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Preface

This lecture begins with a brief overview about the spectral theorem and its conse-

quences for the spectrum of self-adjoint operators in Hilbert spaces. The key results

are stated mainly without proofs to allow for a quick entry into the relevant aspects

of spectral theory. Then our main goal is to study the spectrum of several classes of

Schrödinger operators and to look at some important examples occurring in math-

ematical physics (e.g. the harmonic oscillator or the hydrogen atom). Searching for

solutions of the IVP for the Schrödinger equation, we will discuss and prove Stone’s

theorem on strongly continuous unitary one-parameter groups. Finally, we will look

at spectral measures that allow for a characterization and a decomposition of the

spectrum of self-adjoint operators and the Hilbert space itself. The lecture will end

with an outlook concerning some aspects of quantum scattering theory.

1



Chapter 1

Overview: The spectral theorem

and the spectrum of self-adjoint

operators in Hilbert space

Let H be a Hilbert space and denote by L(H) the space of bounded operators on

H. An operator P ∈ L(H) is called (orthogonal) projection if P 2 = P = P ∗. For

symmetric operators A,B ∈ L(H), we write A ≤ B if

⟨Au, u⟩ ≤ ⟨Bu, u⟩ , ∀u ∈ H.

For two projections P and Q,

P ≤ Q ⇐⇒ R(P ) ⊂ R(Q) ⇐⇒ PQ = QP = P.

We als comment on different notions of convergence of bounded operators: Let

(An)n∈N ∈ L(H) be a sequence of bounded operators and let A ∈ L(H).

(i) Norm convergence: ||An − A|| → 0, n→ ∞, i.e.

sup{||Anf − Af || ; ||f || ≤ 1} → 0, n→ ∞.

(ii) Strong convergence: ∀f ∈ H : Anf → Af , n→ ∞.

(iii) Weak convergence: ∀f, g ∈ H : ⟨Anf, g⟩ → ⟨Af, g⟩, n→ ∞.

Note: Norm convergence =⇒ strong convergence =⇒ weak convergence.

Definition 1.1. Let (E(λ))λ∈R ⊂ L(H) be a family of projections with the following

properties:

(i) Monotonicity: λ ≤ µ =⇒ E(λ) ≤ E(µ).

(ii) Strong right continuity: ∀λ ∈ R∀f ∈ H : E(λ+ ε)f → E(λ)f , ε ↓ 0.
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(iii) For all f ∈ H, we have that E(λ)f → f , λ→ ∞, and E(λ)f → 0, λ→ −∞.

Then (E(λ))λ∈R ⊂ L(H) is called a spectral family.

Remark 1.2. Why do we need strong convergence in (ii) und (iii)?

(1) Weak convergence + monotonicity imply strong convergence.

(2) Norm convergence + monotonicity of projections imply constance.

Remark 1.3. For any spectral family (E(λ))λ∈R there also exists the strong limit

from the left at λ ∈ R,

E(λ− 0)f := lim
ε↓0

E(λ− ε)f, ∀f ∈ H.

It is easy to see that E(λ− 0) is a projection. It is possible that E(λ− 0) ̸= E(λ).

Example 1.4. Let H = L2(R) and let E(λ) = χ(−∞,λ](x) be multiplication with

the characteristic function for the interval (−∞, λ]. Then (E(λ))λ∈R is a spectral

family.

Example 1.5. Let A ∈ L(H) be symmetric and compact with dimR(A) = ∞, the

eigenvalues λn ∈ R\{0} and an orthonormal basis (un)n∈N of R(A) with Aun = λnun
for n ∈ N. Let

E(λ) :=
∑
λn≤λ

⟨·, un⟩un, λ < 0,

E(λ) := PN(A) +
∑
λn≤λ

⟨·, un⟩un, λ ≥ 0.

Then (E(λ))λ∈R is a spectral family.

Let m : R → R be monotonically increasing and right continuous. For φ ∈ Cc(R)
(i.e. φ is continuous and supp φ is compact, supp φ ⊂ (−R,R) for some R > 0), we

define the Riemann-Stieltjes integral∫ ∞

−∞
φ(x) dm(x) := lim

n→∞

n∑
i=1

φ(xi)[m(xi+1)−m(xi)];

the points xi, i = 1, . . . , n+1, are an equidistant partition of (−R,R) with xi < xi+1

and x1 = −R, xn+1 = R.

For any fixed f ∈ H, the function

R → [0,∞), λ 7→ ⟨E(λ)f, f⟩

is monotonically non-decreasing and right continuous. For φ ∈ Cc(R) with supp φ ⊂
(−R,R), the limit∫

R
φ(λ) d ⟨E(λ)f, f⟩ := lim

n→∞

n∑
j=1

φ(λj)(⟨E(λj+1)f, f⟩ − ⟨E(λj)f, f⟩)
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exists; again the points λj, j = 1, . . . , n+ 1, are an equidistant partition of (−R,R)
with λj < λj+1 and λ1 = −R, λn+1 = R. For this Riemann-Stieltjes integral, we use

the notation ∫
φ(λ) dµf (λ) :=

∫
R
φ(λ) d ⟨E(λ)f, f⟩ .

We also say that the function λ 7→ ⟨E(λ)f, f⟩ generates the Riemann-Stieltjes mea-

sure (or Lebesgue-Stieltjes measure) µf .

Given a spectral family (E(λ))λ∈R, we now look for a self-adjoint operator H so

that

H =

∫
λ dE(λ)

in a suitable sense. For this purpose, we first define the domain

D :=

{
f ∈ H;

∫
λ2 dµf (λ) <∞

}
=

{
f ∈ H; lim sup

R→∞

∫ R

−R

λ2 d ⟨E(λ)f, f⟩ <∞
}
. (1.1)

For f ∈ D and g ∈ H one shows that∣∣∣∣∫ ∞

−∞
λ d ⟨E(λ)f, g⟩

∣∣∣∣2 ≤ Cf ||g||2

with a constant Cf ≥ 0. For all f ∈ D,

H → C, g 7→
∫
λ d ⟨E(λ)f, g⟩

is a continuous anti-linear functional on H. By the Riesz representation theorem,

there is w ∈ H, w = wf , such that

⟨w, g⟩ =
∫
λ d ⟨E(λ)f, g⟩ , ∀g ∈ H.

We now define

Hf := wf , ∀f ∈ D,

i.e. H : D → H is linear and

⟨Hf, g⟩ =
∫
λ d ⟨E(λ)f, g⟩ , ∀g ∈ H. (1.2)

One shows that:

(1) D ⊂ H is dense.

(2) H : D → H is symmetric.

(3) H ± i : D → H is surjective.
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This provides a proof of the following theorem.

Theorem 1.6. Given a spectral family (E(λ))λ∈R there exists a unique self-adjoint

operator H such that

H =

∫
λ dE(λ)

in the sense of (1.1) and (1.2).

Contrariwise but much more difficult to prove we note the following theorem.

Theorem 1.7. Let H : D(H) → H be a self-adjoint operator in the Hilbert space

H. Then there is a unique spectral family (E(λ))λ∈R such that

H =

∫
λ dE(λ),

i.e. the operator obtained for (E(λ))λ∈R in Theorem 1.6 equals H.

Remark 1.8. Theorem 1.6 and Theorem 1.7 are the Spectral Theorem for self-

adjoint operators in Hilbert space. This yields a “diagonalization” of H, in analogy

to the principal axis transformation for symmetric matrices.

Definition 1.9. Let T : D(T ) → H be densely defined and let A ∈ L(H). We say

that A commutes with T if Au ∈ D(T ) for all u ∈ D(T ) and if

[A, T ]u := ATu− TAu = 0, ∀u ∈ D(T ).

Theorem 1.10. Let H : D(H) → H be self-adjoint, let (E(λ))λ∈R be the associated

spectral family and let A ∈ L(H). Then:

[A,H] = 0 ⇐⇒ [A,E(λ)] = 0, ∀λ ∈ R.

Theorem 1.11. Let H : D(H) → H be self-adjoint and let M ⊂ H be a closed

subspace with projection P . We assume that [P,H] = 0 and that there is λ0 ∈ R
such that ⟨Hu, u⟩ ≤ λ0 ||u||2 for all u ∈ M ∩ D(H) and ⟨Hu, u⟩ > λ0 ||u||2 for all

0 ̸= u ∈M⊥ ∩D(H). Then P = E(λ0).

An important application of the spectral theorem for self-adjoint operators in

Hilbert space is the option to study functions of operators: For certain classes of

functions f , one studies

f(H) :=

∫
f(λ) dE(λ)

with the domain

D(f(H)) :=

{
u ∈ H;

∫
|f(λ)|2 d ⟨E(λ)u, u⟩ <∞

}
.
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We will see that e−itH , t ∈ R, generates a strongly continuous group of unitary oper-

ators and that u(t) := e−itHu0 solves the Schrödinger equation providedH = −∆+V

is self-adjoint. On the other hand, e−tH , t ≥ 0 and H ≥ 0, is a strongly continu-

ous semi-group of operators and v(t) := e−tHv0 is a solution to the heat equation

provided H is a self-adjoint extension of −∆. Characteristic functions χ(a,b](H) =

E((a, b]) = E(b)−E(a) yield spectral projections associated with intervals. Another

application is the square root of a non-negative operator.

Theorem 1.12. Let H ≥ 0 be self-adjoint with the spectral family (E(λ))λ∈R. We

define an operator T by setting

D(T ) :=

{
u ∈ H;

∫ ∞

0

λ d ⟨E(λ)u, v⟩ <∞
}

and

T :=

∫ ∞

0

√
λ dE(λ),

i.e.

⟨Tu, v⟩ :=
∫ ∞

0

√
λ d ⟨E(λ)u, v⟩ , ∀u ∈ D(T ),∀v ∈ H.

Then T is a non-negative self-adjoint operator with T 2 = H and T is a square root

of H, denoted as T =
√
H. The (non-negative) square root of H is unique.

Given a self-adjoint operator H in the Hilbert space H with the associated spec-

tral family (E(λ))λ∈R, we now focus on the characterization of the spectrum σ(H)

with the aid of the properties of the E(λ). First of all we recall the denfinition of

the spectrum of some closed operator.

(1) Spectrum and resolvent set. Let T : D(T ) → H be closed. We define the

resolvent set ρ(T ) by

ρ(T ) :=
{
z ∈ C; (T − z) : D(T ) → H bijective , (T − z)−1 ∈ L(H)

}
= {z ∈ C; (T − z) : D(T ) → H bijective} .

For a closed operator T : D(T ) → H, we call

σ(T ) := C\ρ(T )

the spectrum of T .

(2) Point spectrum and continuous spectrum. Let σp(T ) be the point spec-

trum of T given by the set of eigenvalues of T , i.e.

λ ∈ σp(T ) :⇐⇒ N(T − λ) ̸= {0},
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and let σcont(T ) := σ(T )\σp(T ) be the continuous spectrum of T . Trivially,

σ(T ) = σp(T ) ∪ σcont(T ) (disjoint union).

A decomposition of this type holds in particular for self-adjoint operators, as for

self-adjoint operators the residual spectrum is empty.

(3) Discrete spectrum and essential spectrum. Let H : D(H) → H be self-

adjoint. We define σdisc(H), the discrete spectrum of H, as the set of eigenvalues

of H having finite multiplicity and being isolated points of the spectrum. In other

words, λ ∈ σdisc(H) if and only if 0 < dimN(H − λ) < ∞ and if there is ε > 0

with the property σ(H) ∩ (λ − ε, λ + ε) = {λ}. We define σess(H), the essential

spectrum of H, by

σess(H) := σ(H)\σdisc(H).

We thus have the disjoint decomposition

σ(H) = σdisc(H) ∪ σess(H).

Obviously, σess(H) consists of all accumulation points of σ(H) and all eigenval-

ues of infinite multiplicity. In particular, σess(H) is a closed subset of R whereas

σcont(H) is not necessarily closed. We will show later that σess(H) is invariant under

perturbations by symmetric and compact operators.

Theorem 1.13. Let H be a self-adjoint operator in the Hilbert space H with the

spectral family (E(λ))λ∈R.

(1) For ζ ∈ R,

ζ ∈ ρ(H) ⇐⇒ ∃ε > 0 : E(ζ − ε) = E(ζ + ε).

(2) For ζ ∈ ρ(H), ∣∣∣∣(H − ζ)−1
∣∣∣∣ = 1

dist(ζ, σ(H))
.

(3) We have that

H ≥ 0 ⇐⇒ E(λ) = 0, ∀λ < 0.

Proof. To prove “⇐=” in (1), let ε > 0 with E(ζ − ε) = E(ζ + ε). Then

Rζ :=

∫ ∞

−∞
(λ− ζ)−1 dE(λ) ∈ L(H)

with ||Rζ || ≤ ε−1. It is easy to see that (H − ζ)Rζ = I and Rζ(H − ζ) = I�D(H).

“=⇒”: We assume that E(ζ − ε) ̸= E(ζ + ε) for any ε > 0 and choose for any ε > 0
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a function uε ∈ R(E(ζ+ε)−E(ζ−ε)) = R(E(ζ+ε))∩R(E(ζ−ε))⊥ with ||uε|| = 1.

Then uε ∈ D(H) with

||(H − ζ)uε||2 =
∫ ζ+ε

ζ−ε

|λ− ζ|2 d ⟨E(λ)uε, uε⟩ ≤ ε2 ||uε||2 .

Hence H − ζ cannot be inverted continuously so that ζ /∈ ρ(H). To prove (2), we

use that ∣∣∣∣(H − ζ)−1f
∣∣∣∣2 = ∫ ∞

−∞
|λ− ζ|−2 d ⟨E(λ)f, f⟩ , ∀f ∈ H,

and conclude ∣∣∣∣(H − ζ)−1
∣∣∣∣ ≤ 1

dist(ζ, σ(H))
.

As σ(H) is closed, given ζ ∈ ρ(H), we can find some λ0 ∈ σ(H) such that

|λ0 − ζ| = dist(ζ, σ(H)).

From (1) we know that given ε > 0 there is 0 ̸= uε ∈ R(E(λ0 + ε) − E(λ0 − ε)).

Hence ∣∣∣∣(H − ζ)−1uε
∣∣∣∣2 =

∫ λ0+ε

λ0−ε

|λ− ζ|−2 d ⟨E(λ)uε, uε⟩

≥
∫ λ0+ε

λ0−ε

(|λ0 − ζ|+ ε)−2 d ⟨E(λ)uε, uε⟩

= (|λ0 − ζ|+ ε)−2 ||uε||2 ,

as |λ− ζ| ≤ |λ0 − ζ|+ |λ− λ0| ≤ |λ0 − ζ|+ ε. Part (3) is trivial.

We now show that the discontinuities of a spectral family correspond to the point

spectrum of the associated self-adjoint operator whereas the strong continuity of the

E(λ) at λ0 ∈ σ(H) implies λ0 ∈ σcont(H) (and vice versa).

Theorem 1.14. For λ0 ∈ σ(H) we have that

λ0 ∈ σp(H) ⇐⇒ E(·) is not strongly continuous at λ0,

and

λ0 ∈ σcont(H) ⇐⇒ E(·) is strongly continuous at λ0.

Proof. Obviously, E(λ) is strongly continuous at λ0 if and only if E(λ0−0) = E(λ0).

For λ0 ∈ σp(H) and u0 ∈ N(H − λ0) with ||u0|| = 1,

0 = ||(H − λ0)u0||2 =
∫ ∞

−∞
(λ− λ0)

2 d ⟨E(λ)u0, u0⟩ .

Hence ⟨E(·)u0, u0⟩ is constant for λ < λ0 and λ > λ0, i.e. ⟨E(λ)u0, u0⟩ = 0 for

λ < λ0 and ⟨E(λ)u0, u0⟩ = 1 for λ > λ0. Then E(·) is not strongly continuous at
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λ0. On the contrary, assume that E(·) is not strongly continuous at λ0. Then there

is u ∈ H with ||u|| = 1 so that

E(λ0 − 0)u = 0, E(λ0)u = u,

i.e. u ∈ R(E(λ0 − 0))⊥ ∩R(E(λ0)) = R(E(λ0)− E(λ0 − 0)), and hence

||(H − λ0)u||2 =
∫ λ0

λ0−0

(λ− λ0)
2 d ⟨E(λ)u, u⟩ = 0,

i.e. λ0 ∈ σp(H).

The following theorem characterizes the essential and the discrete spectrum of a

self-adjoint operator with the aid of its spectral family.

Theorem 1.15. A number λ ∈ R belongs to σdisc(H) if and only if the following

two properties are satisfied:

(1) There is ε > 0 such that E(·) is constant in (λ− ε, λ) and [λ, λ+ ε).

(2) 0 < dimR(E(λ)− E(λ− 0)) <∞.

Moreover, λ ∈ σess(H) if and only if dimR(E(λ+ε)−E(λ−ε)) = ∞ for any ε > 0.

Proof. The statement concerning σdisc(H) is clear. If λ ∈ σess(H), then λ ∈ σ(H)

and this implies thatE(λ−ε) ̸= E(λ+ε) for any ε > 0. If dimR(E(λ+ε0)−E(λ−ε0))
would be finite for some ε0 > 0, then λ ∈ σdisc(H). To prove the other direction, we

assume for a contradiction that dimR(E(λ+ ε)−E(λ− ε)) = ∞ for any ε > 0 and

that λ ∈ σdisc(H). By (1) we can find η > 0 so that E(·) is constant in the intervals

(λ− η, λ) and [λ, λ+ η). Our assumption implies that dimR(E(λ)−E(λ− 0)) = ∞
which contradicts the assumption λ ∈ σdisc(H).

To characterize the essential spectrum of self-adjoint operators, singular se-

quences are useful tools.

Definition 1.16. Let H : D(H) → H be self-adjoint and let λ ∈ R. A sequence

(un)n∈N ⊂ D(H) is called a singular sequence for H and λ if the following three

properties are satisfied:

(1) ||un|| = 1 or lim infn→∞ ||un|| > 0,

(2) (un)n∈N is a weak null sequence, i.e. un
w−→ 0,

(3) ||(H − λ)un|| → 0.

Singular sequences are sequences of approximate eigenfunctions. We have the fol-

lowing important theorem.
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Theorem 1.17. λ ∈ σess(H) ⇐⇒ There is a singular sequence for H and λ.

Proof. We write

H =

∫ ∞

−∞
λ dE(λ)

and assume that λ0 ∈ σess(H). By Theorem 1.15,

dimR(E(λ0 + ε)− E(λ0 − ε)) = ∞, ∀ε > 0.

Let u1 ∈ R(E(λ0 + 1)− E(λ0 − 1)) with ||u1|| = 1 be given. Then u1 ∈ D(H) and

||(H − λ0)u1||2 =
∫ λ0+1

λ0−1

(λ− λ0)
2 d ⟨E(λ)u1, u1⟩ ≤ 1.

We then choose successively uk ∈ R(E(λ0 + 1/k)−E(λ0 − 1/k)) with ||uk|| = 1 and

⟨uk, uj⟩ = 0 for all j = 1, . . . , k − 1; this is possible as

dimR(E(λ0 + 1/k)− E(λ0 − 1/k)) = ∞, ∀k ∈ N,

and dim span{u1, . . . , uk−1} <∞, i.e.

R(E(λ0 + 1/k)− E(λ0 − 1/k)) ∩ span{u1, . . . , uk−1}⊥ ̸= {0}.

Analogously, we get that uk ∈ D(H) with

||(H − λ0)uk|| ≤ k−1.

Hence (uk)k∈N ⊂ D(H) is a singular sequence for H and λ0. Contrariwise, we

consider a singular sequence (uk)k∈N for H and λ0, i.e.

||uk|| = 1, uk
w−→ 0, ||(H − λ0)uk|| → 0.

First, λ0 ∈ σ(H) since otherwise there would be η > 0 with ||(H − λ0)u|| ≥ η ||u||
for all u ∈ D(H). If λ0 ∈ σdisc(H) then E(·) would be constant on the intervals

(λ0 − ε0, λ0) and [λ0, λ0 + ε0) for some ε0 > 0. Then the sequence (uk)k∈N satisfies

||(H − λ0)uk||2 =
(∫ λ0−ε0

−∞
+

∫ λ0+ε0

λ0−ε0

+

∫ ∞

λ0+ε0

)
(λ− λ0)

2 d ⟨E(λ)uk, uk⟩

≥ ε20

(∫ λ0−ε0

−∞
+

∫ ∞

λ0+ε0

)
d ⟨E(λ)uk, uk⟩

= ε20

∫ ∞

−∞
d ⟨E(λ)uk, uk⟩ − ε20

∫ λ0+ε0

λ0−ε0

d ⟨E(λ)uk, uk⟩

= ε20 ||uk||
2 − ε20 (⟨E(λ0 + ε0)uk, uk⟩ − ⟨E(λ0 − ε0)uk, uk⟩) .

By our assumption, dimR(E(λ0)− E(λ0 − 0)) <∞ and hence

dim (R(E(λ0 + ε0)− E(λ0 − ε0)) <∞.
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Consequently E(λ0 + ε0)− E(λ0 − ε0) is compact. As uk
w−→ 0 we get that

E(λ0 + ε0)uk − E(λ0 − ε0)uk → 0 (strongly).

Thus

lim inf
k→∞

||(H − λ0)uk||2 ≥ ε20 ||uk||
2 ,

a contradiction.

Weyl’s perturbation theorem says that the essential spectrum of a self-adjoint

operator is invariant under symmetric and compact perturbations.

Theorem 1.18 (Weyl). Let H be self-adjoint and let A ∈ L(H) be symmetric and

compact. Then

σess(H + A) = σess(H).

Remark 1.19. As A is bounded, H+A is defined on D(H+A) = D(H). It is easy

to see that H+A is self-adjoint for symmetric A ∈ L(H) (e.g. using the perturbation

theorem of Kato and Rellich).

Proof. We show that (un) is a singular sequence for H and λ if and only if (un) is a

singular sequence for H + A and λ. Let (un) ⊂ D(H) = D(H + A) be a sequence

with ||un|| = 1, un
w−→ 0 and (H − λ)un → 0 (strongly). As A is compact, Aun → 0

(strongly) and thus (H + A− λ)un → 0 (strongly), i.e. (un) ist a singular sequence

for H + A and λ. The other direction is proved similarly. We have shown that

λ ∈ σess(H) ⇐⇒ There is a singular sequence for H and λ ⇐⇒ There is a singular

sequence for H + A and λ ⇐⇒ λ ∈ σess(H + A).

Theorem 1.20. Let H be a self-adjoint operator with the spectral family (E(λ))λ∈R.

Let λ0 be an isolated point of σ(H) and let ε0 > 0 so that

(λ0 − 2ε0, λ0 + 2ε0) ∩ σ(H) = {λ0}.

Furthermore, let Γ := ∂B(λ0, ε0) ⊂ C be the circle in C with middle point λ0 and

radius ε0. Then

1

2πi

∫
Γ

(H − γ)−1 dγ = E(λ0)− E(λ0 − 0) = PN(H−λ0).

Proof. As

(H − γ)−1 =

∫ ∞

−∞
(λ− γ)−1 dE(λ), γ ∈ Γ,

we obtain that

1

2πi

∫
Γ

(H − γ)−1 dγ =
1

2πi

∫
Γ

∫ ∞

−∞
(λ− γ)−1 dE(λ) dγ

=

∫ ∞

−∞

{
1

2πi

∫
Γ

(λ− γ)−1 dγ

}
dE(λ) =: J.
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The integrand can be estimated by 1
|λ−γ| ≤

1
ε0

so that the order of the integrations

can be interchanged according to Fubini’s Theorem. We know from complex analysis

that

χ̂λ0,ε0(λ) :=
1

2πi

∫
Γ

(λ− γ)−1 dγ =


1, |λ− λ0| < ε0,

1/2, |λ− λ0| = ε0,

0, |λ− λ0| > ε0.

Γ

λ0 λ0 + 2ε0λ0 − 2ε0

As E(λ0 − ε0 − 0) = E(λ0 − 0) and E(λ0) = E(λ0 + ε0),

J =

∫ ∞

−∞
χ̂λ0,ε0(λ) dE(λ) = E(λ0)− E(λ0 − 0)

which completes our proof.

In some applications, an important characterization of the discrete eigenvalues

below inf σess(H) is given by the min-max-principle (see [RS-IV, GS] for more de-

tails). For a self-adjoint and semi-bounded operator H, we define for arbitrary

vectors φ1, . . . , φm ∈ H (not necessarily linearly independent) the auxiliary function

UH(φ1, . . . , φm) := inf {⟨Hψ,ψ⟩ ;ψ ∈ D(H), ||ψ|| = 1, ψ ⊥ φj, 1 ≤ j ≤ m}

as well as

µn(H) := sup
φ1,...,φn−1

UH(φ1, . . . , φn−1), n ∈ N, n ≥ 2,

and

µ1 := inf {⟨Hψ,ψ⟩ ;ψ ∈ D(H), ||ψ|| = 1} .

For any n ∈ N we have: Either there are n eigenvalues (counting degenerate eigen-

values a number of times equal to their multiplicities) below σess(H) and µn(H) is

the n-th eigenvalue or µn(H) = inf σess(H); in this case µn = µn+1 = µn+2 = . . .

and there are at most n− 1 eigenvalues (counting multiplicities) below inf σess(H).

Remark 1.21. If dimR(E(λ)) <∞ for some λ ∈ R, then dimR(E(λ)) is precisely

the number of eigenvalues below λ (counting multiplicities).
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Chapter 2

Spectral properties of Schrödinger

operators

In this section, we study some important examples of Schrödinger operators and

determine their discrete and essential spectra. These operators mostly have the

form

H = −∆+ V

where V : Rd → R is the multiplication operator associated with the potential V =

V (x) in the Hibert space H := L2(Rd). Let H0 : D(H0) → H be the unique self-

adjoint extension of

−∆: C∞
c (Rd) → H, −∆φ = −

d∑
k=1

∂2

∂x2k
φ(x).

The self-adjoint operator H0 is equal to the closure of −∆�C∞
c (Rd) and also equals the

Friedrichs extension of −∆ �C∞
c (Rd). In the following, we will only discuss functions

V such that the sum −∆+V is defined on C∞
c (Rd), e.g. for V continuous. If −∆+V

is bounded from below, the Friedrichs extension yields a self-adjoint extension H of

(−∆ + V ) �C∞
c (Rd). In many applications, V is bounded relative to H0 with bound

< 1. In this case, we may apply the Kato-Rellich Theorem to deduce that

−∆+ V : C∞
c (Rd) → H

is essentially self-adjoint. The unique self-adjoint extension H = H0 + V satisfies

D(H) = D(H0).

Let us first study the spectral properties of H0.

2.1 The free Hamiltonian

We will frequently apply cut-off techniques so that it is useful to prepare some

important features of appropriate cut-off functions.
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Lemma 2.1. Let Bk := {x ∈ Rd; |x| < k} be the open ball with radius k > 0

around zero in Rd. There exists a function ψ : Rd → R satisfying the properties

ψ ∈ C∞
c (B2), 0 ≤ ψ ≤ 1 and ψ ≡ 1 on B1.

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

Proof. Let

f(x) :=

{
exp

(
1

(x+4)(x+1)

)
, −4 < x < −1,

0, else.

Let us first show that f ∈ C∞(R). Therefor, we define an auxiliary function g : R →
[0, 1) by

g(t) :=

{
exp

(
−1

t

)
, t > 0,

0, t ≤ 0,

and show that, for any n ∈ N, g is n-times continuously differentiable with g(n)(0) =

0. Moreover there exist polynomials pn so that

g(n)(t) :=

{
pn

(
1
t

)
exp

(
−1

t

)
, t > 0,

0, t ≤ 0.
(2.1)

For n = 0 this is true with p0 ≡ 1. Assuming that the representation (2.1) is true

for some fixed n ∈ N, we obtain, for t > 0, that

g(n+1)(t) =

(
−p′n

(
1

t

)
+ pn

(
1

t

))
1

t2
exp

(
−1

t

)
= pn+1

(
1

t

)
exp

(
−1

t

)
where pn+1(ξ) := (pn(ξ)− p′n(ξ))ξ

2. Furthermore,

g(n)(t)− g(n)(0)

t
= pn

(
1

t

)
1

t
exp

(
−1

t

)
→ 0, t→ 0.

By induction, this shows that g ∈ C∞(R). We can write f as the composition of

the smooth functions

g1(x) := g(3(x+ 4)), g2(x) := g(−3(x+ 1))
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and hence f ∈ C∞(R). We now let F : R → R be given by

F (t) :=

∫ t

−4
f(s) ds∫ −1

−4
f(s) ds

and see that F ∈ C∞(R), F ≡ 0 on (−∞,−4] and F ≡ 1 on [−1,∞). The function

ψ(x) := F (−|x|2), x ∈ Rd, satisfies the properties stated in our lemma.

Theorem 2.2. We have that σ(H0) = σess(H0) = [0,∞).

Proof. According to the Gauß-Green Theorem, we have for any φ ∈ C∞
c (Rd),

⟨H0φ, φ⟩ = −
∫
Rd

∆φ(x)φ(x) dx = ⟨∇φ,∇φ⟩ =
∫
Rd

|∇φ(x)|2 dx ≥ 0;

observe that φ has no contributions on the boundary as supp φ is compact. We

write

∇φ = (∂1φ, . . . , ∂dφ)
T , ∂jφ =

∂

∂xj
φ.

As H0 �C∞
c (Rd) is essentially self-adjoint, given f ∈ D(H0) there exists a sequence

(φn) ⊂ C∞
c (Rd) such that φn → f and −∆φn → H0f . Then ⟨H0f, f⟩ ≥ 0 for all

f ∈ D(H0). In particular, H0 ≥ 0 so that E(λ) = 0, λ < 0, for the associated

spectral family, and the spectral theorem shows that σ(H0) ⊂ [0,∞).

To complete the proof, we show that σess(H0) ⊃ [0,∞). For this purpose, we

construct, for any λ ∈ [0,∞) a suitable singular sequence. Pick ξ ∈ Rd so that

ξ · ξ = λ and let w be the plane wave

w(x) := eiξ·x, x ∈ Rd.

Clearly w /∈ H, but we have pointwise

(−∆w)(x) = λw(x), x ∈ Rd. (2.2)

Let ψ ∈ C∞
c (B2) with 0 ≤ ψ ≤ 1 and ψ �B1= 1. We now define

ψk(x) := ψ(x/k), x ∈ Rd, k ∈ N,

so that ψk(x) = 1 for |x| ≤ k, ψk(x) = 0 for |x| ≥ 2k and

|∇ψk(x)| ≤ C/k, |∂ijψk(x)| ≤ C/k2,

with a suitable constant C > 0 and ∂ij :=
∂2

∂xi∂xj
. We set

ηk := ψkw, ck :=
1

||ηk||
, k ∈ N,

and show that the functions

uk := ckηk

are a singular sequence for H0 and λ.
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(1) Clearly, ||uk|| = 1.

(2) To show that uk
w−→ 0, we pick f ∈ C∞

c (Rd), write Ωk := B2k\Bk and observe

that

|⟨f, uk⟩| =
∣∣∣∣∫

B2k

f
ηk
||ηk||

dx

∣∣∣∣
≤

∣∣∣∣∫
Bk

f
1

||ηk||
dx

∣∣∣∣+ ∣∣∣∣∫
Ωk

f
ηk
||ηk||

dx

∣∣∣∣
≤

||f ||L1

||ηk||
+

∣∣∣∣∫
Ωk

f
ηk
||ηk||

dx

∣∣∣∣ → 0 (2.3)

as k → ∞. Here, we have used that

||ηk||2 =
∫
Rd

|ψk(x)w(x)|2 dx ≥
∫
Bk

|w(x)|2 dx = |Bk| → ∞

and that the second term on the right-hand side of (2.3) vanishes for k ≥ K and

supp f ⊂ BK . As C
∞
c (Rd) ⊂ L2(Rd) is dense, we conclude that ⟨f, uk⟩ → 0 for any

f ∈ H.

(3) It remains to show that ||(H0 − λ)uk|| → 0, k → ∞. For f ∈ C∞(Rd), we first

prepare the identity

−∆(ψkf) = −
d∑

j=1

∂2j (ψkf) = −
d∑

j=1

[
(∂2jψk)f + 2∂jψk∂jf + ψk∂

2
j f

]
= −(∆ψk)f − 2 ⟨∇ψk,∇f⟩ − ψk∆f. (2.4)

Again we decompose

||(H0 − λ)uk||2 =
∫
Rd

∣∣∣∣(−∆− λ)
ηk
||ηk||

∣∣∣∣2 dx

=
1

||ηk||2

[∫
Bk

∣∣(−∆− λ)eiξ·x
∣∣2 dx+

∫
Ωk

|(−∆− λ)(ψkw)|2 dx

]
.

(2.5)

The first term on the right-hand side of (2.5) vanishes according to (2.2). Using

once again the identity (2.2) and equation (2.4), we get that

||(H0 − λ)uk||2 =
1

||ηk||2
∫
Ωk

|−∆(ψkw) + ψk∆w|2 dx

=
1

||ηk||2
∫
Ωk

|2 ⟨∇ψk,∇w⟩+∆ψkw|2 dx

≤ 2

||ηk||2

[∫
Ωk

|2 ⟨ξ,∇ψk⟩|2 dx+

∫
Ωk

|∆ψk|2 dx
]
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≤ 2

||ηk||2

[
4λ

∫
Ωk

|∇ψk|2 dx+
∫
Ωk

|∆ψk|2 dx
]
.

By our construction, there exist positive constants C1, C2 such that

||(H0 − λ)uk||2 ≤
|Ωk|
|Bk|

(
C1

k2
+
C2

k4

)
=

(2k)d − kd

kd

(
C1

k2
+
C2

k4

)
= (2d − 1)

(
C1

k2
+
C2

k4

)
→ 0,

as k → ∞. This completes the proof of our theorem.

We will see later that H0 does not have eigenvalues. Indeed, the spectrum of H0

is purely absolutely continuous.

2.2 V (x) → ∞ for |x| → ∞
Next, we consider continuous potentials V = V (x) with

V (x) → ∞, |x| → ∞. (2.6)

The most important example in this class is the harmonic oscillator for which

V (x) = |x|2, x ∈ Rd.

Let c0 ∈ R be a constant with the property V (x) ≥ c0 for all x ∈ Rd. Then

(−∆ + V ) : C∞
c (Rd) → H is semi-bounded and the Friedrichs extension yields a

self-adjoint extension H : D(H) → H. Indeed, (−∆ + V ) �C∞
c (Rd) is also essentially

self-adjoint (without giving a proof here) and hence it has a unique self-adjoint

extension. We conclude that the Friedrichs extension equals (−∆+ V )�C∞
c (Rd).

For the class (2.6), compactness will play a decisive role. Our main theorem

reads as follows.

Theorem 2.3. Let V : Rd → R be continuous with V (x) → ∞ for |x| → ∞ and let

H = H0 + V be the Friedrichs extension of (−∆+ V )�C∞
c (Rd). Then:

(1) There is a constant c0 such that H + c0 ≥ 1 and (H + c0)
−1 is compact.

(2) The spectrum σ(H) is an increasing sequence (λk)k∈N ⊂ R of eigenvalues of

finite multiplicity and λk → ∞ for k → ∞. In particular, σ(H) = σdisc(H)

and σess(H) = ∅.

(3) The associated eigenfunctions form an orthonormal basis of the Hilbert space

L2(Rd).

Concerning compactness, we will have to prepare some tools.
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Definition 2.4. For φ ∈ C∞
c (Rd), let

||φ||21 := ||φ||2 + ||∇φ||2 .

Then ||φ||1 ≥ ||φ||, for all φ ∈ C∞
c (Rd), ||·||1 is a norm on C∞

c (Rd) and
(
C∞

c (Rd), ||·||1
)

is a pre-Hilbert space. We denote its completion by H̊1(Rd). We have H̊1(Rd) ⊂
L2(Rd) with continuous embedding and H̊1(Rd) belongs to the class of Sobolev spaces.

Similarly, we define, for Ω ⊂ Rd open, the Sobolev spaces H̊1(Ω).

Remark 2.5. ||∇u||2 =
∑d

k=1 ||∂ku||
2 =

∫
Rd |∇u(x)|2 dx =

∑d
k=1

∫
Rd |∂ku(x)|2 dx.

Our aim is to give a proof of Rellich’s compactness theorem which can be seen

as the Hilbert space version of the Arzelà-Ascoli Theorem. Therefor, the following

lemma will be crucial.

Lemma 2.6. Let Q := (0, 2π)d ⊂ Rd and let (un)n∈N ⊂ C∞
c (Q) be a sequence with

||un||1 ≤ c0, ∀n ∈ N.

Then there exist a subsequence (unk
)k∈N ⊂ (un)n∈N and u ∈ H̊1(Q) such that

unk
→ u in L2(Q) and

unk

w−→ u in H̊1(Q),

as k → ∞.

Proof. a

(1) As L2(Q) and H̊1(Q) are Hilbert spaces, there are subsequences
(
u
(1)
nj

)
j∈N

⊂

(un)n∈N and
(
u
(2)
nj

)
j∈N

⊂
(
u
(1)
nj

)
j∈N

and vectors u ∈ L2(Q) and v ∈ H̊1(Q) such

that

u(1)nj

w−→ u in L2(Q) and

u(2)nj

w−→ v in H̊1(Q),

as j → ∞. Let us show that u = v. For this purpose, we may assume without

loss of generality that v = 0 since otherwise we would consider ũn := un − v. For

f ∈ L2(Q), we define a linear functional ℓf : H̊1(Q) → C by setting

ℓf (φ) := ⟨φ, f⟩ , ∀φ ∈ H̊1(Q).

As |ℓf (φ)| ≤ ||φ|| ||f || ≤ ||φ||1 ||f ||, we conclude that ℓf ∈ (H̊1(Q))∗ and by the Riesz

representation theorem, there exists a unique f̃ ∈ H̊1(Q) so that

⟨φ, f⟩ =
⟨
φ, f̃

⟩
1
, ∀φ ∈ H̊1(Q).
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For arbitrary f ∈ L2(Q), we thus have that⟨
u(2)nj

, f
⟩
=

⟨
u(2)nj

, f̃
⟩
1
→ 0, n→ ∞

so that u
(2)
nj

w−→ 0 in L2(Q) and hence u = v. To simplify notation, we write

henceforth

un
w−→ u in L2(Q) and

un
w−→ u in H̊1(Q),

as n→ ∞.

(2) For k ∈ Zd, let

φk(x) := (2π)−d/2eik·x = (2π)−d/2

d∏
s=1

eiksxs .

The family (φk)k∈Zd is an orthonormal basis of L2(Q) (Fourier series). By Parseval’s

Theorem, ∑
k∈Zd

∣∣⟨un, eik·x⟩∣∣2 = (2π)d ||un||2 ≤ c1.

But as ||∂sun|| ≤ c0, s = 1, . . . , d, we may also conclude that∑
k∈Zd

∣∣⟨∂sun, eik·x⟩∣∣2 = (2π)d ||∂sun||2 ≤ c2, s = 1, . . . , d.

Using that ⟨
∂sun, e

ik·x⟩ = −
⟨
un, ∂se

ik·x⟩ = iks
⟨
un, e

ik·x⟩ ,
we obtain that there exists a constant c3 ≥ 0 such that∑

k∈Zd

(
1 + |k|2

) ∣∣⟨un, eik·x⟩∣∣2 ≤ c3, n ∈ N;

here, |k|2 =
∑d

s=1 k
2
s .

(3) As un
w−→ u, we also have, for n→ ∞,⟨

un, e
ik·x⟩ →

⟨
u, eik·x

⟩
, ∀k ∈ Zd,

so that
(⟨
un, e

ik·x⟩)
n∈N ⊂ C is a Cauchy sequence for all k ∈ Zd.

(4) We claim that (un)n∈N is a Cauchy sequence in L2(Q). Let ε > 0 and R :=√
c3/ε. We note that there are only finitely many k ∈ Zd such that |k|2 ≤ R2.

According to (3), there is Jε ∈ N such that

(2π)−d
∑
|k|≤R

∣∣⟨uj − um, e
ik·x⟩∣∣2 ≤ ε, j,m ≥ Jε. (2.7)
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By Parseval’s Theorem, for j,m ≥ Jε,

||uj − um||2 = (2π)−d
∑
k∈Zd

∣∣⟨uj − um, e
ik·x⟩∣∣2

= (2π)−d

∑
|k|≤R

+
∑
|k|>R

∣∣⟨uj − um, e
ik·x⟩∣∣2

≤(2.7) ε+ (2π)−d
∑
|k|>R

|k|2

R2

∣∣⟨uj − um, e
ik·x⟩∣∣2

≤ ε+ (2π)−dR−2
∑
k∈Zd

|k|2
∣∣⟨uj − um, e

ik·x⟩∣∣2
≤ ε+ 2(2π)−dR−2

∑
k∈Zd

|k|2
[∣∣⟨uj, eik·x⟩∣∣2 + ∣∣⟨um, eik·x⟩∣∣2]

≤ ε+ 4c3(2π)
−dR−2

≤ 2ε.

Now un
w−→ u and the Cauchy property show that ||un − u|| → 0.

Theorem 2.7 (Rellich). Let Ω ⊂ Rd be open and bounded. Then for any bounded

sequence (un)n∈N in H̊1(Ω) there exists a subsequence (unk
)k∈N ⊂ (un)n∈N such that

(unk
)k∈N converges strongly in L2(Ω).

Proof. Let (un)n∈N ⊂ H̊1(Ω) with ||un||1 ≤ c1 be given. Let W ⊂ Rd be an (open)

cube such that Ω ⊂ W . For any un there exists φn ∈ C∞
c (Ω) ⊂ C∞

c (W ) such

that ||un − φn||1 ≤ 1
n
. As ||φn||1 ≤ c2 and by Lemma 2.6, there exist a subsequence

(φnk
)k∈N ⊂ (φn)n∈N and u ∈ H̊1(W ) such that

φnk
→ u in L2(W ), φnk

w−→ u in H̊1(W ), (2.8)

as k → ∞. We let u′ := u �Ω. Then u′ ∈ L2(Ω) and φnk
→ u′ in L2(Ω). By (2.8)

and as H̊1(Ω) ⊂ H̊1(W ),

⟨φnk
, ψ⟩1 → ⟨u, ψ⟩1 , ∀ψ ∈ H̊1(Ω), (2.9)

and hence (φnk
)k∈N converges weakly in H̊1(Ω). As Hilbert spaces are weakly se-

quentially closed, there is v ∈ H̊1(Ω) with φnk

w−→ v in H̊1(Ω). Now (2.9) implies

that v = u′, in particular u′ ∈ H̊1(Ω) and φnk

w−→ u′ in H̊1(Ω). But then unk
→ u′

in L2(Ω) and unk

w−→ u′ in H̊1(Ω).

Remark 2.8. a

(1) Theorem 2.7 may also be stated as follows: For Ω ⊂ Rd open and bounded the

canonical embedding H̊1(Ω) ↪→ L2(Ω) is compact (Rellich’s embedding theo-

rem).
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(2) The strong limit u is in fact an element of H̊1(Ω) and additionally unk

w−→ u in

H̊1(Ω).

(3) The continuous embedding H̊1(Ω) ↪→ L2(Ω) generates a self-adjoint and positive

operator H with D(H) ⊂ H̊1(Ω) and

⟨Hu, v⟩ = ⟨u, v⟩1 , ∀u ∈ D(H), v ∈ H̊1(Ω).

Moreover, H is the Friedrichs extension of −∆ �C∞
c (Ω). We call H the Laplace

operator with (homogeneous) Dirichlet boundary conditions on Ω and write

H
(Ω)
D := H.

To simplify notation, we assume henceforth (without loss of generality) that

V (x) ≥ 0, x ∈ Rd.

Let H̊1
V (Rd) denote the completion of the pre-Hilbert space (C∞

c (Rd), ⟨·, ·⟩1,V ) where

⟨φ, ψ⟩1,V := ⟨φ, ψ⟩1 +
∫
Rd

V (x)φ(x)ψ(x) dx.

It is easy to see that

H̊1
V (Rd) =

{
u ∈ H̊1(Rd);

∫
Rd

V (x)|u(x)|2 dx <∞
}

= H̊1(Rd) ∩
{
u ∈ L2(Rd);

∫
Rd

V (x)|u(x)|2 dx <∞
}
.

The Friedrichs extension H = H0 + V of (−∆+ V )�C∞
c (Rd) is thus characterized by

the properties

C∞
c (Rd) ⊂ D(H) ⊂ H̊1

V (Rd)

and

⟨Hu, v⟩ = ⟨u, v⟩1,V , ∀u ∈ D(H), v ∈ H̊1
V (Rd).

Furthermore, D(H) is dense in H̊1
V (Rd) with respect to ||·||1,V .

Theorem 2.9. Let V : Rd → R be continuous with V (x) → ∞ for |x| → ∞ and let

H = H0 + V be the Friedrichs extension of (−∆+ V )�C∞
c (Rd). Then:

(1) H ≥ 0 and (H + 1)−1 is compact.

(2) σ(H) is an increasing sequence (λk)k∈N ⊂ R of eigenvalues of finite multiplicity

and λk → ∞ for k → ∞. In particular, σ(H) = σdisc(H) and σess(H) = ∅.

(3) The associated eigenfunctions form an orthonormal basis of the Hilbert space

L2(Rd).

Proof. Our assumption V (x) ≥ 0 implies that H ≥ 0. a
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(1) Let fn
w−→ 0 in H = L2(Rd) and let

un := (H + 1)−1fn.

We show that there is a subsequence (unj
) ⊂ (un) such that

∣∣∣∣unj

∣∣∣∣ → 0, j → ∞.

First, the fact that (fn) converges weakly implies that (fn) is bounded in H. As

(H+1)−1 is bounded, the sequence (un) is also bounded in H and converges weakly

to zero in H. Furthermore, un ∈ D(H) and

||Hun|| ≤
∣∣∣∣(H + 1)(H + 1)−1fn

∣∣∣∣+ ||un|| ≤ ||fn||+ ||un|| ≤ C1.

By the definition of H,

||un||21,V = ⟨un, un⟩1,V = ⟨Hun, un⟩ ≤ ||Hun|| ||un|| ≤ C2. (2.10)

Given ε > 0, we choose R ≥ 0 such that

V (x) ≥ ε−1, |x| ≥ R.

By (2.10),
∫
Rd V (x)|un(x)|2 dx ≤ C2 and hence

∫
|x|≥R

|un(x)|2 dx ≤ C2ε. Let ψR ∈
C∞

c (B2R) with ψR �BR
= 1 and 0 ≤ ψR ≤ 1. We observe that

||ψRun||21 ≤ 2

∫
Rd

ψ2
R|∇un|2 dx+ 2

∫
Rd

|∇ψR|2|un|2 dx+ ||un||2 ≤(2.10) C3.

Consequently, (ψRun)n∈N is a bounded sequence in H̊1(B2R). Applying Rellich’s

compactness theorem, we obtain a subsequence (unj
) ⊂ (un) such that

∣∣∣∣ψRunj

∣∣∣∣ →
0, j → ∞, as un

w−→ 0. Choose j0 ∈ N so that∣∣∣∣ψRunj

∣∣∣∣2 < ε, j ≥ j0.

We now obtain that
∣∣∣∣unj

∣∣∣∣2 < C2ε+ ε for j ≥ j0.

(2) Note that (H+1): D(H) → L2(Rd) is bijective with compact inverse (H+1)−1.

This implies that N((H + 1)−1) = {0} and thus the eigenfunctions of (H + 1)−1

form an orthonormal basis of L2(Rd). Clearly, σess(H) = ∅.

Remark 2.10. a

(1) For any z1, z2 ∈ ρ(H) one has

(H − z1)
−1 compact ⇐⇒ (H − z2)

−1 compact.

This is an immediate consequence of the second resolvent equation as

(H − z1)
−1 − (H − z2)

−1 = (H − z1)
−1(z1 − z2)(H − z2)

−1.
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(2) Criteria thatH0+V has compact resolvent: see, e.g., [A. Molchanov: On the dis-

creteness of the spectrum conditions for self-adjoint differential equations of the

second order; Trudy Mosk. Matem. Obshchestva 2 169–199 (1953)], [V. Maz’ya

& M. Shubin: Discreteness of spectrum and positivity criteria for Schrödinger

operators; Ann. Math. 162 919–942 (2005)] and [RS-IV, XIII.14]

(3) Asymptotic behavior of the eigenvalues λk for k → ∞ (H. Weyl, see [RS-IV,

XIII.15])

Let V (x) := x2, x ∈ R. Then

− d2

dx2
+ V : C∞

c (R) → L2(R)

is essentially self-adjoint with the (unique) self-adjoint extension

H = H0 + V =
(
− d2

dx2 + V
)
�C∞

c (R).

Theorem 2.3 implies that σ(H) = σdisc(H). Moreover, σ(H) consists of a sequence

of eigenvalues of finite multiplicity 0 < λ1 < λ2 < . . . with λk → ∞ as k → ∞. It is

possible to calculate the eigenvalues of H explicitly; they are given by

λk := 2k + 1, k ∈ N0.

The associated eigenfunctions are of the form

Φk(x) = ckPk(x)e
− 1

2
x2

, x ∈ R, k ∈ N0;

here, Pk is a polynomial of degree k and ck is a constant such that

⟨Φn,Φk⟩ = δnk, k, n ∈ N0.

The family (Pk)k∈N is the family of Hermite polynomials that is obtained from the

Gram-Schmidt process applied to the scalar product

⟨p, q⟩H :=

∫
R
p(x)q(x)e−x2

dx

and the polynomials 1, x, x2, x3, . . .. Furthermore, the family (Φk)k∈N is an orthonor-

mal basis of the Hilbert space L2(R). The eigenfunctions Φk are not elements of

C∞
c (R) but they are elements of the Schwartz space S (R).

Definition 2.11. We define the Schwartz space S (R) by

S (R) =
{
f ∈ C∞(R); ∀k,m ∈ N0∃C ≥ 0:

(
1 + |x|k

) ∣∣f (m)(x)
∣∣ ≤ C.

}
.

Remark 2.12. Obviously, C∞
c (R) ⊂ S (R). It is easy to see that S (R) ⊂ D(H).

In particular, H is also essentially self-adjoint on S (R).
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The eigenfunctions can be constructed applying the so-called ladder operators.

In the following theorems we omit the norming constants for the sake of simplicity.

Theorem 2.13. Let φ0 ∈ S (R) be defined by

φ0(x) :=
1
4
√
π
e−

1
2
x2

, x ∈ R.

Let A,A† : S (R) → S (R) be defined by

A :=
1√
2

(
x+

d

dx

)
, A† :=

1√
2

(
x− d

dx

)
.

(1) Let N := A†A. Then N = 1
2
(H − 1), [N,A] = −A and [N,A†] = A†.

(2) Let φn := (A†)nφ0, for n ∈ N. We have that Nφn = nφn, n ∈ N0. Moreover,

for n, k ∈ N0 and n ̸= k, ⟨φn, φk⟩ = 0.

Proof. Let Mx, ∂ : S (R) → S (R) be defined by (Mxf)(x) := xf(x) and (∂f)(x) :=

f ′(x). We have

N = A†A =
1

2
(Mx − ∂)(Mx + ∂) =

1

2

(
Mx2 − [∂,Mx]− ∂2

)
=

1

2
(H − 1)

with H := (Mx2 − ∂2)�S (R) and [∂,Mx] = IS (R). Similarly, one sees that AA† =
1
2
(H + 1) so that [A†, A] = −IS (R). Hence

[N,A†] = A†AA† − A†A†A = A†[A,A†] = A†,

[N,A] = A†AA− AA†A = [A†, A]A = −A.

Note that Nφ0 = 0. Assuming that Nφn = nφn, for some n ∈ N, we compute

Nφn+1 = NA†φn = A†φn + A†Nφn = (n+ 1)A†φn = (n+ 1)φn+1.

For n ̸= k we have that

n ⟨φn, φk⟩ = ⟨Nφn, φk⟩ = ⟨φn, Nφk⟩ = k ⟨φn, φk⟩

so that ⟨φn, φk⟩ = 0.

Theorem 2.14. Let H = − d2

dx2 + V be the Schrödinger operator of the harmonic

oscillator and let λk = 2k + 1, k ∈ N0, and (φk)k∈N0 be the sequence of eigenvalues

and associated eigenfunctions as in Theorem 2.13.

(1) Let λ be some eigenvalue of H and let u ∈ D(H) be an associated eigenfunc-

tion. We have Au ∈ D(H) and H(Au) = (λ− 2)Au.

(2) There is m ∈ N0 so that λ− 2m = 1. In particular, σ(H) = {λk; k ∈ N0}.
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(3) The eigenvalues (λk)k∈N0 are simple.

Proof. a

(1) First note that the fact that ⟨Hu, u⟩ = ⟨∂u, ∂u⟩+⟨Mxu,Mxu⟩ <∞ implies that

Au ∈ L2(R). Recall that D(H) = D(N) and that Nu = 1
2
(H − 1)u = 1

2
(λ − 1)u.

We let µ := 1
2
(λ− 1) and pick φ ∈ C∞

c (R). Now

⟨Au, (N − µ)φ⟩ =
⟨
u,A†(N − µ)φ

⟩
=

⟨
u, (N − µ)A†φ

⟩
−

⟨
u,A†φ

⟩
=

⟨
(N − µ)u,A†φ

⟩
− ⟨Au, φ⟩ = −⟨Au, φ⟩

so that

⟨Au, (N − (µ− 1))φ⟩ = 0, ∀φ ∈ C∞
c (R).

The fact that N − (µ− 1) is essentially self-adjoint implies that

Au ∈ (Ran(N − (µ− 1)))⊥ = ker(N − (µ− 1)) ⊂ D(N) = D(H)

so that finally Au ∈ D(H) with NAu = (µ− 1)Au. Moreover,

HAu = (2N + 1)Au = (λ− 2)Au. (2.11)

(2) As σ(H) ⊂ [0,∞), there ism ∈ N such that Amu ̸= 0 and Am+1u = 0; otherwise,

by (2.11), we could obtain a sequence of eigenvalues which is not bounded from

below. Hence

HAmu = (2N + 1)Amu = 2A†Am+1u+ Amu = Amu.

We get that λ− 2m = 1.

(3) It suffices to show that 1 is a simple eigenvalue. We use, without giving a proof,

that any eigenfunction to H and λ0 = 1 is in C2(R) and satisfies the homogeneous

second-order equation −y′′ + x2y − y = 0. By Picard-Lindelöf, the solution space

has dimension 2 and we already know that u1(x) = e−
1
2
x2 ∈ L2(R) is a solution.

We set u2(x) := φ(x)u1(x) and observe that

0 =
(
−∂2 + x2 − 1

)
u2 = φ

(
−∂2 + x2 − 1

)
u1 − 2φ′u′1 − φ′′u1 = −2φ′u′1 − φ′′u1.

This implies φ′′ = 2xφ′ and hence ψ := φ′ satisfies the first-order equation ψ′ =

2xψ. Integration yields ln |ψ| = x2 so that we may choose ψ = ex
2
. We therefore

obtain

u2(x) = e−
1
2
x2

∫ x

1

et
2

dt.

The function f(x) :=
∫ x

1
et

2
dt−e 1

2
x2

is strictly increasing for x ≥ 2 as f ′(x) = ex
2 −

xe
1
2
x2
> 0 and f(2) > 0. Hence

∫ x

1
e−t2dt ≥ e

1
2
x2

for x ≥ 2 so that u2 /∈ L2(R).
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Our results can be generalized to −∆+ |x|2 in L2(Rd). For this purpose, we need the

tensor product of two operators. Let A and B be self-adjoint operators in L2(R).
Then A⊗B operates on products φ(x1)ψ(x2) with φ ∈ D(A) and ψ ∈ D(B) by

(A⊗B)(φ(x1)ψ(x2)) = (Aφ)(x1)(Bψ)(x2).

In addition, A⊗B can be extended to a self-adjoint operator in L2(R2) and

σ(A⊗B) = {λµ;λ ∈ σ(A), µ ∈ σ(B)}.

One shows, for d = 2 with x = (x1, x2) and

−∆+ |x|2 =
(
− d2

dx21
+ x21

)
⊗ Ix2 + Ix1 ⊗

(
− d2

dx22
+ x22

)
,

that −∆+ |x|2 is essentially self-adjoint on C∞
c (R2) and that

σ(H) = {λk + µm;λk = 2k + 1, µm = 2m+ 1, k,m ∈ N0}.

Here; H denotes the (unique) self-adjoint extension of (−∆ + |x|2) �C∞
c (R2). The

associated eigenfunctions are Φk(x1)Φm(x2).

2.3 V (x) → 0 for |x| → ∞
Next we discuss the class of potentials V with V (x) → 0 for |x| → ∞. We will focus

on relatively bounded potentials (with respect to H0) with relative bound < 1. Then

(−∆+ V )�C∞
c (Rd) is essentially self-adjoint and its unique self-adjoint extension is

H = H0 + V = (−∆+ V )�C∞
c (Rd).

Equivalently, it is possible to define H by means of the Friedrichs extension. Note

that if V is relatively bounded with (−∆)-bound < 1, then (−∆ + V ) �C∞
c (Rd) is

already semi-bounded, cf. e.g. [T. Kato: Perturbation Theory for Linear Operators,

Ch. V, Thm. 4.11].

The most prominent example in this class is the Schrödinger operator of the

hydrogen atom,

H = −∆− 1

|x|
in L2(R3).

Hardy’s inequality implies that the Coulomb potential −1/|x| in R3 is relatively

bounded with respect to −∆ with relative bound 0 and the perturbation theorem of

Kato and Rellich shows that −∆− 1/|x| on C∞
c (R3) is essentially self-adjoint. The

unique self-adjoint extension H satisfies D(H) = D(H0). Hardy’s inequality also

implies that H is semi-bounded (although the potential −1/|x| is not bounded from

below).

Piecewise continuous and bounded potentials with compact support in Rd also

belong to the class discussed here, e.g. so-called square well potentials.
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Theorem 2.15. Let V : Rd\{0} → R be (piecewise) continuous with V (x) → 0,

|x| → ∞. Let MV be the multiplication operator associated with V and assume

that MV is relatively bounded with respect to H0 with relative bound < 1. Then

H = H0 + V : D(H0) → H is self-adjoint and

σess(H) = σess(H0) = [0,∞).

Proof. We will assume in addition that V is bounded so that there is M ≥ 0 such

that |V (x)| ≤M , for all x ∈ Rd.

(1) By the second resolvent equation, for some c ∈ R,

(H + c)−1 − (H0 + c)−1 = −(H + c)−1V (H0 + c)−1. (2.12)

The right-hand side of (2.12) is compact as (H + c)−1 is bounded and V (H0+ c)−1

is compact, as we will show now: Let (fn) ⊂ H with fn
w−→ 0 be given and let

vn := (H0 + c)−1fn. As in the proof of Theorem 2.3, one shows that

vn
w−→ 0 in L2(Rd)

and ||vn||+ ||H0vn|| ≤ c1 and hence

||vn||21 = ⟨H0vn, vn⟩+ ||vn||2 ≤ c2.

Hence for any φ ∈ C∞
c (Rd) there is a constant cφ such that

||φvn||1 ≤ cφ;

here we have used that∫
Rd

|∇(φvn)|2 dx ≤ 2

∫
Rd

|vn|2|∇φ|2 dx+ 2

∫
Rd

|φ|2|∇vn|2 dx.

By Rellich’s embedding theorem, we get from φvn
w−→ 0 and ||φvn||1 ≤ cφ that

φvn → 0, for all φ ∈ C∞
c (Rd). Given ε > 0, we choose R ≥ 0 so that

|V (x)| ≤ ε, |x| ≥ R,

and let ψR ∈ C∞
c (Rd) with the properties 0 ≤ ψR ≤ 1, ψR �BR

= 1 and supp ψR ⊂
B2R be given. Then

||V vn|| ≤ ||V ψRvn||+ ||V (1− ψR)vn|| ≤M ||ψRvn||+ ε ||(1− ψR)vn|| . (2.13)

There is n0 ∈ N such that ||ψRvn|| ≤ ε/M for n ≥ n0. For large n, the right-hand

side of (2.13) thus is smaller than ε times a positive constant. This implies that

V vn → 0 for n→ ∞ and hence V (H0 + c)−1 is compact.
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(2) By virtue of Weyl’s Theorem, we obtain that

σess
(
(H + c)−1

)
= σess

(
(H0 + c)−1

)
.

By the spectral theorem, the essential spectra of H and (H + c)−1 satisfy the

relation

(µ+ c)−1 ∈ σess
(
(H + c)−1

)
⇐⇒ µ ∈ σess(H).

A similar relation holds true for H0. This completes our proof.

Remark 2.16. If V satisfies V (x) → 0 for |x| → ∞ and is relatively bounded with

respect to H0 with relative bound < 1, we still have σess(H) = σess(H0). On the

one hand, it is easy to construct singular sequences for H0 and λ ≥ 0 that have

support outside an arbitrarily large ball BR. As V (x) → 0 at ∞, it follows that

σess(H) ⊃ σess(H0). If we assume that there is λ < 0 with λ ∈ σess(H), we can show

for any singular sequence (uk) for H and λ that ψRuk → 0 for k → ∞ and arbitrary

R > 0: Assuming for a contradiction that ψRuk does not converge to zero, we could

find a sequence (vj)j∈N ⊂ (ψRuk)k∈N and d > 0 such that

||vj|| ≥ d, ∀j ∈ N. (2.14)

Our assumption on V implies that there exist numbers a < 1 and b ∈ R such that

⟨H0uk, uk⟩ ≤ ||H0uk|| ≤ ||(H − λ)uk||+ |λ| ||uk||+ a ||H0uk||+ b ||uk|| .

Hence (||uk||1) is bounded and thus (||vj||1) is also bounded. By Rellich’s embedding

theorem, we find another subsequence (wm)m∈N ⊂ (vj)j∈N and w ∈ H such that

wm → w. But as (uk) is a singular sequence, w = 0 contradicting (2.14) so that

indeed ψRuk → 0, k → ∞, in L2(Rd). Given ε > 0 we choose Rε > 0 such that

|V (x)| < ε for |x| ≥ Rε. Then

||(H0 − λ)uk|| ≤ ||(H − λ)uk||+ ||V ψRuk||+ ||V (1− ψR)uk|| .

As V is (piecewise) continuous, we conclude that

lim sup
k→∞

||(H0 − λ)uk|| ≤ ε.

Hence (uk) is a singular sequence for H0 and λ < 0 contradicting σess(H0) = [0,∞).

Under the assumptions of Theorem 2.15 we have that σess(H0 + V ) = [0,∞).

Nevertheless, it is possible that H0 + V has discrete eigenvalues below 0 (and they

are of importance in physics when thinking of spectroscopy etc.).
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These eigenvalues are characterized by the min-max-principle, e.g.

λ1 = inf{⟨Hu, u⟩ ;u ∈ D(H), ||u|| = 1}

for the lowest eigenvalue (Rayleigh-Ritz method) as described in Section 1. It is

important to recall that the min-max-principle counts multiple eigenvalues with

different indices. However, in this paragraph, eigenvalues are considered simply as

points on the real line.

Proposition 2.17. Let H = H0 + V as in Theorem 2.15. If there exists u ∈ D(H)

with ⟨Hu, u⟩ < 0, then H has at least one negative eigenvalue.

Proof. If the statement of the proposition was wrong, then σ(H) ∩ (−∞, 0) = ∅
meaning that σ(H) ⊂ [0,∞). By the spectral theorem, this would imply thatH ≥ 0,

i.e. ⟨Hv, v⟩ ≥ 0 for all v ∈ D(H) in contradiction to the assumption ⟨Hu, u⟩ < 0.

Remark 2.18. A consequence of σess(H) = [0,∞) is that H can only have discrete

eigenvalues in (−∞, 0).

Example 2.19. Assume that V is spherically symmetric, V (x) = V (r), with r = |x|.
We focus in particular on the Coulomb potential

V (x) = − 1

|x|
, x ∈ Rd\{0}.

The main idea is to separate H = H0 + V (r) in spherical coordinates and to obtain

the negative eigenvalues and the associated eigenfunctions in the following way:

(1) Find the eigenvalues and eigenfunctions of the negative Laplace-Beltrami oper-

ator −∆Sd−1 in L2(Sd−1) where Sd−1 = {ξ ∈ Rd; |ξ| = 1} is the (d− 1)-dimensional

unit sphere. The operator −∆Sd−1 has compact resolvent and purely discrete spec-

trum

0 = κ0 < κ1 < . . . < κj → ∞, j → ∞.

The eigenspaces belonging to the κj have a basis of C∞-functions

Ψj,k : Sd−1 → R, k = 1, . . . ,mj,

where mj denotes the dimension of the eigenspace belonging to the eigenvalue κj.

In R3, one has κj = j(j + 1), j ∈ N0, with multiplicities 2j + 1. For d = 3 the

functions Ψj,k are called the spherical harmonics. The information on −∆Sd−1 is

independent of the potential V .

(2) Using separation of variables

u(x) = v(r)Ψj,k(ξ)
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for the eigenfunctions u to eigenvalues λ of −∆+ V in the Hilbert space

L2(Rd) = L2((0,∞), rd−1 dr)⊗ L2(Sd−1, dωd−1)

leads to an ordinary differential equation for v,

−v′′(r)− d− 1

r
v′(r) + V (r)v(r) +

κj
r2
v(r) = λv(r), r ∈ (0,∞).

If V is the Coulomb potential, this ODE becomes a Bessel differential equation.

For any j ∈ N0 one gets a solution v = vj ∈ L2((0,∞), rd−1 dr). The unitary

transformation v 7→ r(d−1)/2v produces an additional term including the factor

1/r2.

For the Coulomb potential in R3 one obtains an infinite sequence of negative eigen-

values. If the potential V decays faster than −cd(1+|x|)−2 for |x| → ∞, the subspace

spanned by the eigenfunctions of negative eigenvalues is finite-dimensional.

For many examples with V (x) → 0 for |x| → ∞, the number N(V ) of negative

eigenvalues (counting multiplicities) can be estimated as follows.

Theorem 2.20 (Birman, Schwinger). Let V : R3 → R with V (x) → 0 for |x| →
∞. Then

N(V ) ≤ 1

(4π)2

∫∫
R3×R3

|V (x)||V (y)|
|x− y|2

dx dy.

Proof. See [RS-IV, Thm. XIII.10, p. 98ff].

Of course, the Theorem of Birman and Schwinger is only helpful, if the integral

is finite. The following theorem is of particular importance for the Thomas-Fermi-

Theorie (atoms, molecules).

Theorem 2.21 (Cwikel-Lieb-Rozenblum bound). Let d ≥ 3 and let N(V ) be

the number of negative eigenvalues of H0+V in L2(Rd). Let V− = min{V, 0}. Then
there is a constant c = cd such that

N(V ) ≤ cd

∫
Rd

|V−(x)|d/2 dx.

Proof. See [RS-IV, Thm. XIII.12, p. 101ff].

Theorem 2.22 (Weak coupling in R and R2). Let V ≥ 0 with compact support

and
∫
V (x) dx > 0. Then H = H0 − µV has a negative eigenvalue for any µ > 0.

Proof. For d = 1, we pick a cut-off function ψk ∈ C∞
c (R) with 0 ≤ ψk ≤ 1, ψk �(−k,k)=

1 and supp ψk ⊂ (−2k, 2k) and we choose k ∈ N so large so that supp V ⊂ (−k, k).
Then

⟨Hψk, ψk⟩ =
∫
R
|ψ′

k(x)|2 dx− µ

∫
R
V (x)|ψk(x)|2 dx
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≤
(∫ −k

−2k

+

∫ 2k

k

)
c

k2
dx− µ

∫ k

−k

V (x) dx.

Sending k → ∞, the above estimate shows that H cannot be nonnegative. But

then the associated spectral family E(·) cannot be constant on the negative half-

axis. This implies the existence of some λ < 0 with λ ∈ σ(H). By Theorem 2.15,

σess(H) = σess(H0) = [0,∞) so that λ ∈ σdisc(H). For a proof in R2 see [RS-IV,

Thm. XIII.11, p. 100].

2.4 V : Rd → R bounded and continuous

If V : Rd → R is bounded and (piecewise) continuous, then −∆ + V on C∞
c (Rd) is

essentially self-adjoint with the unique self-adjoint extension

H = H0 + V := (−∆+ V )�C∞
c (Rd).

Let µ− := inf{V (x); x ∈ Rd} and µ+ := sup{V (x); x ∈ Rd}. It is easy to see that

inf σ(H) ∈ [µ−, µ+];

in particular σ(H) ⊂ [µ−,∞). We can also show that the gaps in the essential

spectrum of H have at most the length γ := µ+ − µ−, i.e. for all λ ≥ µ−, we have

that

σ(H) ∩ [λ− γ
2
, λ+ γ

2
] ̸= ∅.

Let us give a proof of the following version of this result.

Theorem 2.23. Let V : Rd → R be bounded and continuous and let λ ≥ 0. Then

σ(H) ∩ [λ− µ+, λ+ µ+] ̸= ∅.

Proof. As σess(H0) = [0,∞), there exists a singular sequence (un) ⊂ D(H0) to H0

and λ. The fact that ||V un|| ≤ µ+, n ∈ N, implies that (un) ⊂ D(MV ). The spectral

theorem yields

inf
µ∈σ(H)

(µ− λ)2 ||un||2 ≤
∫ ∞

−∞
(µ− λ)2 d ⟨E(µ)un, un⟩

= ||(H − λ)un||2 ≤ (||(H0 − λ)un||+ ||V un||)2 .

As ||un|| = 1 for all n ∈ N and ||(H0 − λ)un|| → 0 for n→ ∞, we obtain that

inf
µ∈σ(H)

(µ− λ)2 ≤ µ2
+.

But then dist(λ, σ(H)) ≤ µ+ and σ(H) ∩ [λ− µ+, λ+ µ+] ̸= ∅.
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An interesting example is the potential V (x) = cos
√
|x| which oscillates weakly

at ∞.

50 100 150 200 250 300
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Theorem 2.24. Let V : R → R be defined by V (x) := cos
√

|x| and let H = H0+V .

Then σ(H) = [−1,∞).

Proof. Clearly, σ(H) ⊂ [−1,∞) as V ≥ −1. In a first step, we show that [−1, 1] ⊂
σ(H): For x > 0 we have that V ′(x) = − 1

2
√
x
sin

√
x → 0, x → ∞. Let λ ∈ [−1, 1]

and εn := 1/n. For any n ∈ N, there exists xn > 0 so that

|V (x)− λ| < εn, ∀x ∈ B2n(xn).

The sequence (xn) is monotonically increasing and xn → ∞. We can also assume

that B2n(xn) ∩ B2(n+1)(xn+1) = ∅. Let ψn ∈ C∞
c (R) be a cut-off function with

0 ≤ ψn ≤ 1, ψn �(−n,n)= 1 and supp ψn ⊂ (−2n, 2n). Let

ηn(x) :=
ψn(x− xn)

||ψn(· − xn)||
.

Clearly, ||ηn|| = 1 and ηn
w−→ 0. As

||(H − λ)ηn|| ≤ ||H0ηn||+ ||(V − λ)ηn|| ≤ ||H0ηn||+ εn → 0, n→ ∞,

we see that λ ∈ σ(H). Secondly, we show that [1,∞) ⊂ σ(H). Let λ ∈ [1,∞). Again

we choose points xn on the positive half-axis such that |V (x)| < εn on B2n(xn). Let

un be the singular sequence to H0 and λ obtained in the proof of Theorem 2.2. Then

vn := un(· − xn) satisfies ||vn|| = 1, vn
w−→ 0 and

||(H − λ)vn|| ≤ ||(H0 − λ)vn||+ ||V vn|| ≤ ||(H0 − λ)vn||+ εn → 0

so that λ ∈ σ(H). Both results together show that σ(H) = [−1,∞).
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2.5 V periodic

In solid state physics, periodic Schrödinger operators are suitable models to describe

periodic crystals. The structure of a real crystal is periodic on a large (but not

infinite) scale; a macroscopic crystal consists of 108 ions per edge length (Avogadro

constant: 6.022 ·1023 particles per mol). In a real crystal, periodicity is disturbed by

several types of lattice defects (impurities, vacancies, dislocations, grain boundaries

etc.). We will only discuss periodic crystals here for the sake of brevity. Defect

models for periodic Schrödinger operators are an active area of research. From the

historical point of view, Felix Bloch, a student of Erwin Schrödinger, was one of the

first who studied periodic structures around 1929.

Here, we only skim some results for the periodic case and d = 1. For d ≥ 2, we

refer the reader to [RS-IV, Sec. XIII-16]. To be able to study models that apply

more suitably to real crystals, quasi-periodic or random potentials are discussed in

recent research papers. Let d = 1. A classical example is the Mathieu operator

− d2

dx2
+ cos x in L2(R).

A function V : R → R is called periodic if there exists a number a > 0 such that

V (x + a) = V (x) for all x ∈ R. The smallest positive number with this property

is called the period of V . If V is periodic with period a, it thus suffices to study V

on [0, a]. The Floquet decomposition considers this fact from the technical point of

view: Let V be periodic with period 1 (without loss of generality). In L2[0, 1] one

studies the family of operators

Hϑ := − d2

dx2
+ V : D(Hϑ) → L2[0, 1], 0 ≤ ϑ ≤ 2π,

with

D(Hϑ) := {u ∈ C2[0, 1];u(1) = eiϑu(0), u′(1) = eiϑu′(0)}.

In [RS-IV], it is shown that the Hϑ are well-defined and self-adjoint operators and

that there is a unitary map U such that

U

(
− d2

dx2
+ V

)
U−1 =

∫ ⊕

[0,2π)

Hϑ
dϑ

2π
. (2.15)

The representation (2.15) is called the direct fiber integral decomposition of the pe-

riodic Schrödinger operator − d2

dx2 + V on L2(R). The operators Hϑ have compact

resolvent and their spectra consist entirely of eigenvalues of finite multiplicity,

E1(ϑ) ≤ E2(ϑ) ≤ · · · ≤ Ek(ϑ) ≤ · · · , Ek(ϑ) → ∞, k → ∞.

Moreover, Hϑ and H2π−ϑ are anti-unitarily equivalent under ordinary complex con-

jugation; in particular, their eigenvalues are identical and their eigenfunctions are
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complex conjugates. The Ek(ϑ) are sorted according to the min-max principle and

depend continuously (in fact analytically) on ϑ. In solid state physics, the Ek(ϑ) are

called band functions and they describe the possible electronic states in a crystal.

The image of the Ek(ϑ),

ηk := {Ek(ϑ); 0 ≤ ϑ ≤ 2π},

are a compact intervals on the real axis, ηk is called a spectral band and

σ(H) = ∪∞
k=1ηk.

The sets ηk ∩ ηk+1 contain a single point or they are empty. In the latter case, we

have a spectral gap between the k-th and the (k + 1)-th band.

2.6 Constant electric field

The potential for a constant electric field in Rd is given by V (x) = c · x with a fixed

vector c ∈ Rd. One shows that −∆ + c · x is essentially self-adjoint on C∞
c (Rd).

Let HS be the self-adjoint extension which is obtained from taking the closure. The

operator HS is called the Stark-Hamiltonian.

Theorem 2.25. Let HS = − d2

dx2 + αx, α ̸= 0, be the Stark-Hamiltonian in L2(R).
We have that σess(HS) = R and the operator HS does not have eigenvalues.

Proof. First of all, σ(HS) ̸= ∅. Otherwise the associated spectral family E(λ) would

be constant which would be in contradiction to E(λ)f → f , λ→ ∞, and E(λ)f → 0,

λ→ −∞, for any f ∈ H. Let λ ∈ σ(HS) and pick some µ ∈ R. We aim at showing at

µ ∈ σ(HS). We define by (Utφ)(x) := φ(x− t), φ ∈ L2(R), the group of translations
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on L2(R). As (Ut)t∈R is a unitary family, σ(HS) = σ(UtHSU−t), for all t ∈ R, and
Ut(D(HS)) = D(HS). For f ∈ D(HS) we have that

UtHSU−tf(x) = Ut(−∆x +Mαx)f(x+ t)

= Ut((−∆xf)(x+ t) + αxf(x+ t))

= (−∆xf)(x) + α(x− t)f(x)

= (HSf)(x)− αtf(x)

so that UtHSU−t = HS − αt, for all t ∈ R. Choosing t := λ−µ
α

, we find that

µ = λ−αt ∈ σ(HS−αt) = σ(HS). To see thatHS does not have eigenvalues, we start

with the assumption that HSu = λu for some u ̸= 0. Then also HSU−tu = λU−tu

and applying Ut, we find that λ + αt is also an eigenvalue of HS for any α ̸= 0.

This yields an over-countable orthonormal system of L2(R) which contradicts the

fact that L2(R) is separable.

Next, one considers the operator HS − 1
|x| as a model for the hyrogen atom in

a constant electric field for which one observes a splitting of the degenerate energy

levels of H0 − 1
|x| . Note that σess(HS − 1

|x|) = R. When the external electric field is

switched on, the eigenvalues of H0 − 1
|x| become resonances near the eigenvalues in

the complex plane, cf. [HS, p. 263ff.].

2.7 Many-particle systems

We consider a model for an atom with a core of infinite weight placed at 0 ∈ Rd with

nuclear charge number Z and N electrons. For atoms, Z = N , otherwise we would

have a model for an ion. Any electron feels the Coulomb potential of the core and

the Coulomb repulsion of the other electrons. For any electron, we consider a space

L2(R3) with coordinates xi := (ξ1i , ξ
2
i , ξ

3
i ) ∈ R3, i = 1, . . . , N . The energy states of

the i-th electron are modeled by the Schrödinger operator

Hi := −∆i −
Z

|xi|
+

∑
i̸=j=1,...,N

1

|xi − xj|
in L2(R3).

The Schrödinger operator of the many-particle system reads

H := −
N∑
i=1

∆i −
N∑
i=1

Z

|xi|
+

∑
1≤i<j≤N

1

|xi − xj|
in L2(R3N).

The operator H acts on functions Φ: R3N → C and is essentially self-adjoint on

C∞
c (R3N). For N = 2, we obtain the Schrödinger operator of the helium atom,

H = −∆1 −∆2 −
2

|x1|
− 2

|x2|
+

1

|x1 − x2|
in L2(R6).
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Neglecting the electron-electron interaction, one arrives at the operator(
−∆1 −

2

|x1|

)
+

(
−∆2 −

2

|x2|

)
=

(
−∆1 −

2

|x1|

)
⊗ I2 + I1 ⊗

(
−∆2 −

2

|x2|

)
so that the associated spectrum is the sum of the spectra of two copies of −∆− 2

|x|
in L2(R3); this operator has several embedded eigenvalues. Friedrichs showed that,

when switching on the repulsion term, these embedded eigenvalues disappear.

For any R > 0 and α ∈ ρ(H), χBR(0)(H − α)−1 is compact. Concerning σess(H),

we can thus assume without loss of generality that singular sequences on balls with

increasing radii disappear. This allows the conclusion that inf σess(H) is determined

by the infimum of the spectrum of a (N − 1)-particle system, precisely

σess(H) = [µ,∞), µ := inf σ
(
H̃N−1

)
with

H̃N−1 := −
N−1∑
i=1

∆i −
N−1∑
i=1

Z

|xi|
+

∑
1≤i<j≤N−1

1

|xi − xj|
in L2(R3(N−1)).

Indeed, the spectrum and the essential spectrum ofH can be determined inductively.

The results can be generalized to Coulomb-like potentials (Hunziker-van Winter-

Zhislin-Theorem, cf. [RS-IV, W-II]).

Finally, it is important to note that the many-particle operators presented in

this section describe bosons and not fermions. As electrons are fermions, they have

to respect the Pauli exclusion principle and one is led to diminish the Hilbert space

and to work with the anti-symmetric tensor product AN(L2(R3) ⊗ · · · ⊗ L2(R3));

here, AN is the projection on the subspace of anti-symmetric tensors, cf. [RS-I].

2.8 Magnetic Schrödinger operators in R2

Let B be a constant magnetic field in R2 given by a vector potential A⃗ : R2 → R2

with A⃗ ∈ C1(R2) and A⃗ = (A1(x, y), A2(x, y)) such that

B = rot A⃗ = ∂xA2 − ∂yA1.
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Then B is a continuous function. For instance, the constant magnetic field B = 2 is

obtained from A⃗ = (−y, x). In QuantumMechanics, magnetic Schrödinger operators

are obtained from a translation of momentum,

p⃗ = −i∇ −→ −i∇− A⃗.

Then H0 = p⃗ 2 becomes

HA⃗ = (p⃗− A⃗)2 = (−i∇− A⃗)2 = −∆+ 2i A⃗ · ∇+ i(∇ · A⃗) + |A⃗|2.

Given B there are many vector fields A⃗ such that B = rot A⃗, but the spectrum

of HA⃗ only depends on B. If rot A⃗ = rot A⃗′, the associated Schrödinger operators

HA⃗ and HA⃗′ are unitarily equivalent (gauge invariance). For a constant magnetic

field B ̸= 0 in R2, the spectrum of HA⃗ consists of a sequence of equidistant positive

eigenvalues of infinite multiplicity (Landau levels). In R3 the spectrum is [µ,∞) and

µ is the first Landau level in R2 for the constant field B. The Schrödinger operator

for the hydrogen atom in an external magnetic field yields a model for the Zeeman

effect, i.e. the splitting of spectral lines into several components (analogous to the

Stark effect in case of an electric field).

Theorem 2.26. Let A⃗ : R2 → R2 be a C1-vector field, A⃗ = (A1, A2)
T and let

B = rot A⃗ be the magnetic field induced by A⃗. If B(x) > 0 on R2, then HA⃗ =

(−i∇− A⃗)2 �C∞
c (R2) satisfies the inequality

⟨HA⃗φ, φ⟩ ≥
∫
R2

B(x)|φ(x)|2 dx, ∀φ ∈ C∞
c (R2).

Moreover, for χ ∈ C2(R2) and A⃗′ = A⃗+∇χ, one has

eiχ(−i∇− A⃗)e−iχφ = (−i∇− A⃗′)φ, ∀φ ∈ C∞
c (R2).

Proof. Let Πj := −i∂j − Aj for j = 1, 2. First, we claim that [Π1,Π2] = i rot A⃗ in

C∞
c (R2). For f ∈ C∞

c (R2) the product rule and Schwarz’s Theorem yield

[Π1,Π2]f = (−i∂1 − A1)(−i∂2 − A2)f − (−i∂2 − A2)(−i∂1 − A1)f

= −∂1∂2f + A1A2f + iA1∂2f + i∂1(A2f)

− [−∂2∂1f + A1A2f + i∂2(A1f) + iA2∂1f ]

= i(∂1A2 − ∂2A1)f

so that indeed [Π1,Π2] = i rot A⃗ = iB. The operators Πj are symmetric on C∞
c (R2).

Assuming B > 0, we find for any φ ∈ C∞
c (R2) that∫

R2

B|φ|2 dx =

∣∣∣∣∫
R2

B|φ|2 dx
∣∣∣∣ = ∣∣∣∣∫

R2

[Π1,Π2]φφ dx

∣∣∣∣ = |⟨[Π1,Π2]φ, φ⟩|

≤ 2| ⟨Π1φ,Π2φ⟩ | ≤ 2 ||Π1φ|| ||Π2φ|| ≤ ||Π1φ||2 + ||Π2φ||2
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=
⟨
(Π2

1 +Π2
2)φ, φ

⟩
= ⟨HA⃗φ, φ⟩ .

Finally, let A⃗′ = A⃗+∇χ and let φ ∈ C∞
c (R2). Then

eiχ(−i∇− A⃗)e−iχφ = eiχ
(
−e−iχ(∇χ)φ− ie−iχ∇φ− e−iχA⃗φ

)
= −(∇χ)φ− i∇φ− A⃗φ

= (−i∇− A⃗′)φ

which completes our proof.
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Chapter 3

The Schrödinger equation and

Stone’s Theorem

In this chapter, we consider the exponential function

e−itH , t ∈ R,

for a self-adjoint operator H in the Hilbert space H. Stone’s Theorem establishes

a bijection between the class of self-adjoint operators and the class of strongly

continuous unitary one-parameter groups: If H : D(H) → H is self-adjoint, then

{e−itH ; t ∈ R} is a strongly continuous group of unitary operators. The other way

round, for any strongly continuous unitary group of operators U(t) there exists a

unique self-adjoint operator H such that U(t) = e−itH , t ∈ R. Recall that a bounded

operator U : H → H is unitary if ⟨Ux, Uy⟩ = ⟨x, y⟩, for all x, y ∈ H, and if U is sur-

jective. Equivalently: A bounded operator U is unitary if and only if U is bijective

and U∗ = U−1.

If H = −∆+ V is a Schrödinger operator (with H = H∗) and f0 ∈ H = L2(Rd)

with ||f0|| = 1 describes the state of a quantum-mechanical particle at time t = 0,

then the solution of the initial value problem for the Schrödinger equation

∂

∂t
f(x, t) =

1

i
(−∆xf(x, t) + V (x)f(x, t)) ,

f(x, 0) = f0(x)

is given by

f(·, t) =
(
e−itHf0

)
(·).

The function |f(·, t)|2 can be interpreted as a probability density. As e−itH is unitary,

indeed

||f(·, t)||2 = ||f0||2 = 1, ∀t ∈ R.

If Ω ⊂ Rd is measurable,
∫
Ω
|f(x, t)|2 dx is a measure for the probability to find the

particle at time t in the set Ω.
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Definition 3.1. Let H be a Hilbert space and let {U(t); t ∈ R} be unitary operators

with the properties

(1) U(t+ s) = U(t)U(s), for all s, t ∈ R, and

(2) for all f ∈ H and all sequences (tn)n∈N ⊂ R with tn → t0 one has the strong

convergence U(tn)f → U(t0)f ,

is called a strongly continuous unitary (one-parameter) group.

Remark 3.2. Note that I = U(0)∗U(0) = U(0)∗U(0+0) = [U∗(0)U(0)]U(0) = U(0)

and that U(−t) = U(t)−1 = U(t)∗.

Theorem 3.3. Let A be a self-adjoint operator in the Hilbert space H and let

(E(λ))λ∈R be the associated spectral family.

(1) The operator

U(t) :=

∫ ∞

−∞
eiλt dE(λ), t ∈ R,

is unitary and {U(t); t ∈ R} is a strongly continuous unitary group.

(2) For all ψ ∈ D(A),

lim
t→0

1

t
(U(t)ψ − ψ) = iAψ.

(3) If limt→0
1
t
(U(t)ψ − ψ) exists for some ψ ∈ H, then ψ ∈ D(A).

Proof. As |eitλ| = 1, the operators U(t) are bounded with ||U(t)|| ≤ 1. Claim (1)

follows from some straightforward calculations:

⟨U(t)U(s)f, g⟩ =

∫ ∞

−∞
eiλt d ⟨E(λ)U(s)f, g⟩

=

∫ ∞

−∞
eiλt dλ

∫ ∞

−∞
eiµs dµ ⟨E(µ)f, E(λ)g⟩

=

∫ ∞

−∞
eiλt dλ

∫ λ

−∞
eiµs dµ ⟨E(µ)f, g⟩

=

∫ ∞

−∞
eiλteiλs d ⟨E(λ)f, g⟩

= ⟨U(t+ s)f, g⟩ ,

for all f, g ∈ H, as E(·) is symmetric and monotonic (E(λ)E(µ) = E(µ)E(λ) =

E(min{λ, µ})). Hence U(t)U(s) = U(t+ s). Furthermore

||U(t)f ||2 = ⟨U(t)f, U(t)f⟩

=

∫ ∞

−∞
eiλt d ⟨E(λ)f, U(t)f⟩
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=

∫ ∞

−∞
eiλt dλ

∫ ∞

−∞
eiµt dµ ⟨E(µ)f, E(λ)f⟩

=

∫ ∞

−∞
eiλt dλ

∫ λ

−∞
eiµt dµ ⟨E(µ)f, f⟩

=

∫ ∞

−∞
eiλte−iλt d ⟨E(λ)f, f⟩

= ||f ||2 .

Next, we prove that the U(t) are surjective: Let g ∈ H be given. We claim that

f := U(−t)g satisfies U(t)f = g. Let h ∈ H. We compute

⟨U(t)f, h⟩ =

∫ ∞

−∞
eiλt d ⟨E(λ)f, h⟩

=

∫ ∞

−∞
eiλt d ⟨U(−t)g, E(λ)h⟩

=

∫ ∞

−∞
eiλt dλ

∫ λ

−∞
e−iµt dµ ⟨E(µ)g, h⟩

=

∫ ∞

−∞
eiλte−iλt d ⟨E(λ)g, h⟩

= ⟨g, h⟩ .

As h was arbitrary, we conclude that indeed U(t)f = g. To prove that the U(t)

are strongly continuous, we consider a sequence (tn)n∈N ⊂ R with tn → t0 and

f ∈ H. By the spectral theorem, for any continuous function F : R → C and all

f ∈ D(F (A)),

||F (A)f ||2 =
∫
R
|F (λ)|2 d ⟨E(λ)f, f⟩ .

We thus have that

||U(tn)f − U(t0)f ||2 =
∫
R

∣∣eiλtn − eiλt0
∣∣2 d ⟨E(λ)f, f⟩ ,

and applying Lebesgue’s dominated convergence theorem, the desired result follows.

Proof of (2): Let ψ ∈ D(A), i.e.
∫
R λ

2 d ⟨E(λ)ψ, ψ⟩ <∞. Then∣∣∣∣∣∣∣∣1t (U(t)ψ − ψ)− iAψ

∣∣∣∣∣∣∣∣2 =

∫ ∞

−∞

∣∣∣∣1t (eiλt − 1
)
− iλ

∣∣∣∣2 d ⟨E(λ)ψ, ψ⟩

=

∫ ∞

−∞

∣∣iλeiλτ − iλ
∣∣2 d ⟨E(λ)ψ, ψ⟩ ,

for some τ = τ(λ, t) ∈ [−t, t]. Again, applying the dominated convergence theorem,

we see that the right hand side converges to zero as t→ 0.
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Proof of (3): Let ψ ∈ H so that

φ := s− lim
t→0

1

t
(U(t)ψ − ψ)

exists. We claim that ψ ∈ D(A) and that iAψ = φ. Define an operator B by

D(B) :=

{
u ∈ H; lim

t→0

1

t
(U(t)u− u) exists

}
,

iBu := lim
t→0

1

t
(U(t)u− u).

As U(−t) = U(t)∗ = U(t)−1, one easily concludes that B is symmetric. By (2),

A ⊂ B and hence

A ⊂ B ⊂ B∗ ⊂ A∗.

Since we have assumed that A = A∗, it follows that B = A, ψ ∈ D(A) and iAψ =

iBψ = limt→0
1
t
(U(t)ψ − ψ).

The other way round, any strongly continuous group is generated by a self-adjoint

operator A.

Theorem 3.4 (Stone). Let {U(t); t ∈ R} be a strongly continuous unitary group.

Then there is a unique self-adjoint operator A satisfying

U(t) = eitA, t ∈ R.

Proof. For f ∈ C∞
c (R) and φ ∈ H let

φf :=

∫ ∞

−∞
f(t)U(t)φ dt;

this is a Riemann integral as the integrant depends continuously on t. We denote

by D the set of all linear combinations of functions φf . Given ε > 0 we consider

jε ∈ C∞
c (R) with the properties

jε ≥ 0, supp jε ⊂ [−ε, ε],
∫ ∞

−∞
jε(x) dx = 1.

We then have

||φjε − φ|| =

∣∣∣∣∣∣∣∣∫ ∞

−∞
jε(t)(U(t)φ− φ) dt

∣∣∣∣∣∣∣∣
≤

(∫ ∞

−∞
jε(t) dt

)
· sup
−ε≤t≤ε

||U(t)φ− φ|| → 0, ε→ 0,

and hence D is dense in H. Furthermore, for φf ∈ D,

1

s
(U(s)− I)φf =

∫ ∞

−∞
f(t)

1

s
(U(s+ t)− U(t))φ dt
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=

∫ ∞

−∞

1

s
(f(τ − s)− f(τ))U(τ)φ dτ

→ −
∫ ∞

−∞
f ′(τ)U(τ)φ dτ

= φ−f ′

as 1
s
(f(τ − s)− f(τ)) → −f ′(τ) uniformly on supp f . For φf ∈ D we define

Aφf := −iφ−f ′ = lim
s→0

1

is
(U(s)− I)φf .

Note that U(t) : D → D, A : D → D and that U(t)Aφf = AU(t)φf , for all φf ∈ D,

as

U(t)φf = U(t)

∫
R
f(s)U(s)φ ds =(∗)

∫
R
f(s)U(t)U(s)φ ds

=

∫
R
f(s)U(s)(U(t)φ) ds = (U(t)φ)f

and

AU(t)φf = A(U(t)φ)f =
1

i
(U(t)φ)−f ′ =

1

i
U(t)φ−f ′ = U(t)

(
1

i
φ−f ′

)
= U(t)Aφf .

In (∗), we have approximated the Riemann integral by Riemann sums and have made

use of the continuity of U(t). The operator A with the domain D is symmetric since

for φf , ψg ∈ D and with U(s)∗ = U(s)−1 = U(−s) we have that

⟨Aφf , ψg⟩ = lim
s→0

⟨
1

is
(U(s)− I)φf , ψg

⟩
= lim

s→0

⟨
φf ,

1

is
(I − U(−s))ψg

⟩
= ⟨φf , Aψg⟩ .

We now show that A is essentially self-adjoint as an operator on D by proving that

N(A∗± iI) = {0}. Let u ∈ D(A∗) with A∗u = −iu be given. For all φ ∈ D = D(A),

d

dt
⟨U(t)φ, u⟩ = ⟨iAU(t)φ, u⟩ = i ⟨U(t)φ,A∗u⟩ = −⟨U(t)φ, u⟩

so that the function F (t) := ⟨U(t)φ, u⟩ satisfies the ODE F ′ = −F . Hence F (t) =

F (0)e−t. As |F (t)| ≤ ||φ|| ||u||, we conclude that F (0) = 0. Using that U(0) = I and

that

⟨U(0)φ, u⟩ = ⟨φ, u⟩ = 0, ∀φ ∈ D,

the fact that D is dense implies that u = 0. Thus A is essentially self-adjoint on D.

Finally, let

V (t) := eitA.
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By Theorem 3.3, {V (t); t ∈ R} is a strongly continuous unitary group. It remains

to show that U(t) = V (t) for all t ∈ R. For all φ ∈ D ⊂ D(A) we have by means of

Theorem 3.3, (2) that
d

dt
V (t)φ = iAV (t)φ.

We also know that U(t)φ ∈ D ⊂ D(A) for all t ∈ R. Let

w(t) := U(t)φ− V (t)φ, t ∈ R.

Then w is strongly differentiable with

w′(t) = iAU(t)φ− iAV (t)φ = iAw(t)

and, as A is self-adjoint,

d

dt
||w(t)||2 = i

⟨
Aw(t), w(t)

⟩
− i

⟨
w(t), Aw(t)

⟩
= 0.

Using that w(0) = 0 implies that w ≡ 0 and hence

U(t)φ = V (t)φ, φ ∈ D, t ∈ R.

As D is dense, U(t) = V (t) for all t ∈ R.

Definition 3.5. We say that A is the infinitesimal generator of the strongly con-

tinuous group {U(t); t ∈ R} if U(t) = eitA for t ∈ R.

Remark 3.6. If A is a bounded, symmetric operator in the Hilbert space H, the

generating unitary group U(t) is norm-continuous: For φ, ψ ∈ H, we have that⟨
iAeiAsφ, ψ

⟩
=

∫ ∞

−∞
iλ dλ

⟨
E(λ)eiAsφ, ψ

⟩
=

∫ ∞

−∞
iλ dλ

∫ ∞

−∞
eiµs dµ ⟨E(µ)φ,E(λ)ψ⟩

=

∫ ∞

−∞
iλeiλs dλ ⟨E(λ)φ, ψ⟩

=

∫ ∞

−∞

d

ds
eiλs dλ ⟨E(λ)φ, ψ⟩ .

Integrating this equality with respect to s from 0 to t and Fubini’s Theorem show

that ⟨
i

∫ t

0

AU(s)φ ds, ψ

⟩
=

∫ ∞

−∞

(∫ t

0

d

ds
eiλs ds

)
dλ ⟨E(λ)φ, ψ⟩

=

∫ ∞

−∞
(eiλt − 1) dλ ⟨E(λ)φ, ψ⟩

= ⟨U(t)φ, ψ⟩ − ⟨φ, ψ⟩
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for all ψ ∈ H. Hence

i

∫ t

0

AU(s)φ ds = U(t)φ− φ, ∀φ ∈ H.

This implies

||U(t)φ− φ|| ≤
∫ t

0

||AU(s)φ|| ds ≤ ||A|| ||φ|| t

and

sup{||U(t)φ− φ|| ; ||φ|| ≤ 1} = ||U(t)− I|| ≤ ||A|| t→ 0, t→ 0.

Thus U(·) is norm-continuous at t = 0 and hence at any t ∈ R. In fact, a family

{U(t); t ∈ R} of unitary operators is norm-continuous if and only if the infinitesimal

generator A is bounded, see, e.g., [E.B. Davies, ”One parameter semigroups”, p.

19/20].

Remark 3.7. A family {U(t); t ∈ R} of unitary operators with

U(s)U(t) = U(s+ t), ∀s, t ∈ R,

and with the property that for all f, g ∈ H the map

R ∋ t 7→ ⟨U(t)f, g⟩ ∈ C

is continuous (weak continuity) is in fact a strongly continuous group. This follows

immediately from

||U(t)φ− φ||2 = ||U(t)φ||2 − ⟨U(t)φ, φ⟩ − ⟨φ,U(t)φ⟩+ ||φ||2

→ 2 ||φ||2 − 2 ||φ||2 = 0, t→ 0.

John von Neumann has show that in a separable Hilbert space, the strong continuity

of a unitary group {U(t); t ∈ R} is already obtained from the weak measurability,

i.e. it is enough to show that the map t 7→ ⟨U(t)f, g⟩ is measurable. Measurability

is relatively easy to prove as, for instance, it suffices to show that the map under

consideration is the pointwise limit of a sequence of continuous functions.

Example 3.8. Let H = L2(R) and let

(U(t)f)(x) := f(x+ t), f ∈ H, t ∈ R.

Then U(t) defines a strongly continuous unitary group: Clearly, U(0) = I and U

is invertible with U(t)−1 = U(−t). As the Lebesgue integral is invariant under

translations, ⟨U(t)f, U(t)g⟩ = ⟨f, g⟩. To prove that U(t) is strongly continuous, we

fix φ ∈ H and choose a sequence (tn) ⊂ R with tn → t0, n → ∞. We have to show

that U(tn)φ→ U(t0)φ. For f ∈ L2(R), we write fn(x) := f(x+ tn). Let ψ ∈ C∞
c (R)
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with ||ψ − φ|| < ε be given. Then |ψn(x)−ψ0(x)| → 0, pointwise, |ψn−ψ0| ≤ 2 ||ψ||∞
and

|ψn(x)− ψ0(x)|2 ≤ 4 ||ψ||2∞ χK(x) ∈ L1(R),

where K ⊂ R is compact and ∪n∈N supp ψn ∪ supp ψ0 ⊂ K. By the dominated

convergence theorem, ||ψn − ψ0|| → 0 and consequently

||φn − φ0|| ≤ ||φn − ψn||+ ||ψn − ψ0||+ ||ψ0 − φ0|| < 3ε, n→ ∞.

This shows that φn = U(tn)φ→ U(t0)φ = φ0, n→ ∞, strongly. We now claim that

U(t) = eitA

where A = A0, D(A0) = C∞
c (R) and A0φ = −iφ′. Let φf and D be as in the proof

of Theorem 3.4. We define Bφf := −iφ−f ′ , D(B) = D, and show that A �D= B.

This follows from

φf (x) =

∫
R
f(t)φ(x+ t) dt =

∫
R
f(t− x)φ(t) dt

and

Aφf = −i
d

dx

∫
R
f(t− x)φ(t) dt = i

∫
R
f ′(t− x)φ(t) dt

=
1

i

∫
R
(−f ′)(t)φ(x+ t) dt =

1

i
φ−f ′ = Bf.

We had shown in the proof of Stone’s Theorem that B is essentially self-adjoint on

the domain D and that B is the generator of the corresponding unitary group. As

A is the unique self-adjoint extension of A0 and A �D= A0, this yields that A = B

and hence A is the infinitesimal generator of {U(t); t ∈ R}. Note that

D(A) = {u : R → C;u ∈ ACloc(R), u, u′ ∈ L2(R)}.

Here, ACloc(R) is the space of locally absolutely continuous functions on the real

axis (see the next chapter).

Example 3.9. Let Ω ⊂ Rd be open, H = L2(Ω) and g : Ω → R be measurable.

Then

U(t)f(x) := eitg(x)f(x), f ∈ H, t ∈ R,

is a strongly continuous unitary group. Moreover,

U(t) = eitA, t ∈ R,

and A = Mg is the maximal multiplication operator induced by the function g in

L2(Ω). The proof is left as an exercise.

46



Chapter 4

Absolutely continuous and

singularly continuous spectrum

We skim through some key facts concerning the fundamental results of H. Lebesgue

about monotic functions on the real axis. For details, we refer to [A.N. Kolmogoroff

& S.V. Fomin: Elements de la théorie des fonctions et de l’analyse fonctionelle] or

[I.P. Natanson: Theory of functions of a real variable]. This yields a decomposition

of a monotonic function f : R → R into a jump function fpp, an absolutely continuous

function fac and a singularly continuous function fsc:

f = fpp + fac + fsc.

Concerning the absolutely continuous component, we may apply the Fundamental

Theorem of Calculus

fac(x)− fac(x0) =

∫ x

x0

f ′
ac(t) dt.

The study of monotonic functions is of particular interest for our goals as if (E(λ))λ∈R
is a spectral family, the function

R → [0,∞), λ 7→ ⟨E(λ)u, u⟩

is monotonic. If H is a Schrödinger operator with the spectral family (E(λ))λ∈R,

the elements u ∈ H for which ⟨E(λ)u, u⟩ is absolutely continuous correspond to

the scattering states ; the elements u ∈ H such that ⟨E(λ)u, u⟩ is a jump function

correspond to the bound states. In fact, this yields a decomposition of the Hilbert

space

H = Hpp ⊕Hac ⊕Hsc.

A function g : R → R is called integrable if g is measurable and
∫
R |g(x)| dx <∞.

Let [a, b] ⊂ R be a compact interval and let f : [a, b] → R be monotonic and non-

decreasing. Then:

(1) f is measurable and bounded and hence integrable.
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(2) For x ∈ (a, b), the limits f(x+0) := limε→0 f(x+ε), f(x−0) := limε→0 f(x−ε)
exist. Either f(x−0) = f(x+0) and f is continuous at x or f(x−0) ̸= f(x+0)

and f is discontinuous at x and has a jump of height f(x+0)− f(x− 0) > 0.

(3) The number of discontinuities of f is at most countable.

(4) Let f be monotonic and right-continuous. Then f has a unique decomposition

into a continuous monotonic function g and a right-continuous jump function

h in the sense that f = g + h. The function h is constant between the jump

discontinuities.

(5) We can assume without loss of generality that a monotonic function is right-

continuous.

Definition 4.1. A set N ⊂ R is called a null set if for any ε > 0 there exists a

sequence of intervals Ik ⊂ R, k ∈ N, such that

N ⊂
∪
k∈N

Ik and
∑
k∈N

|Ik| < ε.

Let a < b. We say that a property holds true almost everywhere (a.e.) in [a, b] if it

holds true for all x ∈ [a, b]\N with a null set N .

Remark 4.2. It is easy to see that the countable union of null sets is again a null

set: If the null sets {Ni; i ∈ N} and ε > 0 are given, there exists (Ik,i)k∈N such that

Ni ⊂ ∪k∈NIk,i and
∑

k∈N |Ik,i| < 2−iε, for all i ∈ N. Then N := ∪i∈NNi ⊂ ∪k,i∈NIk,i
and

∑
k,i∈N |Ik,i| < ε

∑∞
i=1 2

−i = ε.

Theorem 4.3 (Lebesgue). Let f : [a, b] → R be monotonic. Then f is differen-

tiable almost everywhere.

The claim of Theorem 4.3 means that there exists a null set N ⊂ [a, b] such that

for x ∈ (a, b)\N , the finite limit limh→0
1
h
(f(x+ h)− f(x)) exists.

Theorem 4.4 (Fubini). Let Fn : [a, b] → R be monotonic and non-decreasing and

assume that F :=
∑∞

n=1 Fn converges for all x ∈ [a, b]. Then

F ′(x) =
∞∑
n=1

F ′
n(x) a.e.

Corollary 4.5. Let h : [a, b] → R be the jump function of a monotonic function f .

Then h′ = 0 a.e.

Definition 4.6. A function f : [a, b] → R is of bounded variation if there exists a

constant C such that for all n ∈ N
n∑

k=1

|f(xk)− f(xk−1)| ≤ C (4.1)
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for any partition a ≤ x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn ≤ b. The infimum of all constants

C ≥ 0 with the property (4.1) for all partitions (xi)i=1,...,n of [a, b] and all n ∈ N is

called the total variation of f .

Theorem 4.7. Any function of bounded variation can be written as the difference

of two monotonically non-decreasing functions.

Recall that the Fundamental Theorem of Calculus comprises the following two

statements:

(a) If f is continuous, then d
dx

∫ x

a
f(t) dt = f(x).

(b) If F is continuously differentiable, then F (x) = F (a) +
∫ x

a
F ′(t) dt.

Is it possible to obtain analogous statements under weaker assumptions? This ques-

tion has been answered by H. Lebesgue. First of all, let us consider the (easier)

statement (a). If φ : [a, b] → R is integrable, we write

φ = φ+ − φ−, φ± ≥ 0, φ± integrable.

Then the functions

x 7→
∫ x

a

φ±(t) dt

are monotonically increasing and according to Theorem 4.3 the derivatives

d

dx

∫ x

a

φ±(t) dt and
d

dx

∫ x

a

φ(t) dt

exist. Indeed, we have the following theorem.

Theorem 4.8. Let f : [a, b] → R be integrable. Then

d

dx

∫ x

a

f(t) dt = f(x) a.e.

Concerning part (b), we make use of the following inequality.

Theorem 4.9. Let f : [a, b] → R be monotonically increasing. Then f ′ is integrable

and ∫ b

a

f ′(t) dt ≤ f(b)− f(a). (4.2)

Proof. For h > 0 let φh(x) :=
1
h
(f(x + h) − f(x)); to this end, f may be extended

by the constant function f(b) at b. Then∫ b

a

φh(x) dx =
1

h

(∫ b

a

f(x+ h) dx−
∫ b

a

f(x) dx

)
=

1

h

(∫ b+h

a+h

f(x) dx−
∫ b

a

f(x) dx

)
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=
1

h

(∫ b+h

b

f(x) dx−
∫ a+h

a

f(x) dx

)
≤ f(b+ h)− f(a) = f(b)− f(a),

as f is monotonically increasing. Clearly, φh ≥ 0 so that we may deduce that

φh ∈ L1(a, b) and lim infh→0 ||φh||L1
≤ f(b)− f(a). Furthermore,

f ′(x) = lim inf
h→0

φh(x) a.e.

By Fatou’s lemma, f ′ ∈ L1(a, b) and, as f
′(x) ≥ 0,∫ b

a

f ′(t) dt = ||f ′||L1
≤ lim inf

h→0
||φh||L1

≤ f(b)− f(a)

which completes our proof.

In general, we do not have equality in (4.2); consider a jump function, for in-

stance. More interestingly, there exist continuous functions for which we do not have

equality in (4.2).

Example 4.10 (Cantor function). There exists a continuous and monotonic func-

tion f : [0, 1] → [0, 1] satisfying

f(0) = 0, f(1) = 1, f ′(t) = 0 a.e.

This function satisfies
∫ 1

0
f ′(t) dt = 0 ̸= f(1)− f(0) = 1, see [RS-I, p. 21].

Definition 4.11. A function f : [a, b] → R is called absolutely continuous if for any

ε > 0 there exists δ > 0 with the following property: If {Ik; k = 1, . . . , n} is a finite

family of pairwise disjunct open intervals Ik = (ak, bk) ⊂ [a, b] then
n∑

k=1

(bk − ak) < δ =⇒
n∑

k=1

|f(bk)− f(ak)| < ε.
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Remark 4.12. a

(1) Any absolutely continuous function is uniformly continuous, but the reverse

statement is not true; consider once more the Cantor function of Example 4.10.

(2) In Definition 4.11, we may replace “finite family” by “countable family”.

(3) Any absolutely continuous function is of bounded variation.

(4) The set of absolutely continuous functions on [a, b] is a vector space, denoted as

AC[a, b].

(5) Any absolutely continuous function can be written as the difference of two mono-

tonic and absolutely continuous functions.

Theorem 4.13. If f : [a, b] → R is integrable, then the integral function

F (x) :=

∫ x

a

f(t) dt, x ∈ [a, b],

is absolutely continuous.

Theorem 4.14 (Vitali, 1906). Let F : [a, b] → R be absolutely continuous. Then

F is a.e. differentiable, the derivative f := F ′ is integrable and for all x ∈ [a, b] we

have that ∫ x

a

f(t) dt = F (x)− F (a).

Remark 4.15. a

(1) Vitali’s Theorem can be applied to prove that absolutely continuous functions

are of bounded variation, see Remark 4.12(3): Let a = x0 < x1 < . . . < xn+1 = b

be a partition of [a, b]. If f is absolutely continuous on [a, b], there is a function

g ∈ L1(a, b) such that f ′ = g a.e. It follows from

n∑
k=0

|f(xk+1)− f(xk)| =
n∑

k=0

∣∣∣∣∫ xk+1

xk

g(y) dy

∣∣∣∣ ≤ n∑
k=0

∫ xk+1

xk

|g(y)| dy = ||g||L1(a,b)

that the total variation of f on [a, b] is finite.

(2) We also obtain that any Lipschitz continuous function is absolutely continuous:

Assume that there exists L > 0 such that, for all x, y ∈ [a, b], |f(x) − f(y)| ≤
L|x − y|. Let ε > 0 and define δ := ε/L. Furthermore, let Ik = (ak, bk) ⊂ [a, b],

k = 1, . . . , n, with
∑n

k=1 |bk − ak| < δ be given. As

n∑
k=1

|f(bk)− f(ak)| ≤ L

n∑
k=1

|bk − ak| < Lδ = ε,
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we obtain that f is absolutely continuous. And as

|f(x)− f(y)|
|x− y|

≤ L, ∀x ̸= y,

it is also clear that |f ′(x)| ≤ L a.e.

(3) A more stronger result is Rademacher’s Theorem: A function f : [a, b] → R
is Lipschitz continuous if and only if f is almost everywhere differentiable with

bounded derivative f ′.

We already know that any function f of bounded variation can be decomposed in

the sense that it can be written as a sum of a jump function h and a continuous

function φ of bounded variation,

f = h+ φ.

We now define the function

ψ(x) :=

∫ x

a

φ′(t) dt.

According to Theorem 4.9, φ′ is indeed integrable and hence, by Theorem 4.13, ψ

is absolutely continuous. In consequence, the difference χ := φ − ψ is of bounded

variation and
d

dx
χ = φ′(x)− d

dx

∫ x

a

φ′(t) dt = 0 a.e.

Definition 4.16. A continuous, non-constant function χ : [a, b] → R of bounded

variation is called singularly continuous if χ′(x) = 0 a.e.

Remark 4.17. The Lebesgue-Stieltjes measure corresponding to χ is localized on

a Borel null set and hence it is singular with respect to the Lebesgue measure.

Theorem 4.18 (Lebesgue, 1904). Any function f : [a, b] → R of bounded varia-

tion allows for a unique decomposition

f = h+ ψ + χ,

where h is a jump function, ψ is absolutely continuous and χ is singularly continuous.

Let T : D(T ) → H be a self-adjoint operator in the Hilbert space H with the

spectral family (E(λ))λ∈R. For all f ∈ H, the function

R → R, λ 7→ ⟨E(λ)f, f⟩ = ||E(λ)f ||2

is monotonically non-decreasing and right-continuous. Hence the above results apply

and we will define the following subspaces of H:

Hpp := span{u ∈ D(T );u is an eigenvector of T},
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Hac := {f ∈ H; ||E(·)f ||2 is absolutely continuous},
Hsc := {f ∈ H; ||E(·)f ||2 is singularly continuous};

here, the abbreviation pp stands for “pure point”. These are closed subspaces of H
and

H = Hpp ⊕Hac ⊕Hsc. (4.3)

Denote by Ipp, Iac and Isc the projections on Hpp, Hac and Hsc. Then T commutes

with Ipp, Iac and Isc and hence

Tpp := TIpp, Tac := TIac, Tsc := TIsc

are self-adjoint operators in the subspaces Hpp, Hac and Hsc. We define

σac(T ) := σ(Tac), σsc(T ) := σ(Tsc)

and our final goal is to show that σ(T ) = σp(T ) ∪ σac(T ) ∪ σsc(T ), where σp(T ) is
the point spectrum of T .

We now shed light on some aspects concerning the decomposition (4.3) omitting

some of the proofs, cf. [W-II; Ch. 12] and [RS-I; Thm. VII.4] for more details.

Definition 4.19. Let T be a self-adjoint operator in the Hilbert space H. We call

Hpp := span{u ∈ D(T );u is an eigenvector of T}

the discontinuous subspace of H with respect to T and Hc(T ) := Hpp(T )
⊥ the con-

tinuous subspace.

Obviously, Hpp and Hc are closed subspaces of H. Our definition is motivated

by the following theorem.

Theorem 4.20. We have that Hpp(T ) = {f ∈ H; ||E(·)f ||2 is a jump function} and

Hc(T ) = {f ∈ H; ||E(·)f ||2 is continuous}. Moreover,

Hsc := {f ∈ H; ||E(·)f ||2 is singularly continuous}

is a closed subspace of H.

Proof. We only give a sketch of the proof of the last statement. For any interval

(a, b), a < b, one defines

E(a,b) = E(b− 0)− E(a).

Next one shows that we can associate a spectral projection EB with a Borel set

B ⊂ R. Afterwards, one proves that f ∈ Hsc if and only if there is a Borel null set

N ⊂ R such that ENf = f . It follows that f, g ∈ Hsc implies that f+g ∈ Hsc: First

f, g ∈ Hsc implies that there exist null sets N,N ′ with ENf = f and EN ′g = g.

Then Ñ = N ∪N ′ is a null set and as EÑ ≥ EN and EÑ ≥ EN ′ , we conclude that

EÑ(f + g) = EÑf + EÑg = EÑENf + EÑEN ′g = ENf + EN ′g = f + g;
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here we have used that, for two projections P and Q, P ≥ Q ⇐⇒ R(P ) ⊃ R(Q)

⇐⇒ PQ = QP = Q. If (fn) ⊂ Hsc is a convergent sequence, fn → f ∈ H, there

exist Borel null sets Nn ⊂ R with ENnfn = fn. Then N := ∪n∈NNn is a Borel null

set and

ENf = EN

(
lim
n→∞

fn

)
= lim

n→∞
ENfn = lim

n→∞
ENENnfn = lim

n→∞
ENnfn = lim

n→∞
fn = f,

meaning that f ∈ Hsc.

Definition 4.21. Let T , Hc and Hsc as above. The orthogonal complement of Hsc

in Hc is denoted by Hac, the absolutely continuous subspace of H with respect to T ,

Hac := Hc ∩H⊥
sc = Hc ⊖Hsc.

Finally let Hs := Hpp ⊕Hsc be the singular continuous subspace of H so that

H = Hs ⊕Hac.

Finally, one shows that indeedHac = {f ∈ H; ||E(·)f ||2 is absolutely continuous}.
We now intend to decompose T into its components with respect to the subspaces

Hpp, Hsc and Hac.

Definition 4.22. LetM be a closed subspace ofH and let P = PM be the projection

on M . We say that M reduces T if

PT ⊂ TP

i.e. if u ∈ D(T ) implies Pu ∈ D(T ) and TPu = PTu. If M reduces T , then

D(TM) := D(T ) ∩M, TMf := Tf, ∀f ∈ D(TM)

is an operator in M . As M reduces T if and only if M⊥ reduces T , we obtain an

operator TM⊥ similarly.

Theorem 4.23. Let T be a self-adjoint operator in the Hilbert space H and assume

that M reduces T . Then TM and TM⊥ are self-adjoint operators in M and M⊥

respectively. Furthermore σ(T ) = σ(TM) ∪ σ(TM⊥).

Proof. a

(1) We first show that D(TM) ⊂M is dense. Let v ∈M with v ⊥ D(TM) be given.

As D(T ) = D(TM) ⊕ D(TM⊥) and v ∈ D(TM⊥)⊥, v ∈ D(T )⊥ and hence v = 0,

since D(T ) ⊂ H is dense. Similarly, one sees that D(TM⊥) ⊂M⊥ is dense.

(2) Clearly, TM = T �M and TM⊥ = T �M⊥ are symmetric.
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(3) We show that R(TM ± iIM) =M . Let f ∈M . As T is self-adjoint, there exists

u ∈ D(T ) such that (T + i)u = f . We want to show that in fact u ∈ M and

make use of the decomposition u = v + w ∈M ⊕M⊥. Using that M and M⊥ are

invariant under the action of T , we obtain that (T + i)v ∈M and (T + i)w ∈M⊥.

As f = (T + i)v + (T + i)w, we obtain that (T + i)w = 0 and as (T + i) is

injective, we see that w = 0. It is shown similarly that R(TM − iIM) =M and that

R(TM⊥ ± iIM⊥) =M⊥. Hence TM and TM⊥ are self-adjoint.

(4) To prove the decomposition of the spectrum, we start from z ∈ σ(TM)∪σ(TM⊥)

and assume without loss of generality that z ∈ σ(TM). This implies the existence

of a sequence (un) ⊂ D(TM), ||un|| = 1 such that ||(TM − z)un|| → 0. But then also

||(T − z)un|| → 0 and z ∈ σ(T ). To prove the other direction, we start from the

assumption z ∈ ρ(TM) ∩ ρ(TM⊥) to obtain that

T − z = (TM − zIM)⊕ (TM⊥ − zIM⊥) : D(T ) → H

is bijective and hence z ∈ ρ(T ).

Theorem 4.24. Let T be a self-adjoint operator with the spectral family (E(λ))λ∈R
and let M be a closed subspace of H with the associated projection P . Then:

M reduces T ⇐⇒ ∀λ ∈ R : [P,E(λ)] = 0. (4.4)

Proof. This follows from [M. Kohlmann: Spectral Theory; Exercise 9.7].

Theorem 4.25. Let T be a self-adjoint operator in the Hilbert space H. Then the

subspaces Hpp, Hsc and Hac reduce T .

Proof. By Theorem 4.24, it suffices to show that, for P ∈ {Ppp, Pac, Psc} and Eλ :=

E(−∞,λ],

∀λ ∈ R : [P,Eλ] = 0.

(1) Let x ∈ Hpp. Then there exists A := (λn)n∈N ⊂ R such that

EAx :=
∞∑
n=1

E{λn}x =
∞∑
n=1

(Eλn − Eλn−0) x = x = Pppx.

As Eλ is a bounded operator and EλEµ = EµEλ, for all λ, µ ∈ R, we conclude

that EλPppx = PppEλx, for all x ∈ Hpp. Hence EλPpp = PppEλPpp and taking the

adjoint yields PppEλ = PppEλPpp = EλPpp so that indeed [Ppp, Eλ] = 0.

(2) As explained in the proof of Theorem 4.20, given f ∈ Hsc, there exists a Borel

null set N ⊂ R such that f = Pscf = ENf and EN =
∫∞
−∞ χN(λ) dEλ. We show

that [EN , Eλ] = 0. Let g ∈ H and observe that

⟨ENEλf, g⟩ =
∫ ∞

−∞
χN(µ) dµ ⟨EµEλf, g⟩
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=

∫ ∞

−∞
χN(µ) dµ

∫ ∞

−∞
χ(−∞,λ](ξ) dξ ⟨Eξf, Eµg⟩

=

∫ ∞

−∞
χN(µ)χ(−∞,λ](µ) dµ ⟨Eµf, g⟩ .

Similarly,

⟨EλENf, g⟩ =
∫ ∞

−∞
χ(−∞,λ](µ) dµ ⟨EµENf, g⟩

=

∫ ∞

−∞
χ(−∞,λ](µ) dµ

∫ ∞

−∞
χN(ξ) dξ ⟨Eξf, Eµg⟩

=

∫ ∞

−∞
χ(−∞,λ](µ)χN(µ) dµ ⟨Eµf, g⟩

so that, as in step (1), EλPsc = PscEλPsc. Writing down the adjoint of the left-hand

and the right-hand side, we also get that PscEλ = PscEλPsc and hence [Psc, Eλ] = 0.

(3) Using the decompositionH = Hpp⊕Hac⊕Hsc, it follows from Pac = 1−Ppp−Psc

that also [Pac, Eλ] = 0.

Definition 4.26. We denote by Tpp, Tc, Tsc, Tac and Ts the restrictions of T to the

subspaces Hpp, Hc, Hsc, Hac and Hs and call them the (spectrally) discontinuous,

continuous, singularly continuous, absolutely continuous and the singular part of T .

Moreover, we define

σc(T ) := σ(Tc), the continuous spectrum of T,

σsc(T ) := σ(Tsc), the singularly continuous spectrum of T,

σac(T ) := σ(Tac), the absolutely continuous spectrum of T,

σs(T ) := σ(Ts), the singular spectrum of T.

We define σpp(T ) as the set of eigenvalues of T , i.e. σpp(T ) := σp(T ), and

σ(Tpp) := σp(T ).

In particular,

H = Hpp ⊕Hac ⊕Hsc,

T = Tpp ⊕ Tac ⊕ Tsc,

σ(T ) = σpp(T ) ∪ σac(T ) ∪ σsc(T ).

Let us summarize the three decompositions of the spectrum of a self-adjoint operator:

(1) Let T be a closed operator in the Banach space X and define

σp(T ) = {λ ∈ C;N(T − λ) ̸= {0}},
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σcont(T ) = {λ ∈ C;T − λ injective, R(T − λ) dense, R(T − λ) ̸= X},
σres(T ) = {λ ∈ C;T − λ injective, R(T − λ) not dense}.

Then

σ(T ) = σp(T ) ∪ σcont(T ) ∪ σres(T ).

The subsets σp(T ), σcont(T ), σres(T ) ⊂ σ(T ) are disjoint. If X is a Hilbert space

and T is self-adjoint, σ(T ) ⊂ R and σres(T ) = ∅.

(2) Let T be a self-adjoint operator in the Hilbert space H. Then

σ(T ) = σdisc(T ) ∪ σess(T ).

Here, σdisc(T ) is the set of eigenvalues λ ∈ σp(T ) that are isolated points of the

spectrum of T and that have finite multiplicity. Moreover,

σess(T ) = σ(T )\σdisc(T )

contains eigenvalues of infinite multiplicity and accumulation points of the spec-

trum.

(3) Let T be a self-adjoint operator in the Hilbert space H. Then

σ(T ) = σp(T ) ∪ σc(T )

with σp(T ) as in (1) but in general σc(T ) ̸= σcont(T ). Moreover, σp(T ) and σc(T )

are not disjoint in general. Here, σ(Tpp) = σp(T ) and

σc(T ) = σac(T ) ∪ σsc(T ),

with σac(T ) = σ(Tac) and σsc(T ) = σ(Tsc), and Tac and Tsc denote the parts of T

in the subspaces Hac and Hsc respectively. Finally,

H = Hpp ⊕Hac ⊕Hsc = Hpp ⊕Hc.
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Chapter 5

Outlook: Scattering Theory

5.1 Scattering experiments in physics

One of the main goals in physics is to determine the elementary particles of matter

and the forces acting between them. On an atomic or sub-atomic scale, this is only

possible using scattering experiments: Examples in the history of physics are, for

instance, the discovery of the nucleus, the nuclear fission, the discovery of new par-

ticles in a collider and the determination of the structure of crystals. In any of these

examples, the length scales are so small (or the energies are so high, respectively)

that only a quantum mechanical approach makes sense to come to valuable results.

Let us consider some aspects of quantum mechanical scattering theory here.

The following setting is typical for scattering experiments: Particles coming from

a source S move through an aperture A and finally reach a target T where the

scattering takes place. Behind the target there is a detector D that measures the

intensity as a function of the angle of deflection ϑ.

The simplest example for a scattering process is the elastic 2-particle scattering.

However, in physics, there are more examples like inelastic scattering (excitation)

or scattering processes in which more than 2 particles are involved (multi-channel

scattering).

Of particular interest is the determination of the total and differential cross
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section and more generally of the scattering operator/scattering matrix. The main

goal is, given a certain potential V (x), to determine the associated cross sections

and the scattering operator respectively (which is not easy). Even more difficult is

the inverse scattering problem: Given certain data of a scattering experiment (cross

sections, phase shifts, reflection coefficients etc.) how can one reconstruct the law

of force?

5.2 The quantum mechanical two-body problem

We assume that a single particle is shot towards a fixed target (of infinite mass).

Then the motion of the particle is described by the Schrödinger equation

∂

∂t
f(x, t) =

1

i
Hf(x, t) (5.1)

where H = −∆+ V is a suitable Schrödinger operator in the Hilbert space L2(Rd).

If the initial state of the particle (at t = 0) is given by some f0 ∈ L2, the solution

to (5.1) is given by

f(·, t) = e−itHf0, −∞ < t <∞.

We distinguish between three different types of solutions that stem from the decom-

position H = Hpp ⊕Hac ⊕Hsc of the Hilbert space.

(1) f0 ∈ Hpp: Bound state. The particle is quasi-localized and moves on some

trajectory (not necessarily periodic) within the potential.

(2) f0 ∈ Hac: Scattering state. The particle is deflected and emerges (in R2) under

a certain angle of deflection. However, some special phenomena are possible: if

the so-called wave operators are not complete, it is possible that the particle is

captured or that a particle is emitted.
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(3) f0 ∈ Hsc: The particle can heuristically speaking not decide to stay in or to

leave the scattering center. The physicist hopes that Hsc = {0}.

Let us shed some more light on the case (2): Let H = H0 + V , H0 = −∆, be

self-adjoint operators in the Hilbert space H. We assume that

|V (x)| ≤ c(1 + |x|)−α, x ∈ Rd,

for some α > 1. For large |t|, we expect that the particle is far away from the

scattering center where the potential almost vanishes. Hence the particle should

behave like a free particle in these regions. This motivates to look for asymptotes

to the trajectory as t→ ∞ and t→ −∞: Given f0 ∈ Hac, we look for initial values

f± ∈ H such that e−itH0f± is asymptotic to e−itHf0 as t→ ±∞,∣∣∣∣e−itHf0 − e−itH0f±
∣∣∣∣ → 0, t→ ±∞.

The wave operators

Ω± := s− lim
t→±∞

eitHe−itH0Pac(H0),

as far as the strong limit exists, interrelate f± and f0 and S := Ω∗
+Ω− is the scattering

operator which figuratively speaking maps the direction of arrival to the direction of

deflection. In physics, a scattering matrix is accessible in experiments. A first goal

of time-dependent scattering theory thus is the construction of the wave operators.
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5.3 Mathematical goals

The questions of the existence and completeness (R(Ω−) = R(Ω+)?, R(Ω±) = Hac?)

of the wave operators is strongly connected with the the spectral properties of the

Schrödinger operator H = −∆ + V : Are the absolutely continuous spectra of H

and H0 identical? Is the singularly continuous spectrum of H empty? How many

positive eigenvalues can H have? As an example, we cite a theorem of V. Enß.

Theorem 5.1 (Enß, 1978/79). Let V : R3 → R with |V (x)| ≤ cρ−α be given, with

some α > 1 and ρ(x) :=
√
1 + |x|2. Then:

(i) The wave operators Ω±(H,H0) exist and are complete.

(ii) The singularly continuous spectrum of H is empty.

(iii) The eigenvalues of H accumulate at most at zero. The eigenvalues different

of zero have finite multiplicity.

Remark 5.2. The decay property in Theorem 5.1 excludes coulomb potentials. We

have to modify the wave operators for potentials that are ρ(x)−1-like at ∞ (whereas

the singularity of the Coulomb potential at x = 0 does not lead to substantial

difficulties).

To round this lecture off, we give a very brief overview about some aspects of

time-independent scattering theory : The Fourier transform F on L2 is a unitary

operator that diagonalizes H0 = −∆:

F(−∆)F−1 =M|·|2 .

The Fourier transform is built up from the functions eik·x that satisfy

−∆e−ik·x = k2e−ik·x.
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As the functions eik·x are not in L2, they are no eigenfunctions in the Hilbert space

setting. Nevertheless, they are in strong relation with the operator H0. We thus call

them generalized eigenfunctions. The time-independent scattering theory looks for

a sufficient number of functions f(·, k) : Rd → C such that

(−∆+ V )f(·, k) = k2f(·, k), k ∈ Rd,

f(x, k) ∼ e−ik·x, |x| large.

It is possible to find suitable functions f by solving the Lippmann-Schwinger equa-

tion. Then one can construct a unitary map (in analogy to the Fourier transform)

which diagonalizes Hac, the part of H in Hac, which leads to an explicit represen-

tation of the spectral projections of Hac by integral operators. Furthermore, it is

possible to obtain an explicit formula for the scattering matrix.
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