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Chapter 1

The periodic dislocation problem
on R, R x [0,1] and R?

1.1 Introduction

In solid state physics, one first studies crystallized matter with a perfectly regular
atomic structure where the atoms are located on a periodic lattice. However, most
crystals are not perfectly periodic; in fact, the regular pattern of atoms may be
disturbed by various defects which fall into two main classes:

(i) defects which leave the lattice unchanged (like impurities or vacancies)

(ii) “geometric” defects of the lattice itself which may involve translations and
rotation of portions of the lattice. Lattice dislocations occur, in particular, at
grain boundaries in alloys. The models presented here are deterministic but
may be generalized to include randomness.

Many of the geometric defects mentioned above are accessible to mathematical anal-
ysis only after some idealization which leads to the following type of problem: there
is a periodic potential V: R? — R with period lattice Z¢ and a Euclidean trans-
formation 7T: R¢ — R? such that the potential coincides with V in the half-space
{r € RY| 2y > 0} and with V o T in {z; < 0}. In the simplest cases T is transla-
tion in the direction of one of the coordinate axes, with again two main subcases:
translation orthogonal to the hyperplane {x; = 0} or translations that keep the
x1-coordinate fixed.

The one-dimensional dislocation problem is particularly simple: Let V' : R — R
be a periodic potential with period 1 and let

V(z), x>0,

V(z+t), z<0, (1.1)

W,(z) = {



1.2. The Kato class

for t € [0,1]. The (self-adjoint) operator H,; = —% + W, is called the dislocation
operator, t the dislocation parameter. We are interested in the spectral properties of
the operators H;. We will see that the essential spectrum of H; does not depend on
t for 0 <t < 1; also H; cannot have any embedded eigenvalues. Precisely, oess(Hy)
has a band-gap-structure. For 0 <t < 1, the operators H; may have bound states
(discrete eigenvalues) located in the gaps of the essential spectrum. We intend to
give a systematic treatment of regularity properties of the eigenvalue “branches”;
in particular, we show that the eigenvalue branches are Lipschitz-continuous if V' is
(locally) of bounded variation.

1.2 The Kato class

Let hy denote the (unique) self-adjoint extension of —dd—; defined on C2°(R). Our
basic class of potentials is given by

P={VeLRR;VzeR: V(z+1)=V(zx)}. (1.2)

Potentials V' € P belong to the class Lj joc unif(R) which coincides with the Kato-class
on the real line; in the subsequent estimates we will use

y+1
14 — / V(2)] da (1.3)
Yy

yER

as a natural norm on Ly joc unif(R). In particular, any V' € P has relative form-bound
zero with respect to hg and thus the form-sum H of hg and V € P is well defined,
cf. [CFrKS]. For V € P given, we define the dislocation potentials ; as in (L.I]),
for 0 <t < 1; as before, the form-sum H; of hg and W, is well defined.

We intend to discuss some basic facts concerning continuity and regularity of the
eigenvalue branches for the one-dimensional dislocation problem. We will see that
for potentials belonging to the class P, the eigenvalues are continuous functions of
the dislocation parameter ¢.

Definition 1.1. A family of functions J,: R? — R, a € A, indexed by a set A is
called a partition of unity if

(i) 0 < Ju(z) <1 for all x € RY,
(i) Y pen J2(x) =1 for all z € RY,

(ili) (J,) is locally finite, i.e. on any compact set K we have that J, = 0 for all but
finitely many a € A,

(iv) J, € C=(R?),
(v) sup{z € R% 3 4 [VJa(2)]?} < o0

2



1.2. The Kato class

Theorem 1.2 (IMS localization formula). Let (J,).ca be a partition of unity
and let H = ho 4+ V for a potential V' belonging to the Kato class. Then:

H=> JHJI,—> |V

acA a€A
Proof. Exercise 2. O

Remark 1.3. The term Y _, |VJ,|? is called the localization error.

a€A

Lemma 1.4. For any € > 0 there exists a constant C. > 0 such that for any
V' € L1 1ocunit(R) we have

[ VIR do < Voo (1P +Ceel?) . weH®. (1)

Proof. For f € C2°(R) with support contained in (0, ) we have | | < /€| f’|. Let
(Cn)nen denote a (locally finite) partition of unity on the real line with the properties:
supp (1 C (0,¢), each ¢, is a translate of (1, M = sup,cg Y,en ¢4 (2)|? is finite and
Yonen Ga(x) = 1 for all x € R. By the IMS localization formula, we have for any
¢ € C(R),

[€'° = (=¢",0) = D 1) I = D 1Gel* = D 1) I* = M el
n=1 n=1 n=1

so that
JIv@lls@Pdr <Y 16el [ Vi)
n=1 supp Cn
2
<e (11 +MII) IV goemir-
The general case follows by approximation and Fatou’s lemma. U

For V' € P, the function
1
Dy (s) = / \V(z+s) —V(x)|de, 0<s<1, (1.5)
0

is continuous and Jy(s) — 0, as s — 0. Furthermore, for W; is as (1.1), we have
Wi = Wl soe.amit = v (t — t). This leads to the following lemma.

Lemma 1.5. Let V € P, Ey € R\ 0(Hy,), and write ¢y = dist(Ey, 0(Hy,)). Then
there is 7o > 0 such that Hy has no spectrum in (Ey—¢eo/2, Eg+e0/2) for [t—to| < 7.
Furthermore, there exists a constant C' > 0 such that for some 1 € (0, 7))

|(Hy — Eo) ™" — (Hy, — Eo) || < COv(t — to), it —to] < 1. (1.6)



1.2. The Kato class

Proof. Without loss of generality we may assume that V' > 1. Let h; denote the
quadratic form associated with H;. Applying Lemma [1.4] (with € := 1) we see that

by [u] = hyfu]| < / Wi = Wl [ul” dz < Ciody (t — to)hy,[u],  u € H'(R),
R

with some constant C. The desired result now follows by [K; Thm. VI-3.9]. U

We therefore see that H;, — H;, in the sense of norm resolvent convergence if
to € [0,1], (tn)nen C [0,1] and ¢, — to. By standard arguments, this implies that
the discrete eigenvalues of H; depend continuously on t.

Let

Po={VeP|3C>0:0y(s) <Cs*V0 <s <1}, (1.7)

where 0 < o < 1. The class P, consists of all periodic functions V' € P which are
(locally) a-Hélder-continuous in the Li-mean; for o = 1 this is a Lipschitz-condition
in the Li-mean. The class P; is of particular practical importance since it contains
the periodic step functions. We can show that P; coincides with the class of periodic
functions on the real line which are locally of bounded variation.

Proposition 1.6. Let BVi..(R) denote the space of real-valued functions which are
of bounded variation over any compact subset of the real line.
Then P; = P N BVioc(R).

It is easy to see that any V' € P N BVj,.(R) belongs to P;: certainly, any V € P
which is monotonic over [0,1] is an element of P; and any function of bounded
variation can be written as the difference of two monotonic functions.

The converse direction is established by the following lemma.

Lemma 1.7. Let f € Ly0c (R,R) be periodic with period 1 and suppose that there
are ¢ > 0, € > 0 such that

/1\f(:c+t)—f(x)]dx§ct, Wo<t<e (1.8)
0

Consider f as a function in Li(T), with T denoting the one-dimensional torus.

We then have: the distributional derivative Of is a (signed) Borel-measure p on
T and there is a number a € R such that f(z) = a+ p([0,2)), a.e. in[0,1) ~T. In
particular, f has a left-continuous representative of bounded variation.

Proof. Defining n: C*(T) — R by

77(()0) = _/() golf dxa



1.3. Eigenvalues in spectral gaps

we may compute

/0 'fdz = lim %((p(ac —t) —(x))f(x)dx

t=0 Jo
1

—tim [ o) (f(o )~ F)dr,
0

and the assumption yields the estimate |n(¢)| < ¢|p|,. Since C*(T) is dense in
C(T), the functional  has a unique continuous extension to all of C(T); we denote
the extension by the same symbol 1. By the Riesz representation theorem there is a
measure ,u such that 77 = [dpfor all ¢ € C(T). Furthermore, for p € C*(T) we
have — fo 'fdr = fo % d,u, and we see that ;4 = df on T in the distributional sense.
The choice ¢ := 1 yields [, du = — fo ¢'f dz = 0 and the function f(z) == ([0, z))
satisfies Of = p. This is easy to check: for ¢ € C'(T) we have

/o<y<1/y @) deduly) = /[0 L P duty)

We therefore see that (f — f) = 0; hence there is some a such that f — f = a. O

1.3 Eigenvalues in spectral gaps

We begin with some well-known results pertaining to the spectrum of H = H,. As
explained in [E, RS-IV], we have

0(H) = 0ess(H) = Uliozlhka ’Vl/e}a (1.9)

where the 7 and ~;, satisfy v, < 7. < yg41, for all k € N, and 7, — 00 as k — oo.
Moreover, the spectrum of H is purely absolutely continuous. The intervals [y, 7;]
are called the spectral bands of H. The open intervals I'y := (7}, k+1) are the spectral
gaps of H; we say the k-th gap is open or non-degenerate if vy,11 > ;.

In order to determine the essential spectrum of H; for 0 < ¢t < 1, we introduce
Dirichlet boundary conditions at = 0 for the operator Hy and at x = 0 and z = —¢
for H; to obtain the operators

Hp=H @H", Hop=H &H_.n&H", (1.10)

where H* acts in R* with a Dirichlet boundary condition at 0, H; in (—oo, —t) with
Dirichlet boundary condition at —t and H(_.¢ in (—t,0) with Dirichlet boundary
conditions at —t and 0. Since H(_; ) has purely discrete spectrum and since the op-
erators H, and H~ are unitarily equivalent, we conclude that oess(Hp) = Oess(Hi p).
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1.3. Eigenvalues in spectral gaps

It is well known that decoupling by (a finite number of) Dirichlet boundary con-
ditions leads to compact perturbations of the corresponding resolvents (in fact,
perturbations of finite rank) and thus Weyl’s essential spectrum theorem yields
Oess(Hp) = Oess(H) and oess(Hyp) = Oess(Hy).

In addition to the essential spectrum, the operators H; may have discrete eigen-
values below the infimum of the essential spectrum and inside any (non-degenerate)
gap, for t € (0,1); these eigenvalues are simple. We provide a complete and precise
picture concerning the eigenvalue branches in the following lemma saying that the
discrete eigenvalues of H; inside a given gap 'y of H can be described by an (at
most) countable, locally finite family of continuous functions, defined on suitable
subintervals of [0, 1].

Lemma 1.8. Let k € N and suppose that the gap I'y, of H is open, i.e., v, < Vit1-
Then there is a (finite or countable) family of continuous functions f;: (aj, B;) — L'k,
where 0 < o < B < 1, with the following properties:

(i) f;(t) is an eigenvalue of Hy, for all a; <t < f8; and for all j. Conversely, for
any t € (0,1) and any eigenvalue E € T'y of Hy there is a unique index j such
that f;(t) = E.

(i1) Ast | aj (ort? B;), the limit of f;(t) exists and belongs to the set {v;, Yi+1}-

(i1i) For all but a finite number of indices j the range of f; does not intersect a
given compact subinterval [a’,b'] C Ty.

Proof. We consider t € T, the flat one-dimensional torus, and we denote the spectral
gap by (a,b). Let [d/,b'] C (a,b).

(1) Let (n,7) € (a,b) x T. Since o(H,) N (a,b) is a discrete set, and since o(H;)
depends continuously on ¢, there is a neighborhood U, , C (a,b) x T of (n, ) of the
form U, = (m1,12) % (71, 72) belonging to either of the two following types:

Type (1): For 1y <t < 15 we have o(H;) N (n1,n2) = 0.

Type (2): n is an eigenvalue of H, and there is a continuous function f: (7, 72) —
(n1,m2) such that f(t) is an eigenvalue of Hy; H; has no further eigenvalues in (1, 12),
for i <t < 1.

Now the family {U, -; (n,7) € (a,b) x T} is an open cover of (a,b) x T and there
exists a finite selection {U,, -, }i=1,...n such that

[CL/, bl] xTC UﬁilUm,n-

As a first consequence, we see that there is at most a finite number of functions that
describe the spectrum of H, in the open set UN U, .. D [a/,b] x T.

(2) Suppose that (n,7) € (a,b) x T is such that n € o(H;) and let f: (1, 72) —
(m1,m2) as above. Consider a sequence (t;);en C (71, 72) with ¢; — 7. We can find
a subsequence (t;, )gen such that f(¢;,) — 7 for some 77 € [y, 7). It is easy to see
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1.3. Eigenvalues in spectral gaps

that 7 € o(H;,). If n € (a,b) the point (7, 71) has a neighborhood Uy ;, of type (2)
and we can extend the domain of definition of f beyond 77. It follows that there
exist a maximal open interval (o, 8) C (0,1) and a (unique) continuous extension
I+ (a, B) = (a,b) of f such that f(t) is an eigenvalue of H, for all t € (a, ).

(3) It remains to show that f(¢) converges to a band edge as t | o and as t 1 3.
By the same argument as above, we find that any sequence (¢;);en C (a, ) satisfying
t; — a has a subsequence (t;, )xen such that f(t;) — 7 for some 7 € [a,b]. Here
il ¢ (a,b) because otherwise we could again extend the domain of definition of f
beyond «, contradicting the maximality property of the interval («, ).

Suppose there are sequences (t;)jen, (S;)jen C (a, ) such that t; — a and
s; — o and f(tj) — a while f(sj) — b as j — oo. Then for any 7' € (a,b) there is
a sequence (r;);en C (@, 8) such that r; — o and f(r;) — 7/, whence 7/ € o(H,).
This would imply that (a,b) C 0(H,), which is impossible. O

We next turn our attention to the question of Lipschitz-continuity of the func-
tions f; in Lemma . Recall that the class P; consists of all periodic functions
V' € P which are (locally) Lipschitz-continuous in the L;-mean.

Proposition 1.9. For V € Py, let (a,b) denote any of the gaps I'y of H and let
fit (aj,8;) — (a,b) be as in Lemma [1.§ Then the functions f; are uniformly
Lipschitz-continuous. More precisely, for each gap I'y there exists a constant Cy > 0
such that for all j

1fi@) = [ S Celt =], a; <t 1< B
Proof. Exercise 3. 0

Remark 1.10.

(1) We can also obtain the following result on Holder-continuity: If 0 < o < 1 and
V' € P,, then each of the functions f;: (a;, ;) — (a,b) is locally uniformly
Holder-continuous (as defined in [GT]), i.e., for any compact subset [}, 8}] C
(aj, B;) there is a constant C' = C(j, o}, 3;) such that | f;(t)— f;(¥')| < Clt—t'],
forall ¢, € [, Bi]. Note that our method does not necessarily yield a uniform
constant for the whole interval (o, 5;), much less a constant that would be
uniform for all j.

(2) For analytic potentials V/, it is shown in [K1] that the eigenvalue branches f;
in Lemma depend analytically on ¢. This is a simple consequence of the
fact that, for real analytic V', the H; form a holomorphic family of self-adjoint
operators in the sense of Kato. In [K2], the author proves that the f; are
squares of W3-functions near the gap edges if the potential is in Lo(T).



1.4. A spectral shift function

1.4 A spectral shift function

It is our aim in this section to show that at least k eigenvalues move from the upper to
the lower edge of the k-th gap as the dislocation parameter ranges from 0 to 1. Using
the notation of Lemma and writing fi(oy) = limy,, fi(t), fi(5:) = limyg, fi(t),

we now define

N = #{i; filow) = e, fi(Bi) = %lq} — #{5; fil) = ’V;lw fi(Bi) = Y} (1.11)

Thus N}, is precisely the number of eigenvalue branches of H; that cross the k-th gap
moving from the upper to the lower edge minus the number crossing from the lower
to the upper edge. Put differently, N is the spectral multiplicity which effectively
crosses the gap I'y in downwards direction as ¢ increases from 0 to 1.

Our main result in this section says that N}, = k, provided the k-th gap is open:

Theorem 1.11. Let V' € P and suppose that the k-th spectral gap of H s open,
i.e., Yo < Yes1- Then N, = k.

Again, the results obtained by Korotyaev in [K1, K2| are more detailed; e.g., it
is shown that, for any ¢ € (0, 1), the dislocation operator H; has two unique states
(an eigenvalue and a resonance) in any given gap of the periodic problem. On the
other hand, our variational arguments are more flexible and allow an extension to
higher dimensions, as will be seen in the sequel. In this sense, the importance of
this section lies in testing our approach in the simplest possible case.

The main idea of our proof goes as follows: consider a sequence of approximations
on intervals (—n — t,n) with associated operators H,, ; = —;—; + W, with periodic
boundary conditions. We first observe that the gap I'y is free of eigenvalues of H,
and H, ; since both operators are obtained by restricting a periodic operator on
the real line to some interval of length equal to an entire multiple of the period,
with periodic boundary conditions. Second, the operators H, ; have purely discrete
spectrum and it follows from Floquet theory (cf. [E, RS-IV]) that H,, ¢ has precisely
2n eigenvalues in each band while H,, ; has precisely 2n+1 eigenvalues in each band.
As a consequence, effectively k eigenvalues of H, ; must cross any fixed E € '}, as
t goes from 0 to 1. To obtain the result of Theorem we only have to take
the limit n — oo. Here we employ several technical lemmas. In the first one, we
show that the eigenvalues of the family H,,; depend continuously on the dislocation
parameter.

Lemma 1.12. The eigenvalues of H,; depend continuously on t € [0, 1].

Proof. Exercise 4. O

The next lemma is to establish a connection between the spectra of H; and H,,
for 0 <t < 1 and n large. In the proof and henceforth, we will make use of the
following cut-off functions (see also Exercise 1): We pick some ¢ € C°(—2,2) with

8



1.4. A spectral shift function

0 < <1land p(x) =1 for |z|] < 1. For k € (0,00) we then define p(x) =
o(z/k) so that supp ¢, C (—2k,2k), pr(x) = 1 for |z| <k, |p,(z)| < Ck™! and
|0} (z)] < Ck™2. Finally, we let ¢y == 1 — ¢}. For any self-adjoint operator T' we
denote the spectral projection associated with an interval I C R by P;(7T) and we
write dim P;(7T) to denote the dimension of the range of the projection Pr(T).

Lemma 1.13. Let k € N with Ty # (). Let t € (0,1) and suppose that n; < ng € Ty,
are such that ny,m2 ¢ o(H;). Then there is an ng € N such that ny,m2 ¢ o(Hyy) for
n > ng, and

dim P( )(Ht) = dim P(m,nz)(Hn,t)v n Z ng. (1.12)

71,72

Proof. In the subsequent calculations, we always take k :=n/4, for n € N.
(1) Let E € (n1,n2) No(H;) with associated normalized eigenfunction u. Then
uy = pru € D(Hpt), Hypup = Hyuy and |ug| — 1 as n — oo. Since

| Hur = Bur] <2+ @] 0]+ 0kl o Tl (1.13)

oo

it is now easy to conclude that dim P, ,.,)(Hpt) > dim P, ...y (Hy) for n large.

(2) We next assume for a contradiction that n € I'y satisfies n € o(H,,,) for
infinitely many n € N. Then there is a subsequence (n;)jen C N s.th. n € o(H,, );
we let u,,, € D(H,

;.t) denote a normalized eigenfunction and set

vl,nj = (ijunj,ta ,UQ,TL]' = wkjunj,h (114)

so that v, € D(H,;) and ||(H; — n)vi,,| — 0 as j — oo by a similar estimate as
in part (1) (and using a simple bound for |u, || which follows from the fact that V/
has relative form-bound zero w.r.t. hy.) Let us now show that vy, — 0 (and hence
H’ULnjH — 1) as j — oo: The function

U2,n]-<x)7 X Z 07

1.15
Vo, (w —1), 1 <0, (1.15)

Vo, (x) = {
belongs to the domain of H,, ¢ and H,; 0025, = [Hn,1V2,]~ , where []~ is defined
in analogy with . Since we also have (H,,; — 1)van, — 0, as j — 0o, we see
that (Hy, o — 1)02n, — 0. But dist(n, o(Hyp)) > do > 0 for all n and the Spectral
Theorem implies that HT)QW ” — 0 as j — oo. We have thus shown that ”vlmj H —1
and | (H; — n)v1,|| — 0 which implies that n € o(H,).

(3) It remains to show that dim P, ,,)(Hne) < dim Py, ) (Hy), for n large.
The proof by contradiction follows the lines of part (2); instead of a sequence of
functions u,, we work with an orthonormal system uﬁ}j, e ,u%) of eigenfunctions
where / = dim P, ,,)(H; 4+ 1). We leave the details to the reader. O

Remark 1.14. In fact, using standard exponential decay estimates for resolvents
of Schrddinger operators, cf. [S], it can be shown that the eigenvalues of H, and H,,;
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in the gap 'y, are exponentially close, for n large; e.g., if E € o(H;) N Ty, for some
t € (0,1), then there are constants ¢ > 0 and o > 0 s.th. the operators H,, ; have an
eigenvalue in (E — ce™®", E 4 ce™*"), for n large.

The desired connection between the spectral flow for (H, ;)o<i<1 and (Hi)o<t<1
is obtained by applying Lemma at suitable t; € [0,1] and 7;; < 12; € I'y. We
now construct an appropriate partition of the parameter interval [0, 1].

Lemma 1.15. Let k € N with 'y, # 0. Then there exists a partition 0 = tq < t; <
o<tk <tg =1 and there exist E; € I'y, and ng € N such that

Ej ¢ U(Ht) U U<Hn,t)7 Vt € [tjfl,tj], j = 1, Ce ,K, n Z no. (116)

Proof. For any t € [0,1] there exists n, € I'y such that n, ¢ o(H;). Since the
spectrum of H; depends continuously on the parameter ¢ there also exists ¢ = ¢; > 0
such that n, ¢ o(H,) for all 7 € (t — e, t + ;). By compactness, we can find a
partition (7;)o<j<x (With 70 = 0, 75 = 1) such that the intervals (7; —¢;, 7,4¢;) cover
[0,1]. Set E; == 7,,. We next pick arbitrary points t; € (7}, 7j4¢;) N (7j41—Ejt1, Tjt1),
forj=1,...,K—1,setty=0,tx = 1andseethat £, ¢ o(H;) fort; <t <t;,j=
1,..., K. By Lemma (.13 using Lemma [1.12{ combined with a simple compactness
argument, we then find that we also have E; ¢ o(H,, ;) for t € [t;_1,t;] and n large.
U

We are now ready for the proof of Theorem [1.11

Proof of Theorem Let E; be as in Lemma and NV, as in (1.11). We fix
some E € I'y such that £ > E; for j = 0,...,K and E ¢ o(H,;;) U o(H,,,) for
j=0,..., K and for all n large. It is then easy to see that

K
Nie =3 (dim Py, ) (H,) = dim Py (Hy, ) (117)

j=1

and that

dlm P(—OO,E) (Hn,l) - dlm P(—OO,E) (HnVO)
K
=9 (dim P, y(Hugy) — dim Py, E)(Hn,tjfl)) . (118)
j=1

The LHS of (1.18) equation equals k. Furthermore, by Lemma|1.13] we have
dlm P(EJ,E)<Ht]) - dlm P(E],E) (Hn’t]) (119)

for all j and all n large, and the desired result follows. 0

10



1.5. A one-dimensional periodic step potential

1.5 A one-dimensional periodic step potential

In this section, we study the one-dimensional 27-periodic potential

V(z) = { ;1’ ii E?T’g]%). (1.20)

(While the other parts of the script deal with 1-periodic potentials, we have preferred
to work here with period 27 in order to keep the explicit calculations done by hand
as simple as possible.) To obtain the band-gap structure of H = —dd—; + V, we
compute the discriminant function

D(E) = ¢1(2; E) + ¢h(2r; E) = tr< Z:g: g i;gi g ) (1.21)

where (- F) and ¢( -; E) solve the equation
— "+ (V—Eu=0 (1.22)
and satisfy the boundary conditions
p1(0; B) = p5(0; E) =1 and  ¢;(0; E) = ¢3(0; E) = 0. (1.23)

The matrix M(E) on the RHS of is called the monodromy matriz. A simple
computation shows that [—1/2,1/2] C I';, where I'; is the first spectral gap of H
(with numbering according to Floquet theory). Note that the gap edges of 'y also
equal the first eigenvalue in the (semi-)periodic eigenvalue problem for —% +Vin
Ly(0,2m), cf., e.g., [E, CL].

As explained in [E, RS-1V], for any E ¢ o(H), there are two solutions ¢4 (z; F) €
C'(R), square integrable at +oo, of (1.22); in fact, the functions ¢ (z; E) are ex-
ponentially decaying at +oo and exponentially increasing at Foo. In our example,
the dislocation potential W; for ¢t € (0,1) will produce a bound state at E if and
only if the boundary conditions coming from ¢, (0; E') and ¢_(¢; E) match up, i.e.,

o-(LE) = oo (0:B) and ¢ (t; E) = ¢, (0; E). (1.24)

An equivalent condition for ((1.24)) is the equality of the ratio functions &t;Eg and

o (HE
i,* ngg. In Exerice 5, the Floquet solutions ¢ are computed by solving the equation
+ ’

—u" 4+ (V—-FE)u = 0 for x < 0 and x > 0 and for E varying in [—1/2,1/2],
assuming that (u(0), 4’ (0)) equals an appropriate eigenvector of M (FE). Note that,
since D(F) < —2, both eigenvalues of M (FE) are negative and not equal to —1.
Finally, the interval [—1/2,1/2] is divided into 100 subintervals of equal length and
numerical values for ¢t are computed with Mathematica such that

p-(tE)  ¢i(0E)
YLt E)  ¢L(0E)

11
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1.6. Periodic potentials on the strip and the plane

where the error € > 0 is suitably small. This leads to the following plot of ¢ — E(t),
see Fig. 1.1.

E(t)

0.4

0.2

-0.2

-0.4

Figure 1.1: An eigenvalue branch of H; in the first spectral gap.

1.6 Periodic potentials on the strip and the plane

Let V: R* — R be Z*-periodic and Lipschitz-continuous and let ¥ = R x (0, 1)
denote the infinite strip of width 1. We denote by S; the (self-adjoint) operator
—A + W, acting in Lo(X), with periodic boundary conditions in the y-variable and
with W; now defined as

V(z,y), x>0,

0<1<t. 1.26
V(z+ty), x<0, -~ (1.26)

Wiz, y) = {
Since S is periodic in the z-variable, its spectrum has a band-gap structure.

We first observe that the essential spectrum of the family S; does not depend
on the parameter t, i.e., Tess(S;) = 0ess(So) for all ¢ € [0,1]. As in Section
this follows from the compactness of (S; — ¢)™' — (Sy.p — ¢)™', where S, p is S
with an additional Dirichlet boundary condition at x = 0, say. (While, in one
dimension, adding in a Dirichlet boundary condition at a single point causes a rank-
one perturbation of the resolvent, the resolvent difference is now Hilbert-Schmidt,
which can be seen from the following well-known line of argument: If —Ay denotes
the (negative) Laplacian in Ly(X) and —Agy,p is the (negative) Laplacian in Ly(X)
with an additional Dirichlet boundary condition at x = 0, then (—Ay + 1)7! —
(—As.p+1)7! has an integral kernel which can be written down explicitly using the
Green’s function for —Ay and the reflection principle, cf. Exercise 6.

While the essential spectrum of the family S; does not change as ¢ ranges through
[0,1], S; will have discrete eigenvalues in the spectral gaps of Sy for appropriate
values of t. We have the following result.

Theorem 1.16. Let (a,b), a < b, denote a spectral gap of S; and let E € (a,b).
Then there ezists t = tg € (0,1) such that E is a discrete eigenvalue of Sy.

12



1.6. Periodic potentials on the strip and the plane

Proof.
(1) As on the real line, we work with approximating problems on finite size
sections of the infinite strip X. Let

Yot =(—n—tn)x(0,1), neN, (1.27)

and consider S, ; = —A + W, acting in Ls(%,,+) with periodic boundary conditions
in both coordinates. The operator S, ; has compact resolvent and purely discrete
spectrum accumulating only at +o00. The rectangles ¥, o (respectively, ¥, 1) consist
of 2n (respectively, 2n+1) period cells. By routine arguments (see, e.g., [RS-1V, EJ),
the number of eigenvalues below the gap (a,b) is an integer multiple of the number
of cells in these rectangles; we conclude, that eigenvalues of S, ; must cross the gap
as t increases from 0 to 1.

(2) Let E € (a,b). According to (1), for any n € N we can find ¢,, € (0,1) such
that £ € 04isc(Sny,); then there are eigenfunctions w, € D(S,4,) with Sy, u, =
Euy,, |u,| = 1, and |Vu,| < C for some constant C' > 0. We now choose cut-off
functions ¢, as in Section and denote the natural extension to R? again by ¢,,.
We also let ¢, = 1 — ¢,,. Clearly,

(St = E)(#njatn)

s | Sntn = B) @npaun)|| < ¢/, (1.28)

for some ¢ > 0. There is a subsequence (,,)jen C (tn)neny and £ € [0, 1] s.th. ¢, — ¢
as j — oo. Since V' is Lipschitz, we may infer from ([1.28]) that

H(Sf - E)(gpnj/4unj)}| — 0, J — 00, (1.29)

and it remains to show that Hwn/wnH — 0 so that ngn/wnH — 1. We associate with
functions v: ¥, ; — C functions v: ¥, o — C by

_ v, y), x>0,
0(z,y) = { ole—ty)  z<0 (1.30)

in analogy with . Then [1y,/4u,]~ € D(Sy0) and
1(Sn0 = E)[njatn)™|| = | (Sntn — E)(Wnawn)| < c/n. (1.31)

Since (a,b) N o (Sn0) = 0 for all n € N, and since E € (a,b), the Spectral Theorem
implies that [, /4u,]~ — 0 (and therefore also ¥, /4u, — 0) as n — oco.

We therefore have shown that the functions v,, = ¢, /4u,, for j € N satisfy
|(S; — E)vy, | — 0 and |v,,| — 1 as j — oo which implies E € o(Sp). O

Remark 1.17. By a well-known line of argument, one can obtain ezponential lo-
calization of the eigenfunctions of S; near the interface {(z,y) | z = 0}. Suppose
that £ € (a,b) and t € (0,1) satisfy E € o(S;). Let u € D(Sy) = D(S;) denote a

13



1.6. Periodic potentials on the strip and the plane

normalized eigenfunction and let ¢,, n € N, be as in the proof of Theorem As
above, we have

rn = (St — E)(pnu) = =2V, - Vu — (Ap,)u, (1.32)

where |r,| < ¢/n, for n € N. Since 7, has support in the interval (—2n — 1,2n) we
now see that there exist constants C > 0 and « > 0 such that

[ X(a1zante|| < [ Xjezan(Se — E)'ry|| < Ceo, (1.33)

by standard exponential decay estimates for the resolvent kernel of Schrodinger
operators, cf., e.g., [S].

We now turn to the dislocation problem on the plane R? where we study the

operators

Denote by S;(¢) the operator S; with ¥-periodic boundary conditions in the y-
variable. Since W; is periodic with respect to y, we have

© dv

D, :/ s, (1.35)
[0,27] 27

and hence the spectrum of D; has a band-gap structure; furthermore, D; has no sin-

gular continuous part. As for the spectrum of S; inside the gaps of Sy, Theorem [1.16]

leads to the following result.

Theorem 1.18. Let (a,b) denote a spectral gap of Dy, a > infoes(Dy), and let
E € (a,b). Then there exists t =t € (0,1) with E € o(Dy).

Proof. Let p,u, € D(S;) as in part (2) of the proof of Theorem denote an
approximate solution of the eigenvalue problem for S; and E. We extend u, to a
function 1, (z, y) on R? which is periodic in y. Writing ®,, = ®,,(x,y) = v, (2)pn(y)
we compute

(Dt - E)(q)nan) = (—53 - 8; + W — E) (gpn(x)gon(y)ﬂn(x,y))

= e[St — E)(@n(@)un)]™ = @n() (207, (y) 9y + 7 (y) ) -
(1.36)

The norms of the three terms on the RHS can be estimated (up to a constant which
1

is independent of n) by en, ~n and n%n, respectively, and we see that
[(Dy — E)(Pptn,)| < co(1 + ne), (1.37)

while |®, 1, | > con with a constant ¢q > 0. This implies the desired result. O
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1.7. Density of states

Remark 1.19. We learn from the above proof that there are functions

1
Uy = Up(z,y) = ——— D0, (1.38)
| Dt
that satisfy |v,| = 1, supp v, C [-n,n]? and
(D; — E)v, — 0, n — 0o. (1.39)

These functions will play a key role in our analysis of the rotation problem at small
angle henceforth.

1.7 Density of states

We finally turn to a brief discussion of the i.d.s. (the integrated density of states)
for the dislocation operators D;. One distinguishes between bulk and surface states:
Roughly speaking, the bulk states correspond to states away from the interface with
energies in the spectral bands while the surface states for 0 < ¢t < 1 are produced by
the interface and are (exponentially) localized near the interface. The (integrated)
density of states measures for the bulk and surface states use a different scaling
factor in the following definition: restricting D; to large squares Q,, = (—n,n)? and
taking Dirichlet boundary conditions, we obtain the operators Dg"). For I C R an
open interval, let N (I, D§")) denote the number of eigenvalues of D™ in I, counting
multiplicities. We then define for open intervals I C R and J C R\ o(Dy) with
J C R\ o(Dy)

pour(l, D) = lim 4—;2N(1,D§”>), psut(J, Dy) = lim inN(J, D). (1.40)
The existence of the limits in has been established in [EKSchrS, KS] for ergodic
Schrodinger operators. Note that the surface density of states measure is defined
(and possibly non-zero) for subintervals of the spectral bands, but then is not
suited to capture the surface states (cf. [EKSchrS, KSJ).

The fact that the surface density of states exists does not mean it is non-zero
and there are only rare examples where we know pgu.¢ to be non-trivial. It is one
of the main results of the present paper to show that dislocation moves enough
states through the gap to have a non-trivial surface density of states, for suitable
parameters t. Indeed, it is now easy to derive the following result:

Corollary 1.20. Let (a,b) be a spectral gap of Dy with a > inf os(Dy), and let ) #
J C (a,b) be an open interval. Then there is a t € (0,1) such that psw(J, Dy) > 0.

Proof. Let [o, 5] C J witha < 8, fix E € (o, ), and let 0 < ¢ < min{F'—«, B— E}.
By Theorem and Remark there exist t = tg € (0,1) and a function wug
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1.8. Muffin tin potentials

in the domain of D, satisfying |ug| = 1, supp wy compact, and |(D; — E)uo| < e.
Let v € N be such that supp uy C (—v,v)?% note that, in the present proof, v
corresponds to the n of Remark We then see that the functions ¢y, defined
by pr(x,y) = uo(z,y — 2kv) for k € N, have pairwise disjoint supports, are of
norm 1, and satisfy |(D; — E)gx| < e. Furthermore, we have supp ¢, C (—n,n)?
provided (2k +1)v < n. Denoting M,, := span{py; k € N, k < 3(%—1)}, it is clear
that dim M,, > n/(3v), for all n large. Let N, denote the range of the spectral
projection Py g (D{™) of DI associated with the interval (a, 8); we will show that
dim N;, > dim M,, which implies the desired result. If we assume for a contradiction
that dim A, < dim M,, for some n € N, we can find a function v € M, N N> of
norm 1. By the Spectral Theorem, ||(D,£") — E)v| > €. On the other hand, v is a
finite linear combination of the ¢y, which implies H(Dt(n) — E)| <e. O

We will continue the discussion of bulk versus surface states in the next chapter
where a corresponding upper bound of the form N(J, Dg")) < cnlogn is provided.

1.8 Muffin tin potentials

Here we present some simple examples where one can see the behavior of surface
states directly. We will deal with Z2periodic muffin tin potentials of infinite height
(or depth) on the plane R? which can be specified by fixing a radius 0 < r < 1/2
for the discs where the potential vanishes, and the center Py = (x9,%0) € [0,1)? for
the generic disc. In other words, we consider the periodic sets

QT,PO = U(i’j)GZQBr(PO + (7’7.7))7

and we let V' =V, p, be zero on €, p, while we assume that V' is infinite on RQ\QT, Py-
If H;; is the Dirichlet Laplacian of the disc B,(Py + (4,7)), then the form-sum of
—A and V,.p, is @ )ezzH;j. Without loss of generality, we may assume y, = 0
henceforth.

(1) Dislocation in the z-direction. Here muffin tin potentials yield an illustra-
tion for some of the phenomena encountered in Section In the simplest case
we would take xg = 1/2 so that the disks B,(1/2 + i,j), for i € Ny and j € Z,
will not intersect or touch the interface {(z,y); x = 0}. Defining the dislocation
potential W, as in , we see that there are bulk states given by the Dirichlet
eigenvalues of all the discs that do not meet the interface, and there may be surface
states given as the Dirichlet eigenvalues of the sets B,.(1/2—t,j)N{x < 0} for j € Z
and 1/2 —r <t <1/2+4r.

More precisely, let ur = p(r) denote the Dirichlet eigenvalues of the Laplacian
on the disc of radius r, ordered by min-max and repeated according to their respec-
tive multiplicities. The Dirichlet eigenvalues of the domains B,.(1/2—t,0)N{z < 0},
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1.8. Muffin tin potentials

1/2—r <t <1/24r, are denoted as A\x(t) = A\i(t,r); they are continuous, mono-
tonically decreasing functions of ¢t and converge to ux as t 1 1/2 4+ r and to +oo as
t 4 1/2 — r. In this simple model, the eigenvalues p;, correspond to the bands of a
periodic operator. We see that the gaps are crossed by surface states as ¢ increases
from 0 to 1, in accordance with the results of Section (Corollary [1.20)).

Along the same lines, one can easily analyze examples where z is different from
1/2; here more complicated geometric shapes may come into play.

(2) Dislocation in the y-direction. This problem has not been considered so
far. We include a brief discussion of this case for two reasons: on the one side, we
observe a new phenomenon which did not appear so far; on the other hand, one can
see from our example that, presumably, there is no general theorem for translation
of the left half-plane in the y-direction.

Let V =V, denote the muffin tin potential defined above, with zq = yo = 0.
We then let W, coincide with V in the right half-plane, while we take W;(z,y) =
V(z,y —t) in the left half-plane. At the interface {x = 0} we see half-discs on the
left and on the right with the half-discs on the right being fixed while the half-discs
on the left are shifted by ¢ in the y-direction. The surface states correspond to
the states of the Dirichlet Laplacian on the union €,y of these half-discs. There
are two cases: either {2 ,.q,¢ is connected and we have a scattering channel along
the interface, or €2 ,.cu is the disjoint union of a sequence of bounded domains; cf.
Figure[I.2] In the second case, the eigenvalues on such domains start at the Dirichlet
eigenvalues of the disc of radius r, increase up to the corresponding eigenvalues of
a half-disc, and then move down again to where they started. For 1/4 < r < 1/2,
the picture is more complicated: If we let 1) = 1 — 2r, 71 = 2r, we find that the sets
Q4 r.surf are disconnected for 0 <t < 7y and for m; <t < 1; for 79 <t < 71, however,
Q4 r.surt s connected and forms a periodic wave guide with purely a.c. spectrum. We
therefore observe a dramatic change in the spectrum of the dislocation operators:
for ¢t € [0, 7] U[m, 1] the surface states in the gap are given by eigenvalues of infinite
multiplicity while for ¢ € (79, 71) the surface states form bands of a.c. spectrum in
the gaps. Note that, if we had chosen xy = 1/2, then nothing at all would have
happened for translation in the y-direction.

Ol 0 ¢
O|& O | C

Figure 1.2: Muffin tins: two cases for dislocation in the y-direction.
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Chapter 2

The rotation problem

2.1 Introduction

In this lecture we are interested in quantum mechanical models for solid states
referring to situations where periodicity holds only in subsets of the sample; more
precisely, the sample is the disjoint union of subsets such that, in each subset, the
potential is obtained by restricting different periodic potentials to the corresponding
subsets. Such zones or “grains” occur frequently in crystals and in alloys; some
typical examples are shown in Figure 2.1} It is an important issue to understand
how the interface between two grains will influence the energy spectrum of the
sample. Typically, the grain boundaries appear to be (piecewise) linear, and one is
led to study problems on R? with a potential W = W (x,y) defined by

Vi(z,y), x>0,

2.1
Vilz,y), @ <0, 1)

Wi(x,y) = {
where V,, V;: R? — R are periodic. While in the last chapter, V} is obtained from V.
by a translation, we now focus on models with a rotation about the origin. We will
use some results on the translational problem to obtain spectral information about
rotational problems in the limit of small angles. Our main theorem deals with the
following situation. Let V: R? — R be a Lipschitz-continuous function which is
periodic w.r.t. the lattice Z?. For ¥ € (0,7/2), let

costy —sind
My = R2x2 2.2
v ( sind  cos¥ ) © ’ (22)

and
V(z,y), x>0,
V. =
ol.9) { V(M_y(z.y). =<0

We then let Hy denote the (unique) self-adjoint extension of —A [ C°(R?), acting
in the Hilbert space Lo(R?), and

(2.3)

Ry = Hy+Vy,  D(Ry) = D(H,). (2.4)
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oo fregy iG]

Figure 2.1: Edge dislocation and small angle grain boundary.

Then Ry is essentially self-adjoint on C'>°(R?) and semi-bounded from below.
Our main assumption is that the periodic Hamiltonian H := Hy+V = R, has a gap
(a,b) in the essential spectrum oes(H), i.e., we assume that there exist a < b € R
that satisfy inf oess(H) < a and (a,b) No(H) = 0; we do not need to assume that a,
b are the actual gap edges. It is easy to see (using, e.g., [RS-I; Thm. VIII.25]) that
the operators Ry converge to Ry, in the strong resolvent sense as ¥ — ¥y € [0,7/2);
in particular, Ry converges to H in the strong resolvent sense as ¢ — 0. Recall
that strong resolvent convergence implies upper semi-continuity of the spectrum
while the spectrum may contract considerably when the limit is reached. Here we
are dealing with a situation where the spectrum in fact behaves discontinuously at
¥ = 0 since, counter to first intuition, the spectrum of Ry “fills” the gap (a,b) as
¥ — 0 with ¥ > 0. This implies, in particular, that Ry cannot converge to H in the
norm resolvent sense, as ¥ — 0.

Theorem 2.1. Let H, Ry and (a,b) as above. Then, for any ¢ > 0 there exists
0 < Y. < m/2 such that for any E € (a,b) we have

o(Ry)N(E —¢e,E+¢)#0, V0 < ¥ < 9. (2.5)
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2.2. The dislocation problem on a strip and for the plane

Remark 2.2.

(i) Roughly speaking, the moment we start rotating the potential on the left-hand
side by a tiny angle the gap (a,b) is suddenly full of spectrum of Ry in the
sense that, for 0 < ¢ < 9., no gap of Ry in the interval (a,b) can have length
larger than 2¢. It is conceivable that for most ¥ the spectrum of Ry covers the
interval (a,b), but we will see that there are examples where Ry has gaps in
(a,b) for some ¥.

(ii) It seems to be quite hard to determine the nature of the spectrum of Ry for
general ¥ € (0,7/2); however, we will point out that there are some special
angles for which singular continuous spectrum can be excluded.

(iii) In addition to what is stated in Theorem [2.1]it is our goal to obtain lower and
upper bounds for the spectral densities in the intervals (F — e, E + ¢) on a
scale that is appropriate to surface states (without knowing that an integrated
surface density of states exists for Ry).

There is a simple, intuitive connection between the rotational problem and the
related translational problem, given as follows: Starting from the same periodic
potential V' as above, we again consider the potential W; in ((1.26]) given by

Viz,y), x>0,

o<1<t
V(z+t,y), x <0, - =7

Wi(z,y) = {

and define D; = —A + W, acting in Ly(R?). In Chapter we have seen that
spectrum of D, crosses the gap as t varies between 0 and 1. Now our key observation
consists in the following: for any given ¢ > 0 and n € N, we can find points (0, 7)
on the y-axis such that

|V19(x,y) - Wt(xvy” <eg, (l‘,y) € Qn(0777)’ (26>

with @,(0,m) = (=n,n) X (n—mn,n+n), provided ¥ > 0 is small enough and satisfies
a condition which ensures an appropriate alignment of the period cells on the y-axis.
First of all, we recapitulate some results concerning the dislocation problem on the
plane.

2.2 The dislocation problem on a strip and for the
plane

Let V: R* — R be Z2-periodic and Lipschitz-continuous, let I := (0,1), and let
Y =R x (0,1) = R x I denote the infinite strip of width 1. As before, we write
H = —A+V for the (self-adjoint) Schrédinger operator with potential V' acting in
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2.2. The dislocation problem on a strip and for the plane

Ly(R?). Then o(H), the spectrum of H, has band structure, i.e., it is the (locally
finite) union of compact intervals [RS-IV]. The intervals of spectrum, the bands,
may be separated by (open) intervals, the gaps. Moreover, o(H) is purely absolutely
continuous. For 0 <t < 1, we introduce the self-adjoint operators

Sy = —A+W,;, acting in Ly(3),

2.
Dy = —A+W, acting in Ly(R), 7

where S; has periodic boundary conditions in the y-variable and W} is as in ((1.26)).
Since V' is bounded, the domains D(-) of the above operators satisfy D(D;) = D(H)
and D(S;) = D(Hyy), for all t, where H ». denotes the Laplacian on ¥ with periodic
boundary conditions in y. The operator —A-+W; in Ly(X) with 9J-periodic boundary
conditions in y is denoted by S;(1), for 0 < ¢ < 27. As usual, D, can be obtained
from the S;(9) as a direct fiber integral,

D= T osw@, (2.8)

a0
<9<2m 27

direct fiber integrals are discussed, e.g., in [RS-IV]; see also Exercise 7. As a con-
sequence, for any ¥ the spectrum of S;(¢) is a subset of o(D;). Furthermore, using
the periodicity in the z-direction, each S;(¥) can itself be written as a direct fiber
integral and so the spectrum of S;(¢) is purely essential spectrum with a band-gap
structure.

Proposition 2.3. Let (a,b) denote a spectral gap of H and let E € (a,b). Then

there ezists some t =tg € (0,1) such that E is a (discrete) eigenvalue of Sy, .
Moreover, for any n € N there are functions v, = v,(x,y) in the domain of S,

that satisfy |v,| =1, supp v, C [-n,n] x [0,1] and (S;, — E)v, — 0 as n — oc.

The functions v,, constructed above satisfy periodic boundary conditions with
respect to y and may thus be extended to y-periodic functions @, on R%. Applying
also cut-offs ¥, = ¢, (y) in the y-direction, we let

1
O il
the w,, satisty |w,| =1, w, € Dy, and (D, — E)w, — 0 as n — oco. By the same
argument as above this leads to £ € o(D;,) (where, again ty = limt,) and we have
thus obtained:

VnUy; (2.9)

Proposition 2.4. Let (a,b) denote a spectral gap of H and let E € (a,b). Then
there ezists t =ty € (0,1) such that E € o(Dy,,).

Moreover, for any n € N there are functions w, = w,(z,y) in the domain of D,
that satisfy |w,| = 1, supp w, C [-n,n]? and (D, — E)w, — 0 as n — oo.

Note that the spectrum of D, inside (a,b) will again consist of bands which we
could find by repeating the above process for all ¥-periodic boundary conditions
w.r.t. y.
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2.3 The rotation problem for small angles

In this section, we study the spectrum of the operators Ry, for 0 < ¢ < 7/2, where
the Ry are defined in (2.4]) as self-adjoint operators in the Hilbert space Ly(R?).

In view of a proof of Theorem [2.1] consider a fixed E € (a,b). Then, by Propo-
sition [2.4] there is some ¢ € (0,1) such that E is in the spectrum of the dislocation
operator D, on the plane. We wish to find angles ¢ with the property that the
potential Vy is approximately equal to W; on a sufficiently large square @, (0,7) of
side-length 2n, centered at some point (0,7) on the y-axis. This leads to the follow-
ing requirements: If we imagine the grid I' = {(z,y) € R?; z € Z or y € Z} of lines
describing the period cells, we have to make sure that, inside @, (0, ), the alignment
between the horizontal lines of I' in the right half-plane with the rotated horizontal
lines of Myl in the left half-plane is nearly perfect on the y-axis and that the rotated
vertical lines of MyI in the left half-plane have, roughly, distance ¢ (modulo Z) from
the y-axis. More precisely, we wish to find m € N such that m/cosd is integer, up
to a small error, and mtan® = t (mod Z), again up to a small error, inside @, (0, 7).

We first prepare a lemma which deals with ergodicity on the flat torus T? =
R?/Z?, as in [RS-1]. We consider transformations Ty: T? — T? defined by

Ty(z,y) = (z+tand,y + 1/ cos V). (2.10)

Lemma 2.5. There is a set © C (0,7/2) with countable complement such that the
transformation Ty in (2.10) is ergodic for all ¥ € O.

Proof. Exercise 8. 0J

Let us write z. for the fractional part of x > 0, ie., z. = x — |[z] if z > 0.
In the proof of our main theorem, we will need natural numbers m such that, for
t € (0,1) given, (mtand). is approximately equal to ¢ and (m/cosd). almost
equals 0. The existence of such numbers m follows from Lemma and Birkhoft’s
Ergodic Theorem. Let ¢ € ©, ¢ > 0, and let us denote by x¢g the characteristic
function of the set Q == (t —¢,t +¢) x (—¢,&) C T?. Then, for all (z,y) € T?,

n—1
1
lim — E xo(T§' (z,y)) = / dz dy = 4¢* > 0, (2.11)
=0 Q

n—oo N,

and we may take (z,y) = (0,0) to arrive at the desired result.

We add the following remarks to the above argument:

(1) Translation on the torus is a particularly simple ergodic transformation: for ¢
given, it can equivalently be seen as linear motion on parallel lines in R?, factored by
Z2. In particular, two nearby points (z,y) and (2/,y’) will forever keep their relative
position under the action of 70", and thus the statement of Birkhoft’s Theorem holds
for any point (z,y), not just for a.e. (z,y).
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2.3. The rotation problem for small angles

(2) In some sense, the Birkhoff Theorem is the strongest result one can use in
this context. Similar results are obtained from Dirichlet’s Theorem on the approxi-
mation of irrational numbers by rationals.

We are now ready for a first main result which establishes the existence of surface
states in the gaps of H and shows that, in fact, any gap (a,b) of H is filling up with
spectrum of Ry as v — 0.

Proposition 2.6. Let (a,b) be a spectral gap of H and let (o, B] C (a,b), a < S.
Then there is a Oy = Vo(a, B) > 0 such that

o(Ry) N (a, B) £ 0, Y0 € (0,0p). (2.12)

Proof.

(1) We first restrict our attention to ¥ € © with © as in Lemma [2.5] Let
E € (a,p) and £ == min{ E—a, —E}/2. By Proposition[2.4, we can find n = n. € N
and a function u, of norm 1 in the domain of D; with supp u, C [—n,n]? such that
|(Dy — E)u,| < e. Obviously w,x(z,y) = u,(z,y — k) satisfies the same estimate
for any k € N. If we can show that, for appropriate k € N,

M(m,y) _Wt(xay)’ <g, (x,y) € Qn(07 k) (213)
(recall the definition of @, (0, k) = (—n,n) x (k — n, k +n)), we may conclude that
I(Ry — E)uni| < 2¢; (2.14)

but then the Spectral Theorem implies that Ry has spectrum inside the interval
(E —2¢,E+2¢) C (o, ).
For a proof of (2.13), we first observe that by the properties of V' and the

definitions of Vy and W;, we have the following estimate:

Vi(z,y) = Wile,y)|” < min (X = j1)* + (Y = 52)%), V(z,y) € R?, (2.15)

]17]262
with
X =x(cost — 1) —t + ysin, Y = —zsind + y(cosv — 1) (2.16)

and L the Lipschitz constant of V. Now for ¥ € © given, there is some m = my € N
such that

<7n )V<5WL |(mtand). —t| < e/4; (2.17)

cos v
in particular, there is some N € N s.th. |m/cos¥ — N| < £/4.
We may now apply the estimate (2.15)) to the points (x,y) € @,(0, N) to find

Vy(z,y) — Wiz, y)|? < L* (X — [mtand])? + (Y + N —m)?), (2.18)
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2.4. Integrated density of states bounds

for all (z,y) € Q,(0, N). Here

| X —|mtand|| < n(1—cos?)+nd+|mtan?—|mtan | —t| < 2n.I9+|(mtan ). —t|
(2.19)

and
Y + N —m| <2n.9+ |N —m/cosd|. (2.20)

We choose 5 > 0 small enough to have 2n.9y < £/4 and follows if we pick
k = N. We have thus shown that Ry has spectrum in (a, 8) for all ¥ € © N (0, Jy).

(2) In order to remove the restriction ¥ € © we note that with each ¥ € © there
comes a positive number 1y > 0 such that

||(RJ — E)un,k” <3e, Voe (19 — N,V + 7]19), (2.21)

since
|(Ve — Vi) 'supp uni|,, — 0, o — 1. (2.22)

As the intervals (¢ — ng, ¥ + ny) with 9 ranging between 0 and ¥y cover the interval
(0,%)), the desired result follows. O

Now it is easy to obtain Theorem [2.1]in the Introduction from Proposition [2.6

Proof of Theorem For ¢ > 0 given, we consider points a = 79 < 11 < 72 <
... < n = bsuch that v; —v;_1 < ¢e/2, for j =1,..., N. For each of the intervals
I; = (vj-1,7j), 2 < j < N — 1, Proposition yields a constant ¥; > 0 with
the property that Ry has spectrum in the interval I; for all 0 < ¢ < ¥;. Then
o = mins<j<y—_1 ¥, has the required properties. O

2.4 Integrated density of states bounds

It is clear that ergodicity gives us not just a single m as in , for ¥ € ©; in
fact, guarantees that suitable m will appear with a certain frequency. We
will use this observation to obtain lower bounds for a quantity which, in the limit,
would translate into a (positive) lower bound for the surface i.d.s. measure if we
knew that the required limit exists. This will be complemented by a similar upper
bound which is of the expected order, up to a logarithmic factor.

Let Rén) denote the operator —A+ Vy, acting in Ly(Q),,) with Dirichlet boundary
conditions, where @, = (—n,n)?> C R% For any interval I C R, we denote by
N, I(ng")) the number of eigenvalues of Rgl) in I, each eigenvalue being counted
according to its multiplicity. The existence of a surface i.d.s. measure in the gap
(a, b) would correspond to the existence of a finite limit lim, %N I(Rgl)), for any
interval I with I C (a,b). Theorem [2.7| below provides lower bounds of the form

1
lim inf = N; (R > 0, (2.23)

n—oo M
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2.4. Integrated density of states bounds

for (non-degenerate) subintervals I and small ¥ € ©, while Theorem will yield
an upper bound

lim sup NI(Rgl)) < 0. (2.24)

n—oo nlogn
We begin with a lower bound.

Theorem 2.7. Let H, Ry as above and suppose that (a,b) is a spectral gap of H.
Let © as in Lemma [2.].

Then, for any € > 0 there exists a V. > 0 such that holds for all ¥ €
© N (0,79.) and for any interval I C (a,b) of length greater than .

Proof.

(1) Let [o, 8] C (a,b), fix E € (o, B), and let 0 < ¢ < min{E —«, 5 — E}. Let ug
in the domain of D, with compact support satisfy |ug| = 1 and |(D; — F)ue| < &,
as in Proposition . Let v € N be such that supp vy C Q, = (—v,v)?; note that,
in this proof, v corresponds to the parameter n that has been used so far.

Let ¥ € © N (0,7/4] so that, in particular, 1/v/2 < cos® < 1. By ergodicity,
there exists a constant ¢y = ¢o(¥) > 0 with the following properties: for n € N large,
there are at least J, = |con] natural numbers my,...,m;, € (0,n/4) such that

(2.17) holds for m = mg, s =1,...,J,, and such that
|ms —m,| > 2v, s#r, 1<s1r <y (2.25)

here J,, and my,...,my, depend on n and ¢. It follows that for each j =1,...,J,
there is some N; € N such that |m,/cos¥ — N,| < €/4 and |mstand — t|. < /4.
We then see that the functions ¢;, defined by ¢;(x,vy) = uo(z,y — N;), are of norm
1 and have mutually disjoint supports contained in (—n,n)% Furthermore, for ¥
small enough, 0 < ¢ < 9., say, we can show (as in the proof of Proposition
that an estimate holds on each square (—v,v) x (N; —v, N;+v). Thus

holds on the support of each ¢; and it follows that

[(RS” - B)e;

<e, 0<id<d, j=1,...,J,. (2.26)

Then M = span{y;; j=1,...,J,} has dimension J,. Let N denote the range
of the spectral projection P(aﬁ)(ngn)) of R associated with the interval (e, 3)
and assume for a contradiction that dimN < J,. Then we can find a function
v € M NN of norm 1. By the Spectral Theorem, )(Ré") — E)’UH > ¢. On the

other hand, ([2.26|) together with v = Zf\;l a;p; implies H(Rén) — E)’UH < ¢ because
the ¢, have mutually disjoint supports.

We have therefore shown that for any interval I = |o, 8] there exists some ¥y > 0
such that ([2.23) holds for all ¥ € © N (0, V).

(2) Now let € > 0. As in the proof of Theorem we may cover the interval
(a,b) by a finite number of subintervals of length e; applying the result of part (1)
we then obtain the desired statement. ([l
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2.4. Integrated density of states bounds

Remark 2.8.

(1) It appears that the argument used at the end of the proof of Proposition
to remove the restriction ¥ € © does not work in the context of Theorem

(2) It follows from the proof of Theorem that oes(Ry) NI # 0 for all ¥ €
© N (0,7.) and for any interval I C (a,b) of length greater than e.

We now complement the lower estimate established in Theorem by an upper
bound which is of the expected order, up to a logarithmic factor. Note that we
treat a situation which is far more general than the rotation or dislocation problems
studied so far. In fact, we will allow for different potentials V; on the left and V5 on
the right which are only linked by the assumption that there is a common spectral
gap; neither V; nor V5 are required to be periodic. The proof uses technology which
is fairly standard and based on exponential decay estimates for resolvents.

Theorem 2.9. Let Vi, Vo € Loo(R% R) and suppose that the interval (a,b) C R
does not intersect the spectra of the self-adjoint operators H, .= —A+Vy,, k=1,2,
both acting in the Hilbert space Lo(R?). Let

W= Xe<oy * Vi + X{az0) - V2 (2.27)

and define H == —A + W, a self-adjoint operator in Ly(R?). Finally, we let H™
denote the self-adjoint operator —A + W acting in Ly(Q,,) with Dirichlet boundary
conditions. Then, for any interval [a', V'] C (a,b), we have

liinﬁs;ip @N[a/,b/]([{(”)) < 00. (2.28)
Proof.
(1) We write N (n) := Ny (H™) and note that there is a constant ¢y > 0 such
that
N(n) < ¢on?, n € N; (2.29)

this follows by routine min-max arguments as in [RS-IV; Section XIII.15].

(2) Let us consider the (normalized) eigenfunctions u;,, of H™ associated with
the eigenvalues E; ,, € [@/,], for i = 1,..., N(n). The main idea of the proof is to
show that the w;, are concentrated near the boundary of (),, or near the y-axis. To
obtain the corresponding estimates, we introduce the sets

Q(n) =Q; (M) UQ (n),  je{1,23,4}, (2.30)
where Qj_(n) = (—% + %logn, —%logn) X (—% + %logn, 5 — % logn), and
Q7 (n) = —Qj(n) is the mirror-image of Q7 (n) with respect to the y-axis; the

parameter o > 0 will be chosen as in (2.31)) below. Note that, for a > 0 fixed,
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2.4. Integrated density of states bounds

the sets Qq(n),...,Q4(n) are non-empty for n large. We have the trivial inclusions
Qj11(n) C Q;(n) for j =1,2,3.

We will use the following exponential decay estimate for the resolvent of the
operators Hy: There are constants C' > 0, « > 0 such that for any E € [d/, V] and
(measurable) sets K, Ky C R?* we have (cf., e.g., [AADH; Prop. 2.4])

Xk, O (Hy — E) "Xk, || < Cem @ W0R2) 5 p e {0,1}, ke {1,2}; (2.31)

here & = 9,, &, = 9,. We also choose cut-off functions ¢,,1, € C*(R*R)
satisfying

Supp @n C Ql<n)> ©n f QZ(”) = 17 supp wn C Q3(n>7 wn f Q4(n) = 17 (232)

and [V, [V, 10ij¢nl, 10ij0n] < c(logn)™ with some constant ¢ > 0; here ¢, =
©One+ Py With ¢, and o, being supported in Q7 (n) and Q7 (n), respectively. By
a well-known argument we can now derive the desired localization property: by the
Leibniz rule, we have for i = 1,..., N(n)

(Hl - Ei)<90n,fui,n> = (H(n) - Ei)((pn,fui,n) = _2V§0n,£ : vui,n - Agon,éui,n (233)
so that
Xag (n)Win = ~Xag (n)(Hl - Ei)_IXsuppV%,z 2Vone - Viin + Apn ). (2.34)

Using that dist(Q3(n), suppVep,) > 2a  ogn and [V,|, |Ap,| < c(logn)™?!, the
estimate (2.31)) implies that

HXQg(n)uz,n| |X93(n)vuz,nH < C(n2 log ?”L)il, L= 17 R N(”) (235)

Y

We now define v;,, = (1 — ¢,,)u;, and let M,, == span{v; ;i = 1,...,N(n)}. We
claim that
dim M,, = N(n), n > ny, (2.36)

for some ng € N. Let Hp,\q,(n) be the operator —A+W on Q,\Q4(n) with Dirichlet
boundary conditions. The functions v;,, == (1 — ¢, )u;,,, are approximate eigenfunc-
tions of Hg,\q,m): in fact, using (2.35)), one easily checks that

H(HQn\m(n) — Em)va < O(n?log®n)~! (2.37)

and
[vin = win] < C(n*logn)™, (2.38)

fori=1,...,N(n). Now (2.29) and (2.38]) imply Zij\i(ln) |t — vin|® < 1 for n large
and we obtain ([2.36)).
(3) We next show that there is n; > ng € N such that

(Honoumw,w) <blw|®,  we M, n>n. (2.39)
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2.5. Muffin tin potentials

For a proof, consider an arbitrary w = Zf\;(ln ) ViVin € M, with |w| = 1. Here

we first observe that the coefficients ~; satisfy a bound |v;| < 2, for n large, since
(writing 7% = Y, [v|* and 02 = 37, Jvip — win]®)

N(n) N(n)
L=l 2 1Y viuial = D bl Join = winl 2 7(1 = na), (2.40)
i=1 i=1

where 7, — 0 as n — oo by (2.38)). Using (2.38) and the fact that V,, and A,
have support in Q3(n) \ Q4(n), it follows that for n large

N(n) N(n)
[wl® = [l + 7 (Honaumw,w) = Y Eilul® + 7, (2.41)
i1 i=1

where 7,7’ < C(logn)™2, so that
(Ho \aumw,w) <V Jw]? + ", (2.42)

with 7 < C(logn)~2, for n large, and we obtain (2.39).

(4) We conclude from that M,, C Poop)(Hg,\04n)) and then
implies that dim P_o3)(Ho,\04n)) = dimM,, = N(n). On the other hand, min-
max arguments yield an upper bound for dim P_ o 3)(Hg,\0,(n)) of the form cnlogn,
and we are done. 0

2.5 Muffin tin potentials

In this section, we recourse to muffin tin potentials where one can arrive at rather
precise statements that illustrate some of the phenomena described before. We will
only look at muffin tin potentials with walls of infinite height and discuss the effect
of the “filling up” of the gaps at small angles of rotation.

We consider the lattice Z? C R? where we first introduce the Laplacian of a
periodic muffin tin with infinitely high walls separating the wells: for 0 < r < 1/2,
we let D, := B,(%,1) denote the disc of radius r centered at the point (1, 1) € R?
and generate from D, the periodic sets

Q,,. = U(i,j)EZQ (D'r‘ + (Z,])), 0 <r<< 1/2 (243)

The Dirichlet Laplacian H, of €, is the direct sum of a countable number of copies of
the Dirichlet Laplacian on D,; therefore, the spectrum of H, consists in a sequence
of positive eigenvalues (pg(r))keny With pg(r) — oo as k — oo; we may assume that
pe(r) < prer(r) for all k& € N. The eigenvalues pp = pr(r) of H, have infinite
multiplicity. The u; correspond to the bands of a periodic problem: in fact, defining
V,: R? = R by

0, (z,y) €,

L (0.y) €O (2.44)

Vi(z,y) = {
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2.5. Muffin tin potentials

the periodic Schrodinger operators H, ,, := Hy+nV, have purely a.c. spectrum with
a band-gap structure. Furthermore, norm resolvent convergence H, , — H, implies
that the bands of H,, converge to the eigenvalues jy, of H,. In the sequel, denote
by (a,b) one of the gaps (g, tx+1). We next look at the rotation problem where we
define

Qg = (- N{x>0}) U (M) N{z <0}); (2.45)

we also let H,» denote the Dirichlet Laplacian on 2,4, for 0 < r < 1/2 and 0 <
v < 7/4

The set (My2.) N {z < 0} comes with two types of connected components:
most (or, in some cases, all) components are discs, but typically there are also discs
in My€), with center at a distance less than r from the y-axis; those appear in
(My€2,.) N {z < 0} in a truncated form. It is then clear that H,y has pure point
spectrum.

Let us comment on some special cases before we proceed: for tan rational,
these truncated discs form a periodic pattern; furthermore, we will find a half-disc
in (MyQ,) N{z < 0} if and only if there is a disc in M€, with center on the y-axis
which happens if and only if tan? = 1/(2k + 1) for some k£ € N. It follows that for
any tanv € Q with tanv ¢ {1/(2k + 1) ; k € N} there is some ry > 0 such that no
component of My€), meets the y-axis, for 0 < r < ry; in other words, in this case all
components of 2,y are discs.

0\ O
C
O

Figure 2.2: The domain €2y 4 »/s (shaded).

©0 0|0
©00|0

One can prove the following theorem; for more details, see [Hempel, R., Kohl-
mann, M.: Spectral properties of grain boundaries at small angles of rotation.
J. Spectr. Th. 1 (2011) 1-23].

Proposition 2.10. Let 0 < r < 1/2 be fized.

(1) Each ug(r), k = 1,2,..., is an eigenvalue of infinite multiplicity of H,.g, for
all 0 <9 < w/4. The spectrum of H, g is pure point, for all 0 < 9 < /4.
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2.6. Some extensions and remarks

(2) For any e > 0 there is a 9. = V.(r) > 0 such that any interval (c, B) C (a,b)
with f — a > € contains an eigenvalue of H,y for any 0 <9 < ¥,.

(3) There exists a set © C (0,7/2) of full measure such that o(H,») = [p(r), 00).
The eigenvalues different from the uy(r) are of finite multiplicity.

Remark 2.11. Let A = {¥ € (0,7/2) ; tand € Q} denote the set of angles where
tan is rational; clearly, © N A = (. It is easy to see that H,y, for 9 € A, has at
most a finite number of eigenvalues in (a,b), each of them of infinite multiplicity.
Hence we see a drastic change in the spectrum for 1 € A as compared with ¢ € ©.
Furthermore, if ¥ € A with tan? ¢ {1/(2k + 1) ; k € N}, then there is some ry > 0
such that o(H,y) = o(H,) for all 0 < r < ry.

2.6 Some extensions and remarks

(1) A simple variant of the rotation problem consists in rotations in the left and the
right half planes through angles 9/2 and —1/2, respectively, i.e., we study

¥ { (V © M*ﬁ/Z)($ay)> z >0,

Voloy) = (Vo My2)(z,y), z < 0; (2.46)

this potential might be rather close to the physical situation shown in Figure 2.1}
Here we consider the accompanying translational dislocation potentials

T _ V(l’—t/Q,y), fZOa
Wilz,y) = { V(ez+t/2,y), x<O0. (52)

We may then obtain results as in Theorem [2.1| without the use of Birkhoft’s theorem:
here we only need to take care of the second condition in since the horizontal
alignment between the left- and right-hand part of Vy on the y-axis is guaranteed
by the definition of Vj.

(2) We have shown that the spectral gaps of H fill with spectrum of Ry as ¥ — 0
in the sense that any interval of length € > 0 inside a gap of H will contain spectrum
of Ry for sufficiently small angles. In general, we do not know whether the spectrum
of Ry in the gaps of Hy is pure point, absolutely continuous or singular continuous.
However, there are some special angles where we can exclude singular continuous
spectrum: if we assume that cos® is a rational number, cos ¥ = ¢/p with p,q € N,
and p and ¢ belong to a Pythagorean triple (p* — ¢*> = r? for some r € N), then Vj
has period p in y-direction. In this case, a result in [DS] implies that o(Hy) has no
singular continuous part.

(3) It is natural to ask about higher dimensions. Suppose we are given a potential
V:R3 — R, periodic with respect to the lattice Z3. We may then simply consider
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2.6. Some extensions and remarks

rotations of the (x,y)-plane by an angle ¥, i.e., we let Vy(x,y,2) = V(z,y,2) in
{(z,y,2); x > 0} and Vy(z,y,2) = V(M_y(z,y),2) in {(x,y,2) ; « < 0}, in which
case our methods should apply. However, in R? there are many other rotations for
which our methods may or may not work.

(4) Of course, taking the limit ¥ — 0 is a mathematical idealization. In real
crystals or alloys the lattice and its rotated version have to match up according
to certain rules. This is usually only possible for a small number of angles. Re-
lated questions in higher dimensions are studied under the name of coincidence site
lattices.
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Chapter 3

The general dislocation problem

In this chapter, we will study dislocation problems on an infinite cylinder S =
R x (R/Z) without a periodicity assumption. Given two (bounded and measurable)
potentials V*): § — R, k = 1,2, the family of dislocation potentials is defined by

VW (z,y), x>0,

1
VO (z+ty), =<0, (3:1)

‘ﬁ%wz{
for (z,y) € S and ¢t € R. In the Hilbert space H = Ly(S), we let L denote
the (unique) self-adjoint extension of —A defined on C°(S). For each t € R the
Schrodinger operator H; = L+V; describes the energy of an electron on a tube made
of the same or two different materials to the left and to the right of the interface
{0} x R/Z. We are interested in the bound states produced by and at this junction
where we focus on energies in a spectral gap of Hy. In our main theorem, given
below, we will also need the Dirichlet Laplacian L) of ST := (0,00) x R/Z,
defined as the Friedrichs extension of —A on C°(ST).

Theorem 3.1. Let V) V®): S 5 R be bounded and measurable, and let V; be as
in (3.1). Suppose E € R is such that

E¢o(L+V®) k=12, (3.2)
and

inf Oess(Lo,ooy + VP [ST) < . (3.3)

Then there exists a sequence (7j);en C [0,00) of dislocation parameters such that
Eco(L+V;), and 7; — 00 as j — o0.

Remark 3.2.
(1) For the case of periodic potentials V*) on the real line or on R? correspond-
ing results had been obtained in the previous chapters. The assumptions in

Theorem [3.1] are purely spectral and do not involve any further features of the
potentials. In this sense, the occurrence of eigenvalues in gaps for dislocation
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problems is not an exception, but it is the rule; to convey this message is the
main objective of the present investigations.

(2) In many applications of Theorem [3.1) both L + V@ and L 4 V) have some
essential spectrum below the common gap (ag,bp). In the case of half-space
problems, however, only one of the operators has essential spectrum below the

gap.

(3) We expect the statement of Theorem [3.1| to be true for all £ € R that satisfy
condition (3.3) and E ¢ e(L + VW) for k=1, 2.

(4) Our proof of Theorem is based on an approximation on large sections
(—n—t,n) x R/Z of the tube, much as in where periodic boundary conditions
at the ends —n —t and n have been used. Since the potentials V*) need not be
periodic in x, there is no natural boundary condition at the ends, and we simply
take Dirichlet boundary conditions. Of course, this may introduce spurious
eigenvalues into the gap that have to be removed by a suitable technique.

The Laplacian L of Thm. is unitarily equivalent to the operator Li.,, defined
as the self-adjoint realization of —A on the strip R x (0, 1) with periodic boundary
conditions in y. We may extend the potentials V*), k = 1,2, and V; periodically
with respect to the y-variable to all of R?, and consider the dislocation problem in
R? with the operators H; = —A + V;. Then Thm. can be used to obtain lower
bounds for the integrated density of states inside a gap (ao, by) for certain values of
the parameter t.

We finally address the question of continuity of the (discrete) eigenvalues of the
family of operators H; as functions of ¢t. For periodic potentials in one dimension
continuity is easy as Vp — V; tends to zero in L jocumit(S), as ¢ — 0. Without
periodicity, we now have to face the problem that, no matter how small £ > 0 might
be, Vo — V; need not be small on the global scale. Here we use a change of variables
to the effect that, in the new coordinates, the potential is altered only in a compact
set. This leads to the following basic result.

Theorem 3.3. Let V) V@ ¢ L (S) be real-valued, and let H, == L + V; with
Vi as in . Then the discrete eigenvalues of Hy depend continuously on t € R.
If, in addition, the distributional derivative 0,V is a (signed) Borel measure, the
discrete eigenvalues of Hy are (locally) Lipschitz continuous functions of t € R.

The second part of the theorem applies in particular if V® is of locally bounded
variation. Note that Thm.[3.3 also applies to discrete eigenvalues below the essential
spectrum of H;.

33



3.1. Preliminaries

3.1 Preliminaries

In this section we introduce notation and collect some basic results related to the
dislocation problem.

3.1.1 Notation and Basic Assumptions

The spectral projection associated with a self-adjoint operator 7" and an interval
I C R is denoted as E;(7T"). If T has purely discrete spectrum in [, the number of
eigenvalues (counting multiplicities) in I is given by the trace of E;(7T), denoted as
tr E;(7). The Schatten-von Neumann classes will be denoted by B,, for 1 < p < oo.

Our basic coordinate space is the tube S = R x (R/Z) with the usual (flat)
product metric, where R /Z = %Sl. Let us write S’ := R /Z for simplicity of notation.
We consider the Sobolev space H!(S) with its canonical norm; note that C3°(S) is
dense in H'(S). Equivalently, we could work with the Sobolev space H} (R x (0, 1))
consisting of functions in H'(R x (0, 1)) that are periodic in the y-variable.

In the Hilbert space Ly (.S) we define our basic Laplacian, L, to be the unique (self-
adjoint and non-negative) operator associated with the (closed and non-negative)
quadratic form

H'(S) > u*—>/|Vu|2dzL‘dy,
S

by the first representation theorem. As on the real line, the Laplacian L is essentially
self-adjoint on C°(S). L is unitarily equivalent to the Laplacian —A acting in
Lo(R x (0, 1)) with periodic boundary conditions in the y-variable.

For M C R open we denote by Lj; the Friedrichs extension of —A, defined on
C®(M x §'), in Ly(M x §'); in other words, the form domain of L, is given as the
closure of C2*(M x §') in H!(S). Frequently, M will be an open interval on the real
line, or a finite union of such intervals, as in L, g for —oo < a < < oo, or in
Lpv(y} = Li—oo) @ Ly,00) for v € R. If M = (a, B) for some —oo < a < 8 < o0,
we say that L, ) satisfies Dirichlet boundary conditions on the lines {a} x S’ and
{8} x 8.

Given two bounded, measurable functions V), V®: S — R we define the
Schrédinger operators H*® = L+ V® for k = 1,2. Throughout Sections and
3.2, we assume V*) > 0 for simplicity (and without loss of generality). For ¢t € R
the dislocation potentials V; are defined as in (3.1)), and we let H, = L+ V;, t € R,
denote the family of dislocation operators.

From a technical point of view, the following three tools are fundamental for our
approach:

e decoupling by Dirichlet boundary conditions on circles {c} x §',

e exponential decay of eigenfunctions,
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e a coordinate transformation with respect to the xz-variable.

We provide some preliminary facts concerning these tools here. We begin with
Dirichlet decoupling.

3.1.2 Dirichlet Decoupling

In this subsection we show how to control the effect of an additional Dirichlet bound-
ary condition on the line {0} x §" C S; topologically, {0} xS’ C S is a circle. On the
strip R x (0, 1) with periodic boundary conditions the additional Dirichlet boundary
condition would be placed on the straight line segment {0} x (0,1). Note that it
is essential for our applications later on to have estimates with constants that are
uniform for certain classes of potentials.

Lemma 3.4. Let 0 < W € Loo(9), let H= L+ W in the Hilbert space H = Ly(S),
and let Hp == Lg\foy + W.

Then (H +r)™' — (Hp + r)~' is Hilbert-Schmidt for all v > 1 and there is a
constant C' > 0, which is independent of W and r, such that

|(H +7)~" = (Hp +r <0, r>1 (3.4)

)_IHBQ(H)

Estimates of type (3.4) are well-known and have been of great use in spectral
and in scattering theory. Similar estimates hold for finite tubes (—n,n) x S’ where
we compare L(,nyn) and L(,nm)\{o} = L(,n’o) D L(O,n)~

Lemma 3.5. Let 0 < W € Lo(S) and let Ly n) and L, ny\ oy be as above. Then
(Lcnmy + W+ 1)t = (Licpnngoy + W+ 1)t is Hilbert-Schmidt for r > 1 and we
have an estimate

(L) + W+ )7 = (Lcnmngor + W +1) " 5,0 < G
with a constant C independent of r and W.

Proof. Exercise 11. O

It is easy to generalize the above results to situations where we add in Dirichlet
boundary conditions on several lines of the type {x¢} x S'. This immediately gives
a simple proof for the invariance of the essential spectrum.

Proposition 3.6. For k = 1,2, let V®) € L(S) and define H*) and H, as above.
In addition, let Hfrl) = L(0,00) + VO and H? = L~y + V@, We then have

Oess(Hy) = Oess(H) U Gess (H™) C 00as(HD) U 005 (H?), teR.  (3.5)
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Proof. Fort > 0, let Hy 4ec denote the operator obtained from H; by the insertion of
Dirichlet boundary conditions on the lines {0} x S’ and {—¢} x S’. By Lemma [3.4]
(Hi+ 1) — (Hygee + 1)1 is compact and so H; and H; ge. have the same essential
spectrum. The part of H; ge. to the left of —t is unitarily equivalent to H(_2), and
the part of H; 4o associated with the interval (—t,0) has compact resolvent. Thus
Oess(Ht dec) = Oess(Ho dec) = aeSS(HJ(rl)) U O'eSS(H(_Q)). This proves the equality in .
The inclusion stated in is immediate from Lemma [3.4] O

3.1.3 Exponential Decay of Eigenfunctions

The following contains our basic exponential decay estimate. It is of importance
for the applications we are having in mind that the bound of Lemma below
is independent of W within the class of bounded, non-negative potentials with a
given spectral gap (ag, by). We let y; denote the characteristic function of the set
[—k, k] xS" C S, for brevity. We also omit a proof for the convenience of the reader.

Lemma 3.7. For 0 < ag < a < b < by given there exist constants C' > 0 and v > 0
such that for all 0 < W € Loo(S) with o(L + W) N (ag,by) = O we have

[(1 = xpul < Ce ul,  keN,
for all eigenfunctions u of Lr\joy+W that are associated with an eigenvalue \ € [a, b].

The following lemma gives an upper bound for the number of eigenvalues that
are moved into a compact subset [a,b] of a spectral gap (ag, by) upon enforcing a
Dirichlet boundary condition on the line {0} x §’. Again, it is important that the
bound is independent of the potential W, provided W > 0.

Lemma 3.8. For numbers ay < a < b < by € R given there exists a constant ¢ > 0
with the following property: If 0 < W € Lo(S) satisfies o(L + W) N (ag,by) = 0,
then

tr Bpa g (Lr\oy + W) < ¢

3.1.4 Transformation of Coordinates

Some additional insight can be gained by using a transformation of coordinates
which, in a sense, “undoes” the effect of the dislocation outside a finite section of
the tube S. In this way, the dislocation problem can be viewed as a perturba-
tion which acts in a compact subset of S only. To this end, we provide (smooth)
diffeomorphisms ¢;: R — R of class C* with the additional properties that

o) =2, 30,  @)=a—1, z<-2
we also require that there is a constant C' > 0 s.th.

/ !
— — < .
max [py(z) —xf,  max|py(e) — 1], max|py(z)] <Ot te[0,2]
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In Exercise 14, it will be shown that, for 0 < ¢t < 1, the dislocation operators H;
are unitarily equivalent to (s.a.) operators H; acting in Ly(S) with domain D(H,) =
D(L) where the quadratic form of H, is given by

H[u, u] ::/ <L]81u]2 + |Oqu|® — o Re (@oyu) + () \u!Q) dz dy
’ s \(#})? (1)° Aet)?!

T / Vilor(), )|l de dy:
S

here FIO = Hy = H. Note that ﬁt — Hy has support in the compact set {—2 <
2 < 0}. In other words, the family (H;)o<;<1 gives an equivalent description of the
dislocation problem where the perturbation is now restricted to the bounded set
{(z,y) € S; —2 <z <0}.

One can show the family (H,)o<;<1 enjoys the following properties:
(1) The mapping [0,1] 3 ¢ — (H, + 1)~! is norm-continuous.
(2) For t,¢' € [0,1], the resolvent difference (H, + 1)~* — (Hy + 1)~! is compact.
Here, the result of Exercise 12 is involved crucially.

It follows from (2) that the essential spectrum of H, is stable, and then the same
property holds for the family (H;)o<i<1. Property (1) implies that the spectrum of
H, depends continuously on ¢ in the usual Hausdorff-metric on the real line, and
then the same holds for the family (H;)o<t<i. This provides a proof of the first part
of Theorem [3.3

3.2 The main result

In this section we give a proof of Theorem [3.1] We consider some F € R satisfying
the assumptions (3.2) and (3.3) of Thm. [3.1] It follows from condition (3.2) that

there is an a > 0 such that
dist(E,o(L+V®)) > 20, k=12

E and a will be kept fixed throughout this section. If it happens that F is an
eigenvalue of Hy = L 4+ V we set 7 := 0 and consider H; instead of Hy. We may
therefore assume in the sequel that E ¢ o(Hj). We now fix some 0 < < 2a/3
such that

dist(E, o(Hy)) > 3. (3.6)

We find solutions of suitable approximating problems, and then pass to the limit.
The basic idea is to restrict the problem to finite sections of the tube S of the form
(—n —t,n) x §', as in the chapters before where S is a strip and the potential V' is
periodic. In the previous considerations, periodic boundary conditions at the ends
of the finite strip worked nicely, but for non-periodic potentials there is no natural
choice of boundary conditions on the lines {#n} x S’ that would keep the interval
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(E — 3, E+ B) free of spectrum of the operators Hy, o = L(_, ) + Vo and we have to
resort to a more complicated construction.

3.2.1 The Approximating Problems

We first introduce “correction terms” in the form of projections, sandwiched between
suitable cut-offs. While we have two interacting Dirichlet boundaries, we prefer a
construction where the correction term at the left end does not depend on the
correction term at the right end. Let

HY =Lcon + VW in Ly((—o0,n) x §),
H, = L_pe)+ V@ in Lo((—n,00) x §'),

for n € N, where we have chosen the upper indices + of H¥ in reference to the
Dirichlet boundary condition on the lines {#n} x S’. As in Prop. .6 we have
Oess(HT) C Oess(HM) and 0os(HT) C 0ess(H?) s0 that (E — 33, E+38) is a gap in
the essential spectrum of HX. We are now going to construct a family of operators
ﬁnvt on (—n —t,n) x S’ that will serve as approximations to H; and which enjoy the
property that the interval (E — 3, E + ) is free of spectrum of ]jfmo.

Let CIDik, k=1,...,J% denote a (maximal) orthonormal set of eigenfunctions
of H* corresponding to its eigenvalues in [E — 23, E + 2]. By Lemma there is
a constant ¢ such that JE < ¢ for all n; here we apply Lemma twice, with the
choice ag = E —3B8,a:=E —2B,b:=FE +28, by .= E+ 33, and W := V(. 4 n)
or W := V@ (. —n), respectively.

Next, we introduce the projections P onto the span of the CIDik, given by

P =Ep_2s 525 (Hy).
As a consequence,
o(Hy +48Py)N[E —28,E + 28] = 0. (3.7)

Here the ecigenfunctions @, are localized near {£n} x §' and decay (exponentially)
as x increases or decreases from +n, cf. Lemma 3.7, We are now going to make this
more precise.

Let us first introduce some cut-off functions. Let y € C®(—o0,1) with 0 <
Xi <1, xf(x) =1 for z > 3/4, and x; () = 0 for z < 1/2, be given. Now set
X (z) = x1(z/n), so that x;7 € C®°(—o0,n), x; (z) = 1 for x > 3n/4, and x; (z) =0
for x < n/2. We define x, € C*(—n,00) analogously by setting x,, () = x;' (—x).
Furthermore, choose ¢; € C*(—1/2,1/2) with 0 < ¢; < 1 and ¢1(z) = 1 for
|z| < 1/4, and set p,(z) = p1(z/n) and ¥, = 1 — ¢,. Finally, we decompose
¥, =, + 15 and note that ¥ Xx* = x*. By Lemma[3.7| there are constants ¢ > 0
and ng € N such that

[ =)@l <e/n n=mo,
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and we infer that there is a constant C' > 0 such that

xiPix - Pl < (38)

in fact, a stronger estimate of the form |xZPExE — P¥| < C’e™™, for some v > 0,
holds true. We now define

Hy = Hy + 48, Prx,,
and observe that, by (3.7) and (3.8]),
o(Hy)N[E—B.E+p]=0,

for n large. In particular, for any u € D(H}F) = D(H;") we have
10 -~
ful < 5 (5 = Byu. (3.9)

Now the dislocation enters the game: let T;(x,y) = (x + t,y), for (z,y) € S, and
define

Pr=> (., 0,,0T))®, 0T,
keJ,

as well as x,,;, := x,, o T}. Finally, let

P =48 (G P xar + Xt PriXne)
and
ﬁn,t = Li_n_tpn) + Vi + Ppy
in Ly((—=n —t,n) x §’). The operators gn,t are the principal players in our approx-
imating problems. We first establish that the operators H, , have no spectrum in
the interval [E — 3, E + (3], for n large.

Lemma 3.9. Let E € R\ 0(Hy) satisfy condition (3.2)) of Thm. and let 5 be as
in (3.6). Then there is an ng € N such that
O—(ﬁmo)m(E—ﬂ’E—'—ﬁ):@’ nzno.

Proof. Else there exists a sequence n; — oo and there exist E; € [E — 5, E + f]
such that E; is an eigenvalue of [:[nj,m for j € N. Let u,, denote an associated
normalized eigenfunction. With the cut-off functions ¢, and ;¥ defined above, we
see that ¢y, j4un, € D(Hp) and d’i/wnj € D(ﬁfj) with estimates

<c/nj, (3.10)

[(Fo = B3, < s | = B (W un,)
for j large; here ¢ > 0 is a suitable constant. Since o(Hy) N (E — 26, E +25) =0
and E; € [E — 5, E + ], we have |(Hy — E;)u| > f|u] for all v € D(H), so that

©n;/alln; — 0 as j — oo. Similarly, the second estimate in (3.10) and (3.9) imply
that 1/):—;/4%]. — 0, as j — oo. Therefore u,, — 0 as j — oo, in contradiction to

e | =1 0
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3.2.2 Solution of the Approximating Problems.

We are now going to show that, for large n € N, there exist parameters ¢, > 0
such that E is an eigenvalue of H,;,. Since all the operators involved have purely
discrete spectrum we can use a simple eigenvalue counting argument.

Proposition 3.10. Let E € R\ o(Hy) satisfy conditions (3.2)) and (3.3)) of Theorem
5. 1. Then there are ng € N and 9 > 0 such that for any n € N with n > ng there
exists 0 < t, <y such that £ is an eigenvalue of H,,, .

In preparation for the proof, we introduce variants of our operators with Dirichlet
boundary conditions on suitable lines. Let ﬁn,t;dec denote the operator E[n,t with
additional DBCs on the lines {0} x §" and {—t} x §'; note that—by virtue of the
cut-offs x;" and Xn+—the non-local operators P, ; are not affected by these boundary
conditions. For n > ng(t) the operators F[n’t;dec can be written as direct sums

Hn,t;dec - Bn,t;l % ht;2 b Bn;fb
with
Pt = Licnt,—) + Vi + 48X Pr i Xt
acting in Ly((—n — ¢, —t) x §') with DBCs on {—n —t} x §' and on {—t} x §,

hip = L—t0) + V;
acting in Ly((—¢,0) x §') with DBCs on {—t} x S’ and on {0} x §', and, finally,
hnB - L(]n +V(1 +4BX+P+X7L7

acting in Ly((0,n) x S') with DBCs on {0} x S’ and on {n} x §'.

We now collect some properties of the operators H n.t:dec that we need in the proof
of Proposition [3.10f

(1) For t = 0 we have

Hn,O;dec - Bn,O;l S¥ Bn;S
= (L(-no) + V& +48x, Pox) @ (Lo + VOV +48x; BIx)).

The followmg lemma compares the number of eigenvalues below E for the operators
Hn 0 and Hn 0;dec-

Lemma 3.11. Let E and 8 satisfy (3.6), let ﬁn,o and ﬁn,t;dec be as above, and let
no as in Lemma[3.9 Then there is a constant ¢y > 0 such that

tr ]E(—oo,E](]:-’n,o) > tr E(—OO,E](ﬁn,O;dec> > tr E(—OO,E](-Hn,O) — Co, n = ng.

In the proof of Lemma [3.11| we use a proposition, based on the Birman-Schwinger
principle to control the spectral shift across E, produced by the Dirichlet boundary
condition on {0} x §'. Recall that B, denotes the p-th Schatten-von Neumann class,
for 1 < p < 0.
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Proposition 3.12. Let 1 < T < S be self-adjoint operators with compact resolvent
in the Hilbert-space H, and suppose that T~ — S™ € B,(H) for some p € [1,00).
Then for any E € R\ o(T') we have

60 Ba)(S) > t1 B e iy (T) — dist(E, o(T)) 7 [T~ = S|

Proof. The proof is immediate from Proposition 1.1 in [H92] with A .= (T + 1)~*
=S +1)Yandnp:=(F+1)"L O

Proof (of Lemmam The first inequality follows immediately from HnOdeC >
HnO To prove the second inequality, we apply Prop - with T" = HnO + 1,
S = Hn,07dec +1,and p=2. Here (H,0+1)"" — (H,04ec + 1)~ is Hilbert-Schmidt
by Lemma with a bound ¢; on the HS-norm which is independent of n. Simple
perturbational arguments ([H92, Lemma 1.4]) yield that there exists a constant

¢y > 0 such that

H(F[n,o + 1)71 - ([:[n,O,dec + 1>71 B < Co, n > N
2
Now Prop. [3.12 implies
tr ]E(foo,E') (f{n,(),dec) > tr IE1:(7<>0,E) (f{n,O) - _QC%;

here the left hand side is enlarged if we replace E(_ g) with E_ B] while the right
hand side remains unchanged under this replacement since B gé o(Hnp) - O

(2) The operator hntl is unitarily equivalent to hnOl via a right-translation
through ¢ so that

60 B0, (Fing51) + 01 B(oo, ) (Fin3) = tr E(—oo, ) (Hn o). (3.11)
(3) The operators hy» are unitarily equivalent to Ly 4+ V® | (0,¢) for all ¢ > 0

by a right translation and we have the following lemma.

Lemma 3.13. Let h.o as above and let E and V@ satisfy condition (3.3). Then
t1 E(_oo,m) (ht;2) — 00, t — oo. (3.12)

For the proof we prepare a lemma.

Lemma 3.14. Let A and A, for n € N, be bounded, symmetric operators in some
Hilbert space and suppose that A, — A strongly. Then, for any Ay € 0ess(A) and
any € > 0 we have tr E\—c x1e)(An) = 00 as n — oo.

In Lemma we allow for tr E(y,—cx,+¢)(An) = 00; a precise statement would
read as follows: For any k € N there exists ng € N such that tr E(y,—c x4e)(An) €
[k, 00| for all n > ny.
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Proof. Assume for a contradiction that there exist \g € 0ess(A), ko € N, and a
sequence (n;) C N with n; — oo, as j — oo, such that tr E(x,—c rgte)(An,) < ko for
all j € N.

Let 0 < ¢’ < € and choose a continuous function f: R — [0, 1] such that f(z) =1
for |z — Xo| < ¢ and f(z) = 0 for |x — \g| > £. By routine arguments, it follows
from the assumptions that p(A,) — p(A) strongly for all real-valued polynomials
and then that f(A,) — f(A) strongly; here we also use that the norms |A,| form
a bounded sequence.

There exists an ONS {u1, ..., urg41} C RanEp—crrg+en(A). AS X(ag—ero4e) =
f > 0, monotonicity of the trace yields

ko+1
tr ]E()\O*E»)\(H“E) (Anj) > tr f(An]) > Z <f(Anj)uma um>
m=1
with SR CF (A Yt ) — SR (F (At ) = Ko + 1, as j — oo. O

Proof (of Lemma . Since hyo and Loy + V() are unitarily equivalent, we only
have to show that tr E(_o ) (Loy + VP) — oo as t — oo. Here we may use
Lemma [3.14} applied to the operators

A= (Lo + VI + 1) A= (Lo + VP + 1) 60,

with the operator 0 acting in Ly((¢,00) X S'). Indeed, it follows from a result in [ST§]
that A; — A strongly, as t — oo. O

Let us note as an aside that there is a kind of converse to the statement of
Lemma If n < inf 0ess(L0,00) 4+ V@), then min-max and Lo, +V@ > Lo,00) +
V@ imply that

tr ]E(—oo,n]<L(0,t) + V(z)) < ftr E(—oo,n](L(O,oo) + V(2)) < 00, t>0,

and thus tr E(_o ;1 (Lo + V®) is a bounded function of ¢ > 0.
We are now ready for the proof of Proposition |3.10}

Proof of Prop.[3.10. Let E € (a,b) \ 0(Hy). By Lemma [3.9 there exist 3 > 0 and
ng € N such that

(E_ﬁaE—i_ﬁ)ma([jIn,O):@, nZnO.

Adding in Dirichlet boundary conditions raises eigenvalues and we thus have

tr E(_W:E](ﬁn,t) Z tr ]E’(—OO,E]<ﬁn,t;dec)

= tr IE(foo,E} (hn,t;l) + tr ]E(foo,E] (ht;2) + tr IIE1‘:(7oo,E'] (hfn;?))

=tr IE(—OO,E}(]—In,O;dec) +tr E(—oo7E}(ht;2)a
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where we have used (3.11)) in the last step. It now follows from Lemma that

tr ]E(foo,E](Hn,t) > tr IE’(foo,E]<}In,0) — ¢ +tr E(,oo,E](h't;Q)a

with the constant ¢y from Lemma . Since V@ satisfies condition , Lemma
implies that there exists 7o > 0 such that tr E(_s g)(hyy2) > co and we conclude
that

tr ]E(—oo,E]<]:In,70) > tr E(—oo,E](I:—,n,O)y n > ny. (313)
The operators lifmt have purely discrete spectrum and their eigenvalues depend
continuously on t > 0, as can be easily seen by arguments similar to the ones
used for the periodic problem. Therefore, implies that at least one eigenvalue
of I:[n,t has crossed E at some 0 < t,, < 7y, and we are done. O

The above Prop. shows that there exists a bounded sequence of parameters
t, such that E is an eigenvalue of H, ;. Then there is a convergent subsequence
o, — t, as j — oo, and we expect that F is an eigenvalue of Hj.

Lemma 3.15. Suppose we are given sequences (t,) C [0,00) and (E,) C [E—8, E+
B] with t, — t and E, — E, as n — oo, with the property that E, is an eigenvalue
of Hy 4, forn >ng. Then E is an eigenvalue of Hy.

Proof. Exercise 16. U
We are now ready for the proof of Thm. [3.1]

Proof of Theorem[3.1. If E € o(Hy), let 71 := 0. Else Prop. and Lemma [3.15]
directly yield a 71 > 0 such that F € o(H,,); in this case we would in fact know
that = > 0.

If E happens to be an eigenvalue of H, 1, we let 7, := 71 + 1. Else we replace
V® with V® o T, .1, to obtain some 7, > 7, + 1 with £ € ¢(H,,), and so on. [
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