.21, we could also make use of the com-

pactness of the sets

Mk := {eiuBxk, 0 ≤ u ≤ 1}

which follows from the compactness of [0, 1] and the continuity of the map u 7→
eiuBxk. We then conclude that ⟨φn, z⟩ → 0 uniformly for all z ∈Mk.

We will derive the key results of the Kato-Birman theory from the following

theorem.

Theorem 4.23 (Pearson). Let A and B be self-adjoint operators with D(A) =

D(B). Let J be a bounded operator so that

C := AJ − JB ∈ B1(H). (4.1)

Then the strong limits

Ω±(A,B; J) := s− lim
t→±∞

eitAJe−itBPac(B)

exist.

Remark 4.24. a

(1) We will apply Pearson’s theorem with J = I and J = (A+ i)−1(B + i)−1.

(2) The assumption (4.1) in Pearson’s theorem should be understood in the following

manner: For φ ∈ D(B) = D(A), Jφ ∈ D(B) and the closure of the operator

(AJ − JB)�D(B) is trace class.

Proof. We write

W (t) := eitAJe−itB

and consider the strong limit of W (t) for t→ ∞. By Theorem 4.18, M(B) is dense

in Hac(B) so that it suffices to show that limt→∞W (t)φ exists for all φ ∈ M(B).

Thus we have to show that

lim
t→∞

sup
s>t

||(W (t)−W (s))φ||2 = 0, ∀φ ∈ M(B).

(1) Let X ∈ L(H). Then the map

R → L(H), t 7→ eitBXe−itBu

is strongly continuous for any u ∈ H. In particular, the Riemann integral

Fab(X)u :=

∫ b

a

eitBXe−itBu dt, a < b,

exists and defines an operator Fab(X) ∈ L(H). Let us now prove that

W (t)∗W (s)− eiaBW (t)∗W (s)e−iaB = F0a(Y (t, s)) (4.2)
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with

Y (t, s) := −i
[
eitBJ∗e−i(t−s)ACe−isB − eitBC∗e−i(t−s)AJe−isB

]
.

Let

Q(b) := eibBW (t)∗W (s)e−ibB

and observe that

d

db
Q(b) = ieibB

[
BeitBJ∗e−i(t−s)AJe−isB − eitBJ∗e−i(t−s)AJe−isBB

]
e−ibB.

As JB = AJ − C and BJ∗ = J∗A− C∗,

BeitBJ∗ = eitBBJ∗ = eitBJ∗A− eitBC∗

and

Je−isBB = JBe−isB = AJe−isB − Ce−isB.

Hence

d

db
Q(b) = ieibB

[
eitBJ∗Ae−i(t−s)AJe−isB − eitBC∗e−i(t−s)AJe−isB

− eitBJ∗e−i(t−s)AAJe−isB + eitBJ∗e−i(t−s)ACe−isB
]
e−ibB.

Using that e−i(t−s)AA = Ae−i(t−s)A, the first and the third term cancel out so that

d

db
Q(b) = −eibBY (t, s)e−ibB.

Finally,

W (t)∗W (s)− eiaBW (t)∗W (s)e−iaB = Q(0)−Q(a)

= −
∫ a

0

dQ

db
(b) db

=

∫ a

0

eibBY (t, s)e−ibB db

= F0a(Y (t, s)).

(2) As in the proof of Cook’s theorem, cf. (3.5),

W (t)−W (s) = i

∫ t

s

eiuACe−iuB du.

By Lemma 4.21, W (t)−W (s) is compact. Applying Lemma 4.20, we get that

lim
a→∞

∣∣∣∣eiaBW ∗(t)(W (t)−W (s))e−iaBφ
∣∣∣∣ = 0, ∀φ ∈ M(B).

Eq. (4.2) shows that

W (t)∗(W (t)−W (s)) = F0a(Y (t, t)− Y (t, s)) + eiaBW (t)∗(W (t)−W (s))e−iaB

so that for φ ∈ M(B),

⟨φ,W (t)∗(W (t)−W (s))φ⟩ = lim
a→∞

⟨φ, F0a(Y (t, t)− Y (t, s))φ⟩ . (4.3)

34



(3) As C ∈ B1(H), we have the representation

C =
∑
n∈N

λn ⟨·, φn⟩ψn

with λn > 0,
∑

n∈N λn <∞ and orthonormal systems (φn)n∈N and (ψn)n∈N. In this

step, we claim that if X is a bounded operator and a > 0, then∣∣⟨F0a

(
eiuBXCe−iuB

)
φ, φ

⟩∣∣ ≤ (2π ||C||B1(H)

)1/2
||X|| |||φ|||

×

[∑
n∈N

λn

∫ ∞

u

∣∣⟨φn, e−ixBφ
⟩∣∣2 dx

]1/2
. (4.4)

To prove (4.4), we observe that the left-hand side reads∣∣∣∣⟨∫ a

0

eitBeiuBXCe−iuBe−itBφ dt, φ

⟩∣∣∣∣ = ∣∣∣∣∫ a

0

⟨
Ce−i(t+u)Bφ,X∗e−i(t+u)Bφ

⟩
dt

∣∣∣∣
=

∣∣∣∣∣∑
n∈N

∫ a

0

λn
⟨
e−i(t+u)Bφ, φn

⟩ ⟨
ei(t+u)BXψn, φ

⟩
dt

∣∣∣∣∣
=

∣∣∣∣∣∑
n∈N

λn

∫ u+a

u

⟨
e−ixBφ, φn

⟩ ⟨
Xψn, e

−ixBφ
⟩
dx

∣∣∣∣∣
≤
∑
n∈N

λn

(∫ u+a

u

∣∣⟨e−ixBφ, φn
⟩∣∣2 dx)1/2(∫ u+a

u

∣∣⟨Xψn, e−ixBφ
⟩∣∣2 dx)1/2

≤

(∑
n∈N

λn

∫ ∞

u

∣∣⟨e−ixBφ, φn
⟩∣∣2 dx)1/2(∑

n∈N

λn

∫ ∞

u

∣∣⟨Xψn, e−ixBφ
⟩∣∣2 dx)1/2

where we have first used the Cauchy-Schwarz inequality for integrals and then for

sums. In view of Lemma 4.19,∫
R

∣∣⟨Xψn, e−ixBφ
⟩∣∣2 dx ≤ 2π ||Xψn||2 |||φ|||2 ,

so that ∑
n∈N

λn

∫ ∞

u

∣∣⟨Xψn, e−ixBφ
⟩∣∣2 dx ≤

(∑
n∈N

λn

)
2π ||X||2 |||φ|||2

≤ 2π ||C||B1(H) ||X||2 |||φ|||2 .

This completes the proof of (4.4).

(4) In this final step, we combine the results obtained so far. Observe that

||((W (t)−W (s))φ||2 = ⟨(W (t)−W (s))φ, (W (t)−W (s))φ⟩
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= ⟨W (t)∗(W (t)−W (s))φ, φ⟩ − ⟨W (s)∗(W (t)−W (s))φ, φ⟩
=(4.3) lim

a→∞
⟨F0a(Y (t, t)− Y (t, s))φ, φ⟩

+ lim
a→∞

⟨F0a(Y (s, s)− Y (s, t))φ, φ⟩

so that

||(W (t)−W (s))φ||2 ≤ lim sup
a→∞

| ⟨F0a(Y (t, t))φ, φ⟩ |+ lim sup
a→∞

| ⟨F0a(Y (t, s))φ, φ⟩ |

+ lim sup
a→∞

| ⟨F0a(Y (s, s))φ, φ⟩ |+ lim sup
a→∞

| ⟨F0a(Y (s, t))φ, φ⟩ |.

(4.5)

By the definition of Y (q, r),

⟨F0a(Y (q, r))φ, φ⟩ = −i
⟨
F0a

(
eiqBJ∗e−i(q−r)ACe−irB

)
φ, φ

⟩
+ i
⟨
F0a

(
eiqBC∗e−i(q−r)AJe−irB

)
φ, φ

⟩
so that the right-hand side of (4.5) yields 8 terms of the form

lim sup
a→∞

∣∣⟨F0a

(
eiqBJ (∗)e−i(q−r)AC(∗)e−irB

)
φ, φ

⟩∣∣ ,
with q, r ∈ {s, t}, J (∗) ∈ {J, J∗} and C(∗) ∈ {C,C∗}; note that the order of J (∗)

and C(∗) may be interchanged. By (4.4), any of the 8 terms can be estimated by∣∣⟨F0a

(
eiqBJ (∗)e−i(q−r)AC(∗)e−irB

)
φ, φ

⟩∣∣
≤
(
2π ||C||B1(H)

)1/2
||J || |||φ|||

(∑
n∈N

λn

∫ ∞

min{q,r}

∣∣⟨e−ixBφ, φn
⟩∣∣2 dx

)1/2

.

(4.6)

By virtue of Lemma 4.19,

||W (t)φ−W (s)φ||2 ≤ 16π ||C||B1(H) ||J || |||φ|||
2 .

Furthermore, by Lemma 4.19, there is a constant c0 so that∫
R

∣∣⟨e−ixBφ, φn
⟩∣∣2 dx ≤ c0, ∀n ∈ N.

Together with λn ≥ 0 and
∑

n∈N λn < ∞, Beppo Levi’s monotone convergence

theorem yields that the function

R ∋ x 7→
∑
n∈N

λn
∣∣⟨e−ixBφ, φn

⟩∣∣2
is in L1(R). By Lebesgue’s dominated convergence theorem, the last factor on the

right-hand side of (4.6) becomes arbitrarily small,∑
n∈N

λn

∫ ∞

min{s,t}

∣∣⟨e−ixBφ, φn
⟩∣∣2 dx < ε,

for t sufficiently large and s > t. This completes our proof.
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Theorem 4.25 (Kato-Rosenblum). Let A and B be self-adjoint operators with

D(A) = D(B) and assume that A−B ∈ B1(H). Then the wave operators Ω±(A,B)

exist and are complete.

Proof. The assumptions of Pearson’s theorem are satisfied for J = I. Hence the wave

operators Ω±(A,B) exist. As the assumptions are symmetric in A and B, the wave

operators Ω±(B,A) also exist. The theorem now follows from Proposition 3.9.

For applications to Schrödinger operators in R3, the following theorem is very

suitable.

Theorem 4.26 (Kuroda-Birman). Let A and B be self-adjoint with D(A) =

D(B) and assume that

(A+ i)−1 − (B + i)−1 ∈ B1(H).

Then the wave operators Ω±(A,B) exist and are complete.

Proof. We want to apply Pearson’s theorem with

J := (A+ i)−1(B + i)−1.

As J : H → D(A) = D(B), one easily sees that for φ ∈ D(A),

(AJ − JB)φ = (A(A+ i)−1(B + i)−1 − (A+ i)−1(B + i)−1B)φ

= [((A+ i)− i)(A+ i)−1(B + i)−1 − (A+ i)−1(B + i)−1((B + i)− i))]φ

= (B + i)−1φ− i(A+ i)−1(B + i)−1φ− (A+ i)−1φ+ i(A+ i)−1(B + i)−1φ

= (B + i)−1φ− (A+ i)−1φ.

Hence

AJ − JB = (B + i)−1 − (A+ i)−1 ∈ B1(H).

According to Pearson’s theorem, the strong limits

s− lim
t→±∞

eitA(A+ i)−1(B + i)−1e−itBPac(B)

exist. We now consider vectors of type (B + i)φ with φ ∈ Hac(B) as the subspace

{(B + i)φ;φ ∈ Hac(B) ∩D(B)} is dense in Hac(B). It follows from

(B + i)−1e−itBPac(B)(B + i)φ = (B + i)−1(B + i)e−itBPac(B)φ = e−itBφ

that the strong limits

Λ±(A) := s− lim
t→±∞

eitA(A+ i)−1e−itBPac(B)
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exist. The compactness of (A + i)−1 − (B + i)−1 together with Lemma 4.20 and a

simple approximation argument yields that

s− lim
t→±∞

[
(A+ i)−1 − (B + i)−1

]
e−itBPac(B) = 0.

Thus the existence of Λ±(A) implies that

Λ±(B) := s− lim
t→∞

eitA(B + i)−1e−itBPac(B)

exist. Applying Λ±(B) to elements of the form (B + i)φ, φ ∈ Hac(B), we conclude

that Ω±(A,B) exist. It follows from the symmetry of our assumption in A and B

that Ω±(B,A) exist and thus completeness holds.

Let us consider a typical application of Theorem 4.26.

Example 4.27. Let H0 := −∆�C∞
c (R3) and H = H0 + V with V ∈ L1(R3) and V

bounded. We show that

(H0 + 1)−1 − (H + 1)−1 ∈ B1(L2(R3))

so that in view of Theorem 4.26 the wave operators Ω±(H,H0) exist and are com-

plete. By the second resolvent equation,

(H + i)−1 − (H0 + i)−1 = (H0 + i)−1V (H + i)−1

= (H0 + i)−1V [(H0 + i)−1 + (H + i)−1 − (H0 + i)−1]

= (H0 + i)−1V (H0 + i)−1 + (H0 + i)−1V (H0 + i)−1V (H + i)−1. (4.7)

Fourier analysis shows that (H0 + i)−1 has an integral kernel G = G(x, y) satisfying

|G(x, y)| ≤ 1

4π

e−|x−y|

|x− y|
,

cf. [RS-II, p. 58f.]. Hence |V |1/2(H0 + i)−1 has the integral kernel GV (x, y) :=

|V |1/2(x)G(x, y) with

|GV (x, y)| ≤
1

4π
|V (x)|1/2 e

−|x−y|

|x− y|
.

Furthermore, GV ∈ L2(R3×3) as∫
R6

|GV (x, y)|2 dx dy ≤ 1

16π2

∫
R3

|V (x)|
∫
R3

e−2|x−y|

|x− y|2
dy dx

=
1

16π2

∫
R3

|V (x)|
(∫

R3

e−2|y|

|y|2
dy

)
dx

= c0

∫
R3

|V (x)| dx
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with a suitable constant c0 > 0; note that
∫∞
0

e−2r

r2
r2 dr < ∞. As V ∈ L1(R3), the

operator |V |1/2(H0 + i)−1 is Hilbert-Schmidt and so

(H0 + i)−1|V |1/2|V |1/2(H0 + i)−1 ∈ B1(L2(R3)).

As V (H + 1)−1 is bounded and B1(L2(R3)) is an ideal, the second summand on the

right-hand side of (4.7) is also trace class.

Remark 4.28. a

(1) For d ≥ 4, it is not possible to obtain (H + 1)−1 − (H0 + 1)−1 ∈ B1(L2(Rd)).

However, with suitable assumptions on V one can achieve that

(H + i)−k − (H0 + i)−k ∈ B1(L2(Rd)),

for some k ∈ N, k > d/2. Indeed, this suffices to obtain the existence and

completeness of the wave operators, cf. [RS-III, Thm. XI.12].

(2) We have the following invariance principle for the wave operators, cf. [RS-III,

Thm. XI.11] for a more sophisticated version: Let φ ∈ C2(R;R) with φ′ > 0.

Then

Ω±(φ(A), φ(B)) = Ω±(A,B)

and if the wave operators exist either on the left-hand or the right-hand side

and are complete, the same holds true for the wave operators on the other side

of the equation.
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Chapter 5

A one-dimensional scattering

problem

Let us consider a simple and (under suitable conditions) explicitly solvable scattering

problem in L2(R). Let V ∈ L2(R) with compact support, i.e. there is a > 0 such

that supp V ⊂ [−a, a]. We define operators A and B by

Au := −d2u

dx2
+ V u, Bu := −d2u

dx2

with

D(A) = D(B) = W 2
2 (R) = {u ∈ L2(R);u, u′ ∈ ACloc(R), u′, u′′ ∈ L2(R)}.

Then A and B are self-adjoint operators in H = L2(R) (Friedrichs extension, Kato-

Rellich theorem). By the arguments in Example 4.27, the wave operators Ω±(A,B)

exist and are complete. Let

U1 : L2(R) → L2(0,∞)⊕ L2(0,∞)

be defined by

(U1f)(k) = f̂(k) =

(
f̂1(k)

f̂2(k)

)
=

(
L2 − limN→∞

1√
2π

∫ N
−N e−ik·xf(x) dx

L2 − limN→∞
1√
2π

∫ N
−N eik·xf(x) dx

)
.

Then U1 is unitary with the inverse[
U−1
1

(
g1
g2

)]
(x) = L2 − lim

N→∞

1√
2π

∫ N

0

[
eik·xg1(k) + e−ik·xg2(k)

]
dk

which follows from the fact that this is just a representation of the Fourier transform

(and its inverse). In particular,

U1BU
−1
1 =

(
k2 0

0 k2

)
in L2(0,∞)2. (5.1)
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This is basically the spectral representation for B.

It is important to note that the functions e±ik·x are solutions to the ordinary

differential equation −u′′ − λu = 0, λ = k2, but they are not elements of L2(R). We

say that e±ik·x are generalized eigenfunctions of B with the generalized eigenvalue

λ = k2 > 0. Let us now prove the existence of solutions e1(·, k) and e2(·, k) to

−u′′ + V u− k2u = 0 of the form

e1(x, k) =

{
eik·x + r1(k) e

−ik·x, x < −a,
t(k) eik·x, x > a,

(5.2)

e2(x, k) =

{
t(k) e−ik·x, x < −a,
e−ik·x + r2(k) e

ik·x, x > a.
(5.3)

We will show that

Ŝ(k) =

(
t(k) r2(k)

r1(k) t(k)

)
is the scattering matrix for our problem and hence Ŝ(k) is unitary. We will also

need the unitary operator

U2 : L2(R) → L2(0,∞)⊕ L2(0,∞)

given by

(U2f)(k) :=

(
L2 − limN→∞

1√
2π

∫ N
−N e1(x, k)f(x) dx

L2 − limN→∞
1√
2π

∫ N
−N e2(x, k)f(x) dx

)
.

Note that[
U−1
2

(
g1
g2

)]
(x) = L2 − lim

N→∞

1√
2π

∫ N

0

[e1(x, k)g1(k) + e2(x, k)g2(k)] dk

as
⟨
h, U−1

2 g
⟩
L2(R)

= ⟨h, U∗
2 g⟩L2(R) = ⟨U2h, g⟩L2(0,∞)2 . Furthermore,

U2A+U
−1
2 =

(
k2 0

0 k2

)
, A+ = AEA(0,∞), (5.4)

where EA(·) denotes the family of spectral projections for A. A proof of this spectral

representation and the fact that U2 is unitary can be found in [W-II, Ch. 23.2]. We

omit further details in order to be able to focus on the physical relevance of the

quantities r1(k), r2(k) and t(k).

In view of the representations (5.1) and (5.4), the wave operators Ω±(A,B) obey

for any t ∈ R

U2Ω±(A,B)U−1
1

(
e−itk2 0

0 e−itk2

)
= U2Ω±(A,B)e−itBU−1

1

= U2e
−itAΩ±(A,B)U−1

1
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=

(
e−itk2 0

0 e−itk2

)
U2Ω±(A,B)U−1

1 ;

here, we have used that

Ω+(A,B)e−itB = s− lim
τ→∞

eiτAe−iτB Pac(B)︸ ︷︷ ︸
=I

e−itB

= s− lim
τ→∞

eiτAe−i(τ+t)BPac(B)

= s− lim
σ→∞

ei(σ−t)Ae−iσBPac(B)

= e−itAΩ+(A,B)

and similarly Ω−(A,B)e−itB = e−itAΩ−(A,B). Consequently, the operators

U2Ω±(A,B)U−1
1 and

(
e−itk2 0

0 e−itk2

)
commute. But then U2Ω±(A,B)U−1

1 also commutes withMk and hence withMχ(−∞,s]

for any s ∈ R, as (Mχ(−∞,s]
)s∈R is the spectral family for Mk. This allows to apply

[W-II, Thm. 21.14] saying that U2Ω±(A,B)U−1
1 is multiplication with a 2×2-matrix

ω±(k) =

(
ω±
11(k) ω±

12(k)

ω±
21(k) ω±

22(k)

)
.

As Ω±(A,B) are isometric, ω±(k) is a.e. unitary. The scattering matrix

Ŝ = U1SU
−1
1 = U1Ω

∗
+Ω−U

−1
1 = (U1Ω

∗
+U

−1
2 )(U2Ω−U

−1
1 ) = (U2Ω+U

−1
1 )∗(U2Ω−U

−1
1 )

corresponds to multiplication with ω+(k)∗ω−(k).

We now make use of

U2Ω±f = (U2Ω±U
−1
1 )U1f = ω±(·)

(
f̂1(·)
f̂2(·)

)
to obtain that, by the definition of the wave operators,

0 = lim
t→±∞

∣∣∣∣Ω±f − eitAe−itBf
∣∣∣∣2

= lim
t→±∞

∣∣∣∣∣∣Ω±f − U−1
2 eit diag(k

2,k2)U2U
−1
1 e−it diag(k2,k2)U1f

∣∣∣∣∣∣2
= lim

t→±∞

∣∣∣∣∣∣U−1
2 e−it diag(k2,k2)U2Ω±f − U−1

1 e−it diag(k2,k2)U1f
∣∣∣∣∣∣2

= lim
t→±∞

1

2π

∫
R
|I(x, t)|2 dx

where

I(x, t) =

∫ ∞

0

{
e1(x, k)e

−itk2 [ω±
11(k)f̂1(k) + ω±

12(k)f̂2(k)]
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+ e2(x, k)e
−itk2 [ω±

21(k)f̂1(k) + ω±
22(k)f̂2(k)]− e−ik(kt−x)f̂1(k)− e−ik(kt+x)f̂2(x)

}
dk.

In particular, we conclude that∫ −a

−∞
|I(x, t)|2 dx→ 0 and (5.5)∫ ∞

a

|I(x, t)|2 dx→ 0 as t→ ±∞. (5.6)

We plug (5.2) and (5.3) into (5.5) to obtain∫ −a

−∞

∣∣∣∣ ∫ ∞

0

{
e−ik(kt−x)[ω±

11(k)f̂1(k) + ω±
12(k)f̂2(k)]

+ e−ik(kt+x)r1(k)[ω
±
11(k)f̂1(k) + ω±

12(k)f̂2(k)]

+ e−ik(kt+x)t(k)[ω±
21(k)f̂1(k) + ω±

22(k)f̂2(k)]

− e−ik(kt−x)f̂1(k)− e−ik(kt+x)f̂2(k)

}
dk

∣∣∣∣2dx→ 0, t→ ±∞. (5.7)

According to Exercise 21, the terms with e−ik(kt−x) in (5.7) correspond to waves

traveling from the left to the right, so that, as t→ ∞,

0 = lim
t→∞

∫ −a

−∞

∣∣∣∣ ∫ ∞

0

e−ik(kt+x)
{
r1(k)[ω

+
11(k)f̂1(k) + ω+

12(k)f̂2(k)]

+ t(k)[ω+
21(k)f̂1(k) + ω+

22(k)f̂2(k)]− f̂2(k)
}
dk

∣∣∣∣2dx.
Similarly, as the terms with e−ik(kt+x) in (5.7) correspond to waves traveling from

the right to the left, we get for t→ −∞

0 = lim
t→−∞

∫ −a

−∞

∣∣∣∣ ∫ ∞

0

e−ik(kt−x)[ω−
11(k)f̂1(k) + ω−

12(k)f̂2(k)− f̂1(k)
]
dk

∣∣∣∣2dx.
As the remaining waves travel to ±∞, we may replace

∫ −a
−∞ . . . dx by

∫∞
−∞ . . . dx so

that

lim
t→∞

∣∣∣∣∣∣∣∣F{e−it|·|2[r1(·)(ω+
11(·)f̂1(·) + ω+

12(·)f̂2(·))
]

+t(·)
[
ω+
21(·)f̂1(·) + ω+

22(·)f̂2(·)
]
− f̂2(·)

}∣∣∣∣∣∣∣∣ = 0,

lim
t→−∞

∣∣∣∣∣∣∣∣F−1
{
e−it|·|2[ω−

11(·)f̂1(·) + ω−
12(·)f̂2(·)− f̂1(·)

]}∣∣∣∣∣∣∣∣ = 0

In view of Plancherel’s Theorem and the fact that |e−itk2 | = 1, we conclude that

f̂1(k) = ω−
11(·)f̂1(k) + ω−

12(k)f̂2(k), (5.8)

43



f̂2(k) = r1(k)[ω
+
11(k)f̂1(k) + ω+

12(k)f̂2(k)] + t(k)[ω+
21(k)f̂1(k) + ω+

22(k)f̂2(k)]. (5.9)

An analogous computation for
∫∞
a
. . . dx shows that

f̂2(k) = ω−
21(k)f̂1(k) + ω−

22(k)f̂2(k), (5.10)

f̂1(k) = t(k)[ω+
11(k)f̂1(k) + ω+

12(k)f̂2(k)] + r2(k)[ω
+
21(k)f̂1(k) + ω+

22(k)f̂2(k)]. (5.11)

Now (5.8) and (5.10) imply that

ω−(k) =

(
1 0

0 1

)
and by (5.9) and (5.11), (

t(k) r2(k)

r1(k) t(k)

)
ω+(k) =

(
1 0

0 1

)
.

Hence ω+(k) is unitary and

ω+(k)∗ = ω+(k)−1 =

(
t(k) r2(k)

r1(k) t(k)

)
and

Ŝ(k) = ω+(k)∗ω−(k) =

(
t(k) r2(k)

r1(k) t(k)

)
.

This also explains the physical relevance of the quantities t(·), r1(·) and r2(·): t(k)
is the transmission coefficient, i.e. |t(k)|2 is the rate of an incoming wave that is

transmitted by the potential. Concomitantly, arg t(k) is the corresponding phase

shift. We call r1(k) and r2(k) the reflection coefficients as |r1(k)|2 is the amount of

a right traveling wave that is reflected and |r2(k)|2 is the amount of a left traveling

wave that is reflected. Again, arg rj(k), j ∈ {1, 2}, is the corresponding phase shift.

Example 5.1. Let L > 0 and U ∈ R\{0}. The potential

V (x) =

{
0, x < 0 and x > L,

U, 0 ≤ x ≤ L

corresponds to a potential step for U > 0 and a potential well for U < 0. In [W-II],

it is shown that the Schrödinger equation −u′′ +V u−λu = 0, λ > 0, has a solution

u(x, λ) of the form

u(x, λ) =


a(λ)ei

√
λx + b(λ)e−i

√
λx, x < 0,

c(λ)ei
√
λ−Ux + d(λ)e−i

√
λ−Ux, 0 ≤ x ≤ L,

ei
√
λx, x > L,
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and that the transmission coefficient is 1
|a(λ)|2 . It is an easy exercise to show that

1

|a(λ)|2
=


4λ(λ−U)

4λ(λ−U)+U2 sin2 L
√
λ−U , U < 0,

4λ(λ−U)

4λ(λ−U)+U2 sin2 L
√
λ−U , U > 0 and λ > U,

4λ(U−λ)
4λ(U−λ)+U2 sinh2 L

√
U−λ , U > 0 and λ ∈ (0, U).

For the potential well (U < 0), one concludes that

lim
λ↓0

1

|a(λ)|2
=

{
0, L

√
U ̸= kπ, k ∈ N0,

1, L
√
U = kπ, k ∈ N0.

For the potential step (U > 0), the transmission coefficient increases from 0 to

4(4 + UL2)−1 on [0, U ], cf. Exercise 22.
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