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Chapter 1

The periodic dislocation problem

on R, R× [0, 1] and R2

1.1 Introduction

In solid state physics, one first studies crystallized matter with a perfectly regular

atomic structure where the atoms are located on a periodic lattice. However, most

crystals are not perfectly periodic; in fact, the regular pattern of atoms may be

disturbed by various defects which fall into two main classes:

(i) defects which leave the lattice unchanged (like impurities or vacancies)

(ii) “geometric” defects of the lattice itself which may involve translations and

rotation of portions of the lattice. Lattice dislocations occur, in particular, at

grain boundaries in alloys. The models presented here are deterministic but

may be generalized to include randomness.

Many of the geometric defects mentioned above are accessible to mathematical anal-

ysis only after some idealization which leads to the following type of problem: there

is a periodic potential V : Rd → R with period lattice Zd and a Euclidean trans-

formation T : Rd → Rd such that the potential coincides with V in the half-space

{x ∈ Rd | x1 ≥ 0} and with V ◦ T in {x1 < 0}. In the simplest cases T is transla-

tion in the direction of one of the coordinate axes, with again two main subcases:

translation orthogonal to the hyperplane {x1 = 0} or translations that keep the

x1-coordinate fixed.

The one-dimensional dislocation problem is particularly simple: Let V : R→ R
be a periodic potential with period 1 and let

Wt(x) :=

{
V (x), x ≥ 0,

V (x+ t), x < 0,
(1.1)
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1.2. The Kato class

for t ∈ [0, 1]. The (self-adjoint) operator Ht := − d2

dx2
+ Wt is called the dislocation

operator, t the dislocation parameter. We are interested in the spectral properties of

the operators Ht. We will see that the essential spectrum of Ht does not depend on

t for 0 ≤ t ≤ 1; also Ht cannot have any embedded eigenvalues. Precisely, σess(Ht)

has a band-gap-structure. For 0 < t < 1, the operators Ht may have bound states

(discrete eigenvalues) located in the gaps of the essential spectrum. We intend to

give a systematic treatment of regularity properties of the eigenvalue “branches”;

in particular, we show that the eigenvalue branches are Lipschitz-continuous if V is

(locally) of bounded variation.

1.2 The Kato class

Let h0 denote the (unique) self-adjoint extension of − d2

dx2
defined on C∞c (R). Our

basic class of potentials is given by

P := {V ∈ L1,loc(R,R); ∀x ∈ R : V (x+ 1) = V (x)} . (1.2)

Potentials V ∈ P belong to the class L1,loc,unif(R) which coincides with the Kato-class

on the real line; in the subsequent estimates we will use

||V ||1,loc,unif := sup
y∈R

∫ y+1

y

|V (x)| dx (1.3)

as a natural norm on L1,loc,unif(R). In particular, any V ∈ P has relative form-bound

zero with respect to h0 and thus the form-sum H of h0 and V ∈ P is well defined,

cf. [CFrKS]. For V ∈ P given, we define the dislocation potentials Wt as in (1.1),

for 0 ≤ t ≤ 1; as before, the form-sum Ht of h0 and Wt is well defined.

We intend to discuss some basic facts concerning continuity and regularity of the

eigenvalue branches for the one-dimensional dislocation problem. We will see that

for potentials belonging to the class P , the eigenvalues are continuous functions of

the dislocation parameter t.

Definition 1.1. A family of functions Ja : Rd → R, a ∈ A, indexed by a set A is

called a partition of unity if

(i) 0 ≤ Ja(x) ≤ 1 for all x ∈ Rd,

(ii)
∑

a∈A J
2
a(x) = 1 for all x ∈ Rd,

(iii) (Ja) is locally finite, i.e. on any compact set K we have that Ja = 0 for all but

finitely many a ∈ A,

(iv) Ja ∈ C∞(Rd),

(v) sup
{
x ∈ Rd;

∑
a∈A |∇Ja(x)|2

}
<∞.
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1.2. The Kato class

Theorem 1.2 (IMS localization formula). Let (Ja)a∈A be a partition of unity

and let H = h0 + V for a potential V belonging to the Kato class. Then:

H =
∑
a∈A

JaHJa −
∑
a∈A

|∇Ja|2.

Proof. Exercise 2. �

Remark 1.3. The term
∑

a∈A |∇Ja|2 is called the localization error.

Lemma 1.4. For any ε > 0 there exists a constant Cε ≥ 0 such that for any

V ∈ L1,loc,unif(R) we have∫
R
|V | |ϕ|2 dx ≤ ||V ||1,loc,unif

(
ε ||ϕ′||2 + Cε ||ϕ||2

)
, ϕ ∈ H1(R). (1.4)

Proof. For f ∈ C∞c (R) with support contained in (0, ε) we have ||f ||∞ ≤
√
ε ||f ′||. Let

(ζn)n∈N denote a (locally finite) partition of unity on the real line with the properties:

supp ζ1 ⊂ (0, ε), each ζn is a translate of ζ1, M := supx∈R
∑

n∈N |ζ ′n(x)|2 is finite and∑
n∈N ζ

2
n(x) = 1 for all x ∈ R. By the IMS localization formula, we have for any

ϕ ∈ C∞c (R),

||ϕ′||2 = 〈−ϕ′′, ϕ〉 =
∞∑
n=1

||(ζnϕ)′||2 −
∞∑
n=1

||ζ ′nϕ||
2 ≥

∞∑
n=1

||(ζnϕ)′||2 −M ||ϕ||2 ,

so that ∫
|V (x)||ϕ(x)|2 dx ≤

∞∑
n=1

||ζnϕ||2∞
∫

supp ζn

|V (x)| dx

≤ ε
(
||ϕ′||2 +M ||ϕ||2

)
||V ||1,loc,unif .

The general case follows by approximation and Fatou’s lemma. �

For V ∈ P , the function

ϑV (s) :=

∫ 1

0

|V (x+ s)− V (x)| dx, 0 ≤ s ≤ 1, (1.5)

is continuous and ϑV (s) → 0, as s → 0. Furthermore, for Wt is as (1.1), we have

||Wt −Wt′ ||1,loc,unif = ϑV (t− t′). This leads to the following lemma.

Lemma 1.5. Let V ∈ P, E0 ∈ R \ σ(Ht0), and write ε0 := dist(E0, σ(Ht0)). Then

there is τ0 > 0 such that Ht has no spectrum in (E0−ε0/2, E0+ε0/2) for |t−t0| < τ0.

Furthermore, there exists a constant C ≥ 0 such that for some τ1 ∈ (0, τ0)∣∣∣∣(Ht − E0)−1 − (Ht0 − E0)−1
∣∣∣∣ ≤ CϑV (t− t0), |t− t0| < τ1. (1.6)
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1.2. The Kato class

Proof. Without loss of generality we may assume that V ≥ 1. Let ht denote the

quadratic form associated with Ht. Applying Lemma 1.4 (with ε := 1) we see that

|ht0 [u]− ht[u]| ≤
∫
R
|Wt −Wt0| |u|2 dx ≤ C1ϑV (t− t0)ht0 [u], u ∈ H1(R),

with some constant C1. The desired result now follows by [K; Thm. VI-3.9]. �

We therefore see that Htn → Ht0 in the sense of norm resolvent convergence if

t0 ∈ [0, 1], (tn)n∈N ⊂ [0, 1] and tn → t0. By standard arguments, this implies that

the discrete eigenvalues of Ht depend continuously on t.

Let

Pα := {V ∈ P | ∃C ≥ 0: ϑV (s) ≤ Csα,∀0 < s ≤ 1}, (1.7)

where 0 < α ≤ 1. The class Pα consists of all periodic functions V ∈ P which are

(locally) α-Hölder-continuous in the L1-mean; for α = 1 this is a Lipschitz-condition

in the L1-mean. The class P1 is of particular practical importance since it contains

the periodic step functions. We can show that P1 coincides with the class of periodic

functions on the real line which are locally of bounded variation.

Proposition 1.6. Let BVloc(R) denote the space of real-valued functions which are

of bounded variation over any compact subset of the real line.

Then P1 = P ∩BVloc(R).

It is easy to see that any V ∈ P ∩BVloc(R) belongs to P1: certainly, any V ∈ P
which is monotonic over [0, 1] is an element of P1 and any function of bounded

variation can be written as the difference of two monotonic functions.

The converse direction is established by the following lemma.

Lemma 1.7. Let f ∈ L1,loc (R,R) be periodic with period 1 and suppose that there

are c ≥ 0, ε > 0 such that∫ 1

0

|f(x+ t)− f(x)| dx ≤ ct, ∀0 < t < ε. (1.8)

Consider f as a function in L1(T), with T denoting the one-dimensional torus.

We then have: the distributional derivative ∂f is a (signed) Borel-measure µ on

T and there is a number a ∈ R such that f(x) = a+ µ([0, x)), a.e. in [0, 1) ' T. In

particular, f has a left-continuous representative of bounded variation.

Proof. Defining η : C1(T)→ R by

η(ϕ) := −
∫ 1

0

ϕ′f dx,
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1.3. Eigenvalues in spectral gaps

we may compute

−
∫ 1

0

ϕ′f dx = lim
t→0

∫ 1

0

1

t
(ϕ(x− t)− ϕ(x))f(x) dx

= lim
t→0

∫ 1

0

ϕ(x)
1

t
(f(x+ t)− f(x)) dx,

and the assumption yields the estimate |η(ϕ)| ≤ c ||ϕ||∞. Since C1(T) is dense in

C(T), the functional η has a unique continuous extension to all of C(T); we denote

the extension by the same symbol η. By the Riesz representation theorem there is a

measure µ such that η(ϕ) =
∫
ϕ dµ for all ϕ ∈ C(T). Furthermore, for ϕ ∈ C1(T) we

have −
∫ 1

0
ϕ′f dx =

∫ 1

0
ϕ dµ, and we see that µ = ∂f on T in the distributional sense.

The choice ϕ := 1 yields
∫
T dµ = −

∫ 1

0
ϕ′f dx = 0 and the function f̃(x) := µ([0, x))

satisfies ∂f̃ = µ. This is easy to check: for ϕ ∈ C1(T) we have∫
f̃ϕ′ dx =

∫ 1

0

∫
0≤y<x

dµ(y)ϕ′(x) dx

=

∫
0≤y<1

∫ 1

y

ϕ′(x) dx dµ(y) = −
∫

[0,1)

ϕ(y) dµ(y).

We therefore see that ∂(f − f̃) = 0; hence there is some a such that f − f̃ = a. �

1.3 Eigenvalues in spectral gaps

We begin with some well-known results pertaining to the spectrum of H = H0. As

explained in [E, RS-IV], we have

σ(H) = σess(H) = ∪∞k=1[γk, γ
′
k], (1.9)

where the γk and γ′k satisfy γk < γ′k ≤ γk+1, for all k ∈ N, and γk →∞ as k →∞.

Moreover, the spectrum of H is purely absolutely continuous. The intervals [γk, γ
′
k]

are called the spectral bands of H. The open intervals Γk := (γ′k, γk+1) are the spectral

gaps of H; we say the k-th gap is open or non-degenerate if γk+1 > γ′k.

In order to determine the essential spectrum of Ht for 0 < t < 1, we introduce

Dirichlet boundary conditions at x = 0 for the operator H0 and at x = 0 and x = −t
for Ht to obtain the operators

HD = H− ⊕H+, Ht,D = H−t ⊕H(−t,0) ⊕H+, (1.10)

where H± acts in R± with a Dirichlet boundary condition at 0, H−t in (−∞,−t) with

Dirichlet boundary condition at −t and H(−t,0) in (−t, 0) with Dirichlet boundary

conditions at −t and 0. Since H(−t,0) has purely discrete spectrum and since the op-

erators H−t and H− are unitarily equivalent, we conclude that σess(HD) = σess(Ht,D).
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1.3. Eigenvalues in spectral gaps

It is well known that decoupling by (a finite number of) Dirichlet boundary con-

ditions leads to compact perturbations of the corresponding resolvents (in fact,

perturbations of finite rank) and thus Weyl’s essential spectrum theorem yields

σess(HD) = σess(H) and σess(Ht,D) = σess(Ht).

In addition to the essential spectrum, the operators Ht may have discrete eigen-

values below the infimum of the essential spectrum and inside any (non-degenerate)

gap, for t ∈ (0, 1); these eigenvalues are simple. We provide a complete and precise

picture concerning the eigenvalue branches in the following lemma saying that the

discrete eigenvalues of Ht inside a given gap Γk of H can be described by an (at

most) countable, locally finite family of continuous functions, defined on suitable

subintervals of [0, 1].

Lemma 1.8. Let k ∈ N and suppose that the gap Γk of H is open, i.e., γ′k < γk+1.

Then there is a (finite or countable) family of continuous functions fj : (αj, βj)→ Γk,

where 0 ≤ αj < βj ≤ 1, with the following properties:

(i) fj(t) is an eigenvalue of Ht, for all αj < t < βj and for all j. Conversely, for

any t ∈ (0, 1) and any eigenvalue E ∈ Γk of Ht there is a unique index j such

that fj(t) = E.

(ii) As t ↓ αj (or t ↑ βj), the limit of fj(t) exists and belongs to the set {γ′k, γk+1}.

(iii) For all but a finite number of indices j the range of fj does not intersect a

given compact subinterval [a′, b′] ⊂ Γk.

Proof. We consider t ∈ T, the flat one-dimensional torus, and we denote the spectral

gap by (a, b). Let [a′, b′] ⊂ (a, b).

(1) Let (η, τ) ∈ (a, b)× T. Since σ(Hτ ) ∩ (a, b) is a discrete set, and since σ(Ht)

depends continuously on t, there is a neighborhood Uη,τ ⊂ (a, b)×T of (η, τ) of the

form Uη,τ = (η1, η2)× (τ1, τ2) belonging to either of the two following types:

Type (1): For τ1 < t < τ2 we have σ(Ht) ∩ (η1, η2) = ∅.
Type (2): η is an eigenvalue of Hτ and there is a continuous function f : (τ1, τ2) →
(η1, η2) such that f(t) is an eigenvalue of Ht; Ht has no further eigenvalues in (η1, η2),

for τ1 < t < τ2.

Now the family {Uη,τ ; (η, τ) ∈ (a, b) × T} is an open cover of (a, b) × T and there

exists a finite selection {Uηi,τi}i=1,...,N such that

[a′, b′]× T ⊂ ∪Ni=1Uηi,τi .

As a first consequence, we see that there is at most a finite number of functions that

describe the spectrum of Ht in the open set ∪Ni=1Uηi,τi ⊃ [a′, b′]× T.

(2) Suppose that (η, τ) ∈ (a, b)× T is such that η ∈ σ(Hτ ) and let f : (τ1, τ2)→
(η1, η2) as above. Consider a sequence (tj)j∈N ⊂ (τ1, τ2) with tj → τ1. We can find

a subsequence (tjk)k∈N such that f(tjk) → η̄ for some η̄ ∈ [η1, η2]. It is easy to see
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1.3. Eigenvalues in spectral gaps

that η̄ ∈ σ(Hτ1). If η̄ ∈ (a, b) the point (η̄, τ1) has a neighborhood Uη̄,τ1 of type (2)

and we can extend the domain of definition of f beyond τ1. It follows that there

exist a maximal open interval (α, β) ⊂ (0, 1) and a (unique) continuous extension

f̃ : (α, β)→ (a, b) of f such that f̃(t) is an eigenvalue of Ht for all t ∈ (α, β).

(3) It remains to show that f̃(t) converges to a band edge as t ↓ α and as t ↑ β.

By the same argument as above, we find that any sequence (tj)j∈N ⊂ (α, β) satisfying

tj → α has a subsequence (tjk)k∈N such that f̃(tjk) → η̄ for some η̄ ∈ [a, b]. Here

η̄ /∈ (a, b) because otherwise we could again extend the domain of definition of f̃

beyond α, contradicting the maximality property of the interval (α, β).

Suppose there are sequences (tj)j∈N, (sj)j∈N ⊂ (α, β) such that tj → α and

sj → α and f̃(tj)→ a while f̃(sj)→ b as j →∞. Then for any η′ ∈ (a, b) there is

a sequence (rj)j∈N ⊂ (α, β) such that rj → α and f̃(rj) → η′, whence η′ ∈ σ(Hα).

This would imply that (a, b) ⊂ σ(Hα), which is impossible. �

We next turn our attention to the question of Lipschitz-continuity of the func-

tions fj in Lemma 1.8. Recall that the class P1 consists of all periodic functions

V ∈ P which are (locally) Lipschitz-continuous in the L1-mean.

Proposition 1.9. For V ∈ P1, let (a, b) denote any of the gaps Γk of H and let

fj : (αj, βj) → (a, b) be as in Lemma 1.8. Then the functions fj are uniformly

Lipschitz-continuous. More precisely, for each gap Γk there exists a constant Ck ≥ 0

such that for all j

|fj(t)− fj(t′)| ≤ Ck|t− t′|, αj ≤ t, t′ ≤ βj.

Proof. Exercise 3. �

Remark 1.10. a

(1) We can also obtain the following result on Hölder-continuity: If 0 < α < 1 and

V ∈ Pα, then each of the functions fj : (αj, βj) → (a, b) is locally uniformly

Hölder-continuous (as defined in [GT]), i.e., for any compact subset [α′j, β
′
j] ⊂

(αj, βj) there is a constant C = C(j, α′j, β
′
j) such that |fj(t)−fj(t′)| ≤ C|t−t′|α,

for all t, t′ ∈ [α′j, β
′
j]. Note that our method does not necessarily yield a uniform

constant for the whole interval (αj, βj), much less a constant that would be

uniform for all j.

(2) For analytic potentials V , it is shown in [K1] that the eigenvalue branches fj
in Lemma 1.8 depend analytically on t. This is a simple consequence of the

fact that, for real analytic V , the Ht form a holomorphic family of self-adjoint

operators in the sense of Kato. In [K2], the author proves that the fj are

squares of W 1
2 -functions near the gap edges if the potential is in L2(T).
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1.4. A spectral shift function

1.4 A spectral shift function

It is our aim in this section to show that at least k eigenvalues move from the upper to

the lower edge of the k-th gap as the dislocation parameter ranges from 0 to 1. Using

the notation of Lemma 1.8 and writing fi(αi) := limt↓αi
fi(t), fi(βi) := limt↑βi fi(t),

we now define

Nk := #{i; fi(αi) = γk+1, fi(βi) = γ′k} −#{i; fi(αi) = γ′k, fi(βi) = γk+1}. (1.11)

Thus Nk is precisely the number of eigenvalue branches of Ht that cross the k-th gap

moving from the upper to the lower edge minus the number crossing from the lower

to the upper edge. Put differently, Nk is the spectral multiplicity which effectively

crosses the gap Γk in downwards direction as t increases from 0 to 1.

Our main result in this section says that Nk = k, provided the k-th gap is open:

Theorem 1.11. Let V ∈ P and suppose that the k-th spectral gap of H is open,

i.e., γ′k < γk+1. Then Nk = k.

Again, the results obtained by Korotyaev in [K1, K2] are more detailed; e.g., it

is shown that, for any t ∈ (0, 1), the dislocation operator Ht has two unique states

(an eigenvalue and a resonance) in any given gap of the periodic problem. On the

other hand, our variational arguments are more flexible and allow an extension to

higher dimensions, as will be seen in the sequel. In this sense, the importance of

this section lies in testing our approach in the simplest possible case.

The main idea of our proof goes as follows: consider a sequence of approximations

on intervals (−n − t, n) with associated operators Hn,t = − d2

dx2
+ Wt with periodic

boundary conditions. We first observe that the gap Γk is free of eigenvalues of Hn,0

and Hn,1 since both operators are obtained by restricting a periodic operator on

the real line to some interval of length equal to an entire multiple of the period,

with periodic boundary conditions. Second, the operators Hn,t have purely discrete

spectrum and it follows from Floquet theory (cf. [E, RS-IV]) that Hn,0 has precisely

2n eigenvalues in each band while Hn,1 has precisely 2n+1 eigenvalues in each band.

As a consequence, effectively k eigenvalues of Hn,t must cross any fixed E ∈ Γk as

t goes from 0 to 1. To obtain the result of Theorem 1.11 we only have to take

the limit n → ∞. Here we employ several technical lemmas. In the first one, we

show that the eigenvalues of the family Hn,t depend continuously on the dislocation

parameter.

Lemma 1.12. The eigenvalues of Hn,t depend continuously on t ∈ [0, 1].

Proof. Exercise 4. �

The next lemma is to establish a connection between the spectra of Ht and Hn,t

for 0 ≤ t ≤ 1 and n large. In the proof and henceforth, we will make use of the

following cut-off functions (see also Exercise 1): We pick some ϕ ∈ C∞c (−2, 2) with

8



1.4. A spectral shift function

0 ≤ ϕ ≤ 1 and ϕ(x) = 1 for |x| ≤ 1. For k ∈ (0,∞) we then define ϕk(x) :=

ϕ(x/k) so that supp ϕk ⊂ (−2k, 2k), ϕk(x) = 1 for |x| ≤ k, |ϕ′k(x)| ≤ Ck−1 and

|ϕ′′k(x)| ≤ Ck−2. Finally, we let ψk := 1 − ϕk. For any self-adjoint operator T we

denote the spectral projection associated with an interval I ⊂ R by PI(T ) and we

write dim PI(T ) to denote the dimension of the range of the projection PI(T ).

Lemma 1.13. Let k ∈ N with Γk 6= ∅. Let t ∈ (0, 1) and suppose that η1 < η2 ∈ Γk
are such that η1, η2 /∈ σ(Ht). Then there is an n0 ∈ N such that η1, η2 /∈ σ(Hn,t) for

n ≥ n0, and

dim P(η1,η2)(Ht) = dim P(η1,η2)(Hn,t), n ≥ n0. (1.12)

Proof. In the subsequent calculations, we always take k := n/4, for n ∈ N.

(1) Let E ∈ (η1, η2) ∩ σ(Ht) with associated normalized eigenfunction u. Then

uk := ϕku ∈ D(Hn,t), Hn,tuk = Htuk and ||uk|| → 1 as n→∞. Since

||Hn,tuk − Euk|| ≤ 2 · ||ϕ′k||∞ ||u
′||+ ||ϕ′′k||∞ ||u|| , (1.13)

it is now easy to conclude that dim P(η1,η2)(Hn,t) ≥ dim P(η1,η2)(Ht) for n large.

(2) We next assume for a contradiction that η ∈ Γk satisfies η ∈ σ(Hn,t) for

infinitely many n ∈ N. Then there is a subsequence (nj)j∈N ⊂ N s.th. η ∈ σ(Hnj ,t);

we let unj ,t ∈ D(Hnj ,t) denote a normalized eigenfunction and set

v1,nj
:= ϕkjunj ,t, v2,nj

:= ψkjunj ,t, (1.14)

so that v1,nj
∈ D(Ht) and

∣∣∣∣(Ht − η)v1,nj

∣∣∣∣ → 0 as j → ∞ by a similar estimate as

in part (1) (and using a simple bound for
∣∣∣∣u′n,t∣∣∣∣ which follows from the fact that V

has relative form-bound zero w.r.t. h0.) Let us now show that v2,nj
→ 0 (and hence∣∣∣∣v1,nj

∣∣∣∣→ 1) as j →∞: The function

ṽ2,nj
(x) :=

{
v2,nj

(x), x ≥ 0,

v2,nj
(x− t), x < 0,

(1.15)

belongs to the domain of Hnj ,0 and Hnj ,0ṽ2,nj
= [Hnj ,tv2,nj

]∼ , where [·]∼ is defined

in analogy with (1.15). Since we also have (Hnj ,t − η)v2,nj
→ 0, as j → ∞, we see

that (Hnj ,0 − η)ṽ2,nj
→ 0. But dist(η, σ(Hn,0)) ≥ δ0 > 0 for all n and the Spectral

Theorem implies that
∣∣∣∣ṽ2,nj

∣∣∣∣→ 0 as j →∞. We have thus shown that
∣∣∣∣v1,nj

∣∣∣∣→ 1

and
∣∣∣∣(Ht − η)v1,nj

∣∣∣∣→ 0 which implies that η ∈ σ(Ht).

(3) It remains to show that dim P(η1,η2)(Hn,t) ≤ dim P(η1,η2)(Ht), for n large.

The proof by contradiction follows the lines of part (2); instead of a sequence of

functions unj
we work with an orthonormal system u

(1)
nj , . . . , u

(`)
nj of eigenfunctions

where ` = dim P(η1,η2)(Ht + 1). We leave the details to the reader. �

Remark 1.14. In fact, using standard exponential decay estimates for resolvents

of Schrödinger operators, cf. [S], it can be shown that the eigenvalues of Ht and Hn,t
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in the gap Γk are exponentially close, for n large; e.g., if E ∈ σ(Ht) ∩ Γk for some

t ∈ (0, 1), then there are constants c ≥ 0 and α > 0 s.th. the operators Hn,t have an

eigenvalue in (E − ce−αn, E + ce−αn), for n large.

The desired connection between the spectral flow for (Hn,t)0≤t≤1 and (Ht)0≤t≤1

is obtained by applying Lemma 1.13 at suitable ti ∈ [0, 1] and η1,i < η2,i ∈ Γk. We

now construct an appropriate partition of the parameter interval [0, 1].

Lemma 1.15. Let k ∈ N with Γk 6= ∅. Then there exists a partition 0 = t0 < t1 <

. . . < tK−1 < tK = 1 and there exist Ej ∈ Γk and n0 ∈ N such that

Ej /∈ σ(Ht) ∪ σ(Hn,t), ∀t ∈ [tj−1, tj], j = 1, . . . , K, n ≥ n0. (1.16)

Proof. For any t ∈ [0, 1] there exists ηt ∈ Γk such that ηt /∈ σ(Ht). Since the

spectrum of Ht depends continuously on the parameter t there also exists ε = εt > 0

such that ηt /∈ σ(Hτ ) for all τ ∈ (t − εt, t + εt). By compactness, we can find a

partition (τj)0≤j≤K (with τ0 = 0, τK = 1) such that the intervals (τj−εj, τj+εj) cover

[0, 1]. Set Ej := ητj . We next pick arbitrary points tj ∈ (τj, τj+εj)∩(τj+1−εj+1, τj+1),

for j = 1, . . . , K−1, set t0 = 0, tK = 1 and see that Ej /∈ σ(Ht) for tj−1 ≤ t ≤ tj, j =

1, . . . , K. By Lemma 1.13, using Lemma 1.12 combined with a simple compactness

argument, we then find that we also have Ej /∈ σ(Hn,t) for t ∈ [tj−1, tj] and n large.

�
We are now ready for the proof of Theorem 1.11.

Proof of Theorem 1.11 Let Ej be as in Lemma 1.15 and Nk as in (1.11). We fix

some Ẽ ∈ Γk such that Ẽ > Ej for j = 0, . . . , K and Ẽ /∈ σ(Htj) ∪ σ(Hn,tj) for

j = 0, . . . , K and for all n large. It is then easy to see that

Nk =
K∑
j=1

(
dim P(Ej ,Ẽ)(Htj)− dim P(Ej ,Ẽ)(Htj−1

)
)

(1.17)

and that

dim P(−∞,Ẽ)(Hn,1)− dim P(−∞,Ẽ)(Hn,0)

=
K∑
j=1

(
dim P(Ej ,Ẽ)(Hn,tj)− dim P(Ej ,Ẽ)(Hn,tj−1

)
)
. (1.18)

The LHS of (1.18) equation equals k. Furthermore, by Lemma 1.13, we have

dim P(Ej ,Ẽ)(Htj) = dim P(Ej ,Ẽ)(Hn,tj) (1.19)

for all j and all n large, and the desired result follows. �
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1.5 A one-dimensional periodic step potential

In this section, we study the one-dimensional 2π-periodic potential

V (x) :=

{
−1, x ∈ [0, π],

1, x ∈ (π, 2π).
(1.20)

(While the other parts of the script deal with 1-periodic potentials, we have preferred

to work here with period 2π in order to keep the explicit calculations done by hand

as simple as possible.) To obtain the band-gap structure of H = − d2

dx2
+ V , we

compute the discriminant function

D(E) := ϕ1(2π;E) + ϕ′2(2π;E) = tr

(
ϕ1(2π;E) ϕ′1(2π;E)

ϕ2(2π;E) ϕ′2(2π;E)

)
(1.21)

where ϕ1( · ;E) and ϕ2( · ;E) solve the equation

− u′′ + (V − E)u = 0 (1.22)

and satisfy the boundary conditions

ϕ1(0;E) = ϕ′2(0;E) = 1 and ϕ′1(0;E) = ϕ2(0;E) = 0. (1.23)

The matrix M(E) on the RHS of (1.21) is called the monodromy matrix. A simple

computation shows that [−1/2, 1/2] ⊂ Γ1, where Γ1 is the first spectral gap of H

(with numbering according to Floquet theory). Note that the gap edges of Γ1 also

equal the first eigenvalue in the (semi-)periodic eigenvalue problem for − d2

dx2
+ V in

L2(0, 2π), cf., e.g., [E, CL].

As explained in [E, RS-IV], for any E /∈ σ(H), there are two solutions ϕ±(x;E) ∈
C1(R), square integrable at ±∞, of (1.22); in fact, the functions ϕ±(x;E) are ex-

ponentially decaying at ±∞ and exponentially increasing at ∓∞. In our example,

the dislocation potential Wt for t ∈ (0, 1) will produce a bound state at E if and

only if the boundary conditions coming from ϕ+(0;E) and ϕ−(t;E) match up, i.e.,

ϕ−(t;E) = ϕ+(0;E) and ϕ′−(t;E) = ϕ′+(0;E). (1.24)

An equivalent condition for (1.24) is the equality of the ratio functions ϕ−(t;E)
ϕ′−(t;E)

and
ϕ+(0;E)
ϕ′+(0;E)

. In Exerice 5, the Floquet solutions ϕ± are computed by solving the equation

−u′′ + (V − E)u = 0 for x < 0 and x > 0 and for E varying in [−1/2, 1/2],

assuming that (u(0), u′(0)) equals an appropriate eigenvector of M(E). Note that,

since D(E) < −2, both eigenvalues of M(E) are negative and not equal to −1.

Finally, the interval [−1/2, 1/2] is divided into 100 subintervals of equal length and

numerical values for t are computed with Mathematica such that∣∣∣∣ϕ−(t;E)

ϕ′−(t;E)
− ϕ+(0;E)

ϕ′+(0;E)

∣∣∣∣ < ε, (1.25)

11



1.6. Periodic potentials on the strip and the plane

where the error ε > 0 is suitably small. This leads to the following plot of t 7→ E(t),

see Fig. 1.1.

1 2 3 4
t

-0.4

-0.2

0.2

0.4

EHtL

Figure 1.1: An eigenvalue branch of Ht in the first spectral gap.

1.6 Periodic potentials on the strip and the plane

Let V : R2 → R be Z2-periodic and Lipschitz-continuous and let Σ = R × (0, 1)

denote the infinite strip of width 1. We denote by St the (self-adjoint) operator

−∆ +Wt, acting in L2(Σ), with periodic boundary conditions in the y-variable and

with Wt now defined as

Wt(x, y) :=

{
V (x, y), x ≥ 0,

V (x+ t, y), x < 0,
0 ≤ 1 ≤ t. (1.26)

Since S0 is periodic in the x-variable, its spectrum has a band-gap structure.

We first observe that the essential spectrum of the family St does not depend

on the parameter t, i.e., σess(St) = σess(S0) for all t ∈ [0, 1]. As in Section 1.3,

this follows from the compactness of (St − c)−1 − (St,D − c)−1, where St,D is St
with an additional Dirichlet boundary condition at x = 0, say. (While, in one

dimension, adding in a Dirichlet boundary condition at a single point causes a rank-

one perturbation of the resolvent, the resolvent difference is now Hilbert-Schmidt,

which can be seen from the following well-known line of argument: If −∆Σ denotes

the (negative) Laplacian in L2(Σ) and −∆Σ;D is the (negative) Laplacian in L2(Σ)

with an additional Dirichlet boundary condition at x = 0, then (−∆Σ + 1)−1 −
(−∆Σ;D +1)−1 has an integral kernel which can be written down explicitly using the

Green’s function for −∆Σ and the reflection principle, cf. Exercise 6.

While the essential spectrum of the family St does not change as t ranges through

[0, 1], St will have discrete eigenvalues in the spectral gaps of S0 for appropriate

values of t. We have the following result.

Theorem 1.16. Let (a, b), a < b, denote a spectral gap of St and let E ∈ (a, b).

Then there exists t = tE ∈ (0, 1) such that E is a discrete eigenvalue of St.

12
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Proof. a

(1) As on the real line, we work with approximating problems on finite size

sections of the infinite strip Σ. Let

Σn,t := (−n− t, n)× (0, 1), n ∈ N, (1.27)

and consider Sn,t := −∆ +Wt acting in L2(Σn,t) with periodic boundary conditions

in both coordinates. The operator Sn,t has compact resolvent and purely discrete

spectrum accumulating only at +∞. The rectangles Σn,0 (respectively, Σn,1) consist

of 2n (respectively, 2n+1) period cells. By routine arguments (see, e.g., [RS-IV, E]),

the number of eigenvalues below the gap (a, b) is an integer multiple of the number

of cells in these rectangles; we conclude, that eigenvalues of Sn,t must cross the gap

as t increases from 0 to 1.

(2) Let E ∈ (a, b). According to (1), for any n ∈ N we can find tn ∈ (0, 1) such

that E ∈ σdisc(Sn,tn); then there are eigenfunctions un ∈ D(Sn,tn) with Sn,tnun =

Eun, ||un|| = 1, and ||∇un|| ≤ C for some constant C ≥ 0. We now choose cut-off

functions ϕn as in Section 1.4 and denote the natural extension to R2 again by ϕn.

We also let ψn = 1− ϕn. Clearly,∣∣∣∣(Stn − E)(ϕn/4un)
∣∣∣∣ , ∣∣∣∣(Sn,tn − E)(ψn/4un)

∣∣∣∣ ≤ c/n, (1.28)

for some c ≥ 0. There is a subsequence (tnj
)j∈N ⊂ (tn)n∈N and t ∈ [0, 1] s.th. tnj

→ t

as j →∞. Since V is Lipschitz, we may infer from (1.28) that∣∣∣∣(St − E)(ϕnj/4unj
)
∣∣∣∣→ 0, j →∞, (1.29)

and it remains to show that
∣∣∣∣ψn/4un∣∣∣∣→ 0 so that

∣∣∣∣ϕn/4un∣∣∣∣→ 1. We associate with

functions v : Σn,t → C functions ṽ : Σn,0 → C by

ṽ(x, y) :=

{
v(x, y), x > 0,

v(x− t, y), x < 0,
(1.30)

in analogy with (1.15). Then [ψn/4un]∼ ∈ D(Sn,0) and∣∣∣∣(Sn,0 − E)[ψn/4un]∼
∣∣∣∣ =

∣∣∣∣(Sn,tn − E)(ψn/4un)
∣∣∣∣ ≤ c/n. (1.31)

Since (a, b) ∩ σ(Sn,0) = ∅ for all n ∈ N, and since E ∈ (a, b), the Spectral Theorem

implies that [ψn/4un]∼ → 0 (and therefore also ψn/4un → 0) as n→∞.

We therefore have shown that the functions vnj
:= ϕnj/4unj

for j ∈ N satisfy∣∣∣∣(St − E)vnj

∣∣∣∣→ 0 and
∣∣∣∣vnj

∣∣∣∣→ 1 as j →∞ which implies E ∈ σ(St). �

Remark 1.17. By a well-known line of argument, one can obtain exponential lo-

calization of the eigenfunctions of St near the interface {(x, y) | x = 0}. Suppose

that E ∈ (a, b) and t ∈ (0, 1) satisfy E ∈ σ(St). Let u ∈ D(S0) = D(St) denote a
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normalized eigenfunction and let ϕn, n ∈ N, be as in the proof of Theorem 1.16. As

above, we have

rn := (St − E)(ϕnu) = −2∇ϕn · ∇u− (∆ϕn)u, (1.32)

where ||rn|| ≤ c/n, for n ∈ N. Since rn has support in the interval (−2n− 1, 2n) we

now see that there exist constants C ≥ 0 and α > 0 such that∣∣∣∣χ|x|≥4nu
∣∣∣∣ ≤ ∣∣∣∣χ|x|≥4n(St − E)−1rn

∣∣∣∣ ≤ Ce−αn, (1.33)

by standard exponential decay estimates for the resolvent kernel of Schrödinger

operators, cf., e.g., [S].

We now turn to the dislocation problem on the plane R2 where we study the

operators

Dt = −∆ +Wt, 0 ≤ t ≤ 1. (1.34)

Denote by St(ϑ) the operator St with ϑ-periodic boundary conditions in the y-

variable. Since Wt is periodic with respect to y, we have

Dt '
∫ ⊕

[0,2π]

St(ϑ)
dϑ

2π
, (1.35)

and hence the spectrum of Dt has a band-gap structure; furthermore, Dt has no sin-

gular continuous part. As for the spectrum of St inside the gaps of S0, Theorem 1.16

leads to the following result.

Theorem 1.18. Let (a, b) denote a spectral gap of D0, a > inf σess(D0), and let

E ∈ (a, b). Then there exists t = tE ∈ (0, 1) with E ∈ σ(Dt).

Proof. Let ϕnun ∈ D(St) as in part (2) of the proof of Theorem 1.16 denote an

approximate solution of the eigenvalue problem for St and E. We extend un to a

function ũn(x, y) on R2 which is periodic in y. Writing Φn = Φn(x, y) := ϕn(x)ϕn(y)

we compute

(Dt − E)(Φnũn) =
(
−∂2

x − ∂2
y +Wt − E

)
(ϕn(x)ϕn(y)ũn(x, y))

= ϕn(y)[(St − E)(ϕn(x)un)]∼ − ϕn(x) (2ϕ′n(y)∂yũn + ϕ′′n(y)ũn) .

(1.36)

The norms of the three terms on the RHS can be estimated (up to a constant which

is independent of n) by εn, 1
n
n and 1

n2n, respectively, and we see that

||(Dt − E)(Φnũn)|| ≤ c0(1 + nε), (1.37)

while ||Φnũn|| ≥ c0n with a constant c0 > 0. This implies the desired result. �
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Remark 1.19. We learn from the above proof that there are functions

vn = vn(x, y) :=
1

||Φnũn||
Φnũn (1.38)

that satisfy ||vn|| = 1, supp vn ⊂ [−n, n]2 and

(Dt − E)vn → 0, n→∞. (1.39)

These functions will play a key role in our analysis of the rotation problem at small

angle henceforth.

1.7 Density of states

We finally turn to a brief discussion of the i.d.s. (the integrated density of states)

for the dislocation operators Dt. One distinguishes between bulk and surface states:

Roughly speaking, the bulk states correspond to states away from the interface with

energies in the spectral bands while the surface states for 0 < t < 1 are produced by

the interface and are (exponentially) localized near the interface. The (integrated)

density of states measures for the bulk and surface states use a different scaling

factor in the following definition: restricting Dt to large squares Qn = (−n, n)2 and

taking Dirichlet boundary conditions, we obtain the operators D
(n)
t . For I ⊂ R an

open interval, let N(I,D
(n)
t ) denote the number of eigenvalues of D

(n)
t in I, counting

multiplicities. We then define for open intervals I ⊂ R and J ⊂ R \ σ(D0) with

J ⊂ R \ σ(D0)

ρbulk(I,Dt) = lim
n→∞

1

4n2
N(I,D

(n)
t ), ρsurf(J,Dt) = lim

n→∞

1

2n
N(J,D

(n)
t ). (1.40)

The existence of the limits in (1.40) has been established in [EKSchrS, KS] for ergodic

Schrödinger operators. Note that the surface density of states measure is defined

(and possibly non-zero) for subintervals of the spectral bands, but then (1.40) is not

suited to capture the surface states (cf. [EKSchrS, KS]).

The fact that the surface density of states exists does not mean it is non-zero

and there are only rare examples where we know ρsurf to be non-trivial. It is one

of the main results of the present paper to show that dislocation moves enough

states through the gap to have a non-trivial surface density of states, for suitable

parameters t. Indeed, it is now easy to derive the following result:

Corollary 1.20. Let (a, b) be a spectral gap of D0 with a > inf σess(D0), and let ∅ 6=
J ⊂ (a, b) be an open interval. Then there is a t ∈ (0, 1) such that ρsurf(J,Dt) > 0.

Proof. Let [α, β] ⊂ J with α < β, fix E ∈ (α, β), and let 0 < ε < min{E−α, β−E}.
By Theorem 1.18 and Remark 1.19 there exist t = tE ∈ (0, 1) and a function u0
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in the domain of Dt satisfying ||u0|| = 1, supp u0 compact, and ||(Dt − E)u0|| < ε.

Let ν ∈ N be such that supp u0 ⊂ (−ν, ν)2; note that, in the present proof, ν

corresponds to the n of Remark 1.19. We then see that the functions ϕk, defined

by ϕk(x, y) := u0(x, y − 2kν) for k ∈ N, have pairwise disjoint supports, are of

norm 1, and satisfy ||(Dt − E)ϕk|| < ε. Furthermore, we have supp ϕk ⊂ (−n, n)2

provided (2k+ 1)ν < n. DenotingMn := span{ϕk; k ∈ N, k ≤ 1
2
(n
ν
− 1)}, it is clear

that dimMn ≥ n/(3ν), for all n large. Let Nn denote the range of the spectral

projection P(α,β)(D
(n)
t ) of D

(n)
t associated with the interval (α, β); we will show that

dimNn ≥ dimMn which implies the desired result. If we assume for a contradiction

that dimNn < dimMn for some n ∈ N, we can find a function v ∈ Mn ∩ N⊥n of

norm 1. By the Spectral Theorem, ||(D(n)
t − E)v|| ≥ ε. On the other hand, v is a

finite linear combination of the ϕk, which implies ||(D(n)
t − E)v|| < ε. �

We will continue the discussion of bulk versus surface states in the next chapter

where a corresponding upper bound of the form N(J,D
(n)
t ) ≤ cn log n is provided.

1.8 Muffin tin potentials

Here we present some simple examples where one can see the behavior of surface

states directly. We will deal with Z2-periodic muffin tin potentials of infinite height

(or depth) on the plane R2 which can be specified by fixing a radius 0 < r < 1/2

for the discs where the potential vanishes, and the center P0 = (x0, y0) ∈ [0, 1)2 for

the generic disc. In other words, we consider the periodic sets

Ωr,P0
:= ∪(i,j)∈Z2Br(P0 + (i, j)),

and we let V = Vr,P0 be zero on Ωr,P0 while we assume that V is infinite on R2\Ωr,P0 .

If Hij is the Dirichlet Laplacian of the disc Br(P0 + (i, j)), then the form-sum of

−∆ and Vr,P0 is ⊕(i,j)∈Z2Hij. Without loss of generality, we may assume y0 = 0

henceforth.

(1) Dislocation in the x-direction. Here muffin tin potentials yield an illustra-

tion for some of the phenomena encountered in Section 1.7. In the simplest case

we would take x0 = 1/2 so that the disks Br(1/2 + i, j), for i ∈ N0 and j ∈ Z,

will not intersect or touch the interface {(x, y); x = 0}. Defining the dislocation

potential Wt as in (1.26), we see that there are bulk states given by the Dirichlet

eigenvalues of all the discs that do not meet the interface, and there may be surface

states given as the Dirichlet eigenvalues of the sets Br(1/2− t, j)∩{x < 0} for j ∈ Z
and 1/2− r < t < 1/2 + r.

More precisely, let µk = µk(r) denote the Dirichlet eigenvalues of the Laplacian

on the disc of radius r, ordered by min-max and repeated according to their respec-

tive multiplicities. The Dirichlet eigenvalues of the domains Br(1/2−t, 0)∩{x < 0},
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1/2 − r < t < 1/2 + r, are denoted as λk(t) = λk(t, r); they are continuous, mono-

tonically decreasing functions of t and converge to µk as t ↑ 1/2 + r and to +∞ as

t ↓ 1/2 − r. In this simple model, the eigenvalues µk correspond to the bands of a

periodic operator. We see that the gaps are crossed by surface states as t increases

from 0 to 1, in accordance with the results of Section 1.7 (Corollary 1.20).

Along the same lines, one can easily analyze examples where x0 is different from

1/2; here more complicated geometric shapes may come into play.

(2) Dislocation in the y-direction. This problem has not been considered so

far. We include a brief discussion of this case for two reasons: on the one side, we

observe a new phenomenon which did not appear so far; on the other hand, one can

see from our example that, presumably, there is no general theorem for translation

of the left half-plane in the y-direction.

Let V = Vr denote the muffin tin potential defined above, with x0 = y0 = 0.

We then let W̃t coincide with V in the right half-plane, while we take W̃t(x, y) =

V (x, y − t) in the left half-plane. At the interface {x = 0} we see half-discs on the

left and on the right with the half-discs on the right being fixed while the half-discs

on the left are shifted by t in the y-direction. The surface states correspond to

the states of the Dirichlet Laplacian on the union Ωt,r;surf of these half-discs. There

are two cases: either Ωt,r;surf is connected and we have a scattering channel along

the interface, or Ωt,r;surf is the disjoint union of a sequence of bounded domains; cf.

Figure 1.2. In the second case, the eigenvalues on such domains start at the Dirichlet

eigenvalues of the disc of radius r, increase up to the corresponding eigenvalues of

a half-disc, and then move down again to where they started. For 1/4 < r < 1/2,

the picture is more complicated: If we let τ0 = 1− 2r, τ1 = 2r, we find that the sets

Ωt,r;surf are disconnected for 0 ≤ t ≤ τ0 and for τ1 ≤ t ≤ 1; for τ0 < t < τ1, however,

Ωt,r;surf is connected and forms a periodic wave guide with purely a.c. spectrum. We

therefore observe a dramatic change in the spectrum of the dislocation operators:

for t ∈ [0, τ0]∪ [τ1, 1] the surface states in the gap are given by eigenvalues of infinite

multiplicity while for t ∈ (τ0, τ1) the surface states form bands of a.c. spectrum in

the gaps. Note that, if we had chosen x0 = 1/2, then nothing at all would have

happened for translation in the y-direction.

Figure 1.2: Muffin tins: two cases for dislocation in the y-direction.
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Chapter 2

The rotation problem

2.1 Introduction

In this lecture we are interested in quantum mechanical models for solid states

referring to situations where periodicity holds only in subsets of the sample; more

precisely, the sample is the disjoint union of subsets such that, in each subset, the

potential is obtained by restricting different periodic potentials to the corresponding

subsets. Such zones or “grains” occur frequently in crystals and in alloys; some

typical examples are shown in Figure 2.1. It is an important issue to understand

how the interface between two grains will influence the energy spectrum of the

sample. Typically, the grain boundaries appear to be (piecewise) linear, and one is

led to study problems on R2 with a potential W = W (x, y) defined by

W (x, y) :=

{
Vr(x, y), x ≥ 0,

V`(x, y), x < 0,
(2.1)

where Vr, V` : R2 → R are periodic. While in the last chapter, V` is obtained from Vr
by a translation, we now focus on models with a rotation about the origin. We will

use some results on the translational problem to obtain spectral information about

rotational problems in the limit of small angles. Our main theorem deals with the

following situation. Let V : R2 → R be a Lipschitz-continuous function which is

periodic w.r.t. the lattice Z2. For ϑ ∈ (0, π/2), let

Mϑ :=

(
cosϑ − sinϑ

sinϑ cosϑ

)
∈ R2×2, (2.2)

and

Vϑ(x, y) :=

{
V (x, y), x ≥ 0,

V (M−ϑ(x, y)), x < 0.
(2.3)

We then let H0 denote the (unique) self-adjoint extension of −∆ � C∞c (R2), acting

in the Hilbert space L2(R2), and

Rϑ := H0 + Vϑ, D(Rϑ) = D(H0). (2.4)
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2.1. Introduction

Figure 2.1: Edge dislocation and small angle grain boundary.

Then Rϑ is essentially self-adjoint on C∞c (R2) and semi-bounded from below.

Our main assumption is that the periodic Hamiltonian H := H0 +V = R0 has a gap

(a, b) in the essential spectrum σess(H), i.e., we assume that there exist a < b ∈ R
that satisfy inf σess(H) < a and (a, b)∩ σ(H) = ∅; we do not need to assume that a,

b are the actual gap edges. It is easy to see (using, e.g., [RS-I; Thm. VIII.25]) that

the operators Rϑ converge to Rϑ0 in the strong resolvent sense as ϑ→ ϑ0 ∈ [0, π/2);

in particular, Rϑ converges to H in the strong resolvent sense as ϑ → 0. Recall

that strong resolvent convergence implies upper semi-continuity of the spectrum

while the spectrum may contract considerably when the limit is reached. Here we

are dealing with a situation where the spectrum in fact behaves discontinuously at

ϑ = 0 since, counter to first intuition, the spectrum of Rϑ “fills” the gap (a, b) as

ϑ→ 0 with ϑ > 0. This implies, in particular, that Rϑ cannot converge to H in the

norm resolvent sense, as ϑ→ 0.

Theorem 2.1. Let H, Rϑ and (a, b) as above. Then, for any ε > 0 there exists

0 < ϑε < π/2 such that for any E ∈ (a, b) we have

σ(Rϑ) ∩ (E − ε, E + ε) 6= ∅, ∀0 < ϑ < ϑε. (2.5)
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2.2. The dislocation problem on a strip and for the plane

Remark 2.2. a

(i) Roughly speaking, the moment we start rotating the potential on the left-hand

side by a tiny angle the gap (a, b) is suddenly full of spectrum of Rϑ in the

sense that, for 0 < ϑ < ϑε, no gap of Rϑ in the interval (a, b) can have length

larger than 2ε. It is conceivable that for most ϑ the spectrum of Rϑ covers the

interval (a, b), but we will see that there are examples where Rϑ has gaps in

(a, b) for some ϑ.

(ii) It seems to be quite hard to determine the nature of the spectrum of Rϑ for

general ϑ ∈ (0, π/2); however, we will point out that there are some special

angles for which singular continuous spectrum can be excluded.

(iii) In addition to what is stated in Theorem 2.1 it is our goal to obtain lower and

upper bounds for the spectral densities in the intervals (E − ε, E + ε) on a

scale that is appropriate to surface states (without knowing that an integrated

surface density of states exists for Rϑ).

There is a simple, intuitive connection between the rotational problem and the

related translational problem, given as follows: Starting from the same periodic

potential V as above, we again consider the potential Wt in (1.26) given by

Wt(x, y) :=

{
V (x, y), x ≥ 0,

V (x+ t, y), x < 0,
0 ≤ 1 ≤ t,

and define Dt := −∆ + Wt, acting in L2(R2). In Chapter 3.2 we have seen that

spectrum of Dt crosses the gap as t varies between 0 and 1. Now our key observation

consists in the following: for any given ε > 0 and n ∈ N, we can find points (0, η)

on the y-axis such that

|Vϑ(x, y)−Wt(x, y)| < ε, (x, y) ∈ Qn(0, η), (2.6)

with Qn(0, η) = (−n, n)×(η−n, η+n), provided ϑ > 0 is small enough and satisfies

a condition which ensures an appropriate alignment of the period cells on the y-axis.

First of all, we recapitulate some results concerning the dislocation problem on the

plane.

2.2 The dislocation problem on a strip and for the

plane

Let V : R2 → R be Z2-periodic and Lipschitz-continuous, let I := (0, 1), and let

Σ := R × (0, 1) = R × I denote the infinite strip of width 1. As before, we write

H := −∆ + V for the (self-adjoint) Schrödinger operator with potential V acting in
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2.2. The dislocation problem on a strip and for the plane

L2(R2). Then σ(H), the spectrum of H, has band structure, i.e., it is the (locally

finite) union of compact intervals [RS-IV]. The intervals of spectrum, the bands,

may be separated by (open) intervals, the gaps. Moreover, σ(H) is purely absolutely

continuous. For 0 ≤ t ≤ 1, we introduce the self-adjoint operators

St := −∆ +Wt, acting in L2(Σ),

Dt := −∆ +Wt, acting in L2(R2),
(2.7)

where St has periodic boundary conditions in the y-variable and Wt is as in (1.26).

Since V is bounded, the domains D(·) of the above operators satisfy D(Dt) = D(H)

and D(St) = D(H0,Σ), for all t, where H0,Σ denotes the Laplacian on Σ with periodic

boundary conditions in y. The operator −∆+Wt in L2(Σ) with ϑ-periodic boundary

conditions in y is denoted by St(ϑ), for 0 ≤ ϑ ≤ 2π. As usual, Dt can be obtained

from the St(ϑ) as a direct fiber integral,

Dt =

∫ ⊕
0≤ϑ≤2π

St(ϑ)
dϑ

2π
; (2.8)

direct fiber integrals are discussed, e.g., in [RS-IV]; see also Exercise 7. As a con-

sequence, for any ϑ the spectrum of St(ϑ) is a subset of σ(Dt). Furthermore, using

the periodicity in the x-direction, each St(ϑ) can itself be written as a direct fiber

integral and so the spectrum of St(ϑ) is purely essential spectrum with a band-gap

structure.

Proposition 2.3. Let (a, b) denote a spectral gap of H and let E ∈ (a, b). Then

there exists some t = tE ∈ (0, 1) such that E is a (discrete) eigenvalue of StE .

Moreover, for any n ∈ N there are functions vn = vn(x, y) in the domain of St
that satisfy ||vn|| = 1, supp vn ⊂ [−n, n]× [0, 1] and (StE − E)vn → 0 as n→∞.

The functions vn constructed above satisfy periodic boundary conditions with

respect to y and may thus be extended to y-periodic functions ṽn on R2. Applying

also cut-offs ψn = ϕn(y) in the y-direction, we let

wn :=
1

||ψnṽn||
ψnṽn; (2.9)

the wn satisfy ||wn|| = 1, wn ∈ Dtn and (Dtn − E)wn → 0 as n → ∞. By the same

argument as above this leads to E ∈ σ(DtE) (where, again tE = lim tn) and we have

thus obtained:

Proposition 2.4. Let (a, b) denote a spectral gap of H and let E ∈ (a, b). Then

there exists t = tE ∈ (0, 1) such that E ∈ σ(DtE).

Moreover, for any n ∈ N there are functions wn = wn(x, y) in the domain of Dt

that satisfy ||wn|| = 1, supp wn ⊂ [−n, n]2 and (DtE − E)wn → 0 as n→∞.

Note that the spectrum of Dt inside (a, b) will again consist of bands which we

could find by repeating the above process for all ϑ-periodic boundary conditions

w.r.t. y.
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2.3. The rotation problem for small angles

2.3 The rotation problem for small angles

In this section, we study the spectrum of the operators Rϑ, for 0 < ϑ < π/2, where

the Rϑ are defined in (2.4) as self-adjoint operators in the Hilbert space L2(R2).

In view of a proof of Theorem 2.1, consider a fixed E ∈ (a, b). Then, by Propo-

sition 2.4, there is some t ∈ (0, 1) such that E is in the spectrum of the dislocation

operator Dt on the plane. We wish to find angles ϑ with the property that the

potential Vϑ is approximately equal to Wt on a sufficiently large square Qn(0, η) of

side-length 2n, centered at some point (0, η) on the y-axis. This leads to the follow-

ing requirements: If we imagine the grid Γ = {(x, y) ∈ R2 ; x ∈ Z or y ∈ Z} of lines

describing the period cells, we have to make sure that, inside Qn(0, η), the alignment

between the horizontal lines of Γ in the right half-plane with the rotated horizontal

lines of MϑΓ in the left half-plane is nearly perfect on the y-axis and that the rotated

vertical lines of MϑΓ in the left half-plane have, roughly, distance t (modulo Z) from

the y-axis. More precisely, we wish to find m ∈ N such that m/ cosϑ is integer, up

to a small error, and m tanϑ = t (mod Z), again up to a small error, inside Qn(0, η).

We first prepare a lemma which deals with ergodicity on the flat torus T2 =

R2/Z2, as in [RS-I]. We consider transformations Tϑ : T2 → T2 defined by

Tϑ(x, y) := (x+ tanϑ, y + 1/ cosϑ). (2.10)

Lemma 2.5. There is a set Θ ⊂ (0, π/2) with countable complement such that the

transformation Tϑ in (2.10) is ergodic for all ϑ ∈ Θ.

Proof. Exercise 8. �

Let us write x∼ for the fractional part of x > 0, i.e., x∼ = x − bxc if x > 0.

In the proof of our main theorem, we will need natural numbers m such that, for

t ∈ (0, 1) given, (m tanϑ)∼ is approximately equal to t and (m/ cosϑ)∼ almost

equals 0. The existence of such numbers m follows from Lemma 2.5 and Birkhoff’s

Ergodic Theorem. Let ϑ ∈ Θ, ε > 0, and let us denote by χQ the characteristic

function of the set Q := (t− ε, t+ ε)× (−ε, ε) ⊂ T2. Then, for all (x, y) ∈ T2,

lim
n→∞

1

n

n−1∑
m=0

χQ(Tmϑ (x, y)) =

∫
Q

dx dy = 4ε2 > 0, (2.11)

and we may take (x, y) := (0, 0) to arrive at the desired result.

We add the following remarks to the above argument:

(1) Translation on the torus is a particularly simple ergodic transformation: for ϑ

given, it can equivalently be seen as linear motion on parallel lines in R2, factored by

Z2. In particular, two nearby points (x, y) and (x′, y′) will forever keep their relative

position under the action of Tmϑ , and thus the statement of Birkhoff’s Theorem holds

for any point (x, y), not just for a.e. (x, y).
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2.3. The rotation problem for small angles

(2) In some sense, the Birkhoff Theorem is the strongest result one can use in

this context. Similar results are obtained from Dirichlet’s Theorem on the approxi-

mation of irrational numbers by rationals.

We are now ready for a first main result which establishes the existence of surface

states in the gaps of H and shows that, in fact, any gap (a, b) of H is filling up with

spectrum of Rϑ as ϑ→ 0.

Proposition 2.6. Let (a, b) be a spectral gap of H and let [α, β] ⊂ (a, b), α < β.

Then there is a ϑ0 = ϑ0(α, β) > 0 such that

σ(Rϑ) ∩ (α, β) 6= ∅, ∀ϑ ∈ (0, ϑ0). (2.12)

Proof. a

(1) We first restrict our attention to ϑ ∈ Θ with Θ as in Lemma 2.5. Let

E ∈ (α, β) and ε := min{E−α, β−E}/2. By Proposition 2.4, we can find n = nε ∈ N
and a function un of norm 1 in the domain of Dt with supp un ⊂ [−n, n]2 such that

||(Dt − E)un|| < ε. Obviously un,k(x, y) := un(x, y − k) satisfies the same estimate

for any k ∈ N. If we can show that, for appropriate k ∈ N,

|Vϑ(x, y)−Wt(x, y)| < ε, (x, y) ∈ Qn(0, k) (2.13)

(recall the definition of Qn(0, k) = (−n, n)× (k − n, k + n)), we may conclude that

||(Rϑ − E)un,k|| < 2ε; (2.14)

but then the Spectral Theorem implies that Rϑ has spectrum inside the interval

(E − 2ε, E + 2ε) ⊂ (α, β).

For a proof of (2.13), we first observe that by the properties of V and the

definitions of Vϑ and Wt, we have the following estimate:

|Vϑ(x, y)−Wt(x, y)|2 ≤ min
j1,j2∈Z

L2((X − j1)2 + (Y − j2)2), ∀(x, y) ∈ R2, (2.15)

with

X := x(cosϑ− 1)− t+ y sinϑ, Y := −x sinϑ+ y(cosϑ− 1) (2.16)

and L the Lipschitz constant of V . Now for ϑ ∈ Θ given, there is some m = mϑ ∈ N
such that ( m

cosϑ

)
∼
< ε/4, |(m tanϑ)∼ − t| < ε/4; (2.17)

in particular, there is some N ∈ N s.th. |m/ cosϑ−N | < ε/4.

We may now apply the estimate (2.15) to the points (x, y) ∈ Qn(0, N) to find

|Vϑ(x, y)−Wt(x, y)|2 ≤ L2
(
(X − bm tanϑc)2 + (Y +N −m)2

)
, (2.18)
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2.4. Integrated density of states bounds

for all (x, y) ∈ Qn(0, N). Here

|X−bm tanϑc| ≤ n(1−cosϑ)+nϑ+|m tanϑ−bm tanϑc−t| ≤ 2nεϑ+|(m tanϑ)∼−t|
(2.19)

and

|Y +N −m| ≤ 2nεϑ+ |N −m/ cosϑ|. (2.20)

We choose ϑ0 > 0 small enough to have 2nεϑ0 < ε/4 and (2.13) follows if we pick

k := N . We have thus shown that Rϑ has spectrum in (α, β) for all ϑ ∈ Θ∩ (0, ϑ0).

(2) In order to remove the restriction ϑ ∈ Θ we note that with each ϑ ∈ Θ there

comes a positive number ηϑ > 0 such that

||(Rσ − E)un,k|| < 3ε, ∀σ ∈ (ϑ− ηϑ, ϑ+ ηϑ), (2.21)

since

||(Vσ − Vϑ) � supp un,k||∞ → 0, σ → ϑ. (2.22)

As the intervals (ϑ− ηϑ, ϑ+ ηϑ) with ϑ ranging between 0 and ϑ0 cover the interval

(0, ϑ0), the desired result follows. �

Now it is easy to obtain Theorem 2.1 in the Introduction from Proposition 2.6:

Proof of Theorem 2.1 For ε > 0 given, we consider points a = γ0 < γ1 < γ2 <

. . . < γN = b such that γj − γj−1 < ε/2, for j = 1, . . . , N . For each of the intervals

Ij := (γj−1, γj), 2 ≤ j ≤ N − 1, Proposition 2.6 yields a constant ϑj > 0 with

the property that Rϑ has spectrum in the interval Ij for all 0 < ϑ < ϑj. Then

ϑ0 := min2≤j≤N−1 ϑj has the required properties. �

2.4 Integrated density of states bounds

It is clear that ergodicity gives us not just a single m as in (2.17), for ϑ ∈ Θ; in

fact, (2.11) guarantees that suitable m will appear with a certain frequency. We

will use this observation to obtain lower bounds for a quantity which, in the limit,

would translate into a (positive) lower bound for the surface i.d.s. measure if we

knew that the required limit exists. This will be complemented by a similar upper

bound which is of the expected order, up to a logarithmic factor.

Let R
(n)
ϑ denote the operator −∆+Vϑ, acting in L2(Qn) with Dirichlet boundary

conditions, where Qn := (−n, n)2 ⊂ R2. For any interval I ⊂ R, we denote by

NI(R
(n)
ϑ ) the number of eigenvalues of R

(n)
ϑ in I, each eigenvalue being counted

according to its multiplicity. The existence of a surface i.d.s. measure in the gap

(a, b) would correspond to the existence of a finite limit limn→∞
1
n
NI(R

(n)
ϑ ), for any

interval I with I ⊂ (a, b). Theorem 2.7 below provides lower bounds of the form

lim inf
n→∞

1

n
NI(R

(n)
ϑ ) > 0, (2.23)
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2.4. Integrated density of states bounds

for (non-degenerate) subintervals I and small ϑ ∈ Θ, while Theorem 2.9 will yield

an upper bound

lim sup
n→∞

1

n log n
NI(R

(n)
ϑ ) <∞. (2.24)

We begin with a lower bound.

Theorem 2.7. Let H, Rϑ as above and suppose that (a, b) is a spectral gap of H.

Let Θ as in Lemma 2.5.

Then, for any ε > 0 there exists a ϑε > 0 such that (2.23) holds for all ϑ ∈
Θ ∩ (0, ϑε) and for any interval I ⊂ (a, b) of length greater than ε.

Proof. a

(1) Let [α, β] ⊂ (a, b), fix E ∈ (α, β), and let 0 < ε < min{E−α, β−E}. Let u0

in the domain of Dt with compact support satisfy ||u0|| = 1 and ||(Dt − E)u0|| < ε,

as in Proposition 2.4. Let ν ∈ N be such that supp u0 ⊂ Qν = (−ν, ν)2; note that,

in this proof, ν corresponds to the parameter n that has been used so far.

Let ϑ ∈ Θ ∩ (0, π/4] so that, in particular, 1/
√

2 ≤ cosϑ ≤ 1. By ergodicity,

there exists a constant c0 = c0(ϑ) > 0 with the following properties: for n ∈ N large,

there are at least Jn := bc0nc natural numbers m1, . . . ,mJn ∈ (0, n/4) such that

(2.17) holds for m = ms, s = 1, . . . , Jn, and such that

|ms −mr| ≥ 2ν, s 6= r, 1 ≤ s, r ≤ Jn; (2.25)

here Jn and m1, . . . ,mJn depend on n and ϑ. It follows that for each j = 1, . . . , Jn
there is some Nj ∈ N such that |ms/ cosϑ − Nj| < ε/4 and |ms tanϑ − t|∼ < ε/4.

We then see that the functions ϕj, defined by ϕj(x, y) := u0(x, y−Nj), are of norm

1 and have mutually disjoint supports contained in (−n, n)2. Furthermore, for ϑ

small enough, 0 < ϑ < ϑε, say, we can show (as in the proof of Proposition 2.6)

that an estimate (2.13) holds on each square (−ν, ν)× (Nj− ν,Nj + ν). Thus (2.13)

holds on the support of each ϕj and it follows that∣∣∣∣∣∣(R(n)
ϑ − E)ϕj

∣∣∣∣∣∣ < ε, 0 < ϑ < ϑε, j = 1, . . . , Jn. (2.26)

Then M := span {ϕj ; j = 1, . . . , Jn} has dimension Jn. Let N denote the range

of the spectral projection P(α,β)(R
(n)
ϑ ) of R

(n)
ϑ associated with the interval (α, β)

and assume for a contradiction that dimN < Jn. Then we can find a function

v ∈ M ∩ N⊥ of norm 1. By the Spectral Theorem,
∣∣∣∣∣∣(R(n)

ϑ − E)v
∣∣∣∣∣∣ ≥ ε. On the

other hand, (2.26) together with v =
∑N

i=1 aiϕi implies
∣∣∣∣∣∣(R(n)

ϑ − E)v
∣∣∣∣∣∣ < ε because

the ϕj have mutually disjoint supports.

We have therefore shown that for any interval I = [α, β] there exists some ϑ0 > 0

such that (2.23) holds for all ϑ ∈ Θ ∩ (0, ϑ0).

(2) Now let ε > 0. As in the proof of Theorem 2.1, we may cover the interval

(a, b) by a finite number of subintervals of length ε; applying the result of part (1)

we then obtain the desired statement. �
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2.4. Integrated density of states bounds

Remark 2.8. a

(1) It appears that the argument used at the end of the proof of Proposition 2.6

to remove the restriction ϑ ∈ Θ does not work in the context of Theorem 2.7.

(2) It follows from the proof of Theorem 2.7 that σess(Rϑ) ∩ I 6= ∅ for all ϑ ∈
Θ ∩ (0, ϑε) and for any interval I ⊂ (a, b) of length greater than ε.

We now complement the lower estimate established in Theorem 2.7 by an upper

bound which is of the expected order, up to a logarithmic factor. Note that we

treat a situation which is far more general than the rotation or dislocation problems

studied so far. In fact, we will allow for different potentials V1 on the left and V2 on

the right which are only linked by the assumption that there is a common spectral

gap; neither V1 nor V2 are required to be periodic. The proof uses technology which

is fairly standard and based on exponential decay estimates for resolvents.

Theorem 2.9. Let V1, V2 ∈ L∞(R2,R) and suppose that the interval (a, b) ⊂ R
does not intersect the spectra of the self-adjoint operators Hk := −∆ + Vk, k = 1, 2,

both acting in the Hilbert space L2(R2). Let

W := χ{x<0} · V1 + χ{x≥0} · V2 (2.27)

and define H := −∆ + W , a self-adjoint operator in L2(R2). Finally, we let H(n)

denote the self-adjoint operator −∆ +W acting in L2(Qn) with Dirichlet boundary

conditions. Then, for any interval [a′, b′] ⊂ (a, b), we have

lim sup
n→∞

1

n log n
N[a′,b′](H

(n)) <∞. (2.28)

Proof. a

(1) We write N(n) := N[a′,b′](H
(n)) and note that there is a constant c0 ≥ 0 such

that

N(n) ≤ c0n
2, n ∈ N; (2.29)

this follows by routine min-max arguments as in [RS-IV; Section XIII.15].

(2) Let us consider the (normalized) eigenfunctions ui,n of H(n) associated with

the eigenvalues Ei,n ∈ [a′, b′], for i = 1, . . . , N(n). The main idea of the proof is to

show that the ui,n are concentrated near the boundary of Qn or near the y-axis. To

obtain the corresponding estimates, we introduce the sets

Ωj(n) := Ω−j (n) ∪ Ω+
j (n), j ∈ {1, 2, 3, 4}, (2.30)

where Ω−j (n) :=
(
−n

2
+ 2j

α
log n,−2j

α
log n

)
×
(
−n

2
+ 2j

α
log n, n

2
− 2j

α
log n

)
, and

Ω+
j (n) := −Ω−j (n) is the mirror-image of Ω−j (n) with respect to the y-axis; the

parameter α > 0 will be chosen as in (2.31) below. Note that, for α > 0 fixed,
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2.4. Integrated density of states bounds

the sets Ω1(n), . . . ,Ω4(n) are non-empty for n large. We have the trivial inclusions

Ωj+1(n) ⊂ Ωj(n) for j = 1, 2, 3.

We will use the following exponential decay estimate for the resolvent of the

operators Hk: There are constants C ≥ 0, α > 0 such that for any E ∈ [a′, b′] and

(measurable) sets K1, K2 ⊂ R2 we have (cf., e.g., [AADH; Prop. 2.4])∣∣∣∣χK1∂
p
j (Hk − E)−1χK2

∣∣∣∣ ≤ Ce−αdist(K1,K2), j, p ∈ {0, 1}, k ∈ {1, 2}; (2.31)

here ∂1 = ∂x, ∂2 = ∂y. We also choose cut-off functions ϕn, ψn ∈ C∞c (R2;R)

satisfying

suppϕn ⊂ Ω1(n), ϕn � Ω2(n) = 1, suppψn ⊂ Ω3(n), ψn � Ω4(n) = 1, (2.32)

and |∇ϕn|, |∇ψn|, |∂ijϕn|, |∂ijψn| ≤ c(log n)−1 with some constant c ≥ 0; here ϕn =

ϕn,`+ϕn,r with ϕn,` and ϕn,r being supported in Ω−1 (n) and Ω+
1 (n), respectively. By

a well-known argument we can now derive the desired localization property: by the

Leibniz rule, we have for i = 1, . . . , N(n)

(H1 − Ei)(ϕn,`ui,n) = (H(n) − Ei)(ϕn,`ui,n) = −2∇ϕn,` · ∇ui,n −∆ϕn,`ui,n (2.33)

so that

χΩ−3 (n)ui,n = −χΩ−3 (n)(H1 − Ei)−1χsupp∇ϕn,`
[2∇ϕn,` · ∇ui,n + ∆ϕn,`ui,n]. (2.34)

Using that dist(Ω3(n), supp∇ϕn) ≥ 2α−1 log n and |∇ϕn|, |∆ϕn| ≤ c(log n)−1, the

estimate (2.31) implies that∣∣∣∣χΩ3(n)ui,n
∣∣∣∣ , ∣∣∣∣χΩ3(n)∇ui,n

∣∣∣∣ ≤ C(n2 log n)−1, i = 1, . . . , N(n). (2.35)

We now define vi,n := (1 − ψn)ui,n and let Mn := span{vi,n; i = 1, . . . , N(n)}. We

claim that

dimMn = N(n), n ≥ n0, (2.36)

for some n0 ∈ N. Let HQn\Ω4(n) be the operator −∆+W on Qn\Ω4(n) with Dirichlet

boundary conditions. The functions vi,n := (1− ψn)ui,n are approximate eigenfunc-

tions of HQn\Ω4(n): in fact, using (2.35), one easily checks that∣∣∣∣(HQn\Ω4(n) − Ei,n)vi,n
∣∣∣∣ ≤ C(n2 log2 n)−1 (2.37)

and

||vi,n − ui,n|| ≤ C(n2 log n)−1, (2.38)

for i = 1, . . . , N(n). Now (2.29) and (2.38) imply
∑N(n)

i=1 ||ui,n − vi,n||
2 < 1 for n large

and we obtain (2.36).

(3) We next show that there is n1 ≥ n0 ∈ N such that〈
HQn\Ω4(n)w,w

〉
< b ||w||2 , w ∈Mn, n ≥ n1. (2.39)
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2.5. Muffin tin potentials

For a proof, consider an arbitrary w =
∑N(n)

i=1 γivi,n ∈ Mn with ||w|| = 1. Here

we first observe that the coefficients γi satisfy a bound |γi| ≤ 2, for n large, since

(writing γ2 :=
∑

i |γi|2 and η2
n :=

∑
i ||vi,n − ui,n||

2)

1 = ||w|| ≥ ||
N(n)∑
i=1

γiui,n|| −
N(n)∑
i=1

|γi| · ||vi,n − ui,n|| ≥ γ(1− ηn), (2.40)

where ηn → 0 as n → ∞ by (2.38). Using (2.38) and the fact that ∇ψn and ∆ψn
have support in Ω3(n) \ Ω4(n), it follows that for n large

||w||2 =

N(n)∑
i=1

|γi|2 + r,
〈
HQn\Ω4(n)w,w

〉
=

N(n)∑
i=1

Ei|γi|2 + r′, (2.41)

where r, r′ ≤ C(log n)−2, so that〈
HQn\Ω4(n)w,w

〉
≤ b′ ||w||2 + r′′, (2.42)

with r′′ ≤ C(log n)−2, for n large, and we obtain (2.39).

(4) We conclude from (2.39) that Mn ⊂ P(−∞,b)(HQn\Ω4(n)) and then (2.36)

implies that dimP(−∞,b)(HQn\Ω4(n)) ≥ dimMn = N(n). On the other hand, min-

max arguments yield an upper bound for dimP(−∞,b)(HQn\Ω4(n)) of the form cn log n,

and we are done. �

2.5 Muffin tin potentials

In this section, we recourse to muffin tin potentials where one can arrive at rather

precise statements that illustrate some of the phenomena described before. We will

only look at muffin tin potentials with walls of infinite height and discuss the effect

of the “filling up” of the gaps at small angles of rotation.

We consider the lattice Z2 ⊂ R2 where we first introduce the Laplacian of a

periodic muffin tin with infinitely high walls separating the wells: for 0 < r < 1/2,

we let Dr := Br( 1
2
, 1

2
) denote the disc of radius r centered at the point ( 1

2
, 1

2
) ∈ R2,

and generate from Dr the periodic sets

Ωr := ∪(i,j)∈Z2(Dr + (i, j)), 0 < r < 1/2. (2.43)

The Dirichlet Laplacian Hr of Ωr is the direct sum of a countable number of copies of

the Dirichlet Laplacian on Dr; therefore, the spectrum of Hr consists in a sequence

of positive eigenvalues (µk(r))k∈N with µk(r)→∞ as k →∞; we may assume that

µk(r) < µk+1(r) for all k ∈ N. The eigenvalues µk = µk(r) of Hr have infinite

multiplicity. The µk correspond to the bands of a periodic problem: in fact, defining

Vr : R2 → R by

Vr(x, y) :=

{
0, (x, y) ∈ Ωr,

1, (x, y) /∈ Ωr,
(2.44)
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2.5. Muffin tin potentials

the periodic Schrödinger operators Hr,n := H0 +nVr have purely a.c. spectrum with

a band-gap structure. Furthermore, norm resolvent convergence Hr,n → Hr implies

that the bands of Hr,n converge to the eigenvalues µk of Hr. In the sequel, denote

by (a, b) one of the gaps (µk, µk+1). We next look at the rotation problem where we

define

Ωr,ϑ := (Ωr ∩ {x ≥ 0}) ∪ ((MϑΩr) ∩ {x < 0}) ; (2.45)

we also let Hr,ϑ denote the Dirichlet Laplacian on Ωr,ϑ, for 0 < r < 1/2 and 0 ≤
ϑ ≤ π/4.

The set (MϑΩr) ∩ {x < 0} comes with two types of connected components:

most (or, in some cases, all) components are discs, but typically there are also discs

in MϑΩr with center at a distance less than r from the y-axis; those appear in

(MϑΩr) ∩ {x < 0} in a truncated form. It is then clear that Hr,ϑ has pure point

spectrum.

Let us comment on some special cases before we proceed: for tanϑ rational,

these truncated discs form a periodic pattern; furthermore, we will find a half-disc

in (MϑΩr)∩ {x < 0} if and only if there is a disc in MϑΩr with center on the y-axis

which happens if and only if tanϑ = 1/(2k + 1) for some k ∈ N. It follows that for

any tanϑ ∈ Q with tanϑ /∈ {1/(2k + 1) ; k ∈ N} there is some r0 > 0 such that no

component of MϑΩr meets the y-axis, for 0 < r < r0; in other words, in this case all

components of Ωr,ϑ are discs.

Figure 2.2: The domain Ω1/4,π/8 (shaded).

One can prove the following theorem; for more details, see [Hempel, R., Kohl-

mann, M.: Spectral properties of grain boundaries at small angles of rotation.

J. Spectr. Th. 1 (2011) 1–23].

Proposition 2.10. Let 0 < r < 1/2 be fixed.

(1) Each µk(r), k = 1, 2, . . ., is an eigenvalue of infinite multiplicity of Hr,ϑ, for

all 0 ≤ ϑ ≤ π/4. The spectrum of Hr,ϑ is pure point, for all 0 ≤ ϑ ≤ π/4.
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2.6. Some extensions and remarks

(2) For any ε > 0 there is a ϑε = ϑε(r) > 0 such that any interval (α, β) ⊂ (a, b)

with β − α ≥ ε contains an eigenvalue of Hr,ϑ for any 0 < ϑ < ϑε.

(3) There exists a set Θ ⊂ (0, π/2) of full measure such that σ(Hr,ϑ) = [µ1(r),∞).

The eigenvalues different from the µk(r) are of finite multiplicity.

Remark 2.11. Let Λ := {ϑ ∈ (0, π/2) ; tanϑ ∈ Q} denote the set of angles where

tanϑ is rational; clearly, Θ ∩ Λ = ∅. It is easy to see that Hr,ϑ, for ϑ ∈ Λ, has at

most a finite number of eigenvalues in (a, b), each of them of infinite multiplicity.

Hence we see a drastic change in the spectrum for ϑ ∈ Λ as compared with ϑ ∈ Θ.

Furthermore, if ϑ ∈ Λ with tanϑ /∈ {1/(2k + 1) ; k ∈ N}, then there is some rϑ > 0

such that σ(Hr,ϑ) = σ(Hr) for all 0 < r < rϑ.

2.6 Some extensions and remarks

(1) A simple variant of the rotation problem consists in rotations in the left and the

right half planes through angles ϑ/2 and −ϑ/2, respectively, i.e., we study

Ṽϑ(x, y) =

{
(V ◦M−ϑ/2)(x, y), x ≥ 0,

(V ◦Mϑ/2)(x, y), x < 0;
(2.46)

this potential might be rather close to the physical situation shown in Figure 2.1.

Here we consider the accompanying translational dislocation potentials

W̃t(x, y) =

{
V (x− t/2, y), x ≥ 0,

V (x+ t/2, y), x < 0.
(5.2)

We may then obtain results as in Theorem 2.1 without the use of Birkhoff’s theorem:

here we only need to take care of the second condition in (2.17) since the horizontal

alignment between the left- and right-hand part of Vϑ on the y-axis is guaranteed

by the definition of Ṽϑ.

(2) We have shown that the spectral gaps of H fill with spectrum of Rϑ as ϑ→ 0

in the sense that any interval of length ε > 0 inside a gap of H will contain spectrum

of Rϑ for sufficiently small angles. In general, we do not know whether the spectrum

of Rϑ in the gaps of H0 is pure point, absolutely continuous or singular continuous.

However, there are some special angles where we can exclude singular continuous

spectrum: if we assume that cosϑ is a rational number, cosϑ = q/p with p, q ∈ N,

and p and q belong to a Pythagorean triple (p2 − q2 = r2 for some r ∈ N), then Vϑ
has period p in y-direction. In this case, a result in [DS] implies that σ(Hϑ) has no

singular continuous part.

(3) It is natural to ask about higher dimensions. Suppose we are given a potential

V : R3 → R, periodic with respect to the lattice Z3. We may then simply consider
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2.6. Some extensions and remarks

rotations of the (x, y)-plane by an angle ϑ, i.e., we let Vϑ(x, y, z) = V (x, y, z) in

{(x, y, z) ; x ≥ 0} and Vϑ(x, y, z) = V (M−ϑ(x, y), z) in {(x, y, z) ; x < 0}, in which

case our methods should apply. However, in R3 there are many other rotations for

which our methods may or may not work.

(4) Of course, taking the limit ϑ → 0 is a mathematical idealization. In real

crystals or alloys the lattice and its rotated version have to match up according

to certain rules. This is usually only possible for a small number of angles. Re-

lated questions in higher dimensions are studied under the name of coincidence site

lattices.
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Chapter 3

The general dislocation problem

In this chapter, we will study dislocation problems on an infinite cylinder S :=

R× (R/Z) without a periodicity assumption. Given two (bounded and measurable)

potentials V (k) : S → R, k = 1, 2, the family of dislocation potentials is defined by

Vt(x, y) =

{
V (1)(x, y), x ≥ 0,

V (2)(x+ t, y), x < 0,
(3.1)

for (x, y) ∈ S and t ∈ R. In the Hilbert space H := L2(S), we let L denote

the (unique) self-adjoint extension of −∆ defined on C∞c (S). For each t ∈ R the

Schrödinger operator Ht = L+Vt describes the energy of an electron on a tube made

of the same or two different materials to the left and to the right of the interface

{0}×R/Z. We are interested in the bound states produced by and at this junction

where we focus on energies in a spectral gap of H0. In our main theorem, given

below, we will also need the Dirichlet Laplacian L(0,∞) of S+ := (0,∞) × R/Z,

defined as the Friedrichs extension of −∆ on C∞c (S+).

Theorem 3.1. Let V (1), V (2) : S → R be bounded and measurable, and let Vt be as

in (3.1). Suppose E ∈ R is such that

E /∈ σ(L+ V (k)), k = 1, 2, (3.2)

and

inf σess(L(0,∞) + V (2) �S+) < E. (3.3)

Then there exists a sequence (τj)j∈N ⊂ [0,∞) of dislocation parameters such that

E ∈ σ(L+ Vτj), and τj →∞ as j →∞.

Remark 3.2. a

(1) For the case of periodic potentials V (k) on the real line or on R2 correspond-

ing results had been obtained in the previous chapters. The assumptions in

Theorem 3.1 are purely spectral and do not involve any further features of the

potentials. In this sense, the occurrence of eigenvalues in gaps for dislocation
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problems is not an exception, but it is the rule; to convey this message is the

main objective of the present investigations.

(2) In many applications of Theorem 3.1 both L + V (1) and L + V (2) have some

essential spectrum below the common gap (a0, b0). In the case of half-space

problems, however, only one of the operators has essential spectrum below the

gap.

(3) We expect the statement of Theorem 3.1 to be true for all E ∈ R that satisfy

condition (3.3) and E /∈ σess(L+ V (k)) for k = 1, 2.

(4) Our proof of Theorem 3.1 is based on an approximation on large sections

(−n− t, n)×R/Z of the tube, much as in where periodic boundary conditions

at the ends −n−t and n have been used. Since the potentials V (k) need not be

periodic in x, there is no natural boundary condition at the ends, and we simply

take Dirichlet boundary conditions. Of course, this may introduce spurious

eigenvalues into the gap that have to be removed by a suitable technique.

The Laplacian L of Thm. 3.1 is unitarily equivalent to the operator Lper, defined

as the self-adjoint realization of −∆ on the strip R× (0, 1) with periodic boundary

conditions in y. We may extend the potentials V (k), k = 1, 2, and Vt periodically

with respect to the y-variable to all of R2, and consider the dislocation problem in

R2 with the operators Ht = −∆ + Vt. Then Thm. 3.1 can be used to obtain lower

bounds for the integrated density of states inside a gap (a0, b0) for certain values of

the parameter t.

We finally address the question of continuity of the (discrete) eigenvalues of the

family of operators Ht as functions of t. For periodic potentials in one dimension

continuity is easy as V0 − Vt tends to zero in L1,loc,unif(S), as t → 0. Without

periodicity, we now have to face the problem that, no matter how small t > 0 might

be, V0− Vt need not be small on the global scale. Here we use a change of variables

to the effect that, in the new coordinates, the potential is altered only in a compact

set. This leads to the following basic result.

Theorem 3.3. Let V (1), V (2) ∈ L∞(S) be real-valued, and let Ht := L + Vt with

Vt as in (3.1). Then the discrete eigenvalues of Ht depend continuously on t ∈ R.

If, in addition, the distributional derivative ∂1V
(2) is a (signed) Borel measure, the

discrete eigenvalues of Ht are (locally) Lipschitz continuous functions of t ∈ R.

The second part of the theorem applies in particular if V (2) is of locally bounded

variation. Note that Thm. 3.3 also applies to discrete eigenvalues below the essential

spectrum of Ht.

33



3.1. Preliminaries

3.1 Preliminaries

In this section we introduce notation and collect some basic results related to the

dislocation problem.

3.1.1 Notation and Basic Assumptions

The spectral projection associated with a self-adjoint operator T and an interval

I ⊂ R is denoted as EI(T ). If T has purely discrete spectrum in I, the number of

eigenvalues (counting multiplicities) in I is given by the trace of EI(T ), denoted as

tr EI(T ). The Schatten-von Neumann classes will be denoted by Bp, for 1 ≤ p <∞.

Our basic coordinate space is the tube S = R × (R/Z) with the usual (flat)

product metric, where R/Z = 1
2π
S1. Let us write S′ := R/Z for simplicity of notation.

We consider the Sobolev space H1(S) with its canonical norm; note that C∞c (S) is

dense in H1(S). Equivalently, we could work with the Sobolev space H1
per(R× (0, 1))

consisting of functions in H1(R× (0, 1)) that are periodic in the y-variable.

In the Hilbert space L2(S) we define our basic Laplacian, L, to be the unique (self-

adjoint and non-negative) operator associated with the (closed and non-negative)

quadratic form

H1(S) 3 u 7→
∫
S

|∇u|2 dx dy,

by the first representation theorem. As on the real line, the Laplacian L is essentially

self-adjoint on C∞c (S). L is unitarily equivalent to the Laplacian −∆ acting in

L2(R× (0, 1)) with periodic boundary conditions in the y-variable.

For M ⊂ R open we denote by LM the Friedrichs extension of −∆, defined on

C∞c (M × S′), in L2(M × S′); in other words, the form domain of LM is given as the

closure of C∞c (M × S′) in H1(S). Frequently, M will be an open interval on the real

line, or a finite union of such intervals, as in L(α,β) for −∞ ≤ α < β ≤ ∞, or in

LR\{γ} = L(−∞,γ) ⊕ L(γ,∞) for γ ∈ R. If M = (α, β) for some −∞ < α < β < ∞,

we say that L(α,β) satisfies Dirichlet boundary conditions on the lines {α} × S′ and

{β} × S′.
Given two bounded, measurable functions V (1), V (2) : S → R we define the

Schrödinger operators H(k) = L + V (k), for k = 1, 2. Throughout Sections 3.1 and

3.2, we assume V (k) ≥ 0 for simplicity (and without loss of generality). For t ∈ R
the dislocation potentials Vt are defined as in (3.1), and we let Ht = L + Vt, t ∈ R,

denote the family of dislocation operators.

From a technical point of view, the following three tools are fundamental for our

approach:

• decoupling by Dirichlet boundary conditions on circles {c} × S′,

• exponential decay of eigenfunctions,
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• a coordinate transformation with respect to the x-variable.

We provide some preliminary facts concerning these tools here. We begin with

Dirichlet decoupling.

3.1.2 Dirichlet Decoupling

In this subsection we show how to control the effect of an additional Dirichlet bound-

ary condition on the line {0}×S′ ⊂ S; topologically, {0}×S′ ⊂ S is a circle. On the

strip R× (0, 1) with periodic boundary conditions the additional Dirichlet boundary

condition would be placed on the straight line segment {0} × (0, 1). Note that it

is essential for our applications later on to have estimates with constants that are

uniform for certain classes of potentials.

Lemma 3.4. Let 0 ≤ W ∈ L∞(S), let H = L+W in the Hilbert space H = L2(S),

and let HD := LR\{0} +W .

Then (H + r)−1 − (HD + r)−1 is Hilbert-Schmidt for all r ≥ 1 and there is a

constant C ≥ 0, which is independent of W and r, such that∣∣∣∣(H + r)−1 − (HD + r)−1
∣∣∣∣
B2(H)

≤ C, r ≥ 1. (3.4)

Estimates of type (3.4) are well-known and have been of great use in spectral

and in scattering theory. Similar estimates hold for finite tubes (−n, n)× S′ where

we compare L(−n,n) and L(−n,n)\{0} = L(−n,0) ⊕ L(0,n).

Lemma 3.5. Let 0 ≤ W ∈ L∞(S) and let L(−n,n) and L(−n,n)\{0} be as above. Then

(L(−n,n) + W + r)−1 − (L(−n,n)\{0} + W + r)−1 is Hilbert-Schmidt for r ≥ 1 and we

have an estimate∣∣∣∣(L(−n,n) +W + r)−1 − (L(−n,n)\{0} +W + r)−1
∣∣∣∣
B2(H)

≤ C,

with a constant C independent of r and W .

Proof. Exercise 11. �

It is easy to generalize the above results to situations where we add in Dirichlet

boundary conditions on several lines of the type {x0} × S′. This immediately gives

a simple proof for the invariance of the essential spectrum.

Proposition 3.6. For k = 1, 2, let V (k) ∈ L∞(S) and define H(k) and Ht as above.

In addition, let H
(1)
+ := L(0,∞) + V (1) and H

(2)
− := L(−∞,0) + V (2). We then have

σess(Ht) = σess(H
(1)
+ ) ∪ σess(H

(2)
− ) ⊂ σess(H

(1)) ∪ σess(H
(2)), t ∈ R. (3.5)
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Proof. For t ≥ 0, let Ht,dec denote the operator obtained from Ht by the insertion of

Dirichlet boundary conditions on the lines {0} × S′ and {−t} × S′. By Lemma 3.4,

(Ht + 1)−1 − (Ht,dec + 1)−1 is compact and so Ht and Ht,dec have the same essential

spectrum. The part of Ht,dec to the left of −t is unitarily equivalent to H
(2)
− , and

the part of Ht,dec associated with the interval (−t, 0) has compact resolvent. Thus

σess(Ht,dec) = σess(H0,dec) = σess(H
(1)
+ )∪σess(H

(2)
− ). This proves the equality in (3.5).

The inclusion stated in (3.5) is immediate from Lemma 3.4. �

3.1.3 Exponential Decay of Eigenfunctions

The following contains our basic exponential decay estimate. It is of importance

for the applications we are having in mind that the bound of Lemma 3.7 below

is independent of W within the class of bounded, non-negative potentials with a

given spectral gap (a0, b0). We let χk denote the characteristic function of the set

[−k, k]×S′ ⊂ S, for brevity. We also omit a proof for the convenience of the reader.

Lemma 3.7. For 0 ≤ a0 < a < b < b0 given there exist constants C ≥ 0 and γ > 0

such that for all 0 ≤ W ∈ L∞(S) with σ(L+W ) ∩ (a0, b0) = ∅ we have

||(1− χk)u|| ≤ Ce−γk ||u|| , k ∈ N,

for all eigenfunctions u of LR\{0}+W that are associated with an eigenvalue λ ∈ [a, b].

The following lemma gives an upper bound for the number of eigenvalues that

are moved into a compact subset [a, b] of a spectral gap (a0, b0) upon enforcing a

Dirichlet boundary condition on the line {0} × S′. Again, it is important that the

bound is independent of the potential W , provided W ≥ 0.

Lemma 3.8. For numbers a0 < a < b < b0 ∈ R given there exists a constant c ≥ 0

with the following property: If 0 ≤ W ∈ L∞(S) satisfies σ(L + W ) ∩ (a0, b0) = ∅,
then

tr E[a,b](LR\{0} +W ) ≤ c.

3.1.4 Transformation of Coordinates

Some additional insight can be gained by using a transformation of coordinates

which, in a sense, “undoes” the effect of the dislocation outside a finite section of

the tube S. In this way, the dislocation problem can be viewed as a perturba-

tion which acts in a compact subset of S only. To this end, we provide (smooth)

diffeomorphisms ϕt : R→ R of class C∞ with the additional properties that

ϕt(x) = x, x ≥ 0, ϕt(x) = x− t, x ≤ −2;

we also require that there is a constant C ≥ 0 s.th.

max
x∈R
|ϕt(x)− x|, max

x∈R
|ϕ′t(x)− 1|, max

x∈R
|ϕ′′t (x)| ≤ Ct, t ∈ [0, 2].
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In Exercise 14, it will be shown that, for 0 ≤ t ≤ 1, the dislocation operators Ht

are unitarily equivalent to (s.a.) operators Ĥt acting in L2(S) with domain D(Ĥt) =

D(L) where the quadratic form of Ĥt is given by

Ĥt[u, u] :=

∫
S

(
1

(ϕ′t)
2
|∂1u|2 + |∂2u|2 −

ϕ′′t
(ϕ′t)

3
Re (ū∂1u) +

(ϕ′′t )
2

4(ϕ′t)
4
|u|2
)

dx dy

+

∫
S

Vt(ϕt(x), y)|u|2 dx dy;

here Ĥ0 = H0 = H. Note that Ĥt − H0 has support in the compact set {−2 ≤
x ≤ 0}. In other words, the family (Ĥt)0≤t≤1 gives an equivalent description of the

dislocation problem where the perturbation is now restricted to the bounded set

{(x, y) ∈ S; −2 ≤ x ≤ 0}.
One can show the family (Ĥt)0≤t≤1 enjoys the following properties:

(1) The mapping [0, 1] 3 t 7→ (Ĥt + 1)−1 is norm-continuous.

(2) For t, t′ ∈ [0, 1], the resolvent difference (Ĥt + 1)−1 − (Ĥt′ + 1)−1 is compact.

Here, the result of Exercise 12 is involved crucially.

It follows from (2) that the essential spectrum of Ĥt is stable, and then the same

property holds for the family (Ht)0≤t≤1. Property (1) implies that the spectrum of

Ĥt depends continuously on t in the usual Hausdorff-metric on the real line, and

then the same holds for the family (Ht)0≤t≤1. This provides a proof of the first part

of Theorem 3.3.

3.2 The main result

In this section we give a proof of Theorem 3.1. We consider some E ∈ R satisfying

the assumptions (3.2) and (3.3) of Thm. 3.1. It follows from condition (3.2) that

there is an α > 0 such that

dist(E, σ(L+ V (k))) ≥ 2α, k = 1, 2;

E and α will be kept fixed throughout this section. If it happens that E is an

eigenvalue of H0 = L + V0 we set τ1 := 0 and consider H1 instead of H0. We may

therefore assume in the sequel that E /∈ σ(H0). We now fix some 0 < β ≤ 2α/3

such that

dist(E, σ(H0)) ≥ 3β. (3.6)

We find solutions of suitable approximating problems, and then pass to the limit.

The basic idea is to restrict the problem to finite sections of the tube S of the form

(−n− t, n)× S′, as in the chapters before where S is a strip and the potential V is

periodic. In the previous considerations, periodic boundary conditions at the ends

of the finite strip worked nicely, but for non-periodic potentials there is no natural

choice of boundary conditions on the lines {±n} × S′ that would keep the interval
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(E− β,E + β) free of spectrum of the operators Hn,0 = L(−n,n) + V0 and we have to

resort to a more complicated construction.

3.2.1 The Approximating Problems

We first introduce “correction terms” in the form of projections, sandwiched between

suitable cut-offs. While we have two interacting Dirichlet boundaries, we prefer a

construction where the correction term at the left end does not depend on the

correction term at the right end. Let

H+
n = L(−∞,n) + V (1) in L2((−∞, n)× S′),

H−n = L(−n,∞) + V (2) in L2((−n,∞)× S′),

for n ∈ N, where we have chosen the upper indices ± of H±n in reference to the

Dirichlet boundary condition on the lines {±n} × S′. As in Prop. 3.6, we have

σess(H
+
n ) ⊂ σess(H

(1)) and σess(H
−
n ) ⊂ σess(H

(2)) so that (E−3β,E+3β) is a gap in

the essential spectrum of H±n . We are now going to construct a family of operators

H̃n,t on (−n− t, n)×S′ that will serve as approximations to Ht and which enjoy the

property that the interval (E − β,E + β) is free of spectrum of H̃n,0.

Let Φ±n,k, k = 1, . . . , J±n , denote a (maximal) orthonormal set of eigenfunctions

of H±n corresponding to its eigenvalues in [E − 2β,E + 2β]. By Lemma 3.8, there is

a constant c0 such that J±n ≤ c0 for all n; here we apply Lemma 3.8 twice, with the

choice a0 := E − 3β, a := E − 2β, b := E + 2β, b0 := E + 3β, and W := V (1)(.+ n)

or W := V (2)(.− n), respectively.

Next, we introduce the projections P±n onto the span of the Φ±n,k, given by

P±n = E[E−2β,E+2β](H
±
n ).

As a consequence,

σ(H±n + 4βP±n ) ∩ [E − 2β,E + 2β] = ∅. (3.7)

Here the eigenfunctions Φ±n,k are localized near {±n}×S′ and decay (exponentially)

as x increases or decreases from ±n, cf. Lemma 3.7. We are now going to make this

more precise.

Let us first introduce some cut-off functions. Let χ+
1 ∈ C∞(−∞, 1) with 0 ≤

χ+
1 ≤ 1, χ+

1 (x) = 1 for x > 3/4, and χ+
1 (x) = 0 for x < 1/2, be given. Now set

χ+
n (x) = χ1(x/n), so that χ+

n ∈ C∞(−∞, n), χ+
n (x) = 1 for x > 3n/4, and χ+

n (x) = 0

for x < n/2. We define χ−n ∈ C∞(−n,∞) analogously by setting χ−n (x) = χ+
n (−x).

Furthermore, choose ϕ1 ∈ C∞c (−1/2, 1/2) with 0 ≤ ϕ1 ≤ 1 and ϕ1(x) = 1 for

|x| < 1/4, and set ϕn(x) = ϕ1(x/n) and ψn = 1 − ϕn. Finally, we decompose

ψn = ψ−n + ψ+
n and note that ψ±n χ

±
n = χ±n . By Lemma 3.7 there are constants c ≥ 0

and n0 ∈ N such that ∣∣∣∣(1− χ±n )Φ±n,k
∣∣∣∣ ≤ c/n, n ≥ n0,
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and we infer that there is a constant C ≥ 0 such that∣∣∣∣χ±nP±n χ±n − P±n ∣∣∣∣ ≤ C

n
; (3.8)

in fact, a stronger estimate of the form ||χ±nP±n χ±n − P±n || ≤ C ′e−γn, for some γ > 0,

holds true. We now define

H̃±n = H±n + 4βχ±nP
±
n χ
±
n

and observe that, by (3.7) and (3.8),

σ(H̃±n ) ∩ [E − β,E + β] = ∅,

for n large. In particular, for any u ∈ D(H̃±n ) = D(H±n ) we have

||u|| ≤ 1

β

∣∣∣∣∣∣(H̃±n − E)u
∣∣∣∣∣∣ . (3.9)

Now the dislocation enters the game: let Tt(x, y) = (x + t, y), for (x, y) ∈ S, and

define

P−n,t =
∑
k∈J−n

〈
. ,Φ−n,k ◦ Tt

〉
Φ−n,k ◦ Tt,

as well as χ−n,t := χ−n ◦ Tt. Finally, let

Pn,t = 4β
(
χ+
nP

+
n χ

+
n + χ−n,tP

−
n,tχ

−
n,t

)
and

H̃n,t = L(−n−t,n) + Vt + Pn,t
in L2((−n− t, n)× S′). The operators H̃n,t are the principal players in our approx-

imating problems. We first establish that the operators H̃n,0 have no spectrum in

the interval [E − β,E + β], for n large.

Lemma 3.9. Let E ∈ R \ σ(H0) satisfy condition (3.2) of Thm. 3.1 and let β be as

in (3.6). Then there is an n0 ∈ N such that

σ(H̃n,0) ∩ (E − β,E + β) = ∅, n ≥ n0.

Proof. Else there exists a sequence nj → ∞ and there exist Ej ∈ [E − β,E + β]

such that Ej is an eigenvalue of H̃nj ,0, for j ∈ N. Let unj
denote an associated

normalized eigenfunction. With the cut-off functions ϕk and ψ±k defined above, we

see that ϕnj/4unj
∈ D(H0) and ψ±nj/4

unj
∈ D(H̃±nj

) with estimates∣∣∣∣(H0 − Ej)(ϕnj/4unj
)
∣∣∣∣ ≤ c/nj,

∣∣∣∣∣∣(H̃±nj
− Ej)(ψ±nj/4

unj
)
∣∣∣∣∣∣ ≤ c/nj, (3.10)

for j large; here c ≥ 0 is a suitable constant. Since σ(H0) ∩ (E − 2β,E + 2β) = ∅
and Ej ∈ [E − β,E + β], we have ||(H0 − Ej)u|| ≥ β ||u|| for all u ∈ D(H0), so that

ϕnj/4unj
→ 0 as j → ∞. Similarly, the second estimate in (3.10) and (3.9) imply

that ψ±nj/4
unj
→ 0, as j → ∞. Therefore unj

→ 0 as j → ∞, in contradiction to∣∣∣∣unj

∣∣∣∣ = 1. �
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3.2.2 Solution of the Approximating Problems.

We are now going to show that, for large n ∈ N, there exist parameters tn ≥ 0

such that E is an eigenvalue of H̃n,tn . Since all the operators involved have purely

discrete spectrum we can use a simple eigenvalue counting argument.

Proposition 3.10. Let E ∈ R\σ(H0) satisfy conditions (3.2) and (3.3) of Theorem

3.1. Then there are n0 ∈ N and γ0 > 0 such that for any n ∈ N with n ≥ n0 there

exists 0 < tn ≤ γ0 such that E is an eigenvalue of H̃n,tn.

In preparation for the proof, we introduce variants of our operators with Dirichlet

boundary conditions on suitable lines. Let H̃n,t;dec denote the operator H̃n,t with

additional DBCs on the lines {0} × S′ and {−t} × S′; note that—by virtue of the

cut-offs χ+
n and χ−n,t—the non-local operators Pn,t are not affected by these boundary

conditions. For n ≥ n0(t) the operators H̃n,t;dec can be written as direct sums

H̃n,t;dec = h̃n,t;1 ⊕ ht;2 ⊕ h̃n;3,

with

h̃n,t;1 := L(−n−t,−t) + Vt + 4βχ−n,tP
−
n,tχ

−
n,t,

acting in L2((−n− t,−t)× S′) with DBCs on {−n− t} × S′ and on {−t} × S′,

ht;2 := L(−t,0) + Vt

acting in L2((−t, 0)× S′) with DBCs on {−t} × S′ and on {0} × S′, and, finally,

h̃n;3 := L(0,n) + V (1) + 4βχ+
nP

+
n χ

+
n ,

acting in L2((0, n)× S′) with DBCs on {0} × S′ and on {n} × S′.
We now collect some properties of the operators H̃n,t;dec that we need in the proof

of Proposition 3.10.

(1) For t = 0 we have

H̃n,0;dec = h̃n,0;1 ⊕ h̃n;3

= (L(−n,0) + V (2) + 4βχ−nP
−
n χ
−
n )⊕ (L(0,n) + V (1) + 4βχ+

nP
+
n χ

+
n ).

The following lemma compares the number of eigenvalues below E for the operators

H̃n,0 and H̃n,0;dec.

Lemma 3.11. Let E and β satisfy (3.6), let H̃n,0 and H̃n,t;dec be as above, and let

n0 as in Lemma 3.9. Then there is a constant c0 ≥ 0 such that

tr E(−∞,E](H̃n,0) ≥ tr E(−∞,E](H̃n,0;dec) ≥ tr E(−∞,E](H̃n,0)− c0, n ≥ n0.

In the proof of Lemma 3.11 we use a proposition, based on the Birman-Schwinger

principle to control the spectral shift across E, produced by the Dirichlet boundary

condition on {0}×S′. Recall that Bp denotes the p-th Schatten-von Neumann class,

for 1 ≤ p <∞.
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Proposition 3.12. Let 1 ≤ T ≤ S be self-adjoint operators with compact resolvent

in the Hilbert-space H, and suppose that T−1 − S−1 ∈ Bp(H) for some p ∈ [1,∞).

Then for any E ∈ R \ σ(T ) we have

tr E(−∞,E)(S) ≥ tr E(−∞,E)(T )− dist(E, σ(T ))−p
∣∣∣∣T−1 − S−1

∣∣∣∣p
Bp
.

Proof. The proof is immediate from Proposition 1.1 in [H92] with A := (T + 1)−1,

B := (S + 1)−1, and η := (E + 1)−1. �

Proof (of Lemma 3.11). The first inequality follows immediately from H̃n,0;dec ≥
H̃n,0. To prove the second inequality, we apply Prop. 3.12 with T := H̃n,0 + 1,

S := H̃n,0,dec + 1, and p = 2. Here (Hn,0 + 1)−1 − (Hn,0,dec + 1)−1 is Hilbert-Schmidt

by Lemma 3.5 with a bound c1 on the HS-norm which is independent of n. Simple

perturbational arguments ([H92, Lemma 1.4]) yield that there exists a constant

c2 ≥ 0 such that∣∣∣∣∣∣(H̃n,0 + 1)−1 − (H̃n,0,dec + 1)−1
∣∣∣∣∣∣
B2
≤ c2, n ≥ n0.

Now Prop. 3.12 implies

tr E(−∞,E)(H̃n,0,dec) ≥ tr E(−∞,E)(H̃n,0)− β−2c2
2;

here the left hand side is enlarged if we replace E(−∞,E) with E(−∞,E] while the right

hand side remains unchanged under this replacement since E /∈ σ(H̃n,0) . �
(2) The operator h̃n,t;1 is unitarily equivalent to h̃n,0;1 via a right-translation

through t so that

tr E(−∞,E](h̃n,t;1) + tr E(−∞,E](h̃n;3) = tr E(−∞,E](H̃n,0;dec). (3.11)

(3) The operators ht;2 are unitarily equivalent to L(0,t) +V (2) � (0, t) for all t > 0

by a right translation and we have the following lemma.

Lemma 3.13. Let ht;2 as above and let E and V (2) satisfy condition (3.3).Then

tr E(−∞,E)(ht;2)→∞, t→∞. (3.12)

For the proof we prepare a lemma.

Lemma 3.14. Let A and An, for n ∈ N, be bounded, symmetric operators in some

Hilbert space and suppose that An → A strongly. Then, for any λ0 ∈ σess(A) and

any ε > 0 we have tr E(λ0−ε,λ0+ε)(An)→∞ as n→∞.

In Lemma 3.14 we allow for tr E(λ0−ε,λ0+ε)(An) =∞; a precise statement would

read as follows: For any k ∈ N there exists n0 ∈ N such that tr E(λ0−ε,λ0+ε)(An) ∈
[k,∞] for all n ≥ n0.
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Proof. Assume for a contradiction that there exist λ0 ∈ σess(A), k0 ∈ N, and a

sequence (nj) ⊂ N with nj →∞, as j →∞, such that tr E(λ0−ε,λ0+ε)(Anj
) ≤ k0 for

all j ∈ N.

Let 0 < ε′ < ε and choose a continuous function f : R→ [0, 1] such that f(x) = 1

for |x − λ0| ≤ ε′ and f(x) = 0 for |x − λ0| ≥ ε. By routine arguments, it follows

from the assumptions that p(An) → p(A) strongly for all real-valued polynomials

and then that f(An) → f(A) strongly; here we also use that the norms ||An|| form

a bounded sequence.

There exists an ONS {u1, . . . , uk0+1} ⊂ RanE(λ0−ε′,λ0+ε′)(A). As χ(λ0−ε,λ0+ε) ≥
f ≥ 0, monotonicity of the trace yields

tr E(λ0−ε,λ0+ε)(Anj
) ≥ tr f(Anj

) ≥
k0+1∑
m=1

〈
f(Anj

)um, um
〉

with
∑k0+1

m=1

〈
f(Anj

)um, um
〉
→
∑k0+1

m=1 〈f(A)um, um〉 = k0 + 1, as j →∞. �

Proof (of Lemma 3.13). Since ht;2 and L(0,t) +V (2) are unitarily equivalent, we only

have to show that tr E(−∞,E)(L(0,t) + V (2)) → ∞ as t → ∞. Here we may use

Lemma 3.14, applied to the operators

A := (L(0,∞) + V (2) + 1)−1, At := (L(0,t) + V (2) + 1)−1 ⊕ 0,

with the operator 0 acting in L2((t,∞)×S′). Indeed, it follows from a result in [S78]

that At → A strongly, as t→∞. �

Let us note as an aside that there is a kind of converse to the statement of

Lemma 3.13: If η < inf σess(L(0,∞) +V (2)), then min-max and L(0,t) +V (2) ≥ L(0,∞) +

V (2) imply that

tr E(−∞,η](L(0,t) + V (2)) ≤ tr E(−∞,η](L(0,∞) + V (2)) <∞, t > 0,

and thus tr E(−∞,η](L(0,t) + V (2)) is a bounded function of t > 0.

We are now ready for the proof of Proposition 3.10.

Proof of Prop. 3.10. Let E ∈ (a, b) \ σ(H0). By Lemma 3.9 there exist β > 0 and

n0 ∈ N such that

(E − β,E + β) ∩ σ(H̃n,0) = ∅, n ≥ n0.

Adding in Dirichlet boundary conditions raises eigenvalues and we thus have

tr E(−∞,E](H̃n,t) ≥ tr E(−∞,E](H̃n,t;dec)

= tr E(−∞,E](h̃n,t;1) + tr E(−∞,E](ht;2) + tr E(−∞,E](h̃n;3)

= tr E(−∞,E](H̃n,0;dec) + tr E(−∞,E](ht;2),
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where we have used (3.11) in the last step. It now follows from Lemma 3.11 that

tr E(−∞,E](H̃n,t) ≥ tr E(−∞,E](H̃n,0)− c0 + tr E(−∞,E](ht;2),

with the constant c0 from Lemma 3.11. Since V (2) satisfies condition (3.3), Lemma

3.13 implies that there exists γ0 > 0 such that tr E(−∞,E](hγ0;2) > c0 and we conclude

that

tr E(−∞,E](H̃n,γ0) > tr E(−∞,E](H̃n,0), n ≥ n0. (3.13)

The operators H̃n,t have purely discrete spectrum and their eigenvalues depend

continuously on t ≥ 0, as can be easily seen by arguments similar to the ones

used for the periodic problem. Therefore, (3.13) implies that at least one eigenvalue

of H̃n,t has crossed E at some 0 < tn ≤ γ0, and we are done. �

The above Prop. 3.10 shows that there exists a bounded sequence of parameters

tn such that E is an eigenvalue of H̃n,tn . Then there is a convergent subsequence

tnj
→ t̄, as j →∞, and we expect that E is an eigenvalue of Ht̄.

Lemma 3.15. Suppose we are given sequences (tn) ⊂ [0,∞) and (En) ⊂ [E−β,E+

β] with tn → t and En → E, as n→∞, with the property that En is an eigenvalue

of H̃n,tn for n ≥ n0. Then E is an eigenvalue of Ht.

Proof. Exercise 16. �

We are now ready for the proof of Thm. 3.1.

Proof of Theorem 3.1. If E ∈ σ(H0), let τ1 := 0. Else Prop. 3.10 and Lemma 3.15

directly yield a τ1 ≥ 0 such that E ∈ σ(Hτ1); in this case we would in fact know

that τ1 > 0.

If E happens to be an eigenvalue of Hτ1+1, we let τ2 := τ1 + 1. Else we replace

V (2) with V (2) ◦ Tτ1+1, to obtain some τ2 ≥ τ1 + 1 with E ∈ σ(Hτ2), and so on. �
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