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Introduction

Let G be a reductive p-adic group and let k be a field in which the number p =
∑p

i=1 1 is not
zero and has a square root. We have k = C,Q` or F` in mind, where we have to exclude ` = p
in the last case. This diploma thesis is concerned with smooth k-valued representations of such a
group G.
We will use the well-known characterization that G-representations are nothing but G-modules,
that is, modules over the group algebra kG. Although this characterization seems useless at first
glance (arbitrary G-modules have no reason to be smooth), we can define Jacquet’s functors in
this language as they restrict to the smooth subcategories:

i
G
P : smooth M -representations −→ smooth G-representations,

rGP : smooth G-representations −→ smooth M -representations,

where P = MU is a parabolic subgroup of G. We realize these functors as tensoring with appro-
priate bimodules.

Using this realization, we give a proof of Frobenius Reciprocity (this is the fact that iGP is right
adjoint to rGP ) by directly constructing a unit and a counit. Giving these natural transformations
then means giving bimodule homomorphisms. This could give a hint on a very direct proof of the
Second Adjointness Theorem.

Let P = MU and Q = NV be two standard parabolic subgroups of G. Then Bernstein’s Geo-
metric Lemma gives a filtration of the functor

Γ = rGP ◦ i
G
Q : smooth N -representations −→ smooth M -representations.

The name of this lemma may be explained by the fact that this filtration is indexed by the finite
set PWQ = P\G/Q. This set is not representation theoretic in nature, indeed it can be thought
of as some geometrical object attached to G. The proof using bimodule techniques seems to make
it quite clear how and why Bruhat decomposition dominates the structure of Γ. Unfortunately,
some arguments are fairly technical, especially as one has to keep track about the normalizations
in terms of delta factors.

Now i
G
P is right adjoint to rGP , and one may ask whether there is an adjointness relation in the

other direction. Bernstein’s famous Second Adjointness Theorem answers this (in the case
k = C): iGP is left adjoint to rG

P
, where P = MU is the parabolic opposite to P . This fact is much

harder to prove than Frobenius Reciprocity and relies on a deep theorem, called the Stabilization
Theorem. We give a proof that Second Adjointness follows from a slightly weaker assumption
than the original Stabilization Theorem.

I would like to thank my supervisor, Prof. Dr. Ralf Meyer, for this fascinating topic and for his great
support and patience. Moreover, I would like to thank Prof. Dr. Ulrich Stuhler and Dr. Maarten
Solleveld for many helpful conversations. I am indebted to the Minerva Foundation for their
financial support regarding spring school “p-adic methods in arithmetic algebraic geometry” in
Jerusalem 2009.
I am very much obliged to my parents for supporting my studies in every respect.
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Notation

We denote an equivalence of categories as C ∼ D .
When we are talking about an object and a subobject (or quotient) and there is no place for
ambiguity, we will sometimes use the symbol ı for the injection (resp. π for the projection) without
introducing it each time.
A ⊂ B means A ⊆ B.
The symbol t denotes a disjoint union.
When talking about a vector space, module or something similar X and a quotient space (or
quotient group or something similar) X/Y , we will denote by [x] the image of x ∈ X under the

projection X
π
→ X/Y .

If A is a matrix, we denote its transpose by A>. The notion support always means the set-theoretic
support:

supp(f) = {x ∈ source(f) | f(x) = 0}

If A ⊂ B are sets, we denote the complement by B −A. The reason is, that our sets usually have
additional structure and we are going to mod out subobjects from the left and the right all the
time. Hence, even if B\A would not make sense as a quotient, one could unnecessarily ponder
upon what this symbol shall mean (as the author did a few times while reading his own notes,
until he changed the notation).

v



Chapter 1

Preparations

1.1 Explicit Description of Projective and Inductive Limits

In this section we describe a useful characterisation of some special limits. As this description is
well-known, we do not go too deep into details.
Let C be one of the following categories: groups, rings or R-modules for some ring R.

Definition 1.1.1 (Projective Subcategory). A small subcategory P of C is projective if

(i) HomP(x, x) = {1x} for all x ∈ ob(P),

(ii) |HomP(x, y)| + |HomP(y, x)| ≤ 1 for all x 6= y ∈ ob(P),

(iii) For two objects x, y in P we find a third one t such that |HomP(x, t)| = |HomP(y, t)| = 1.

Observe that a projective subcategory is nothing but a projective system, where conditions (i)
and (ii) correspond to orderedness and condition (iii) to directedness. If there is no danger of
confusion, we will swap these notions without further explanation.
The inclusion functor ı : P ↪→ C admits a limit lim

←−
(ı) and we have a very tangible characterization

at hand:

Observation 1.1.2.

lim
←−

(ı) ∼=
{

γ = (γx)x∈ob(P) ∈
∏

x∈ob(P)

x
∣

∣

∣ f(γx) = γy for all x, y ∈ ob(P), f ∈ HomP(x, y)
}

⊂
∏

x∈ob(P)

x

where
∏

denotes the cartesian product of sets and the operation(s) on lim
←−

(ı) are defined component-
wise.

This gives rise to projection maps
πx : lim
←−

(ı) −→ x

at the x-component. In general, they do not have to be onto.
Moreover, there is a down-to-earth description of the colimit:

Observation 1.1.3.
lim
−→

(ı) ∼=
(

⊔

x∈ob(P)

x
)

/∼

where t is the coproduct of sets (disjoint union) and the equivalence relation is given like this:
x 3 γx ∼ γy ∈ y if and only if there exists an object t and arrows f tx : x→ t and f ty : y → t such
that f tx(γx) = f ty(γy) ∈ t.
The operation(s) are given as follows: Take γx ∈ x and γy ∈ y in the union. Let t be a common
target of x and y, delivered by condition (iii), then we can understand γx and γy as elements of t
and take γx + γy (or γx · γy) there.

1



There are natural injections
ıx : x −→ lim

−→
(ı)

but the name is somewhat misleading since they do not necessarily have to be one-to-one. We say
“γ ∈ lim

−→
(ı) occurs in the x-th component of the colimit” if ı−1

x (γ) 6= ∅.
Moreover, for any object x0 we have a natural map ıx0 ◦ πx0 :

lim
←−

(ı) −→ lim
−→

(ı)

(γx) 7−→ ıx0(γx0).

It clearly does not depend on the choice of x0. γ ∈ lim
−→

(ı) is in the image precisely if it occurs at
all components.

One more thing about notation: Suppose we are talking about the colimit

lim
−→



x0 → x1 → x2 → · · ·




with all occurring components being subobjects of a big object x, and ξ ∈ x happens to be
contained in x0, x1 and x2 for example.
Then there are multiple possibilities of understanding ξ as an element of the colimit: We say “ξ
in the i-th component” and mean ıxi(ξ) ∈ lim

−→
for i = 0, 1, 2.

If all the objects in the system are the same and we consequently do not put subscripts on them,
we start counting from left with 0.

1.2 Stable Mappings

For this section, let V be a vector space over some field k and T : V → V a linear map.

Definition 1.2.1 (Stable Map). T : V → V is stable if ker(T ) = ker(T 2) and im(T ) = im(T 2).

We have the following equivalent characterizations:

Proposition 1.2.2. For (T, V ) as above, the following properties are equivalent:

(i) T is stable;

(ii) V decomposes as im(T )⊕ ker(T );

(iii) T | im(T ) is an isomorphism.

Proof. (i)⇒(ii): Let v ∈ V . Then Tv ∈ im(T ) = im(T 2). Hence there is a ṽ such that T 2ṽ = Tv.
But then v − T ṽ ∈ ker(T ) and we have a presentation

v = (T ṽ) + (v − T ṽ)

with the first summand clearly being in the image and the latter in the kernel of T .
Now take v ∈ im(T )∩ker(T ). Then Tv = 0 and we have a ṽ with T ṽ = v. But then ṽ ∈ ker(T 2) =
ker(T ), hence v = T ṽ = 0.

(ii)⇒(iii): First, im(T ) ∩ ker(T ) = {0} immediately implies that T | im(T ) is injective.
Take v ∈ im(T ). Then there is a ṽ such that T ṽ = v. We can write ṽ = v1 + v0 with v1 ∈ im(T )
and v0 ∈ ker(T ). This provides us with a pre-image v1 for v, yielding surjectivity.

(iii)⇒(i): The inclusion im(T 2) ⊂ im(T ) is clear. Take v ∈ im(T ). Then, as T | im(T ) is invertible,
we find a pre-image ṽ ∈ im(T ). ṽ itself has a pre-image v̂ ∈ V . Therefore, T 2v̂ = v and v ∈ im(T 2).
ker(T ) ⊂ ker(T 2) is clear. Take v ∈ ker(T 2). This implies Tv ∈ im(T ) ∩ ker(T ). But T | im(T ) is
invertible, and T (Tv) = 0, forcing Tv to equal 0. Therefore, v ∈ ker(T ).

2



There is an obvious weakening of this notion:

Definition 1.2.3. (T, V ) is called eventually stable if it fulfills one of the following, equivalent
properties:

(i) There is an n ∈ N such that (T n, V ) is stable;

(ii) There are k, l ∈ N such that

im(T k) = im(T k+i) and ker(T l) = ker(T l+i) for all i ∈ N.

Now denote the common kernel subspace and the common image subspace by

ker∞(T ) =
⋃

n∈N

ker(T n) and im∞(T ) =
⋂

n∈N

im(T n).

Observe that ker∞(T ) is indeed a subspace since ker(T n) ⊂ ker(T n+1).

Definition 1.2.4. (V, T ) is called weakly stable if V decomposes as

V = im∞(T )⊕ ker∞(T )

and T | im∞(T ) is surjective.

Observe, that (T, V ) gives rise to a projective system

T =
(

· · ·
T
−→ V

T
−→ V

T
−→ V

T
−→ · · ·

)

infinite both to the right and to the left. The natural map

η : lim←−(T ) −→ lim−→(T )

is easily seen to be a linear map (as for any projective system of vector spaces).

Lemma 1.2.5. The following statements are equivalent:

(i) (T, V ) is weakly stable;

(ii) η provides an isomorphism lim
←−

(T ) ∼= lim
−→

(T ).

Proof. (i)⇒(ii): Let (vi)i∈Z ∈ lim
←−

(T ) be a pre-image of [0] ∈ lim
−→

(T ) under η. Then vi ∈ im∞(T )
(because it appears in the limit) and vi ∈ ker∞(T ) (because [vi] = [0] in lim

−→
) for all i ∈ Z. This

implies vi = 0 and shows injectivity of η.
Now let [v] ∈ lim

−→
with v = v1 + v0, v1 ∈ im∞(T ) and v0 ∈ ker∞(T ). We want to construct a

pre-image (v(i))i∈Z of [v] under η. Set v(0) = v1 and v(i) = T i(v) for i ≥ 1. As v(0) lies in im∞(T ),
we can pick a pre-image v(−1) ∈ im∞(T ) under T . Repeating this, we can define v(i) inductively
for all i < 0. It is clear that (v(i))i∈Z lies in lim

←−
and is mapped to [v].

(ii)⇒(i): Take v1 ∈ ker∞(T ) ∩ im∞(T ). Define v(i) as above, then (v(i))i∈Z ∈ lim
←−

is mapped to

[v1] = [0] in lim
−→

. Because η is injective, all the v(i) vanish, in particular v(0) = v1.
Now, take v ∈ V . As η is surjective, there is an element (vi)i∈Z in lim

←−
that is mapped to [v] ∈ lim

−→
.

Therefore [v0] = [v]. This implies that we find an n ∈ N such that T nv0 = T nv. But this means

v = (v0) + (v − v0)

with the first summand in im∞(T ) and the latter in ker∞(T ).
We have to prove that T | im∞(T ) is surjective. Let v ∈ im∞(T ). As η is surjective, we find a
pre-image (vi) ∈ lim←− of [v] ∈ lim−→. This implies that we find two numbers i ∈ Z, n ∈ N such that
T n(vi) = T n(v). Hence vi − v ∈ ker∞(T ). But, as vi ∈ im∞(T ) (because it appears in the limit)
and v ∈ im∞(T ), we conclude

vi − v ∈ im∞(T ) ∩ ker∞(T ) = {0}.

Therefore, v = vi and has the pre-image vi−1 ∈ im∞(T ).

3



Lemma 1.2.6. stable ⇒ eventually stable ⇒ weakly stable.

Proof. The first implication is clear. For the second, let (T, V ) be eventually stable, with kernel
stabilizing from l ∈ N on and image stabilizing from k ∈ N on.
Take a v ∈ ker∞(T ) ∩ im∞(T ) = ker(T l) ∩ im∞(T ).
Hence, T lv = 0 and there is a ṽ such that T lṽ = v. But then ṽ ∈ ker(T 2l) = ker(T l), and this
implies v = T lṽ = 0.
Now, take v ∈ V . Then T kv ∈ im(T k) = im∞(T ). Therefore we find a ṽ ∈ im∞(T ) such that
T kṽ = T kv. This says

v = (ṽ) + (v − ṽ)

with the first summand in im∞(T ) and the latter in ker∞(T ).
We have to show that T | im∞(T ) is surjective. Take n ∈ N sufficiently large such that T n| im(T n) =
T n| im∞(T ) is an isomorphism. Then for any v ∈ im∞(T ) we find a v′ ∈ im∞(T ) such that
T n(v′) = v. Thus T n−1(v′) ∈ im∞(T ) is a pre-image of v.

It is easy to see that the opposite implications do not hold:

Example 1.2.7 (eventually stable 6⇒ stable). Take

V2 := C2 and T2 :=

(

0 1
0 0

)

.

Then im(T2) = ker(T2) =
(

∗
0

)

whence T2 is not stable. But, as T 2
2 = 0, T2 is eventually stable.

Defining Vk = Ck and Tk as the matrix with ones in the upper-right secondary diagonal and zeros
everywhere else, we get an example of a map that stabilizes in level k and not earlier.
By this we mean

V = im(T ik)⊕ ker(T ik) if and only if i ≥ k.

Example 1.2.8 (weakly stable 6⇒ eventually stable). Define the vector space

X =
∏

k≥2

Vk =
{

(v2, v3, . . .)
∣

∣ vi ∈ Vi
}

where addition is defined component-wise and scalar-multiplication in the obvious way and with Vi
as in Example 1.2.7. We remark that we do not require the sequence (vi)i∈N to vanish on a cofinite
set. As linear map consider

T : X −→ X (vi)i≥2 7→
(

Ti(vi)
)

i≥2
.

with Ti as in Example 1.2.7. Now, for any l ∈ N, we can define a T -stable subspace

X≤l =
{

(vi) ∈ X
∣

∣T li (vi) = 0 ∀i ≥ 2
}

.

This provides us with a nested sequence

X≤1 ( X≤2 ( . . .

and we define the subspace of “bounded” elements

X b =
⋃

l∈N

X≤l.

Now ker
(

(T |X b)l
)

= X≤l, hence the kernel-sequence never stabilizes and T |X b cannot be eventu-
ally stable.
On the other hand, ker∞(T |X b) equals X b by definition. Now, let (vi) ∈ X b be non-zero. Then
there is an l ∈ N such that vl 6= 0. But this clearly means that (vi) cannot be in the image of T l.
Therefore we have

X b = {0} ⊕ X b = im∞(T |X b)⊕ ker∞(T |X b)

and therefore (X b, T |X b) is weakly stable.

4



1.3 Local Fields

In this section we list the definitions and facts about local fields that we will need in the sequel.
Our purpose is mainly to fix notation, therefore we will not prove anything (especially since there
is a lot of good literature, see [Jan96] or the comprehensive [Ser79]).

1.3.1 p-adic Numbers

We sketch the algebraic approach: Fix a prime number p, then we can form a projective system
of rings

Zp =


 Z/p Z Z/p2Zoo Z/p3Zoo ···oo




where each map Z/pnZ→ Z/pn−1Z is reducing mod pn−1.
Then we can form Zp := lim

←−
Zp – the ring of p-adic integers. If we understand the Z/pnZ

discretely topologized, we can take this limit in the category of topological rings and hence equip Zp
with a (non-trivial) topology, the so-called Krull topology.
Let πn : Zp → Z/pnZ be the projection at the n-th component of the limit, then

{

π−1
n (x) |n ∈ N, x ∈ Z/pnZ

}

forms a basis for this topology.

Proposition 1.3.1. Zp is a compact Hausdorff space.

Proposition 1.3.2. Z×
p = {x ∈ Zp | πn(x) ∈ (Z/pnZ)× for all n ∈ N} = {x ∈ Zp | π1(x) 6= 0}

We introduce some subsets:

Proposition 1.3.3. p := p · Zp = {x ∈ Zp |π1(x) = 0 } is the unique maximal ideal in Zp.
Moreover, Zp/p ∼= Fp – the field with p elements.

We call p a uniformizing element because it generates the maximal ideal.

Lemma 1.3.4. The pn = pn · Zp, n ∈ N form a filtration of open subsets which constitutes a
fundamental system of neighborhoods for 0 ∈ Zp:

Zp ⊃ p ⊃ p
2 ⊃ p

3 ⊃ . . .

Lemma 1.3.5. The n-th Unit Subgroups U (n) := 1 + pn = {x ∈ Zp |πn(x) = 1} form a
filtration of open subsets which constitutes a fundamental system of neighborhoods for 1 ∈ Zp:

Zp ⊃ U := U (1) ⊃ U (2) ⊃ U (3) ⊃ . . .

To concretize these conditions “πn(x) = . . .” we are led to introduce an exponential valuation

ν̃p : Zp → Z ∪ {∞} x 7→

{

∞ if x = 0,

min{n ∈ N |πn(x) 6= 0} if x 6= 0.

Observe that we have an obvious ring embedding Z ↪→ Zp.

Proposition 1.3.6. Let x ∈ Z ⊂ Zp and write x = pn · a with (p, a) = 1, then ν̃p(x) = n.
On the other hand, any x ∈ Zp with ν̃p(x) = n can be written as x = pn · a with a ∈ Z×

p .

It is a key observation that Zp contains no zero divisors, so we can take the field of fractions Qp –
the p-adic numbers. The integral ring of Qp is Zp. There is an equivalent definition which gives
rise to a better understanding of Qp:

First, the map Zp → p defined by x 7→ p · x is an isomorphism of additive (topological) groups.
Surjectivity is clear by definition. Injectivity is seen as follows: If px = py = z for x, y ∈ Zp and
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z ∈ p, we can extract x and y from z. For i > 1, πi(x) = πi(y) = πi(z)
p . But this determines

π1(x) = π1(y), hence x = y and the map is injective.
The inclusion p ⊂ Zp provides us with an injection

Zp ∼= p ↪→ Zp

that commutes with addition. This leads to a projective system

Qp =


 Zp
�

� // Zp
�

� // Zp
�

� // · · ·




of groups and we can take its colimit lim
−→

(Qp).

Proposition 1.3.7. lim
−→

(Qp) ∼= (Qp,+).

The injections are not multiplicative. Hence, in order to understand Qp as a field, we have to
redefine multiplication. This is done like this:
Let x ∈ Zp be in the ith component of the colimit, y in the jth component, then their product is
defined to be xy (taken in Zp) in the (i+ j)th component.
This defines a multiplication with neutral element 1 in the 0th component (the first Zp appearing
on the left). We can nicely see how every element has an inverse: Let x = pia (with a invertible)
in the jth component, then we find an inverse in the following way:� If i ≥ j: The inverse is given by a−1 in the (i− j)th component.� If i < j: The inverse is given by p(j−i)a−1 in the 0th component.

Moreover, there is an obvious way to extend the exponential valuation:

Definition 1.3.8 (Exponential Valuation).

ν : Qp −→ Z ıi(x) 7−→ ν̃(x)− i

That is, ν maps x in the ith component to the valuation of x in Zp minus i.
Now ν gives rise to

Definition 1.3.9 (p-adic Absolute Valuation).

| . . . | : Qp −→ Q x 7−→ p−ν(x)

Moreover, we mention

Lemma 1.3.10. Multiplication gives a group-homeomorphism

pZ × Z×
p ' Q×

p .

1.3.2 The General Case

Definition 1.3.11 (Valuation Field). Let K be a field. A valuation ofK is a map | . . . | : K → R

such that� |x| > 0 for x ∈ K× and |0| = 0� |xy| = |x||y|� |x+ y| ≤ |x|+ |y|.

Two valuations are called equivalent if they induce the same topology.
A valuation is called archimedean if the set

{

|n|
∣

∣n ∈ N
}

is not bounded above.
The pair (K, | . . . |) is called a valuation field, where we usually suppress mentioning the map | . . . |.
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In the non-archimedean case, there are various objects of interest:� O = {x
∣

∣ |x| ≤ 1} – the valuation ring� O× = {x
∣

∣ |x| = 1} – the unit group� p = {x
∣

∣ |x| < 1} – the valuation ideal

O is a local ring with unit group O× as above and unique maximal ideal p. The field k = O/p is
called the residue field of K.

Definition 1.3.12 (Local Field). A (0-dimensional) local field is a valuation field such that the
induced topology is complete. If the valuation is non-archimedean, we include the property that
the residue field is finite.

Proposition 1.3.13. The induced topology on K is locally compact.

Theorem 1.3.14. Up to field-homeomorphism, there are only these local fields:� R and C: archimedean local fields� Qp and its finite extensions: non-archimedean local fields with characteristic 0 (the “number
theory case”)� Fq((T )) (fields of formal Laurent series over Fq): non-archimedean local fields with positive
characteristic (the “geometric case”)

We call an element $ ∈ O a uniformizing element if it generates p.
Lemma 1.3.4 and Lemma 1.3.5 remain true if one replaces Zp by O and p by $.
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1.4 Haar Measure on Locally Compact Groups

Recall that a topological group is a group object in the category of topological spaces. It is
called locally compact if we find for every point some compact neighborhood. Moreover, we will
include the Hausdorff property in the definition. We begin with

Definition 1.4.1. LetX be a topological space, then a measure µX onX is called Borel measure
if µX(C) <∞ for C ⊂ X compact.

Definition 1.4.2. A measure µX on X is called regular if

µX(A) = inf{µX(B) |B ⊃ A open} = sup{µX(B) |B ⊂ A compact}

for any measurable set A.

Definition 1.4.3. A regular positive Borel measure on a topological group G is called a left
Haar measure, if it is invariant from the left: µG(gA) = µG(A), and assigns positive values to
nonempty open sets.

A right Haar measure is defined in the analogous way. The main theorem here is:

Theorem 1.4.4 (Existence of the Haar measure). Let G be locally compact, then there exists a
left Haar measure. Moreover, if µG, λG are two of them, there is some real number z > 0 with
µG = zλG.

Proof. The proof is quite lengthy and treats things we do not want to go into here. For a proof
(and everything else about the theory) see [Loo53].

We have an analogue for the finite group statement |G| = [G : H ] · |H |:

Proposition 1.4.5. Let K,C ⊂ G be open, compact subgroups with K ⊂ C, then

µG(C) = [C : K] · µG(K)

Proof. This follows easily from additivity, invariance and the decomposition

C =
⊔

c∈C/K

cK.

Lemma 1.4.6. Let K,C be open compact subgroups of G, then KC is an open and compact subset
of G and we have

µG(KC) =
µG(K) · µG(C)

µG(K ∩ C)
.

Proof. The first claim is clear, since multiplication G×G→ G is open and continuous. Write

KC =
⋃

k∈K

k · C =
⊔

k∈K/(K∩C)

k · C.

Then additivity yields µG(KC) = [K : K ∩ C] · µG(C) and the result follows from the above
proposition.

A left Haar measure µG gives rise to an integral on G, and the invariance amounts to
ˆ

G

f(g) dµG(g) =

ˆ

G

f(g′g) dµG(g) for all g′ ∈ G. (1.1)

Of course, the existence theorem is also true for the right Haar measure. If there is a left Haar
measure on G that is a right one at the same time, we call G unimodular. The difference between
a left and a right Haar measure is recorded by
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Definition 1.4.7. Let µG be a left Haar measure, then we can define

λg : A 7−→ µG(Ag).

It is clear that this defines again a left Haar measure, therefore we have some δG(g) ∈ C with
λg = δG(g)µG. Call the G-character

δG : G −→ R+ ⊂ C× g 7→ δG(g)

the modular character of G.

The link between the measures is the following: The measure

A 7−→

ˆ

A

δG(g) dµG(g) for A ⊂ G measurable

is a right Haar measure.

Remark 1.4.8. It is not hard to see that δG is smooth. Very smooth, to be accurate: For every k
in any open compact subgroup K ⊂ G we have

0 < µG(K) = µG(Kk) <∞,

hence δG(K) = 1.

The remark tells us that compactness implies unimodularity.
We shortly discuss the standard examples:

Example 1.4.9 (G = GLn(F ) for a local field F ). Recall from [JS06], App. B, the identities

Center(G) = {z ·1 | z ∈ F×} and [G,G] = SLn(G).

Since R+ is abelian, δG([G,G]) = 1. Furthermore, it is clear from the definition that δG vanishes
on the center of G. Therefore, δG vanishes on the subgroup

Ω := Center(G) · [G,G] = {M ∈ GLn(G) | det(M) ∈ (F×)n)}.

This means that δG factorizes through

G� G/Ω→ R+

and
G/Ω ∼= F×/(F×)n

is finite ([Neu90], Korollar 5.8). So the image of δG must be a finite subgroup of R+, but there is
just the trivial one, hence δG vanishes on all of G: G = GLn(F ) is unimodular.

Example 1.4.10. In general, any reductive algebraic group is unimodular.

Example 1.4.11. An example for a non-unimodular group is G = upper triangular matrices in
GLn(F ). The measures and the modular character can be found in [Bum97], p. 426.

Remark 1.4.12 (Integration of vector-valued functions). Denote the space of integrable functions
temporarily by I. Moreover, let V be a C-vector space. There is an obvious integral on I ⊗ V :
that one defined by linear extension of the rule

f ⊗ v 7−→
(

ˆ

G

f(g) dµG(g)
)

· v.

Since I ⊗ V injects into HomSets(G, V ) (as a vector space) via linear extension of

f ⊗ v 7−→
(

g 7→ f(g) · v
)

,

this gives rise to an integral on a certain space of integrable vector-valued functions on G with the
same invariance property (1.1) as in the C-valued case.
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Virtually all functions we will be dealing with are of the following type:

Example 1.4.13 (Locally constant compactly supported functions). Denote by C∞
c (G) the space

of locally constant and compactly supported1 functions G → C. Such a function f ∈ C ∞
c (G) is

clearly integrable since integration is reduced to a finite sum over finite values:
ˆ

G

f(g) dµG(g) =
∑

λ∈C

λ · µG
(

f−1(λ)
)

<∞.

It is straightforward to verify that C∞
c (G)⊗ V is isomorphic to the space of locally constant and

compactly supported functions G→ V . In the view of Remark 1.4.12 we hence have a left-invariant
integral on these functions.

We should moreover mention

Theorem 1.4.14 (Fubini’s Theorem). Let A,B be locally compact unimodular groups. Fix
Haar measures µA, µB on them. Then, if f : A × B −→ C is locally constant and compactly
supported, we have the identity

ˆ

A

ˆ

B

f(a, b) dµB(b) dµA(a) =

ˆ

B

ˆ

A

f(a, b) dµA(a) dµB(b).

Proof. This is easy to prove by hand. For a general proof (that implies that Fubini’s Theorem
holds in a broader context as just locally constant and compactly supported functions) see 16C of
[Loo53].

Later, we will have to use the second part of Proposition 2.1.5 in [Bum97]:

Proposition 1.4.15. Let G be unimodular, P,K be closed subgroups such that P ∩K is compact
and G = P ·K. Let µP denote a left Haar measure on P , µK a right one on K. Then we find a
Haar measure µG on G such that we have for any integrable function f an identity

ˆ

G

f(g) dµG(g) =

ˆ

P

ˆ

K

f(pk) dµK(k) dµP (p).

A slight modification (Theorem 5.3.1 in [Far08]) looks as follows:

Proposition 1.4.16. Allow G to be not unimodular, then take a left Haar measure µG and its
modular character δG. Assume that there are two closed, unimodular subgroups P and Q such that
G = PQ and the multiplication P ×Q −→ G is in fact a homeomorphism. Then there are Haar
measures µP and µQ such that

ˆ

G

f(g) dµG(g) =

ˆ

Q

ˆ

P

f(pq)δG(q) dµP (p) dµQ(q)

for any integrable function f .

1.4.1 Invariant Measures on Homogeneous Spaces

We will be interested in the following situation: Let G be a locally compact group and U a closed
subgroup. Then, of course, we can develop a Haar measure theory on U in just the same way we
did for G.
The coset space G/U (or U\G) is locally compact and Hausdorff.2 Therefore, it is natural to ask
whether there is an invariant measure on G/U , where invariance means

µG/U (X) = µG/U (gX) ∀g ∈ G.

1This means that supp(f) is compact.
2A proof can be found on page 38 in [HR63].
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The answer is

Theorem 1.4.17. The following statements are equivalent:� δG|U = δU ,� On G/U exists an invariant positive measure µG/U .

Our main application is

Corollary 1.4.18. Let G be unimodular, U a closed, unimodular subgroup, then there exists an
invariant positive measure µG/U on G/U .

Now, let f : G→ C be smooth and compactly supported. Then

U −→ C u 7→ f(gu)

is smooth and compactly supported in U and

G/U → C [x] 7→

ˆ

U

f(xu) dµU (u)

is smooth and compactly supported in G/U . We can make use of a version of

Theorem 1.4.19 (Weil Integration Formula). Let G,U be as in the corollary. Fix a Haar
measure µU and an invariant measure µG/U , then there exists a Haar measure µG such that

ˆ

G

f(g) dµG(g) =

ˆ

G/U

ˆ

U

f(xu) dµU (u) dµG/U (x).

For a more detailed treatment as well as proofs, see pages 42 – 45 of [Wei40].
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Chapter 2

p-adic Groups

This thesis is concerned with the representation theory of p-adic groups. We use the following
chapter to introduce these groups. Moreover, we explain some relevant structure theorems.
There exists a more general concept: Each p-adic group is an `-group, and many representation
theoretic considerations only rely on this structure. Therefore, `-groups are the topic of our first
section.

2.1 `-Groups

Definition 2.1.1. An `-group, or sometimes called a locally profinite group, is a Hausdorff
topological group G such that every open neighborhood of 1 contains an open, compact subgroup
of G.

For an `-group G we find that

{ gK | g ∈ G,K ⊂ G an open, compact subgroup}

is a basis of the topology.

Remark 2.1.2. The term “locally profinite” makes sense: One can show that G is locally profinite
if we find a neighborhood of 1 that is a profinite group. Locally profinite and compact means
profinite.

Let L be a non-archimedean local field with ring of integers O and uniformizing element $.

Example 2.1.3 (L additive). The groups $iO make the additive group L into an `-group.

Example 2.1.4 (L×). The higher unit groups U i make the group L× into an `-group.

We make a brief aside on the underlying topological space of an `-group:

Definition 2.1.5 (`-space). A topological space is called an `-space if it is� locally compact,� Hausdorff,� totally disconnected (every point is its own connected component).

Lemma 2.1.6. Let U be the intersection of an open and a closed subset of an `-space. Then U ,
equipped with the subset topology, is an `-space on its own.

Proof. This is Lemma 1.2 in [BZ76].

12



Remark 2.1.7. One can show (see the remark in chapter one of [BH06]) that a topological group
is an `-group if and only if its underlying space is an `-space.
The general theory of these groups is not so old: The structure has been widely clarified by Willis
in [Wil94] in terms of tidy subgroups and the scale function. The latter is an interesting continuous
map

s : G −→ N

defined as the index of certain subgroups. For example, one can characterize the modular character
as

δG(g) = s(g)s(g−1)−1.

This implies that δG takes only rational values. We will not need anything from this theory but
encourage the reader to have a look at the very readable paper.

We cite one more lemma:

Lemma 2.1.8. Let H ⊂ G be a closed subgroup of an `-group. Then G/H (equipped with the
quotient topology) is an `-space. Consequently, if H is normal, the quotient group is an `-group.

Proof. This is Proposition 1.4 of [BZ76].

We introduce an important technical property of some `-spaces:

Definition 2.1.9 (Countable at Infinity). An `-space is said to be countable at infinity if it
can be written as the union of countably many compact subsets. An `-group is called countable
at infinity if its underlying `-space is.

In the sequel, nearly all of our `-spaces and `-groups will fulfill this property. We remark that
being countable at infinity is hereditary with respect to� closed subspaces,� quotient spaces,� finite product spaces.

Remark 2.1.10. If an `-space X is countable at infinity, this implies a stronger condition: X
can in fact be written as a countable union of open and compact subsets. This is seen as follows:
Write

X =
⋃

n∈N

Xn with the Xn compact.

For n fixed, we can assign to each x ∈ Xn an open, compact neighborhood Ux. As Xn is compact,
we find a finite subset Λn ⊂ Xn such that Xn ⊂

⋃

x∈Λn
Ux. Then write X as the countable union

X =
⋃

n∈N
x∈Λn

Ux.

Using this, we can prove

Proposition 2.1.11. Let X be an `-space that is countable at infinity. Then X can be written as
the disjoint union of countably many open and compact subsets.

Proof. Write the space as a countable union of open, compact subsets: X =
⋃

n∈N
Xn. Consider

Xn :=
⋃

k≤n

Xk.

It is clear that the Xn are open and compact on its own.
In general, if we have two open and compact subsets A and B of X , it is not hard to see that
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A − (A ∩ B) is open and compact as well. Therefore, define X ′
n = Xn −Xn−1. Then we have a

decomposition into open and compact subsets:

X =
⊔

n∈N

X ′
n

In order to state the next lemma, we have to introduce some notation:
Assume, we have a covering

X =
⋃

i∈I

Ui with the Ui open.

Then, a decomposition X = tω∈ΩXω is said to be compatible with respect to the covering
if we can assign to each ω ∈ Ω an i ∈ I such that Xω is contained in Ui.
If Y ⊂ X is a subset, it is clear what we mean by a compatible decomposition of Y with respect
to {Ui}i∈I .

Lemma 2.1.12. Let X be an `-space and consider an open covering {Ui}i∈I of X. Then:

(i) Let K ⊂ X be open and compact. Then there exists a compatible (disjoint) decomposition
of K into finitely many open and compact subsets.

(ii) Let X be countable at infinity. Then there exists a compatible (disjoint) decomposition of X
into countably many open and compact subsets.

Proof. For the first part, recall from [Fed90], Theorem 5, that K is 0-dimensional as a consequence
of being totally disconnected. By “dimension” we mean the Lebesgue covering dimension: For
each finite open covering of K we find a refinement by a finite, disjoint and open covering. As K
is open, the constituents of this covering are open in X , too.
It is clear how the second part follows from the first part and Proposition 2.1.11.

2.1.1 `-Actions

Definition 2.1.13 (`-action). A (left) `-action is a continuous group action G y X where G is
an `-group and X is an `-space. A right `-action is defined in the analogue way.

Proposition 2.1.14. Let G y X be an `-action where G is countable at infinity and assume that
X decomposes into finitely many G-orbits. Then there exists an open orbit.

Proof. This is Proposition 1.4 in [BZ76].

Of great importance will be

Corollary 2.1.15. Let G y X as in the preceding proposition, moreover assume that this action
admits only finitely many orbits. Then we can enumerate the orbits {Xi}1≤i≤n such that

⋃

1≤i≤(k−1)

Xi

open
⊂ X (2.1)

for any k between 2 and n.

Proof. Start with the open orbit X1. Then G y X −X1 is an `-action and consequently admits
an open orbit X2. Proceed in this manner and enumerate the set of orbits such that

Xk ⊂ X −
(

⋃

1≤j<k

Xj

)

(2.2)

is open for any k between 1 and n − 1. Now recall the following fact from general topology: If
A ⊂ B is an open subspace of a topological space, then

H ⊂ (B −A) is open =⇒ H ∪A ⊂ B is open. (2.3)
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Now we can prove (2.1): We know from (2.2) that

Xk ⊂
(

X −
⋃

1≤j<k−1

Xj

)

−Xk−1

is open. Hence, using (2.3), we get that

Xk ∪Xk−1 ⊂ X −
(

⋃

1≤j<k−1

Xj

)

=
(

X −
⋃

1≤j<k−2

Xj

)

−Xk−2

is open. Repeat this argument k − 1 times and the claim is settled.

2.2 Matrix Groups

Since there are good reasons1 for being interested primarily in GLn(F ) with F a non-archimedean
local field, we will carefully go through the structure theory of matrix groups before mentioning
more general p-adic groups. In fact, most results generalize straightforwardly and the main diffi-
culty is to find the right definitions to replace matrix-theoretic conditions and properties.

Definition 2.2.1 (General Linear Group). Let V be a vector space over F . Then denote the
group of invertible linear transformations V → V by GL(V ).
For n ∈ N, we set

GLn(F ) := GL(Fn)

and observe that this is isomorphic to the group of invertible n × n-matrices with entries in F .
The isomorphism depends on a choice of basis.

As a subset of Matn×n(F ) = Fn
2

, GLn(F ) inherits a topology from F (and it is not hard to see
that this does not depend on the choice of the basis). Multiplication and inversion are continuous
with respect to this topology, making GLn(F ) into a topological group. If we are talking about
open, closed or compact subgroups, we always mean with respect to this topology.

There are some (closed) subgroups of GLn(F ) that are of particular importance:� The (standard) Borel subgroup B of upper triangular matrices;� The (standard) torus subgroup T ∼= Fn of diagonal matrices;� The (standard) unipotent radical subgroup U of upper triangular matrices that are
unipotent: Every diagonal entry equals 1;� The congruence subgroups K = GLn(O) and Ki = 1 +$iMatn×n(O) for i ≥ 1.
(It is easy to see that any x ∈ Ki is invertible: For example, we can use the Leibniz formula
in order to see that det(x) ∈ U i.)

Generalizing Example 2.1.4, we can state:

Proposition 2.2.2. The Ki are open, compact subgroups, forming a neighborhood basis of 1 and
making G = GLn(F ) into an `-group.

Proof. That these groups are open and compact is clear from the fact that O is open and compact.
Now let N be some open neighborhood of 1 ∈ GLn(F ), then there is an open subgroup N ′ ⊂
Matn×n(F ) with ı−1(N ′) = N . In fact, we can take N ′ = N as GLn(F ) is open in Matn×n(F ).
Then for any pair a1, a2 with 1 ≤ a1, a2 ≤ n we have the projection

pr(a1,a2) : Matn×n(F ) −→ F M = (Mij) 7→Ma1a2 .

1The groups GLn(F ) occur somehow naturally in the Langlands correspondence.

15



Because of Example 2.1.3 and Example 2.1.4 we find numbers i(a1,a2) with

pr(a1,a2)(N
′) ⊃

{

U i(a1,a2) if a1 = a2,

$i(a1,a2)O if a1 6= a2.

whence N ′ ⊃ Km with m = max{i(a1,a2) | 1 ≤ a1, a2 ≤ n}. Hence N ⊃ Km.

We should remark that K is the unique maximal compact subgroup of GLn(F ) (up to conjugacy).
The proof is not hard but involves some lattice theory.

Proposition 2.2.3. B = T n U , and this decomposition holds topologically: the multiplication
T × U −→ B is a homeomorphism.

Proof. It is straightforward to check that U is normal in B. In order to see that B is the semidirect
product, take b = (bi,j)1≤i,j≤n ∈ B and define t ∈ T and u ∈ U as

ti,j =

{

0 if i 6= j

bi,j if i = j
and ui,j =

bi,j
bi,i

and observe b = tu. Since T ∩ U = 1 we indeed have B = T n U .
Now for the topological statement: It is clear that the multiplication is a continuous bijection.
We have to show that it is an open mapping. In order to show this, it suffices to consider a
neighborhood basis for (1, 1). Therefore, it suffices to consider the open subsets
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⊂ U

for which it is clear that their product is open in B.

2.2.1 Parabolic Subgroups

We have introduced B as the (standard) Borel subgroup. This suggests that there are “non-
standard” ones, too.

Definition 2.2.4 (Flags). Let V be a finite-dimensional vector space. A flag is an increasing
sequence of subspaces

F =
(

0 = V0 ( V1 ( . . . ( Vm = V
)

.

It is called complete if dim(Vi+1/Vi) = 1 for all i. The sequence
(

dim(V0), dim(V1), . . . ,dim(Vm)
)

is called the signature of F. The number l(F) := m is called the length of F.

Definition 2.2.5 (Parabolic Subgroups). Let F be a flag. The stabilizing subgroup

{g | gVi = Vi for all i} ⊂ GL(V )

is called the parabolic subgroup with respect to F. More generally, a subgroup P is called
parabolic if there is a flag with stabilizer P . If this flag is complete, P is called a Borel subgroup.

Proposition 2.2.6. Let F,F′ be flags in V with same signature and P, P ′ the corresponding
parabolics. Then P and P ′ are conjugate: there is a γ ∈ G with γPγ−1 = P ′.

Proof. Take a basis (bi)1≤i≤n of V such that 〈b1, . . . , bdim(Vt)〉 = Vt for all 1 ≤ t ≤ l(F). Then
take a basis (b′i)1≤i≤n with the corresponding property for F′.
The linear transformation γ : V → V defined by bi 7→ b′i clearly works.
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One more word about notation: If a Borel subgroup B is fixed, we call a parabolic subgroup a
standard parabolic subgroup if it contains B. Usually, we will fix the standard Borel subgroup
and consequently the standard parabolic subgroups look like this:
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∗
∗

0

∗

∗



































∩ GLn(F )

Definition 2.2.7 (Unipotent Radical). Let F be a flag and P the associated parabolic sub-
group.
Then define the unipotent radical as the subgroup that operates trivially on all Vi+1/Vi:

U := {u ∈ P | [uv] = [v] in Vi+1/Vi for all v ∈ Vi+1 and 1 ≤ i < l(F)}.

Definition 2.2.8 (Levi Factor). Let F and P be as above. Then define the Levi factor as the
subgroup that does not see Vi when working on Vi+1:

M := {m ∈ P | [v] = [w] in Vi+1/Vi ⇒ mv = mw for all v, w ∈ Vi+1 and 1 ≤ i < l(F)}.

We have

M ∼=

m−1
∏

i=0

GL(Vi+1/Vi).

We may call a V -basis B compatible with a flag F if we can enumerate it as B = (bj)1≤j≤n such
that 〈b1, . . . , bdimVi〉 = Vi for all 1 ≤ i ≤ l(F). Each choice of a compatible basis (bj) gives rise to
an imbedding of the torus into the parabolic subgroup associated to the flag:







x1

. . .

xn






7−→



bj 7→ xjbj



 ∈M ⊂ P

We may express this as follows: The bigger the parabolic subgroup is, the more tori lie inside M .

2.2.2 Structure Theory

A straightforward generalization of Proposition 2.2.3 is:

Theorem 2.2.9 (Levi decomposition). Let P ⊂ GLn(F ) be a parabolic subgroup, then

P = M n U

and this decomposition holds topologically.

Proof. There are no new ideas in comparison to the Borel case, but calculations become elaborate.
We refer to the general theory, coarsely outlined in the next chapter.

Let us clarify this situation a bit: P being parabolic means that V decomposes asW1⊕W2⊕. . .⊕Wk

and any p ∈ P looks like this

W1 ⊕

��

W2 ⊕

��}}{{
{{

{{
{{

W3 ⊕

��}}{{
{{

{{
{{

mmmmmmm

vvmmmmmmm

· · · ⊕ Wk

��}}||
||

||
||

···

W1 ⊕ W2 ⊕ W3 ⊕ · · · ⊕ Wk

(2.4)
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where the vertical arrows are required to be invertible. Then M is the subgroup acting strictly
vertically: The arrows to the left are 0. U is the subgroup of arrows that basically go only to the
left: the vertical parts are all 1. The associated flag is

F =
(

W1,W1 ⊕W2,W1 ⊕W2 ⊕W3, . . . ,
k
⊕

i=1

Wi

)

.

Definition/Lemma 2.2.10 (Opposite Parabolic). We are going to define the very important
term of the opposite to a parabolic subgroup P . This is a parabolic subgroup P of GLn(F ) that
may be defined in any of the following ways:

1. Let F = (⊕1≤i≤m1〈vi〉,⊕1≤i≤m2〈vi〉, . . . ,⊕1≤i≤mk
〈vi〉) the flag (with signature

(m1,m2−m1, . . . ,mk−mk−1)) that is stabilized by P , where (v1, . . . , vmk
) denotes a suitable

basis of V .
Then define P as the stabilizer of the “opposite” flag
F′ = (⊕mk−1≤i≤mk

〈vi〉,⊕mk−2≤i≤mk
〈vi〉, . . . ,⊕m1≤i≤mk

〈vi〉) with signature
(mk −mk−1,mk−1 −mk−2, . . . ,m1).

2. Let P be the unique parabolic with P ∩ P = M – the Levi factor of P .

3. If we understand GLn(F ) as a matrix group, P equals P> = {p> | p ∈ P}.

As any of these criteria suggests, P = P .

Proof. Statement 1.⇔ 2. is quite clear, looking at (2.4): Taking the opposite means replacing the
word “left” by “right.” This does not affect the Levi part, but U is completely killed. Moreover,
again looking at (2.4), there is only one parabolic possible that contains M but nothing of U .
For 1.⇔ 3. recall that taking transposes is the matrix-theoretic expression of taking the dual map
between the dual spaces (identified with the basis dual to the initial choice).
If we carry the decomposition over to the dual spaces, we immediately get

W ∗
1 ⊕ W ∗

2 ⊕ W ∗
3 ⊕ · · · ⊕ W ∗

k

···

W ∗
1

=={{{{{{{{
mmmmmmm

66mmmmmmm

OO

⊕ W ∗
2

OO

⊕

=={{{{{{{{
W ∗

3

OO

⊕ · · ·

>>||||||||
⊕ W ∗

k

OO

from what, after identifying back with our original space, the equivalence follows.

Now define the subset Λ+ ⊂ GLn(F ) consisting of diagonal matrices of the form







$m1

. . .

$mn







with integers mi satisfying mi ≤ mi+1.

Theorem 2.2.11 (Cartan Decomposition).

K\G/K ∼= Λ+ or, alternatively, G =
⊔

a∈Λ+

KaK.

Proof. We proceed as follows: Take g = (gi,j) ∈ G and find a gi,j with maximal absolute value.
Then we kill all other entries in the ith row and jth column via multiplication by matrices in K.
To illustrate this, let

(. . . a$k . . . b$m . . .)
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be the ith row with b$m = gi,j the maximal entry and a$k = gi,l an entry we want to eliminate.
To conduct the elimination, we can subtract ab−1$k−m-times the jth column from the lth column.
Since ab−1$k−m ∈ O, this corresponds to multiplication from the right by a K-matrix.
This can be done with all remaining entries in the i, j-cross, leaving b$m or, after multiplication
with b−11, $m as the i, j-th entry. Then we swap the ith and the first row, and the jth and the
first column, yielding a matrix of the form









$m

g′









with g′ ∈ GLn−1(F ) and whose entries’ absolute values are not exceeding |$m|. It is clear how to
proceed.
Proving disjointness is not so straightforward. If g ∈ G, we have to show that it determines
uniquely a λ ∈ Λ+ such that g ∈ KλK. Except for special cases,2 one has to apply a lattice-
theoretic argument: The claim follows from applying Theorem 2 of Chapter 2, §2 of [Wei74] to
the standard lattice Γ =

⊕

1≤i≤nOei and Γ′ = gΓ.

Observe that Cartan’s decomposition tells us that GLn(F ) is countable at infinity.
Another important structure information is given by

Theorem 2.2.12 (Iwasawa Decomposition). We have

G = KB.

Proof. We use induction on n: For GL1(F ) = F× the statement is trivial since B equals all of the
group.
Now let us assume we know the Iwasawa decomposition for GLn−1(F ) and take some g = (ai,j) ∈
GLn(F ). Since column-swapping is implemented in K via permutation matrices, we may assume
that a1,1 6= 0 has maximal valuation within the first row. Moreover, since we can multiply by
a−1
1,11 ∈ B from the right, we can assume that a1,1 equals 1. With this, we find that

k =











1
−a2,1 1
−a3,1 1

...
. . .











∈ K and γ := kg =











1 ∗

∗











.

In some analogous manner we have

b =











1 −γ1,2 −γ1,3 · · ·
1

1
. . .











∈ B and kgb =









1

g′









for a g′ ∈ GLn−1(F ). But this is helpful, since g′ decomposes as k′b′ with k′ ∈ K, b′ ∈ B as we
assumed. So we can write

g = k−1









1

k′

















1

b′









b−1 ∈ KB

and we are done.

2See (7.2.2) in [BH06] for an easy argument in the n = 2 case.
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We straightly proceed to

Theorem 2.2.13 (Iwahori Decomposition for Km). If we denote by U− the group of lower-left
unipotent matrices, we have for m > 1:

Km = (Km ∩ U
−) · (Km ∩ T ) · (Km ∩ U)

Proof. We will proceed in the same pseudo-induction style3 as in the Iwasawa case: GL1(F ) is
clear, so let us discuss the step (n− 1) ; n:
Let g = (ai,j) ∈ Km ⊂ GLn(F ), then we firstly realize that a−1

1,11 ∈ (Km ∩ T ). Moreover, a1,11
lies in the center of GLn(F ).
We manipulate now g′ := a−1

1,11g: Define the matrices

l =











1
−a2,1 1
−a3,1 1

...
. . .











∈ (Km ∩ U
−)

and, with (bi,j) := lg′,

r =











1 −b1,2 −b1,3 · · ·
1

1
. . .











∈ (Km ∩ U).

We find that q := lg′r takes the shape









1

g̃









with g̃ ∈ Km ⊂ GLn−1(F ). As we assumed, g̃ decomposes as l̃t̃r̃ with l̃ ∈ (Km∩U−) ⊂ GLn−1(F )
and so on. We can understand l̃, t̃, r̃ as injected into GLn−1(F ) in the obvious way (1 as the
additional upper-left entry). Then l̃ ∈ (Km ∩ U−) ⊂ GLn(F ) and so on. We subsume

g = a1,11g
′ = a1,11l

−1qr−1 = l−1a1,11qr
−1 = l−1a1,11l̃t̃r̃r

−1 = (l−1 l̃) · (a1,11t̃) · (r̃r
−1),

whence the statement.

In general, we say that a subgroup H ⊂ G admits an Iwahori decomposition with respect to
a given parabolic subgroup P = MU ⊂ G if H decomposes as

H = H+H0H−

with H+ = H ∩ U , H0 = H ∩M and H− = H ∩ U−. Here U− = U is the unipotent radical of
the parabolic opposite of P . Another notation, used in [Ber92], is that H and P are in good
position.
The preceding lemma told us that Km admits an Iwahori decomposition with respect to the
standard Borel B. In fact, we can replace B with any standard parabolic subgroup, see Lemma
3.11 in [BZ76]. Because any parabolic subgroup is conjugate to a standard one, we find suitable
replacements for the congruence subgroups that admit Iwahori factorizations in the non-standard
case.

3Our proofs essentially do not rely on an induction argument, but we can get along with less indices and writing
efforts avoiding the straightforward way.
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Now recall the definition of Λ+. If B is a standard Borel, we see that λ ∈ Λ+ is dominant with
respect to B and Km for any m ∈ N. By this condition we mean

λK+λ−1 ⊃ K+, λK0λ−1 = K0 and λK−λ−1 ⊂ K−. (2.5)

Define Λ++ ⊂ Λ+ to be the subset of matrices






$m1

. . .

$mn







such that mi < mi+1. Then a λ ∈ Λ++ is strictly dominant, that is the inclusions in (2.5) are
strict.
The existence of such strictly dominant elements will become crucial, and we remark that this
fact is not a unique feature of the Borel subgroups. If P is a standard parabolic subgroup, it is
clear how to define the corresponding sets Λ+

P and Λ++
P . One can write down (strictly) dominant

elements similar as in the Borel case (taking into consideration the signature), so these sets are
not empty.
As any parabolic subgroup is conjugate to a standard one, we can work with conjugates of Λ++

P

that contain strictly dominant elements for non-standard parabolic subgroups.

Now fix a λ ∈ Λ++
B and m ∈ N. It is not hard to see that any u ∈ U occurs in some λkK+

mλ
−k.

We write this as
U =

⋃

k∈N

λkK+
mλ

−k.

As usual, this is not limited to the standard Borel case, and we formulate this as a lemma:

Lemma 2.2.14. Let P = MU be a parabolic subgroup of GLn(F ). Then U can be written as a
union of compact subgroups.
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2.3 General Groups

Many of the observations and theorems of the preceding section carry over to a more general
setting. We will now briefly describe this setting.
This short section is not self-contained at all. We assume familiarity with the basic notions of
algebraic geometry and (linear) algebraic groups. A word about literature: As a good (and very
brief) introduction into the subject, the author can recommend the 12-page survey of F. Mur-
naghan [Mur05]. The triad of linear algebraic groups is [Bor91], [Hum75] and [Spr81]. Classics
are the articles by Borel-Tits [BT65] and by Bruhat-Tits [BT72]. Moreover, we should mention
the overview article [Tit79], where J. Tits gives an introduction into reductive groups over local
fields. In this section, we give no proofs at all. If the results are not standard, we give a reference.

2.3.1 Overview and Definitions

As usual, denote by F a non-archimedean local field and define p to be the characteristic of the
residue field of F . Let G be a connected, reductive linear algebraic group defined over F . We are
interested in the F -rational points G = G(F ), and for simplicity we will call G itself a reductive
p-adic group.

Proposition 2.3.1. G is an `-group.

Proof. This is Proposition 22 (1) in [Ber92].

Let us moreover remark that G is countable at infinity, as we can embed it as a closed subgroup
into GLn for some n.

Definition 2.3.2 (Borel Subgroup). A maximal connected solvable algebraic subgroup of G is
called a Borel subgroup.

Definition/Lemma 2.3.3 (Parabolic Subgroup). A Zariski-closed subgroup P of G is called
parabolic if the quotient space G/P is a projective variety. This is equivalent to demanding that
P contains a Borel subgroup.

We carry over the following notation: If a Borel subgroup B is fixed, any parabolic containing B
will be called a standard parabolic. As in the GLn-case, any parabolic subgroup is conjugate to a
standard one.
If P is a parabolic subgroup, let U = RU (P ) be the unipotent radical of P . Then, as in the
GLn-case, we find a (reductive) F -subgroup M ⊂ P such that P admits a Levi decomposition
P = MU , M ∩ U = 1.
To be accurate, P is again a semidirect product and M is homeomorphic to P/U . This is the rea-
son why we call M the Levi component of P , see Definition 11.22 of [Bor91]. We may moreover
remark that the tori lying inside M are of some interest.
For a parabolic P , we define the opposite parabolic as the (unique) parabolic subgroup P that
intersects with P in a common Levi component.

2.3.2 Structure Theory

Of great importance is the following deep result of Borel (see II.2 in [Ber92]):

Theorem 2.3.4. Let P be a parabolic subgroup of G. Then there are arbitrarily small open
compact subgroups that admit an Iwahori decomposition with respect to P . Moreover, to each such
K we find a strictly dominant element in G.

Here the terms “Iwahori decomposition” and “dominant” are generalized in the obvious way.
If a parabolic subgroup P and an open, compact subgroup K with Iwahori decomposition is fixed,
we denote the set of (strictly) dominant elements by Λ+ (resp. Λ++).
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Observation 2.3.5. Let P = MU ⊂ G be a parabolic subgroup, then take K and λ according to
Borel’s Theorem. As in the GLn-case we see that U is the union of compact subgroups:

U =
⋃

i∈N

λiK+λ−i.

This tells us that U is unimodular.
Much of the structure theory for GLn carries over. As an example we give the following decom-
positions which may be found in Chapter 4 of [BT72]:

Theorem 2.3.6 (Cartan Decomposition). Fix a Borel subgroup B ⊂ G, then there is a max-
imal compact subgroup K ⊂ G that admits an Iwahori decomposition with respect to B. Let Λ+

denote the corresponding set of dominant elements. Then

G = KΛ+K.

Theorem 2.3.7 (Iwasasa Decomposition). Let B, K be as in the Cartan decomposition, then

G = BK.
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2.4 Weyl Group and Bruhat Decomposition

Before we treat the important Bruhat decomposition, we make an aside on Coxeter groups and the
Bruhat order on them. A very readable treatment is [BB05]. We will give no proofs but indicate
where the reader can find them.

2.4.1 Coxeter Groups and the Bruhat Order

Let W be a group and let S ⊂ W be a generating subset. Moreover, assume we have numbers
m(s, s′) ∈ N ∪∞ for all s, s′ ∈ S such that

(i) m(s, s′) = m(s′, s),

(ii) m(s, s′) = 1⇐⇒ s = s′,

(iii) (ss′)m(s,s′) = 1 in W if m(s, s′) <∞.

Definition 2.4.1 (Coxeter System).
(

W,S,m( , )
)

is called a Coxeter system if W has a pre-
sentation

W = 〈s ∈ S | (ss′)m(s,s′) = 1〉.

Usually, we suppress m in the notation. Moreover, we will simply say that W is a Coxeter
Group. We call the elements of S the Simple Reflections. Moreover, we have the Reflections

T = {wsw−1 |w ∈W, s ∈ S}.

The simple reflections are a minimal generating subset of W , see Cor. 1.4.8 in [BB05].

Definition 2.4.2 (Length Function). Let w ∈ W be an element of a Coxeter group. Then we
can write w = s1 · · · sn (si ∈ S).
We call s1 · · · sn a reduced expression of w if w cannot be written as the product of fewer than n
simple reflections. If this is the case, define the length of w as l(w) := n. With l(1) := 0, this
defines a map W → N0.

Now let (W,S) be a Coxeter system with reflections T , then we can define an order relation on W
like this:

Definition 2.4.3 (Bruhat Order). Set v ≤ w if and only if there is u ∈ W with w = vu and
l(w) = l(v) + l(u).

We have a combinatorial characterization of this partial order:

Theorem 2.4.4 (Subword Property). Let w = s1 · · · sn be a reduced expression. Then v ≤ w
precisely if we find a reduced expression

v = si1 · · · sik (1 ≤ i1 ≤ · · · ≤ ik ≤ n).

This means that v is obtained from w by dropping some elements in the expression s1 · · · sn.

Proof. This is Thm. 2.2.2 of [BB05].

Prop. 2.2.9 of [BB05] tells us that the Bruhat order makes W into a directed poset.
If |W | <∞, there exists a unique longest element w0 (this means w ≤ w0 for w ∈ W ).

Proposition 2.4.5. From [BB05] we collect some properties:

(i) w2
0 = 1,

(ii) l(w0) = |T |,

(iii) l(ww0) = l(w0w) = |T | − l(w) and l(w0ww
−1
0 ) = l(w),
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(iv) w 7→ w0ww
−1
0 is an automorphism.

Example 2.4.6 (Symmetric Group). Let Sn denote the symmetric group in n letters. This is
the most popular example of a Coxeter group. We then have

S = {(i, i+ 1) | 1 ≤ i ≤ n− 1} and T = {(i, j) | 1 ≤ i ≤ j ≤ n}.

To describe the Bruhat order, denote a ≤ b by a→ b. Then we can illustrate the situation for S3:

(12) //

��5
55

55
55

55
5

(132)

##HH
HH

H

id //

==|||||

!!B
BB

BB
(13)

(23) //

DD										
(123)

;;vvvvv

The longest element is (13). A picture for S4 can be found on p. 31 of [BB05].

2.4.2 Bruhat Decomposition

Definition 2.4.7. Let G be a reductive algebraic group and let T be a torus in G. Then T
acts on the tangent space g via the adjoint representation. As T is abelian, this representation
decomposes into characters α : T → C×. These characters are called the weights of G.
The nonzero weights Φ span a euclidean space and meet some additional symmetry requirements,
making it into a root system.
The roots Φ+ that cannot be written as the sum of others are called simple roots.

Now we can define the Weyl group:

Definition 2.4.8 (Weyl Group). Define W as the group generated by reflections through the
hyperplanes orthogonal to the roots. W is independent of the choice of the torus and depends
only on G.

Theorem 2.4.9. Let S be the subset of W that consists of reflections through the hyperplanes
orthogonal to the simple roots. Then (W , S) is a Coxeter System.

Proof. See Section 29.4 in [Hum75].

There is another characterisation of W as the normalizer of T modulo T , where T denotes a
(maximal) torus in G. From this characterization it is immediately clear that the Weyl group does
not depend on the torus, since two tori are conjugate.

Example 2.4.10 (GLn(F )). One can easily calculate that NG(T ) is the subgroup of monomial
matrices (in every row and column there is exactly one nonzero entry). Hence

W = Sn.

The main theorem is

Theorem 2.4.11 (Bruhat Decomposition). Let B be a Borel subgroup with torus T . Then un-
derstandW as a set of representatives in G via the characterization W = NG(T )/T . G decomposes
as

G =
⊔

W

BwB.

Proof. For the general case see Theorem 8.3.5 of [Spr98], we will say something about the case
GLn(F ):
It suffices to prove G =

⊔

w B
−wB with B− = w0Bw0 the lower-diagonal matrices. This is clear,

since W = {w} = {w0w}, hence
⊔

w Bw0wB =
⊔

w BwB. Moreover, G = w0G.
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The equation G =
⊔

w B
−wB is just the Gauss-Jordan Algorithm:

By multiplying appropriate lower-diagonal elementary matrices from the left and upper-diagonal
ones from the right to an invertible matrix, we end up with a monomial matrix:





0
0
0
∗



 ;





0
0
0
∗ 0 0 0 0 0
0
0



 =





0 0
0 ∗
0
∗ 0 0 0 0 0
0
0



;





0 0
0 ∗ 0 0 0 0
0 0
∗ 0 0 0 0 0
0 0
0 0



 and so on.

That BwB = Bw′B implies w = w′ is not so straightforward. In Chapter 30 of [Bum04] the
reader can find a proof based on induction on the length l(w).

In the sequel, we will not distinguish betweenW as an abstract group and as a set of representatives
in G if a Borel subgroup is understood.

2.4.3 Enumerating the Double Cosets

Definition 2.4.12 (Flag Variety). Let P ⊂ G be a parabolic subgroup, then G/P is a homo-
geneous space for G (acting from the left). G/P corresponds to the set of all flags with signature
provided by P .

Observation 2.4.13. The Bruhat decomposition tells us that B acts with finitely many orbits
on G/B (on the left). Write this as

W = B\G/B.

As G is a topological space, B\G/B inherits a topology τ (finite, hence Alexandroff). Because of
the equivalence between Alexandroff topologies and preorders,4 we find a preorder ≤ on B\G/B
(and, hence, on W) such that τ is characterized by

U open ⇔ x ∈ U, x ≤ y implies y ∈ U.

One can show that ≤ is the Bruhat order (see for example Section 8.5.4 of [Spr81]).

Observation 2.4.14. We can enumerate W and decompose G as
⊔

I BwiB such that the subsets
⊔

1≤i≤k BwiB ⊂ G are open for any 1 ≤ k ≤ |I|.

Proof. As we are talking about the induced topology, we can check that in B\G/B =W : First of
all, the longest element is clearly open, hence w1 := w0. Now take any w ≤ w1 such that there is
no w′ with w ≤ w′ ≤ w1 as w2. As w3 take any w fulfilling the same condition as w2 or fulfilling
w ≤ w2 but there is no w′ such that w ≤ w′ ≤ w2. It is clear how to proceed.

Remark 2.4.15. The X(w) := BwB/B ⊂ G/B are called Bruhat cells, and X(w0) is the big
cell.

Remark 2.4.16. An analogue of Observation 2.4.14 is true for B\G/B′ with any Borel sub-
group B′: We find a g ∈ G such that G decomposes as

⊔

I BwigB
′ with the

⊔

1≤i≤k BwigB
′

open.

Proof. Assume B′ = γBγ−1, then consider

αγ : G/B −→ G/B′ gB 7→ gBγ−1 = gγ−1B′.

αγ is a continuous isomorphism (with inverse αγ−1) and thus identifies G/B ∼= G/B′. Hence the
observation leads to the successive unions

⊔

1≤i≤k Bwiγ
−1B′ being open.

4See [Ale37].
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Now let P,Q be parabolic subgroups of G with Borel subgroups B ⊂ P,B′ ⊂ Q. Then there is
the natural projection

p : B\G/B′
� P\G/Q

yielding P\G/Q = PWQ for some quotient PWQ of Wγ−1.
Using the enumeration (wi)I obtained from the last remark, {p(wi)}I provides us, after ruling out
the double entries, with a suitable enumeration (w′

j)J of PWQ such that the subsets
⊔

1≤j≤k Pw
′
jQ

are open in G.

Remark 2.4.17. It is easy to describe PWQ in terms of the root system, see the first pages of
[Cas95].

Remark 2.4.18. In this context, the standard way to prove the existence of this enumeration
of PWQ (as used by Bernstein and others) is different: It suffices to realize that G decomposes
into finitely many cosets PwQ. This says that P (which is countable at infinity) acts with finitely
many orbits on the `-space G/Q. Then we can immediately apply Corollary 2.1.15 and we are
done.

2.5 p-adic Groups and Measures

A reductive p-adic group G is an `-group, hence locally compact and there exists a Haar measure.
In the first part, we recall some integration formulae in this setting from the relevant literature.
G itself is unimodular (as is any reductive group), but this is not true for its parabolic subgroups.
The “error term” δP will become an important technical aggravation in what follows. In the
second part of this section we will prove two formulae involving these delta factors.
The aim of the third part is to establish an invariant measure on G with values in other fields, for
example in k = Q` or k = F` (with ` 6= p in the latter case). This will allow us to say something
about the representation theory of G with ground field different than C.

2.5.1 Integration Formulae

Let G be a reductive p-adic group with parabolic subgroup P = MU and modular character δP .
The Cartan decomposition provides us with a maximal compact subgroup K such that G = KP .
Then we have the following integration formulae:

Proposition 2.5.1. Denote by ϕ a locally constant and compactly supported function G −→ C.

(i) Pick Haar measures µM , µU and µK on M,U and K, respectively. Then the assignment

ϕ 7−→

ˆ

M

ˆ

U

ˆ

K

δ−1
P (m)ϕ(muk) dµM (m) dµU (u) dµK(k)

is a Haar integral on G. That is, there is a Haar measure µG on G such that

ˆ

G

ϕ(g) dµG(g) =

ˆ

M

ˆ

U

ˆ

K

δ−1
P (m)ϕ(muk) dµM (m) dµU (u) dµK(k)

for any ϕ ∈ C∞
c (G).

(ii) Pick Haar measures µU , µM and µU on U,M and U , respectively. Then there is a Haar
measure µG on G such that

ˆ

G

ϕ(g) dµG(g) =

ˆ

U

ˆ

M

ˆ

U

ϕ(umu) · δP (m)−1 dµU (u) dµM (m) dµU (u)

for any ϕ ∈ C∞
c (G).
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(iii) Pick Haar measures µM and µU on M and U , respectively. Then there is a left Haar
measure µP on P such that

ˆ

P

ϕ(p) dµP (p) =

ˆ

M

ˆ

U

ϕ(mu) dµU (u) dµM (m)

holds for any ϕ ∈ C ∞
c (P ).

Proof. Part (i) is Proposition 18 in [Wal01]. We just remark that this follows from our Proposition
1.4.15 and the integration formula on p. 45 in [Wei40]. For (ii) see p. 12 in [Art91] and for (iii)
see Chapter 13.10 in [Kot05].

2.5.2 Delta Factor Computations

Recall that we denote the modulus of a parabolic subgroup P of a p-adic group G by δP . There
is another characterization which Bernstein and Zelevinskii use in [BZ77]. This characterization
is more manifest by any means, but became non-standard in the literature, unfortunately.

Take a closed subgroupH ⊂ G. Any element x in its normalizer NG(H) induces a homeomorphism

σx : H −→ H h 7→ x−1hx.

The module (in the sense of Bourbaki) of σx is denoted by modH(x). This gives rise to a (smooth)
character

modH : NG(H) −→ C×

which fulfills

modH(x)

ˆ

H

ϕ(x−1hx) dµH(h) =

ˆ

H

ϕ(h) dµH(h) ∀x ∈ NG(H)

for any integrable function ϕ : H −→ C and any left Haar measure µH on H .

Lemma 2.5.2. Let P = MU be a parabolic subgroup of G. Then

modU |P = δP .

Proof. Fix arbitrary (non-zero) open, compact subgroups KM ⊂ M and KU ⊂ U . Then write
p ∈ P as um. Now we can fix Haar measures on P,M and U according to 1.4.16 and calculate

δP (p) = δP (m) =

´

P
1KMKU (p) dµP (p)

´

P 1KMKU (m−1pm) dµP (p)
=

´

P
1KM (m)1KU (u) dµP (mu)

´

P 1KM (m−1mm)1KU (m−1um) dµP (mu)

=
µM (KM )

´

U
1KU (u) dµU (u)

µM (KM )
´

U
1KU (m−1um) dµU (u)

=

´

U
1KU (u) dµU (u)

´

U 1KU ((um)−1uum) dµU (u)
= modU (um) = modU (p).

There is a nice lemma:

Lemma 2.5.3 (mod is “multiplicative”). Let A,B ⊂ G be closed subgroups such that AB is
a closed subgroup of its own and multiplication induces a homeomorphism A × B ∼= AB ⊂ G.
Moreover, assume that A,B and AB are unimodular. Then

modA(x)modB(x) = modAB(x)

holds for any x ∈ NG(A) ∩NG(B) ⊂ NG(AB).
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Proof. As in the preceding proof, take open, compact (non-zero) subgroups KA ⊂ A and KB ⊂ B
and use Proposition 1.4.16 to calculate

modAB(x) =

´

AB
1KAKB (ab) dµAB(ab)

´

AB 1KAKB (x−1abx) dµAB(ab)
=

´

A
1KA(a) dµA(a)

´

B
1KB (b) dµB(b)

´

A 1KA(x−1ax) dµA(a)
´

B 1KB (x−1bx) dµB(b)
.

This evidently equals modA(x)modB(x).

The reason why we are interested in all of this is the following technical result that we will need
to prove the Geometric Lemma:

Theorem 2.5.4. Let P = MU and Q′ = N ′V ′ be standard parabolics in G. For w ∈ PWQ′ set
Q = wQ′w−1. This is a parabolic with Levi decomposition Q = NV = (wN ′w−1)(wV ′w−1) and
we have

δP · δQ · δM∩Q · δN∩P = δ2P∩Q

as characters of M ∩N .

Proof. Let us rewrite

δP · δQ · δM∩Q · δN∩P = modU ·modV ·modM∩V ·modN∩U

using the fact that M ∩Q is a parabolic subgroup of M with Levi decomposition (M ∩N) ·(M ∩V )
(see [Cas95], Proposition 1.3.3 (c)) and the analogous result for N ∩ P .
Now, citing the calculations in the second part of Part 6.4 of [BZ77], we can replace modU ·modV
by modU∩Q ·modV ∩P .
Therefore, using the Multiplicativity Lemma for the decompositions U ∩ Q = (U ∩ N) · (U ∩ V )
and V ∩ P = (V ∩ U) · (V ∩M) (which are stated as Proposition 2.8.6 in [Car93]), we have

δP · δQ · δM∩Q · δN∩P =
(

modU∩N ·modM∩V ·modU∩V

)2

.

But this is exactly what we want: According to Theorem 2.8.7 of [Car93], we have a decomposition
P ∩Q = X ·L with uniqueness, where L is reductive and X the largest normal unipotent subgroup.
Analyzing the proof, it is easy to see that all the prerequisites for the proof of Lemma 2.5.2 are
met (even if P ∩Q is not parabolic). We conclude

δP∩Q = modX .

Carter decomposes X as
(U ∩ V ) · (U ∩N) · (V ∩M)

with uniqueness. The multiplication maps

(U ∩ V )× (U ∩N) −→ U ∩Q and (U ∩Q)× (V ∩M) −→ (U ∩Q) · (V ∩M) ⊂ UM = P

are easily seen to be homeomorphisms and all occurring groups are closed and unimodular (except
for P , of course).
Applying two times the Multiplicativity Lemma, we can decompose

δP∩Q = modU∩V ·modU∩N ·modV ∩M

and we are done.

We need one more result:

Theorem 2.5.5. Let P = MU be a parabolic subgroup of a reductive p-adic group G. Then, as
characters of M , we have the identity

δP = δ−1

P
.
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Proof. Take any (non-zero) open, compact subgroupK ⊂ G that admits an Iwahori decomposition
with respect to P . Then, using the integration formula from p. 12 in [Art91] (it is written down
here as the first part of Proposition 2.5.1), we have

1 =

´

G
1K(g) dµG(g)

´

G
1K(g) dµG(g)

=

´

G
1K(g) dµG(g)

´

G
1K(x−1gx) dµG(g)

=

´

U 1K+(u) dµU (u)
´

M 1K0(m)δP (m) dµM (m)
´

U 1K−(u) dµU (u)
´

U
1K+(x−1ux) dµU (u)

´

M
1K0(x−1mx)δP (x−1mx) dµM (m)

´

U
1K−(x−1ux) dµU (u)

= modU (x) ·modU (x) = δP (x) · δP (x)

for x ∈M .

Remark 2.5.6. The proofs of these two theorems seem appropriate as they are totally self-
contained (except for the citation of the Bernstein-Zelevinskii paper, of course). But the author
does not want to conceal that there is a much more direct approach to these delta-factor compu-
tations (but this needs some Lie theory).
First of all, if P = MU is a parabolic subgroup of G, denote the corresponding Lie algebras by p,
m and u. Then, one can show

δP (m) =
∣

∣det
(

Adp(m)
)∣

∣

where Ad is the adjoint representation of P on p. As M acts trivially on m, we can write

δP (m) =
∣

∣det
(

Adm+u(m)
)∣

∣ =
∣

∣det
(

Adu(m)
)∣

∣.

If P = PΘ for some subset Θ of the simple roots ∆ ⊂ Σ+ (with respect to some Borel P∅), δP is
therefore uniquely characterized by the property that its restriction to AΘ equals

∏

α∈Σ+−Σ+
Θ

α|α|

where� AΘ is the connected component of the identity in ∩α∈Θ ker(α),� |α| is the dimension of the α-eigenspace gα in the Lie algebra of G,� Σ+ is the set of positive roots (with respect to the chosen Borel subgroup P∅) in a reduced
root system Σ,� Σ+

Θ is the subset of Σ+ of positive linear combinations of the roots in Θ.

Casselman calculates delta-factors using this characterization, the cited fact from [BZ77] is proved
in this way and it should be possible to prove the above theorems by calculating the representation
as a product over the roots.

2.5.3 Haar Measure with Values in Z[1
p
]

Definition 2.5.7. Let p be a prime number. A compact group K ′ is called a pro-p-group if the
number [K ′ : K] is a power of p for any open subgroup K ⊂ K ′.

Let G be a p-adic group. We have the following result by Vigneras:

Theorem 2.5.8. There exists a (left) Haar measure µG on G with µG(K) ∈ Z[ 1p ] for any open,

compact subgroup K ⊂ G if and only if there exists an open, compact pro-p-subgroup K ′ ⊂ G. If
this is the case, we can find such a measure with the additional normalization property µG(K ′) = 1.

Proof. See [Vig96], Theorem 2.4.
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Moreover, there is an analogue of Corollary 1.4.18:

Corollary 2.5.9. Let G be unimodular and such that Theorem 2.5.8 does hold. If U ⊂ G is a
closed, unimodular subgroup, then there exists a left invariant, positive measure µG/U on G/U

such that any open, compact subset has measure in Z[ 1p ].

Proof. This is Proposition 2.8 in [Vig96].

Lemma 2.5.10. In our case (G is a reductive p-adic group), there exists an open, compact pro-
p-subgroup.

Proof. See [MS09], Lemma 1.1.

One defines the modular character δG just as in Definition 1.4.7. We already mentioned that δG
takes only rational values. Surprisingly, we can encircle the possible values even better:

Remark 2.5.11. Take x ∈ G. We know that

δG(x) =
µG(x−1Kx)

µG(K)

for any open, compact subgroupK ⊂ G. Thus we can take K = K ′ and read off that δG(x) ∈ Z[ 1p ].

But, as δG(x) is invertible (with inverse δG(x−1)), we indeed have δG(x) = ±pn for some n ∈ Z.

Now, let k be a field in which the number p =
∑p
i=1 1 does not equal 0 and moreover there is a

q ∈ k such that q2 = p. We will abbreviate this condition as “p is a non-zero square in k”. The
examples we have in mind are k = C,Q` and F`, where we need ` 6= p in the last case.
We have a mapping

ı : Z

[

1

p

]

−→ k

which is injective if and only if char(k) = 0. Thus, we can talk about a k-valued Haar measure
on G and, consequently, we can integrate smooth, compactly supported functions ϕ : G −→ k. It
is clear that all identities and formulae involving measures, integrals or modular characters carry
over. For example, it is easy to see that Fubini’s theorem does hold. From now on, if we are
talking about k-valued representations and ask the reader to fix some Haar measure, we always
mean with values in k.
In contrast to the C-valued case, it may well happen that an open, compact subgroup has mea-
sure 0. We remark this because many of our proofs will rely on the fact that we have arbitrary
small open, compact subgroups K such that� µG(K) 6= 0,� µA(A ∩K) 6= 0 for any closed subgroup A ⊂ G with k-valued Haar measure µA.

As pro-p-subgroups always have measure ±pn with n ∈ Z (this follows immediately from Theorem
2.5.8), we can luckily handle these needs using

Proposition 2.5.12. Let G be a reductive p-adic group, P = MU ⊂ G a parabolic subgroup.

(i) The set

KP (G) =
{

K ⊂ G
∣

∣

∣

K is an open, compact pro-p-subgroup such that K admits an Iwahori decomposition
with respect to P and there is a strictly dominant element with respect to P and K

}

is a neighborhood basis of 1 ∈ G. For K ∈KP (G), all constituents in the Iwahori decompo-
sition

K = K+K0K−

are pro-p-groups.
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(ii) The set
K (G) = {K ⊂ G | K is an open, compact pro-p-subgroup }

is a neighborhood basis of 1 ∈ G. Consequently, the set

K (H) = {K ⊂ H | K is an open, compact pro-p-subgroup }

is a neighborhood basis of 1 ∈ H if H ⊂ G is a closed subgroup.

(iii) K ∈K (G) ⇒ gKg−1 ∈K (G) for any g ∈ G.

(iv) Let K ∈ KP (G) with strictly dominant element λ. Then the set

{λ−mK+λm | m ∈ N }

is a neighborhood basis for 1 ∈ U .

(v)

U =
⋃

K∈K (U)

K

(vi) Any closed subgroup of a pro-p-group is again a pro-p-group.

Proof. (i): Let X ⊂ G be open. Our task is to find a K ∈KP (G) that is contained in X . But this
means putting together Lemma 2.5.10 and Theorem 2.3.4: Take an open, compact pro-p-subgroup
K ′. Then X ∩K ′ is open, consequently we find an open, compact K ⊂ X ∩K ′ with the desired
properties. K is closed in G, hence in K ′, and closed subgroups of a pro-p-group are again closed
(this is stated for example on p. 139 in [PR94]).
As U ⊂ G is closed, K+ = K ∩ U is closed in K, therefore the same argument yields the second
statement, analogous for K0 and K−.
(ii): Because KP (G) ⊂ K (G) for any parabolic subgroup P , the first claim is obvious. The second
statement follows from this and some very basic topological considerations.
(iii): This follows from the basic observation that for subgroups J ≤ H ≤ G and an element g ∈ G
we have

[H : J ] = [gHg−1 : gJg−1].

(iv): As Bernstein states in the proof of Lemma 5.2 in [Ber87], the λ−mK+λm ⊂ U get arbitrary
small. As they are closed in K, the claim follows from this observation.
(v): This is stated in the proof of Proposition 2.3 in [HW08].
(vi): We already used this fact and gave a reference.

The condition that p has a square root is needed because we will have to twist some of our

representations with the character δ
1
2

P or δ
− 1

2

P . According to Remark 2.5.11, we have to choose a
square root of p in order to give sense to these symbols.
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Chapter 3

Representation Theory of p-adic

Groups

Here we will treat the standard facts of the representation theory of p-adic groups. There are
good references for this chapter, my favourite is [BH06], from where we took various arguments.
Classics are [BZ76], [BZ77] and [Cas95].

3.1 Definitions and Properties

If one wants to investigate a group G, it is often useful to consider a concrete realization of G (or
one of its quotients) as a matrix group over some (usually algebraically closed) field k. Recall

Definition 3.1.1 (G-Representation). AG-representation (π, V ) consists of an k-vector space V
and a group homomorphism

π : G −→ GL(V ),

where we abbreviate gv = π(g)v.

If V ∼= kn, we talk about (π, V ) as an n-dimensional representation. The arrows onG-representations
are the following:

Definition 3.1.2 (G-Intertwiner). Let (π, V ) and (ρ,W ) be two G-representations. Then a
linear map

τ : V −→W

is called a G-intertwiner if τ(gv) = gτ(v) for all v ∈ V , g ∈ G.
The set of these maps is called HomG(V,W ).

Later on, we will suppress the symbol π in most situations and talk about a G-representation V .
Recall that a representation is called irreducible if there is no G-invariant subspace in V . This
means that we cannot find a subspace W ⊂ V such that

∑

i∈I giwi ∈W for any finite index set I
with gi ∈ G,wi ∈ W .
Group representations are of great importance in many areas, as they make other methods than
group theory applicable, for instance, linear algebra. But, besides the case where G is finite,
these objects are too general to be accessible. Therefore, one is led to impose certain smoothness
restrictions on π. In our situation (G is a reductive p-adic group, or, more general, an `-group),
the suitable concept of smoothness turns out to be the following:

Definition 3.1.3. A representation (π, V ) of G is called smooth if

V =
⋃

K

V K
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where K ranges over all open, compact subgroups of G and

V K = {v ∈ V | kv = v for allk ∈ K}

denotes the subspace of K-invariant vectors.1 Denote the associated category by G-Repk and
abbreviate G-Rep = G-RepC.

It is easily seen that a subquotient of a smooth representation (taken in the category of all represen-
tations) is smooth. To an arbitrary representation we can associate a smooth subrepresentation:

Definition 3.1.4 (Smoothening). Let (π, V ) be a G-representation, then define the smooth
part of V as

V∞ :=
⋃

K

V K

whereK ranges over the open, compact subgroups. This defines a smooth representation (π∞, V∞)
of G. Any v ∈ V∞ is called a smooth vector of V .

It is not hard to see that the process of smoothening is left exact. Moreover, we have

Proposition 3.1.5. Let V,W be G-representations, V be smooth. Then

HomG(V,W ) = HomG(V,W∞).

Proof. “⊃” is obvious.
Now, take a G-intertwiner τ out of the left Hom-set. If K is an open, compact subgroup of G and
v ∈ V K , we have

τ(v) = τ(kv) = kτ(v) for all k ∈ K.

Hence τ(V K) ⊂WK . But this says

im(τ) = τ
(

⋃

K

V K
)

⊂
⋃

K

WK = W∞.

Definition 3.1.6. A smooth representation (π, V ) is called admissible if each V K is finite-
dimensional.

One very desirable feature of a representation is semisimplicity, which we want to define as follows

Definition 3.1.7. If K ⊂ G is a subgroup, a G-representation (π, V ) is said to be K-semisimple
if V is the sum of its irreducible subspaces (as a representation of K). In the case K = G we
simply say semisimple. A representation category is semisimple if every object is.

Example 3.1.8. Let K be open and compact, then any smooth G-representation over C is K-
semisimple, see [BH06] Lemma 2.2. In particular, G-Rep is semisimple for G compact.

If V is a vector space, we can form the dual V ∗. If V carries a G-representation, one can define a
G-representation on V ∗ by the rule

〈gv∗, v〉 := 〈v∗, g−1v〉.

One can show by counterexample that V ∗ need not to be smooth, even if V is. Therefore, one is
naturally led to consider

Definition 3.1.9 (Smooth Dual). Let (π, V ) be a representation of G, then we define the
smooth representation

(π̌, V̌ ) := ((π∗)∞, (V ∗)∞)

as the smooth dual2 of V .

1Observe that this is just an economic way of writing down the condition ∀v ∃K such that kv = v ∀k ∈ K.
2Some authors call this the contragredient representation.
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Lemma 3.1.10. A smooth G-representation (π, V ) over C is admissible if and only if V ∼= ˇ̌V .

Proof. See Proposition 2.9 in [BH06].

The next thing to mention is

Lemma 3.1.11 (Schur’s Lemma). Let (π, V ) be an irreducible smooth G-representation, where G
is assumed to be countable at infinity and k to be uncountable. Then HomG(V, V ) ∼= k.

Proof. Understand HomG(V, V ) as a division algebra over k. This is possible since any ϕ 6= 0 is
invertible because V is irreducible.
It is easy to deduce from the irreducibility of V and the countability at infinity of G the fact that
dimk(V ) is countable. Now fix any v0 ∈ V . As V is irreducible, ϕ is determined by the value it
assigns to v0. We conclude that HomG(V, V ) has countable dimension.
But then we are done: Assume that HomG(V, V ) is bigger than k. Then any element α ∈
HomG(V, V ) − k is transcendent over k (as we assumed k to be algebraically closed). But this
clashes with Corollary 2’ of [Ami56] which assures in this situation that the cardinal number of k
is not greater than dimk(HomG(V, V )).

Observe that this proves Schur’s lemma for smooth C- and Q`-valued representations, but not for
F`-valued ones.

3.2 Restriction and Induction

Let H be a closed subgroup of G, then there is a straightforward (and functorial) way of obtaining
an H-representation from a G-representation (π, V ). If V is smooth, it is clear that the obtained
representation is smooth as well.

Definition 3.2.1 (Restriction). Denote by

ResGH : G-Repk −→ H-Repk

the functor that assigns to (π, V ) the representation (π|H,V ) and to a G-intertwiner τ : V → W
itself.

Much more interesting is of course the other direction: Roughly speaking, a difficult group may
often possess subgroups whose representation theory we do understand to some extent. We want
to lift our knowledge (what means the representations) to G, and there is substantially one way:

Definition 3.2.2 (Induction). For an H-representation (π, V ) obtain the vector space

INDG
H(V ) := {f : G −→ V | f(hg) = hf(g) ∀h ∈ H, g ∈ G}

and observe that this defines a G-representation via

(

gf
)

(g′) := f(g′g).

This bare induction is almost useless since it respects smoothness by no means. Therefore, we do
what we usually do in such cases:

Definition 3.2.3 (Smooth Induction). Let (π, V ) be a (usually smooth) H-representation,
then define

IndGH(V ) := (INDG
H(V ))∞.

This defines a functor H-Repk → G-Repk acting on arrows simply as τ 7→ τ∗.

There is a slight modification:
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Definition 3.2.4 (Compact smooth Induction). Let (π, V ) be as above, then set

indGH(V ) := {f ∈ IndGH(V ) | f compactly supported modulo H}

where the condition means that supp(f) is contained in a compact set when projected onto H\G.

The basic properties of induction are summarized by the following theorem:

Theorem 3.2.5 (Properties). Let H ⊂ G and T ⊂ H be closed subgroups and set ∆ = δ−1
H δG.

Assume, k = C.

(i) Transitivity: IndGH ◦ IndHT
∼= IndGT , the same is true for ind.

(ii) IndGH and indGH are additive and exact functors H-Rep→ G-Rep.

(iii) If H\G is compact, IndGH = indGH and induction respects admissibility.

(iv) Frobenius Reciprocity: We have functorial isomorphisms:

HomG(V, IndGH(W )) ∼= HomH(ResGH(V ),W )

HomG(indGH(V ),W ) ∼= HomH(∆−1V,ResGH(W ))

(v) Duality: Understand ∆V̌ as the representation h : v̌ 7→ ∆(h) · hv̌ on the space V . Then

indGH(V )̌ ∼= IndGH(∆V̌ )

Proof. For (i) we give the maps

IndGH ◦ IndHT (V ) −→ IndGT (V ) ζ 7−→
(

g 7→ ζ(g)(1)
)

IndGT (V ) −→ IndGH ◦ IndHT (V ) ξ 7−→
(

g 7→
(

h 7→ ξ(hg)
)

)

.

It is not hard to check that they make sense and are inverse to each other.
(ii) is easily checked by hand, see [BH06] p. 18.
The first statement of (iii) is clear by definition, for the second, according to [BH06], we argue

like this: Take some open, compact subgroup K ⊂ G. We have to show that
(

IndGH(V )
)K

is
finite-dimensional. If ξ is an element of this space, it is clearly determined by its values on the set
Ω := {HgK}g∈G which is finite since H\G is compact.
Moreover, we know a bit about possible values of ξ: Let g ∈ G, then

ξ(g) = tξ(g) for all t ∈ Γg := H ∩ gKg−1.

Hence ξ(g) is an element of the finite-dimensional (since V is admissible) vector space V Γg .
We conclude

(

IndGH(V )
)K
⊂
⊕

ω∈Ω

V Γω .

The first equation of (iv) is verified like (i): We give the maps

HomG(V, IndGH(W )) −→ HomH(ResGH(V ),W ) : f 7−→
(

v 7→ f(v)(1)
)

HomH(ResGH(V ),W ) −→ HomG(V, IndGH(W )) : f 7−→
(

v 7→
(

g 7→ f(gv)
)

)

and observe that they are inverse to each other. For the second part we refer the reader to 2.29
in [BZ76]. The proof for (v) can be found as Theorem 3.5 in [BH06].

Remark 3.2.6. The assumption k = C is too strong. For a more general result, assume that G is
a reductive p-adic group and k is a field in which p is a non-zero square, then the theorem holds:
(i) is Section 5.3 in [Vig96], (ii) is 5.10, (iii) is 5.6, (iv) is 5.7 and (v) is 5.11.
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We will need the construction from part (v) in the sequel, therefore we introduce the following
notation:

Definition 3.2.7 (Character Twist). Let (π, V ) be a G-representation, χ a character of G,
then define the G-representation (χ~ π, V ) as follows:

g 7−→


V → V v 7→ χ(g)gv




In what follows, we will abbreviate this as χ ~ V . If both V and χ are smooth, it is clear that
χ~ V is smooth as well.
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3.3 The Hecke Algebra

It is a major feature of the representation theory of finite groups that representations of G over a
(suitable) field k are the same as modules over the group algebra kG. At first, this is nothing but
a matter of notation. But consequently it makes module theory applicable.
Of course, one can do the same in our context, but these modules correspond to arbitrary repre-
sentations. Since we are interested in smooth ones, we are led to replace kG by a more suitable
algebra.
For this section, we assume that G is unimodular and k = C. This is not necessary, because
virtually all can be generalized and we explain this in a remark at the end. These restrictions
allow us to cite common references and help avoiding technical issues which the author considers
pointless at the moment because we do not need these results in the sequel.
Again, our exposition is inspired by [BH06], from where we adopt some arguments.

3.3.1 Definitions

Definition 3.3.1 (Hecke Algebra). Let G be a unimodular `-group, then define

H(G) := {f : G −→ C | f locally constant and supp(f) compact}.

It is clear that the elements of H(G) are measurable with respect to some Haar measure µG on G.
Define the convolution

∗ : H(G)×H(G) −→ H(G) (f, g) 7−→


x 7→

ˆ

G

f(γ)g(γ−1x) dµG(γ)


.

∗ is associative, as can readily be checked. Moreover, H(G) is a C-vector space via (λf + g)(γ) =
λf(γ) + g(γ).

Clearly the definition of the convolution (and, hence, the definition ofH(G)) depends on the choice
of Haar measure. But it is not hard to see that two different choices give rise to isomorphic Hecke
algebras.

Example 3.3.2. For any G equipped with the discrete topology,H(G) ∼= CG via f ↔
∑

G f(g)·g.

The following proposition exhibits some of the basic properties of the convolution:

Proposition 3.3.3. (i) (f ∗ g)(1) = (g ∗ f)(1).

(ii) (f ∗ g)† = g† ∗ f † where f † denotes the function that maps x to f(x−1).

(iii) f ∗ g = f ∗ g for f(x) := f(x) – the complex conjugate.

(iv) (f + f ′) ∗ g = f ∗ g + f ′ ∗ g and f ∗ (g + g′) = f ∗ g + f ∗ g′.

Proof. (i):

(f ∗ g)(1) =

ˆ

G

f(γ)g(γ−1) dµG(γ) =

ˆ

G

f(γ−1)g(γ) dµG(γ) =

ˆ

G

g(γ)f(γ−1) dµG(γ) = (g ∗ f)(1)

(ii):

(f ∗ g)†(x) =

ˆ

G

f(γ)g(γ−1x−1) dµG(γ) =

ˆ

G

f(x−1γ)g(γ−1) dµG(γ) = (g† ∗ f †)(x)

(iii) and (iv) are obvious when writing down the claim.

Now, for S an open, compact subset of G, denote by eS the characteristic function of S normalized
so that

´

G eS(γ) dµG(γ) = 1. eS is clearly an element of the Hecke algebra, and if S = K is a
subgroup of G, we have eK(kg) = eK(gk) = eK(g) for g ∈ G, k ∈ K.
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Proposition 3.3.4. Let K ⊂ G be an open, compact subgroup. Then eK ∗ f = f if and only if
f(kg) = f(g) for all k ∈ K, g ∈ G.

Proof. “⇐” is easy:

eK ∗ f(g) =

ˆ

G

eK(γ)f(γ−1g) dµG(γ) =
1

µG(K)

ˆ

K

f(γ−1g) dµG(γ) =
f(g)

µG(K)

ˆ

K

1 dµG(γ).

For the other direction, write

f(g) = eK ∗ f(g) =

ˆ

G

eK(γ)f(γ−1g) dµG(γ)

and observe that this coincides with

f(kg) = eK ∗ f(kg) =

ˆ

G

eK(γ)f(γ−1kg) dµG(γ) =

ˆ

G

eK(kγ)f(γ−1g) dµG(γ).

Corollary 3.3.5. eK is idempotent: eK ∗ eK = eK.

Definition 3.3.6 (Hecke Algebra with respect to K). Let K ⊂ G be an open, compact
subgroup, then define the subalgebra

H(G//K) := eK ∗ H(G) ∗ eK .

Proposition 3.3.7. Let K run through all open, compact subgroups of G, then we have

H(G) =
⋃

K

H(G//K).

Proof. All we have to show is this: Let f be inH(G), then we find some open, compact subgroupK
such that f(kg) = f(g) for all k ∈ K, g ∈ G. This is enough, since then we can argue in the same
manner to get some K ′ with f(gk′) = f(g), and we find that f ∈ H(G//K ′′) for some open,
compact subgroup K ′′ contained in K ∩K ′.
Since f is locally constant, we find for every g in the support some open neighborhood and hence
an open, compact subgroup Kg such that f(Kgg) = f(g).
The support of f is compact, hence we find a finite subset Γ of G such that

supp(f) ⊂
⋃

Γ

Kγγ.

Take K to be an open, compact subgroup contained in the open neighborhood
⋂

ΓKγ of 1.
Let us now calculate f(kg) for g ∈ G, k ∈ K. We will, moreover, assume that g is in the support
of f . Then we have g = k′γ for a k′ ∈ Kγ . Hence kg = kk′γ with kk′ ∈ Kγ . This yields
f(g) = f(kg) = f(γ). Indeed, it shows that kg is in the support of f .
Doing the same with kg and k−1(kg) tells us that g is in the support if and only if kg is, hence
f(g) = f(kg) = 0 if g is not in the support.

Remark 3.3.8. Proposition 3.3.4 and its obvious right version tell us that some element f of the
Hecke algebra is contained in H(G//K) precisely if f(KgK) = f(g) for all g ∈ G.
Moreover, eK is the unit in H(G//K). This is remarkable since H(G) itself is by no means unital.
Indeed, H(G) is what one calls an idempotented algebra: For every finite subset z there is
some idempotent ez such that

ez ∗ f = f ∗ ez for all f ∈ z.

For H(G) take K to be an open, compact subgroup with z ⊂ H(G//K). Such a K exists, see
Proposition 3.3.7. Then clearly ez = eK works.
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3.3.2 Equivalence of Categories

Definition 3.3.9 (Non-degenerate Module). Let A be an idempotented algebra, then an
A-module M is called non-degenerate if

AM = M.

Denote the subcategory of non-degenerate modules by A-mod.

Proposition 3.3.10. An H(G)-module M is non-degenerate if and only if for any m ∈ M we
find some open, compact subgroup K such that eKm = m.

Proof. Let m be an element of the non-degenerate module M , then we find f ∈ H(G) and n ∈M
such that fn = m.
Since H(G) =

⋃

K H(G//K), there is some open, compact subgroup K and some f̃ with

eK ∗ f̃ ∗ eK = f . Then we have
eK ∗ f̃ ∗ eK · n = m

and therefore m is clearly invariant under multiplication by eK .
The other way is clear: If eK leaves m fixed, m is obviously contained in H(G)M .

Now we want to establish an equivalence of categories G-Rep ∼ H(G)-mod.
In order to do so, we need

Definition 3.3.11. Let (π, V ) be a smooth G-representation and f an element of the Hecke
algebra of G. Then set

fv :=

ˆ

G

f(γ) · γv dµG(γ) ∈ V

where µG denotes the same Haar measure we are using for convolution in H(G). The function
g 7→ f(g) · gv is locally constant and compactly supported, hence integrable.

Now we can define the first direction

Definition/Lemma 3.3.12 (FunctorG-Rep→ H(G)-mod). Let (π, V ) be a smoothG-representation.
Then V carries the structure of an H(G)-module via f · v = fv.
Moreover, if (ρ,W ) is another such representation, any G-intertwiner τ : V → W is at the same
time an H(G)-module homomorphism.

Proof. That (f ∗ f ′)v = f(f ′v) is a straightforward calculation using Fubini’s Theorem. Since v
is smooth, there is some K leaving v fixed. This implies eKv = v, and Proposition 3.3.10 yields
that V is non-degenerate.
For the statement about the morphisms we have to understand fv better: Take an open subgroup
K1 with f(gK1) = f(g) and K2 with K2v = v. Then for any open, compact subgroup K of G
contained in K1 ∩K2 we find that

fv =

ˆ

G

f(γ) · γv dµG(γ) = µG(K)
∑

γ∈G\K

f(γ) · γv. (3.1)

This sum is finite since f is compactly supported. Hence

τ(fv) = τ
(

µG(K)
∑

γ∈G\K

f(γ) · γv
)

= µG(K)
∑

γ∈G\K

f(γ) · γτ(v) = f
(

τ(v)
)

.

Definition/Lemma 3.3.13 (Functor H(G)-mod→ G-Rep). Let M be a non-degenerate H(G)-
module. We have to equip the vector space M with a G-action. For this, take m ∈ M , then we
find some open, compact subgroup K with eKm = m.
Let λg denote the left shift operator on H(G): λg(f)(x) = f(g−1x). Define

gm := λg(eK)m.

This makes M into a smooth G-representation. Moreover, H(G)-module morphisms are at the
same time G-intertwiners.
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Proof. First of all, we should check that this is well-defined. This means, for two K,K ′ with
eKm = eK′m we should have λg(eK)m = λg(eK′)m. To see this, we calculate for f, f ′ ∈ H(G):

(

λg(f)∗f ′
)

(t) =

ˆ

G

f(g−1γ)f ′(γ−1t) dµG(γ) =

ˆ

G

f(γ)f ′(γ−1g−1t) dµG(γ) = λg
(

f ∗f ′
)

(t) (3.2)

Knowing this, take some open, compact subgroup Γ ⊂ K ∩ K ′ and calculate using Proposition
3.3.4:

λg(eK)m = λg(eK)(eΓm) =
(

λg(eK) ∗ eΓ
)

m = λg
(

eK ∗ eΓ
)

m

= λg
(

eΓ ∗ eK
)

m =
(

λg(eΓ) ∗ eK
)

m = λg(eΓ)(eKm) = λg(eΓ)m.

The same calculation applies to λg(eK′)m, hence the G-action is well-defined.
Now we have to check that (gh)m = g(hm) holds. For this take hm = λh(eK)m and fix some K ′

with eK′λh(eK)m = λh(eK)m. We have to verify

λgh(eK)m = λg(eK′)λh(eK)m. (3.3)

For this, take Ξ to be some open, compact subgroup contained in K ′ ∩ K ∩ hKh−1 ∩ h−1Kh.
Proposition 3.3.4 then yields

λh(eK) ∗ eΞ = λh(eK) = eΞ ∗ λh(eK).

Moreover, since Ξ ⊂ K, we have m = eΞm. Applying (3.2) to the left hand side of (3.3) we get

λgh(eK)m = λg(λh(eK))m = λg(eΞ ∗ λh(eK))m =
(

λg(eΞ) ∗ λh
)

(eK)m

and to the right hand side
(

λg(eK′) ∗ λh(eK)
)

m = λg
(

eK′ ∗ λh(eK)
)

m = λg
(

eK′ ∗ λh(eK) ∗ eΞ
)

m

= λg
(

eΞ ∗ eK′ ∗ λh(eK)
)

m =
(

λg(eΞ) ∗ eK′ ∗ λh(eK)
)

m

and the claim follows.
Smoothness is obvious: Take some K with eKm = m, then for all k ∈ K we have

km = λk(eK)m = eKm = m.

The statement about morphisms is not much harder: Applying an algebra homomorphism τ to
gm yields τ(λg(eK)m) = λg(eK)τ(m).

Observation 3.3.14. The process G-Rep→ H(G)-mod→ G-Rep equals idG-Rep:
Concerning the arrows, this is clear since none of our functors touches them.
Let us check this for some object (π, V ). Equip V with the module structure. Take some v ∈ V
and let K be in its (representation-theoretic) stabilizer, then clearly eKv = v. Hence

gv = λg(eK)v =

ˆ

G

eK(g−1γ)γv dµG(γ) =

ˆ

G

eK(γ)gγv dµG(γ) =
1

µG(K)

ˆ

K

gv dµG(γ)

what clearly equals the original action.

Observation 3.3.15. The process H(G)-mod→ G-Rep→ H(G)-mod equals idH(G)-mod:
Again, we do not have to talk about arrows.
Let M be a non-degenerate module over H(G). Make it into a smooth G-representation and equip
it with the associated H(G)-module structure. We have to show that it coincides with the original
structure. It clearly suffices to consider f = λg(eK) for g ∈ G and an open, compact subgroup
K ⊂ G with the property eKm = m. But then it is easy to check

ˆ

G

λg(eK)(γ)γm dµG(γ) =

ˆ

G

eK(g−1γ)eK(γ−1 )m dµG(γ)

=

ˆ

G

eK(γ)eK(γ−1g−1 )m dµG(γ) = λg(eK)m.
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These observations tell us

Corollary 3.3.16. The categories G-Rep and H(G)-mod are isomorphic. In particular, they are
equivalent.

3.3.3 H(G//K)-Modules

Now, we want to examine modules over H(G//K) for an open, compact subgroup K ⊂ G. The
biggest difference between H(G//K) and H(G) is the existence of a unit eK :

Observation 3.3.17. All H(G//K)-modules are non-degenerate.

Recall that for a (smooth) G-representation (π, V ) we denote by V K the space of K-invariant
vectors.

Proposition 3.3.18. Let (π, V ) be a smooth G-representation, then V K carries the structure of
an H(G//K)-module. If V is irreducible, then V K either vanishes or is simple.

Proof. First take V as an H(G)-module, then eKV clearly is an H(G//K)-module. We have to
prove that eKV coincides with V K . This is seen like this: eKV ⊂ V K follows immediately from
the definition:

eKv =

ˆ

K

γv dµG(γ)

for any v ∈ V . On the other hand, eKv equals v for v ∈ V K , what yields the opposite inclusion.
Now let V be irreducible. Suppose V K 6= 0. Let W be a non-zero submodule of V K , then H(G)W
is a submodule of V . Since V is irreducible, we have H(G)W = V . But this means

V K = eKV = eK
(

H(G)W
)

= (eK ∗ H(G) ∗ eK)W = H(G//K)W = W

proving the second statement.

We can state

Corollary 3.3.19. V is irreducible if and only if for every open, compact subgroup K ⊂ G the
module V K is either simple or zero.

Proof. One direction follows from the proposition. For the other direction we refer the reader to
the brief argument in Chapter 4.3 of [BH06].

Moreover, we see that H(G//K) allows just the modules we are interested in:

Lemma 3.3.20. Every simple H(G//K)-module occurs as V K for one (and, up to isomorphism,
only one) irreducible G-representation V .

Proof. See Proposition 4.3 in [BH06].

Corollary 3.3.21. Two irreducible G-representations V and W are isomorphic if and only if
there is an open, compact subgroup K such that V K ∼= WK 6= 0.

Another way to put this down is:

Corollary 3.3.22. Take an open, compact subgroup K ⊂ G, then:
{

irreducible smooth

G-representations with a K-fixed vector

}

/Iso

1:1
←→

{

simple H(G//K)-modules
}

/Iso

Remark 3.3.23. Since {K ⊂ G |K is an open, compact subgroup} forms an inductive system,
H(G//K)-mod forms a projective system in CAT. A simple consideration then shows

H(G)-mod = lim
−→
H(G//K)-mod.
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Remark 3.3.24. We give the general remark that the definition of the Hecke algebra is not
limited to the case that G is unimodular. Most of the results in this chapter carry over to the
general case, sometimes with an additional modular character in the formula. The reader may
have a look at chapter I.3 of [Vig96] or the article [How02].
Moreover, the restriction k = C can be weakened. The right condition for k is that G contains
an open, compact subgroup with pro-order invertible in k, see [Vig96]. A suitable definition for
a Hecke algebra Hk(G) whose elements are k-valued is then straight-forward and the convolution
can be constructed in the obvious way: Because of Theorem 2.4 in [Vig96] we have a suitable
Haar measure. This gives rise to a Haar integral, allowing us to define the convolution as in the
complex case. For example, Vigneras then shows in Theorem 4.4 of [Vig96] that the categories
G-Repk and Hk(G)-mod are equivalent.
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3.4 Parabolic Induction and Jacquet Restriction

Let G be a reductive p-adic group and let k be a field in which p is a non-zero square. We define
the main tools for the investigation of smooth representations:

Definition 3.4.1 (Parabolic Induction Functor). Let P = MU ⊂ G be a parabolic subgroup,
then we define the functor

iGP : M -Repk −→ G-Repk

by firstly extending an M -representation (π, V ) trivially across U : p = mu acts on v as pv := mv,
then inducing the obtained representation of P up to G. Observe that Iwasawa’s decomposition
tells us that it does not matter whether we induce compactly or not.

Definition 3.4.2 (Jacquet Restriction Functor). Let P = MU ⊂ G be as above, then we
define the functor

rGP : G-Repk −→M -Repk

as follows: Let (π, V ) be a G-representation, then set V (U) = 〈v − uv |u ∈ U, v ∈ V 〉 and define
rGP (V ) = V/V (U) – the space of coinvariants. This is the largest quotient of V on which U works
trivially. Since M normalizes U , rGP (V ) is an M -representation. Moreover, it is not hard to see
how this process may treat arrows.

There is a useful criterion whether a vector is contained in the space we mod out:

Lemma 3.4.3. Fix some Haar measure µU on U . Then v ∈ V is contained in V (U) precisely if
there is an open, compact pro-p-subgroup K ⊂ U such that

ˆ

K

kv dµU (k) = 0.

If char(k) = 0, we can drop the “pro-p” condition in the formulation.

Proof. One direction is easy: Let v =
∑

I vi − uivi ∈ V (U) and take K ∈ K (U) which contains
all ui, see Proposition 2.5.12 (v). Then

ˆ

K

kv dµU (k) =
∑

I

ˆ

K

kvi dµU (k)−

ˆ

K

kuivi dµU (k) = 0.

On the other hand, let v ∈ V be such that
´

K
kv dµU (k) vanishes for some K ∈ K (U). Define

K ′ to be the intersection of K with the stabilizer of v, then we can write

−1

[K : K ′]

∑

k∈K/K′

kv−v =

(

−1

µG(K)

ˆ

K

kv dµU (k)

)

−





−1

[K : K ′]

∑

k∈K/K′

v



 = 0−
−[K : K ′]

[K : K ′]
v = v.

The only reason why we took a pro-p-subgroup is that we certainly do not want [K : K ′] or
µG(K) to vanish. This cannot happen in the case that char(k) = 0, hence we can drop the
“pro-p” condition.

Remark 3.4.4. This usage of pro-p-groups is typical for our arguments in the sequel: We will
always take Ks in K (G), but in the case char(k) = 0 we could get along with the Ks just being
open, compact subgroups.

We state a first theorem, summarizing the basic properties of the functors defined:

Theorem 3.4.5. (1) Both rGP and iGP are exact and additive,

(2) Frobenius Reciprocity: rGP is left adjoint to iGP :

HomG(V, iGPW ) ∼= HomM (rGP V,W ) for V ∈ G -Repk,W ∈M -Repk,
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(3) iGP respects admissibility.

Proof. (1): Concerning iGP , this is clear as we know that IndGP is exact and additive and the same
is true about the process of inflating across U .
For rGP , right exactness is done by some diagram chasing. The tricky part is to show that for

V
τ
↪→W , the obtained arrow V/V (U)→W/W (U) is injective (or, in other words, that τ−1

(

W (U)
)

⊂
V (U)). For this, we may use the above characterization of V (U): Take a v ∈ V such that
τ(v) ∈ W (U). This means that 0 =

´

K kτ(v) = τ(
´

K kv) for some K. Injectivity of τ yields the
result. Additivity is clear.
(2): Frobenius Reciprocity can be derived from ordinary Frobenius Reciprocity:

HomG(V, iGPW ) ∼= HomP (ResGP V,W ) ∼= HomM (rGP V,W )

where the second isomorphism is seen like this: A P -intertwiner V
τ
→ W is taken to [v] 7→ τ(v).

This process is well-defined since W is trivially inflated from M . An M -intertwiner rGP V
ρ
→ W is

taken to v 7→ ρ([v]). This map intertwines with all of P since W is trivially inflated from M .
Now for (3): It goes without saying that inflating respects admissibility: To compute V K for
K ⊂ P open compact, remark that M ∩K is open in M . Hence there is some K ′ ⊂M ∩K open
and compact in M . Hence dim(V K) ≤ dim(V K

′

) <∞.
That induction up to G respects admissibility as well means putting together Iwasawa’s decom-
position and part (iii) of Proposition 3.2.5.

It is convenient to twist the induction and restriction a bit:

Definition 3.4.6 (Normalized induction and restriction). Take theM -character ∆ = δ−1
P δG,

then we may define functors between M -Repk and G -Repk as follows

iGP : V 7→ iGP (∆
1
2 ~ V ) and rGP : W 7→ ∆− 1

2 ~ rGP (W ).

This is a good idea since they fulfill the properties just established and additionally we have

Observation 3.4.7. iGP (V )ˇ= iGP (V̌ )

Proof. It is easily seen that (χ~ V )ˇ= χ−1
~ V̌ . Then Theorem 3.2.5 (v) yields

iGP (V )ˇ= indGP (∆
1
2~V )ˇ= indGP (∆~(∆

1
2~V )ˇ) = indGP (∆~∆− 1

2~V̌ ) = indGP (∆
1
2~V̌ ) = iGP (V̌ ).

As the reader may have observed, we could have used δ−1
P instead of ∆, because G is reductive,

hence unimodular. We gave the definition of ∆ because this is the right definition if we are working
with a non-unimodular group G. Moreover, this ∆ is standard in the literature.
For simplicity, we will use the symbol δ−1

P in the sequel.

3.5 On Exact Sequences

Proposition 3.5.1. Let τ : V −→W be an intertwining map between two smooth G-representations.
Let K ∈K (G), then

τ(V K) = τ(V ) ∩WK .

Proof. “⊆” is easy: Let v ∈ V K , then τ(v) ∈ τ(V ) and kτ(v) = τ(kv) = τ(v) for all k ∈ K.
Now for “⊇”: Take w ∈ τ(V )∩WK . Then we find a preimage v ∈ V that is mapped to w under τ .
Set

v0 =

ˆ

G

eK(γ) γv dµG(γ).

v0 lies in V K and is mapped to w:

τ(v0) =

ˆ

G

eK(γ) τ(γv) dµG(γ) =

ˆ

G

eK(γ) γτ(v) dµG(γ) =

ˆ

G

eK(γ) γw dµG(γ) = w.
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We can prove a useful criterion that allows us to decide whether a sequence of G-representations
is exact or not:

Lemma 3.5.2. Let V,W,X be smooth G-representations and J ⊂K (G) be a subset such that

W =
⋃

K∈J

WK .

Then, for a G-sequence

V
τ
−→W

ρ
−→ X

the following is equivalent:

(i) The sequence is exact at W ;

(ii) The related sequence of vector spaces

V K−→WK−→XK

is exact at WK for each K ∈J .

Proof. (i) ⇒ (ii):
Call the maps in the induced sequence τK and ρK . We have

w ∈ im(τK)⇒ w ∈ im(τ)⇒ w ∈ ker(ρ)⇒ w ∈ ker(ρK).

And
w ∈ ker(ρK)⇒ w ∈ ker(ρ)⇒ w ∈ im(τ),

but w ∈WK , hence w ∈ im(τK) because of the preceding proposition.
(ii) ⇒ (i):
Let w ∈ im(τ). Take a K ∈ J such that w ∈ WK . The proposition gives w ∈ im(τK). Hence
w ∈ ker(ρK), and this says w ∈ ker(ρ).
Let w ∈ ker(ρ) and take again a K ∈J such that w ∈WK . We have

w ∈ ker(ρK)⇒ w ∈ im(τK) ⊂ im(τ).
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Chapter 4

Bimodule Techniques

Let G be a reductive p-adic group and k be a field in which p is a non-zero square. Any smooth
G-representation can be understood as a G-module, that is, a module over the group ring kG. As
we remarked, it is usually of no avail to use this characterization, as an arbitrary G-module has
no reason to be smooth. This is why one defines the Hecke algebra as a substitute for kG.
We will go back and use the naive G-module point of view. We will develop Jacquet functors as
tensoring with certain bimodules. These functors restrict to the smooth categories.

We give the following general remark about the groups we are considering: As already said, we are
interested in the case where G is a reductive p-adic group. Nevertheless, many proofs will hold in
the more general setting where G is a closed subgroup of a reductive p-adic group. Observe that
such a subgroup does not have to be reductive or unimodular.
Moreover, we would like to remark that this restriction to closed subgroups is still too strong. There
are some definitions or proofs which work for general `-groups, at least if we assume char(k) = 0.
If the characteristic does not vanish, we would have to introduce another assumption on G in
order to have an invariant integral, see 3.3.24. But, as the methods will only be used for closed
subgroups, we restrict ourselves to this case and avoid technical and notational efforts from which,
at the end, we would not profit.

4.1 Definitions

We start with

Definition 4.1.1. Let X be an `-space and let G and H be `-groups. Assume, moreover, that
there are `-actions G y X x H . Define

D(X) = C ∞
c (X) =

{

ϕ : X −→ k
∣

∣ ϕ locally constant, supp(ϕ) compact
}

.

The first condition is called smoothness and the second compactness of support. We make
D(X) into a G-H-bimodule (that is short for kG-kH-bimodule) as follows:

λgϕµh =


x 7−→ λµϕ(g−1xh−1)


 for g ∈ G, h ∈ H,λ, µ ∈ k.

We will primarily be concerned with the following examples:� As G acts on itself via multiplication (from the left and from the right), we are provided
with a G-G-bimodule D(G).� Let U ⊂ G be a closed subgroup, M ⊂ G another closed subgroup which is contained in the
normalizer of U in G. Then D(G/U) is a G-M -bimodule.
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� The product space G×H is an `-space on which G acts from the left and H from the right.
This gives rise to a G-H-bimodule D(G×H).

We should introduce some more notation: If P ⊂ G is a subgroup, we may understand D(G) as
a G-G-bimodule. Or, say, as a G-P -bimodule. If we want to make clear what we mean, we put
subscripts like GD(G)G or GD(G)P .

There is a general principle: Assume we have a continuous and proper map between `-spaces

f : X −→ Y.

It is easy to see that f induces a map

f∗ : C∞
c (Y ) −→ C ∞

c (X) ϕ 7→


x 7→ ϕ(f(x))


 .

If now X and Y are acted on by G from the left and by H from the right and if f is equivariant
with respect to these actions, f∗ in fact defines a G-H-bimodule homomorphism D(Y ) −→ D(X).

We need one more general result about twisting with characters:

Proposition 4.1.2. (i) Assume we have a right G-module M , a left G-module N and a G-
character χ. Then we have the identity

M ~ χ⊗G N ∼= M ⊗G χ
−1
~N

where we abbreviate ⊗G for ⊗kG.

(ii) Consider the G-G-bimodule D(G). We have an isomorphism

χ~D(G) ∼= D(G) ~ χ−1

of G-G-bimodules.

Proof. The first claim is straightforward. For the second, we may observe that the assignment

ϕ 7−→


x 7→ χ(x−1)ϕ(x)




provides us with an isomorphism

D(G) ∼= χ~D(G) ~ χ.

4.2 Basic Properties

Throughout this chapter, G denotes a closed subgroup of a reductive p-adic group and µG some
fixed (left) Haar measure on G (with values in k).

We want to recall the definition of eK from our Hecke algebra chapter and disburden it from the
unimodularity assumption:

Definition 4.2.1 (Normalized Indicator Function). Let S ⊂ G be an open and compact
subset such that µG(S) 6= 0. Then define eS ∈ D(G) as

eS : g 7−→ µG(S)−1 · 1S(g).

Recall, moreover, that for any ϕ ∈ D(G) we find a K ∈K (G) such that

ϕ(kxk′) = ϕ(x) ∀x ∈ G, k, k′ ∈ K.

The following proposition deals with the G-module GD(G)G⊗GV , where V is a G-representation.
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Lemma 4.2.2 (Properties). Let V be a smooth G-representation.

(i) GD(G)G ⊗G V is a smooth G-representation, where G acts on the first factor from the left.

(ii) If v ∈ V and K,C ∈ K (G) such that Kv = v = Cv, we have

eK ⊗ v = eC ⊗ v.

(iii) If v ∈ V, g ∈ G and K ∈ K (G) is a subgroup such that Kv = v and Kgv = gv, we have

egK ⊗ v = δ−1
G (g) · eK ⊗ gv.

Proof. Part (i) follows easily from the definitions. Let us treat (ii):
Considering K ≥ K ∩ C ≤ C, the problem boils down to the special case that K is a subgroup
of C. As C ∈ K (G) and K is an open subgroup of C, we have m := [C : K] ∈ k×. Because δG
vanishes on compact subgroups, we can write

eC =
1

µG(C)
· 1C =

1

m

∑

x∈K\C

eKx

where the sum is taken over a set of representatives for K\C. Hence

eC ⊗ v =
1

m

∑

x∈K\C

eKx ⊗ v =
1

m

∑

x∈K\C

eKx⊗ v =
1

m

∑

x∈K\C

(

eK ⊗ xv
)

= eK ⊗ v.

Now for (iii): First of all, we should remark that we can always find such a K: We have a lot of
C’s fixing v alone, and we can simply take K = C ∩ gCg−1.
Since K and gKg−1 both fix gv, we can apply part (ii) and write

egK ⊗ v = δ−1
G (g)egKg−1 ⊗ gv = δ−1

G (g)eK ⊗ gv.

Our first serious result is

Lemma 4.2.3. Suppose that G is unimodular. Then, for a smooth G-representation V , we have
an isomorphism of G-modules

D(G) ⊗G V ∼= V.

Proof. The identification is given by

ϕ⊗ v 7−→

ˆ

G

ϕ(g)gv dµG(g).

It is straightforward to see that this is a well-defined G-module homomorphism. Surjectivity is
clear: If v ∈ V , take a K ∈K (G) fixing v, then eK ⊗ v is mapped to v.
Injectivity is seen like this: Let

∑

(ϕ,v) ϕ⊗ v be in the kernel. Then take a K ∈K (G) such that
ϕK = ϕ and Kv = v for all ϕ and v occurring in the sum.
Take a set of representatives Γ′ for G/K. Then

Γ := Γ′ ∩
(

⋃

ϕ

supp(ϕ)
)

is finite. For each ϕ we have then

ϕ =
∑

x∈Γ

1xK · ϕ(x)

ˆ

G

ϕ(g)gv dµG(g) =
∑

x∈Γ

µG(K)ϕ(x) · xv.
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Hence we can write

ϕ⊗ v =
∑

x∈Γ

1xK · ϕ(x) ⊗ v =
∑

x∈Γ

1xKx−1 ⊗ ϕ(x)xv =
∑

x∈Γ

exKx−1 ⊗ µG(K)ϕ(x)xv.

But, taking C =
⋂

Γ xKx
−1, we can use Lemma 4.2.2 (ii) to reduce this to

ϕ⊗ v =
∑

x∈Γ

eC ⊗ µG(K)ϕ(x)xv = eC ⊗
∑

x∈Γ

µG(K)ϕ(x)xv = eC ⊗

ˆ

G

ϕ(x)xv dµG(x).

But then we have
∑

(ϕ,v)

ϕ⊗ v = eC ⊗
∑

(ϕ,v)

ˆ

G

ϕ(g)gv dµG(g) = 0.

Remark 4.2.4. It is easy to give a generalization to the case that G is not unimodular:

(

D(G) ~ δ
− 1

2

G

)

⊗G
(

δ
1
2

G ~ V
)

∼= V

Carefully investigating the proof above, we see that the only obstacles are occurring delta-factors,
but luckily they eventually cancel because of the relation µG(K) = δG(x−1)µG(x−1Kx) we already
used in part (iii) of Lemma 4.2.2.

In the unimodular case, we immediately get

Corollary 4.2.5. Every element in D(G)⊗G V is of the form eK ⊗ v for a v ∈ V and a subgroup
K ∈K (G) such that Kv = v.

Proof. Any element in D(G) can be written as
∑

(ϕ,v) ϕ ⊗ v. Take v0 :=
´

G

∑

(ϕ,v) ϕ(g)gv and

K ∈K (G) a subgroup that fixes v0. Then both
∑

(ϕ,v) ϕ⊗v and eK⊗v0 are mapped to v0 under
the isomorphism of Lemma 4.2.3, hence

∑

(ϕ,v)

ϕ⊗ v = eK ⊗ v0.

Remark 4.2.6. We can understand D(G) as the regular representation in the following sense:
Any irreducible, smooth G-representation V occurs as a quotient of D(G). In order to see this,
let v ∈ V be an arbitrary, non-zero vector. Then the G-mapping

D(G) −→ D(G) ⊗G V ∼= V ϕ 7→ ϕ⊗ v

is surjective. Indeed, let w ∈ V . Then we can write w =
∑

G λggv. A pre-image is given by
∑

G λgeKg ∈ D(G), where K ∈K (G) is a subgroup fixing all gv for which λg 6= 0.

Remark 4.2.7. As Remark 4.2.4 and various other formulae in the sequel suggest, it may be a
good idea to include the delta factor in the notion D(G): Let ϕ be an element, then redefine

λgϕµh =


x 7−→ δ
1
2

G(gh−1)λµϕ(g−1xh−1)


 for g, h ∈ G, λ, µ ∈ k.

Depending on the context, this may seem more natural and lead to nicer formulae and calculations.
In this thesis, it would in fact make them more complicate and would provoke confusion at various
places. Therefore, we do not include the delta factor.
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4.3 Jacquet Restriction

Again, let G be a closed subgroup of a reductive p-adic group and k a field in which p is a non-zero
square. Moreover, fix a (left) Haar measure µG. We need a first technical result:

Proposition 4.3.1 (Integration is possible). Consider a continuous, proper `-group action
G y X on an `-space. Let ϕ ∈ D(X), x ∈ X. Then the integral

ˆ

G

ϕ(γx) dµG(γ)

exists.

Proof. By definition, the map

α : G×X −→ X ×X (g, x) 7→ (gx, x)

is proper (and continuous). For x ∈ X , consider the “restricted” map

αx : G× {x} −→ X × {x} (g, x) 7→ (gx, x).

Now αx is proper as well: Take C × {x} compact in X × {x} (and, hence, in X × X). Then
α−1

(

C × {x}
)

is compact in G×X . But

α−1
x

(

C × {x}
)

= α−1
(

C × {x}
)

∩ G× {x}

is compact in G× {x}. Moreover, αx is continuous:

G×X
α // X ×X

id×const.

��
G× {x}

ı

OO

αx

// X × {x}

Therefore, αx gives rise to a proper and continuous map

αx : G −→ X g 7→ gx.

According to our general principle, this gives rise to

C ∞
c (X)

α∗
x−→ C∞

c (G) ϕ 7→ ϕ( · x).

and all functions in the latter set are integrable.

We remark that obviously an analogous result does hold if G acts on X from the right or if we
take a right Haar measure.

Example 4.3.2. Let H be a closed subgroup of G, then the action

H y G g
h
7−→ hg

is proper.

Proof. We could apply part (a) of Lemma 3.1 in [Bil03] with A = {∗} – the one-point space. But
it is not hard to prove this fact directly:
Recall from Chapter 6 of [Mey01] that it suffices to give for any two points g and g′ ∈ G neigh-
borhoods Ug and Ug′ such that the set

{h ∈ H |hUg ∩ Ug′ 6= ∅} ⊂ H

is compact.
Take any open, compact subgroup K ⊂ G and set Ug = gK and Ug′ = g′K. Then we have

{h ∈ H |hUg ∩ Ug′ 6= ∅} = {h ∈ H | ∃k, k̃ ∈ K s. t. hgk = g′k̃} = H ∩ g′Kg−1.

As H is closed in G, this set is compact in H .
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From now on, assume that G reductive. Let P = MU ⊂ G be a parabolic subgroup and fix a
Haar measure µU on U . Considering D(G), we generate the “error submodule”

D(G)(U) = 〈ϕ− uϕ |ϕ ∈ D(G), u ∈ U〉.

Call the quotient of D(G) by this submodule U\D(G) and temporarily denote the projection
D(G)−→ U\D(G) by π. U\D(G) is known under the name (left) U -coinvariants.
Denote π(ϕ) as U [ϕ] for a ϕ ∈ D(G). We can express our crucial result about the quotient space
as follows:

Lemma 4.3.3. A ϕ ∈ D(G) vanishes under π precisely if

ˆ

U

ϕ(ug) dµU (u) = 0 ∀g ∈ G.

Proof. That no function in D(G)(U) survives this integration process is clear. The interesting
part is the other direction: Take a ϕ ∈ D(G) with

´

U
ϕ(u ) dµU (u) = 0.

We find a K ∈K (G) that fixes ϕ from the right, so let us have a look at the projections

G
π1 // // G/K

π2 // // U\G/K .

We fix a set of representatives Ω for G/K. For x ∈ Ω we introduce the following notation:

〈x〉 := {y ∈ Ω |ϕ(y) 6= 0, π2(x) = π2(y)}.

Then, take a subset Γ ⊂ Ω such that

Ω ∩ supp(ϕ) =
⊔

x∈Γ

〈x〉.

Clearly, Γ and all the 〈x〉 are finite (or can be chosen so, resp.).
Now, let us turn our attention to the functions

ξx : G −→ k g 7→

ˆ

U

1xK(ug) dµU (u).

for x ∈ G. Since UxK = UyK implies y ∈ UxK, we clearly have

x, y ∈ Ω, y ∈ 〈x〉 =⇒ ξx = ξy.

Moreover, supp(ξx) ⊂ UxK and the ξx are not zero (for example, ξx(x) = µU (xKx−1 ∩ U) 6= 0),
hence the set {ξx}x∈Γ is linearly independent in the k-vector space D(G). Then write

ϕ =
∑

x∈Ω

1xK · ϕ(x) =
∑

y∈Γ

∑

x∈〈y〉

1xK · ϕ(x)

and, hence,

0 =

ˆ

U

ϕ(u ) dµU (u) =
∑

y∈Γ

∑

x∈〈y〉

ξx · ϕ(x) =
∑

y∈Γ

ξy ·
∑

x∈〈y〉

ϕ(x).

But this means
∑

x∈〈y〉 ϕ(x) = 0 for all y ∈ Γ. Now, if y ∈ Γ, then for any x ∈ 〈y〉 there exists a
ux ∈ U such that uxxK = yK. Therefore we can write

ϕ =
∑

y∈Γ

∑

x∈〈y〉

1xK ·ϕ(x) =
∑

y∈Γ

∑

x∈〈y〉

(1xK − 1yK) ·ϕ(x) =
∑

y∈Γ

∑

x∈〈y〉

(

1xK ·ϕ(x)
)

−
(

1uxxK ·ϕ(x)
)

.
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Proposition 4.3.4 (Cut-off function). Let P = MU ⊂ G be a parabolic subgroup and denote
the projection G→ U\G by π. Then there exists a smooth κ : G→ k such that

(i) For any open and compact subset C ⊂ U\G, supp(κ) ∩ π−1(C) is open and compact in G.

(ii) For any g ∈ G, we have
´

U
κ(ug) dµU (u) = 1.

Proof. Take a subgroup K ∈ K (G). Moreover, fix a U -K-transversal Γ ⊂ G. This says
⊔

γ∈Γ UγK = G. Defining Ξ =
⋃

γ∈Γ γK, we have π(Ξ) = U\G. Define the smooth κ′ = 1Ξ.

Now, suppose we are given a C ⊂ U\G open and compact. Because π−1(π(γK)) = UγK is open,
we find that π(γK) itself is open. Hence, there is a finite Ω ⊂ Γ with C ⊂

⋃

γ∈Ω π(γK). Then

we have π−1(C) ⊂
⋃

Ω UγK. Hence π−1(C) ∩
⋃

Γ−Ω UγK = ∅. Hence π−1(C) ∩
⋃

Γ−Ω γK = ∅.
Then we have

supp(κ′) ∩ π−1(C) =
(

⋃

γ∈Γ

γK
)

∩ π−1(C) =
(

⋃

γ∈Ω

γK
)

∩ π−1(C).

The next step is to observe that U\G is Hausdorff as a quotient of a Hausdorff group by a
closed subgroup. Hence, C is closed as a consequence of being compact. Since the projection is
continuous, the same is true about π−1(C). Moreover, K is closed (as any open subgroup) and
compact, which implies that the finite union

⋃

γ∈Ω γK is closed and compact.

We subsume: supp(κ′) ∩ π−1(C) is the intersection of two closed sets, hence closed. Moreover, it
is a subset of the compact set

⋃

γ∈Ω γK. This proves its compactness, the openness is clear.
Now for the normalization: Take a g ∈ G, then we find a γ ∈ Γ such that UgK = UγK. We have

ˆ

U

κ′(ug) dµU (u) = µU (γKγ−1 ∩ U) 6= 0.

and we can normalize

κ(g) :=

(
ˆ

U

κ′(ug) dµU (u)

)−1

κ′(g).

This function is still smooth (as it is fixed by K from the right) and fulfills both conditions.

Again, let P = MU be a parabolic subgroup of G. Then, as M normalizes U , both U\D(G) and
D(U\G) carry an M -G-bimodule structure.

Theorem 4.3.5 (Identificaton with Jacquet Module). As M -G-bimodules, we have

U\D(G) ∼= δ−1
P ~D(U\G).

Proof. The proper identification is given by

U\D(G) 3 [ϕ] 7−→





[x] 7→

ˆ

U

ϕ(ux) dµU (u)





 ∈ δ−1
P ~D(U\G).

As one readily checks, this defines an M -G-bimodule homomorphism which is injective by Lemma
4.3.3. Now, let ψ be an element of δ−1

P ~D(U\G). Then, if κ denotes a U\G-cut-off function, we
get a preimage

x 7→ κ(x) · ψ([x])

whence our mapping is surjective.

As one would expect, there is an analogous statement if U acts from the right. We just have to
take the inverse δ-twist:

Theorem 4.3.6. As G-M -bimodules, we have

D(G)/U ∼= D(G/U)~ δP .
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Proof. The strategy is completely analogous to the one used in the theorem above.

Observe that we did not use deep structure theory stemming from the fact that P is a parabolic
subgroup. We simply used the properties that U ⊂ G is closed and that M normalizes U .
Therefore, we can state

Remark 4.3.7. Maintain the parabolic subgroup P = MU ⊂ G. Then the proof above is easily
modified to yield

U\D(P ) ∼= δ−1
P ~D(U\P )

and
D(P )/U ∼= D(P/U)~ δP .

Recall that we have an M -M -equivariant homeomorphism U\P ∼= M ∼= P/U . Hence, if we are
only interested in the M -M -bimodule structure, the first equation says

U\D(P ) ∼= δ−1
P ~D(M)

and the second one says
D(P )/U ∼= D(M)~ δP .

If D(G) is considered as a smooth G-representation (G acting from the left), it is clear from the
definition that

rGP (D(G)) = U\D(G).

The general case is most easily seen via the characterization rGP (V ) ∼= k⊗U V where V is a smooth
G-representation and k is understood as a trivial right U -module. Then we have

rGP (V ) = rGP (D(G) ⊗G V ) ∼= k ⊗U D(G) ⊗G V ∼= U\D(G) ⊗G V.

Taking into consideration the normalization, we end up with an M -module-isomorphism

rGP (V ) ∼= δ
1
2

P ~ U\D(G) ⊗G V ∼= δ
− 1

2

P ~D(U\G)⊗G V.

This characterization of the functor rGP is the main result of this section.

4.4 Parabolic Induction

Our task in this section is to establish an analogous result for parabolic induction. The argument
is due to R. Meyer, in fact we adapt Theorem 4.10 in [Mey04] to our situation.

Let G be a reductive p-adic group and H a closed subgroup. As usual, we are interested in the
k-valued representations, where k is a field in which p is a non-zero square. Fix a k-valued left
Haar measure µH . For a smooth H-representation V consider the G-intertwiner

GD(G)H ~ δ
−1
H ⊗H V

ηV
−→ indGH(V )

ϕ⊗ v 7−→





g 7→

ˆ

H

ϕ(g−1h)hv dµH(h)





 .

In fact, ηV can be understood as the V -component of a natural transformation

η : D(G)~ δ−1
H ⊗H

•
−→ indGH( ).

It is not hard to check that η is natural: Let τ : V →W be an H-intertwiner, then

ϕ⊗ v � ηV //
_

D(G)⊗τ

��



g 7→
´

H
ϕ(g−1h)hv dµH(h)





_

ind(τ)

��

ϕ⊗ τ(v) �
ηW

//

◦



g 7→ τ
(´

H ϕ(g−1h)hv dµH(h)
)

=
´

H ϕ(g−1h)hτ(v) dµH(h)




Now we can state:
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Proposition 4.4.1. Let X be a k-vector space. Then understand X as a representation of the
trivial group 1. We have an isomorphism of G-modules

D(G) ⊗k X ∼= indG1 (X).

Proof. The identification is given by

Ω: ϕ⊗ x 7−→
(

g 7→ ϕ(g−1)x
)

.

Observe that Ω equals ηX for H = 1, if we choose the Haar measure on H such that the “whole
group” has measure 1.
Ω is a G-module homomorphism. Let

∑

(ϕ,x) ϕ⊗ x be in the kernel. Then take an open, compact
subgroup K fixing all the ϕs and write

∑

(ϕ,x)

ϕ⊗ x =
∑

(ϕ,x)

∑

g∈K\G

1Kgϕ(g)⊗ x =
∑

g∈K\G

1Kg ⊗





∑

(ϕ,x)

ϕ(g)x



 = 0,

hence the map is injective. Surjectivity is even easier: If f ∈ ind(V ), then
∑

x∈X 1Ξ(x) ⊗ x is a
pre-image under Ω, where

Ξ(x) =

{

∅ if x = 0,

{g ∈ G | f(g−1) = x} if x 6= 0.

Let V be a smooth H-representation. We define an H-module homomorphism

Θ: D(H)⊗k kH ⊗k V −→ D(H) ⊗k V

ϕ⊗

(

∑

h

λhh

)

⊗ v 7−→
∑

h

δ−1
H (h)λhϕ( h−1)⊗ v − ϕ⊗

∑

h

λhhv.

We clearly have im(Θ) = 〈ϕ( h−1)δ−1
H (h)⊗ v − ϕ⊗ hv | ϕ ∈ D(H), h ∈ H, v ∈ V 〉. This gives

cok(Θ) ∼= D(H)~ δ−1
H ⊗H V ∼= V.

Lemma 4.4.2. Let X be a vector space, then η induces an isomorphism of G-modules

ηD(H)⊗kX : D(G)~ δ−1
H ⊗H D(H)⊗k X

∼
−→ indGH

(

D(H)⊗k X
)

.

Proof. It is not hard to check that the following diagram commutes:

D(G)~ δ−1
H ⊗H D(H)⊗k X

ηD(H)⊗kX // indGH
(

D(H)⊗k X
)

indGH
(

indH1 (X)
)

D(G)⊗k X indG1 (X)
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We start at the lower left corner with ϕ⊗ v. Take a K ∈ K (H) that fixes ϕ from the right:

ϕ⊗ eK ⊗ x
� ηD(H)⊗kX //



g 7→
( ´

H ϕ(g−1h)eK(h−1 ) dµH(h)
)

⊗ x




_

��


g 7→
[

h′ 7→
´

H
ϕ(g−1h)eK(h−1h′−1)xdµH(h) = ϕ((h′g)−1)x

]



ϕ⊗ x
_

OO

� //


g 7→ ϕ(g−1)x




_

OO

Now we are able to prove

Theorem 4.4.3 (Identification with Induction). Let H ⊂ G be a closed subgroup, V a smooth
H-representation, then we have an isomorphism of G-modules

D(G)~ δ−1
H ⊗H V ∼= indGH(V ).

Proof. We use the notation from above. We already know that the following diagram commutes:

D(G)~ δ−1
H ⊗H

(

D(H)⊗k kH ⊗k V
) D(G)~δ−1

H ⊗HΘ
// D(G) ~ δ−1

H ⊗H
(

D(H) ⊗k V
)

indGH
(

D(H)⊗k kH ⊗k V
)

indG
H (Θ)

// indGH
(

D(H)⊗k V
)

Hence
cok
(

D(G)~ δ−1
H ⊗H (Θ)

)

∼= cok
(

indGH(Θ)
)

.

But both functors are right-exact, hence preserve cokernels. As the cokernel of Θ is just V , the
result follows.

We are interested in the case where H = P = MU – a parabolic subgroup of a reductive p-adic
group G. If V is a smooth M -representation, the parabolic induction iGP (V ) is given by inflating
the M -action to a P -action on V and then inducing up to G. In our new language:

iGP (V ) = D(G)~ δ−1
P ⊗P V

where we consider V as a P -module via (mu) · v = mv.
This is not exactly what we want. We would like to relocate the inflation process away from V .
This can be achieved like this:

D(G) ~ δ−1
P ⊗P V = D(G) ~ δ−1

P ⊗P D(M)⊗M V = D(G) ~ δ−1
P ⊗P D(P )/U ~ δ

−1
P ⊗M V

= D(G)/U ~ δ
−1
P ⊗M V.

If we take into consideration the normalization, we can subsume

iGP (V ) = D(G)/U ~ δ
−1
P ⊗M V ∼= D(G/U)⊗M V,

iGP (V ) = D(G)/U ~ δ
− 1

2

P ⊗M V ∼= D(G/U)~ δ
1
2

P ⊗M V.
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4.5 Relating Twisted Products and Balanced Tensor Prod-

ucts

4.5.1 Generalizing Lemma 4.3.3 and Proposition 4.3.4

Let G be a closed subgroup of a reductive p-adic group. Consider an `-space X which is countable
at infinity and a proper `-action X x G. As usual, fix a left Haar measure µG on G with values
in k, where k is a field in which p is a non-zero square.
We say that X x G allows good decompositions if for each ϕ ∈ D(X) we find a decomposition

X =
⊔

i∈I

Ψi

into open, compact subsets Ψi ⊂ X such that� For each g ∈ G, i ∈ I, the set Ψig equals Ψj for some j ∈ I,� ϕ is constant on each Ψi,� For each i ∈ I we find an x′i ∈ X such that µG
(

{g ∈ G|x′ig ∈ Ψi}
)

6= 0.

Observe that the first property induces a G-action on the index set I.

Define the subspace

D(X)(G) = 〈ϕ− δG(g) · ϕ( g) |ϕ ∈ D(X), g ∈ G〉 ⊂ D(X).

Now we can use the proof of Lemma 4.3.3 in a more general setting:

Lemma 4.5.1. Consider a proper `-action X x G that allows good decompositions.
Then ϕ ∈ D(X) is contained in D(X)(G) precisely if

ˆ

G

ϕ(xγ) dµG(γ) = 0 ∀x ∈ X.

Proof. One direction is obvious: Each ϕ ∈ D(X)(G) is killed by this integration process.
For the other direction, take a ϕ that is killed by the integral. Fix a good decompositionX =

⊔

I Ψi

with respect to ϕ. For j ∈ I, define the set 〈j〉 = {i ∈ I |Ψi ·G = Ψj ·G}. Then I decomposes as

I =
⊔

j∈J

〈j〉

for a suitable subset J ⊂ I. For i ∈ I define the map

ξi : X 7→ k x 7→

ˆ

G

1Ψi(xγ) dµG(γ).

For each j ∈ J, i ∈ 〈j〉, fix a gi ∈ G such that Ψi = Ψj · gi. This yields ξi = δG(gi) · ξj :

δG(gi) · ξj = δG(gi) ·

ˆ

G

1Ψj (xγ) dµG(γ) = δG(gi) ·

ˆ

G

1Ψi·g
−1
i

(xγ) dµG(γ)

= δG(gi) ·

ˆ

G

1Ψi(xγgi) dµG(γ) =

ˆ

G

1Ψi(xγ) dµG(γ) = ξi.

Now fix a set of representatives {xi}i∈I ⊂ X for the decomposition X =
⊔

I Ψi. Write

ϕ =
∑

i∈I

ϕ(xi) · 1Ψi =
∑

j∈J

∑

i∈〈j〉

ϕ(xi) · 1Ψi .
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Therefore we have

0 =

ˆ

G

ϕ(xγ) dµG(γ) =
∑

j∈J

∑

i∈〈j〉

ϕ(xi) · ξi =
∑

j∈J

∑

i∈〈j〉

ϕ(xi)δG(gi) · ξj .

Observe that ξj is supported in Ψj ·G. Moreover, ξj does not vanish: Take a x′j delivered by the
third condition of the “good decomposition”-framework. Then we have

ξj(x
′
j) = µG

(

{g ∈ G |x′jg ∈ Ψj}
)

6= 0.

Hence the {ξj}j∈J are linearly independent in D(G) and we have

∑

i∈〈j〉

δG(gi)ϕ(xi) = 0

for all j ∈ J . We conclude

ϕ =
∑

j∈J

∑

i∈〈j〉

1Ψiϕ(xi) =
∑

j∈J

∑

i∈〈j〉

(

1Ψi− δG(gi) ·1Ψj

)

ϕ(xi) =
∑

i,j

1Ψiϕ(xi)− δG(gi) ·1Ψi( gi)ϕ(xi).

We introduce a general principle: Let X x G be an `-action. If the action is free and proper, the
projection map into the orbit space

X
π
−→ X/G

makes up a principal G-bundle and X/G is Hausdorff (see [Ell00]).
Moreover, we have

Theorem 4.5.2. X/G is an `-space.

Proof. As already said, X/G is Hausdorff. π is, as any bundle projection, an open and continuous
mapping. Take ξ ∈ X/G and fix a preimage x ∈ X under π. First of all, x has an open, compact
neighborhood Ux. π(Ux) is then an open, compact neighborhood of ξ, proving local compactness.
Now, let O ⊂ X/G be an open neighborhood of ξ. Then the open π−1(O) contains x, and we find
an open, compact U ⊂ π−1(O) containing x.
Then O ⊃ π(U) 3 ξ and π(U) is open and compact, whence X/G is totally disconnected.

Now we are ready for a generalization of Proposition 4.3.4:

Theorem 4.5.3 (Cut-off Function). Let X x G be a free and proper `-action. Denote the
projection X → X/G by the letter π. Then there is a cut-off function κ. This is a smooth function
X → k such that

(i) For any compact C ⊂ X/G, π−1(C) ∩ supp(κ) ⊂ X is compact,

(ii)
´

G
κ(xγ) dµG(γ) = 1 for all x ∈ X.

Proof. Take an open cover X/G =
⋃

I Ui such that the Ui admit local cross-sections. Because
X/G is an `-space, we find a compatible decomposition

X/G =
⊔

ω∈Ω

Oω

with all the Oω open and compact (see Lemma 2.1.12 (ii)).
Then we have π−1(Oω) ∼= Oω × G as an open subset of X . Let K ∈ K (G). Then π−1(Oω)
contains the open, compact subset Fω ∼= Oω ×K.
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Define the open set Ξ =
⋃

ΩFω and the smooth map κ′ = 1Ξ.
Now let C ⊂ X/G be compact. This implies

C ⊂
⋃

ω∈Γ

Oω and C ∩
(

⋃

ω/∈Γ

Oω
)

= ∅

for a finite subset Γ ⊂ Ω. But then

π−1(C) ⊂ π−1
(

⋃

ω∈Γ

Oω
)

and
π−1(C) ∩

(

⋃

ω/∈Γ

π−1(Oω)
)

= π−1(C) ∩
(

⋃

ω/∈Γ

Fω
)

= ∅.

Hence
π−1(C) ∩ supp(κ′) = π−1(C) ∩

(

⋃

ω∈Γ

Fω
)

is the section of an open and closed and an open, closed and compact set, hence open and compact.

Now for the normalization: Any x ∈ X induces a map

ξx : G −→ k γ 7→ κ′(x · γ).

As x = (o, g) ∈ Oω ×G for some ω ∈ Ω, o ∈ Oω and g ∈ G, ξx takes the form 1g−1K . We conclude
that we can form the integral

´

G
κ′(γx) dµG(γ) which equals µG(K) 6= 0.

Define our final cut-off as
κ : X −→ k x 7→ µG(K)−1κ′(x).

Obviously, κ is smooth and fulfills both conditions.

4.5.2 The Identification

Let X and G be as in the preceding section and consider an `-action X x G. Define the vector
space D(X)/G = D(X)/D(X)(G). Now we can prove

Theorem 4.5.4. Assume that the action of G on X is free and proper and allows good decompo-
sitions. Then we have an isomorphism of vector spaces

D(X)/G ∼= D(X/G).

Proof. Fix a left Haar measure µG on G. Then the identification is given by

[ϕ]
Θ
7−→





xG 7→

ˆ

G

ϕ(xγ) dµG(γ)





 .

Let [ϕ] ∈ D(X)/G. Let us first show that Θ([ϕ]) is smooth: Take a point xG ∈ X/G at which we
want to prove smoothness and fix a good decomposition X =

⊔

I Ψi with respect to ϕ. Then x is
contained in some Ψi. Because the projection π : X → X/G is an open map, ΨiG is open in X/G.
We claim that Θ([ϕ]) is constant on ΨiG. This is seen like this: Let yG, y′G ∈ ΨiG ⊂ X/G with
y, y′ ∈ Ψi. Then Θ([ϕ])(yG) =

´

G ϕ(yγ) dµG(γ) and Θ([ϕ])(y′G) =
´

G ϕ(y′γ) dµG(γ). Because
of the first condition of the “good decomposition”-framework, ϕ(yγ) = ϕ(y′γ) for any γ ∈ G and
the two integrals coincide.
The statement that Θ([ϕ]) is compactly supported is an easy consequence from the fact that π is
continuous.
Injectivity follows from Lemma 4.5.1. Surjectivity is seen like this: Let ψ ∈ D(X/G). Denote by
κ a cut-off function, then the assignment

ϕ : x 7→ κ(x)ϕ([x])

gives rise to a preimage [ϕ] under Θ.
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This section is devoted to two important applications of Theorem 4.5.4. We need some preparation:
From now on, consider two closed subgroups X and Y of some reductive p-adic group. The
cartesian product X × Y is an `-group and consequently D(X × Y ) is an X-Y -bimodule via

xζy = ζ(x−1 , y−1).

It is not hard to prove the following isomorphism of X-Y -bimodules:

Proposition 4.5.5.
D(X)⊗k D(Y ) ∼= D(X × Y )

Proof. The identification is given by

Θ: ϕ⊗ ψ 7−→


(x, y) 7→ f(x) · g(y)


 .

Θ(ϕ ⊗ ψ) is clearly smooth, and compactness of the support is Tychonoff’s theorem. Moreover,
this process preserves the bimodule structure.
Injectivity is observed like this: Let

∑

(ϕ,ψ) ϕ ⊗ ψ be in the kernel. Take a K fixing ϕ, an L
fixing ψ and write

∑

(ϕ,ψ)

ϕ⊗ ψ =
∑

(ϕ,ψ)

∑

x,y

1Kx · ϕ(x) ⊗ 1Ly · ψ(y) =
∑

x,y

1Kx ⊗ 1Ly ·
(

∑

(ϕ,ψ)

ϕ(x) · ψ(y)
)

= 0.

Concerning surjectivity, take a ζ ∈ D(X×Y ). Write supp(ζ) =
⋃

I Si for open subsets Si ⊂ X×Y
on which ζ is constant. Note that any open set in X × Y can be written as a union

⋃

J (Uj , Oj)
with open sets Uj ⊂ X,Oj ⊂ Y . Do this with all the Si, then we end up with

supp(ζ) =
⋃

B

(Uβ , Oβ)

for some index set B. By compactness of support, we find a finite Γ ⊂ B with

supp(ζ) =
⋃

Γ

(Uγ , Oγ).

Using the inclusion-exclusion principle, we can write

ζ =
∑

Γ

ζ(Uγ , Oγ) · 1(Uγ ,Oγ) −
∑

γ 6=γ′∈Γ

ζ(Uγ , Oγ) · 1(Uγ∩Uγ′ ,Oγ∩Oγ′ ) + . . .

But this provides us with a preimage

∑

Γ

ζ(Uγ , Oγ) · 1Uγ ⊗ 1Oγ −
∑

γ 6=γ′∈Γ

ζ(Uγ , Oγ) · 1Uγ∩Uγ′ ⊗ 1Oγ∩Oγ′ + . . .

In order to generalize this result, we need two more definitions:

Definition 4.5.6 (Twisted Product). Let X,Y be as above with closed subgroups A ⊂ X,B ⊂
Y . Moreover, assume that A and B (with the induced topology) are group-homeomorphic via
σ : A

∼
−→ B. Then we have an `-group action

X × Y x A via (x, y) • a = (xa, σ(a−1)y).

This action is continuous and we will call the quotient space by the name X ×
A=B

Y . Observe

that there is an obvious left X- and right Y -action on this space. Moreover, there is an obvious
continuous projection

π : X × Y −→ X ×
A=B

Y

and we will write [x, y] for the element π(x, y).
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These objects are in use in the theory of transformation groups, and we refer the reader to the
first two chapters of [Bre72] for a more detailed treatment. We need

Remark 4.5.7. As the action of A on X × Y is free and proper,1 we can use Theorem 4.5.2 to
show that X ×

A=B
Y is an `-space.

The next object we need is

Definition 4.5.8 (Balanced Tensor Product). Take a group isomorphism σ : A
∼
→ B, a right

A-module S and a left B-module T . Then we can equip T with an A-action via
(
∑

λaa)t :=
∑

λaσ(a)t. Call this left A-module T ′. Then define

S ⊗
A=B

T := S ⊗A T
′.

The reader should take notice of the dependence of this definition on σ. Therefore, one should use
this notion only if it is clear which homeomorphism is meant.

The first application of Theorem 4.5.4 is

Theorem 4.5.9. Let X,Y be closed subgroups of some reductive p-adic group, A ⊂ X and B ⊂ Y
closed subgroups with a group-homeomorphism A ∼= B. Then there is an isomorphism of X-Y -
bimodules

D(X)~ δ−1
A ⊗

A=B
D(Y ) ∼= D(X ×

A=B
Y ).

Proof. We know that the action of A on X×Y is free and proper. We have to show that it allows
good decompositions: Let ϕ ∈ D(X × Y ). Then we find K ∈ K (X) and L ∈ K (Y ) such that
ϕ(Kx, yL) = ϕ(x, y) for any x ∈ X, y ∈ Y . Observe, that µA

(

A ∩ x−1Kx∩ σ−1(yLy−1 ∩B)
)

6= 0
for x ∈ X, y ∈ Y . Therefore the decomposition

⊔

x∈K\X
y∈Y/L

(Kx, yL)

is good with respect to ϕ.
Hence we have an isomorphism

D(X × Y )/A ∼= D(X × Y/A).

Because of Proposition 4.5.5 we can write the first space as D(X)~ δ−1
A ⊗

A=B
D(Y ).

The second one equals D(X ×
A=B

Y ) by definition. We can write down an isomorphism explicitly:

D(X)~ δ−1
A ⊗

A=B
D(Y ) −→ D(X ×

A=B
Y ) ϕ⊗ψ 7−→





[x, y] 7→

ˆ

A

ϕ(xα) · ψ(σ(α−1)y) dµA(α)







This mapping is obviously equivariant with respect to the left X- and the right Y -action.

We come to the second example: Let G be a reductive p-adic group and P = MU ⊂ G be a
parabolic subgroup.

Proposition 4.5.10. The set

∆ =
{

(mu,mu′) ∈ P × P
∣

∣ m ∈M,u, u′ ∈ U
}

is a closed subgroup of P × P .

1This is part (a) of Lemma 3.1 in [Bil03].
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Proof. That ∆ is a subgroup of P × P follows easily from the fact that M normalizes U .
Consider the map f given by the composition

P × P −→ P × P −→ P (x, y) 7−→ (x, y−1) 7−→ xy−1.

As both maps are continuous by the definition of a topological group, f is continuous. It is clear
that ∆ is the pre-image of U under f , hence closed.

Theorem 4.5.11. The `-action

G×G x ∆ (g, g′) • (mu,mu′) = (gmu, u′−1m−1g′) (4.1)

is free and proper and allows good decompositions.

Proof. It is obvious that the action is free. As ∆ is a closed subgroup of G×G, the action

G×G x ∆ (g, g′) • (mu,mu′) = (gmu, g′mu′).

is proper. Hence the map
(

G×G
)

×∆ −→
(

G×G
)

×
(

G×G
)

(

(g, g′), (mu,mu′)
)

7−→
(

(g, g′), (gmu, g′mu′)
)

is proper. Call it β. Consider the map

(

G×G
)

×∆
α
−→

(

G×G
)

×∆
β
−→

(

G×G
)

×
(

G×G
) γ
−→

(

G×G
)

×
(

G×G
)

where α sends
(

(g, g′), (mu,mu′)
)

to
(

(g, g′−1), (mu,mu′)
)

and γ sends
(

(g, g′), (x, x′)
)

to
(

(g, g′−1), (x, x′−1)
)

. These maps are both homeomorphisms, therefore γ ◦β ◦α is proper and this
means that the action (4.1) is proper.
We show now that the action allows good decompositions: Fix a Π ∈ K (G ×G). Now let ϕ be
an element of D(G×G). Then there is an open, compact subgroup K ⊂ G such that (K,K) ⊂ Π
and ϕ(Kx, yK) = ϕ(x, y) for any two x, y ∈ G. Take as decomposition

G =
⊔

x∈K\G
y∈G/K

(Kx, yK).

Then we have

∆x,y :=
{

δ ∈ ∆ | (x, y)δ ∈ (Kx, yK)
}

= ∆ ∩
(

x−1Kx ∩ P, yKy−1 ∩ P
)

.

Now (x−1Kx, yKy−1) lies in K (G × G), hence
(

x−1Kx ∩ P, yKy−1 ∩ P
)

∈ K (P × P ) and we
conclude that µ∆(∆x,y) 6= 0.

We have a nice characterization for such a left invariant Haar measure µ∆: Fix Haar measures µU
and µM on U and M , then we can assign to any open, compact A ⊂ ∆ the number

ˆ

U

ˆ

U

ˆ

M

1A(mu,mu′) dµM (m) dµU (u)dµU (u′).

It is clear that this rule is left invariant. In order to see that it defines a regular Borel measure
on ∆, one will have to use the fact that for any such A we find an open, compact subgroup K ⊂ G
which admits an Iwahori decomposition with respect to P and such that (K ∩ P,K ∩ P ) ⊂ A.
Moreover, we can immediately read off δ∆(um, u′m) = δ2P (m).
As the quotient of G×G by the ∆-action is G/U ×M U\G, this implies

Corollary 4.5.12.

D(G ×G)/∆ ∼= D(G)/U ~ δ
−2
P ⊗M U\D(G) ∼= D(G/U ×M U\G).
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We will have to twist this result by a character “in the middle” as follows:

Remark 4.5.13. Observe that we have the following characterization:

D(G/U ×M U\G) =
{

ϕ : G×G −→ k
∣

∣

∣

ϕ smooth and compactly supported modulo ∆,

ϕ(xmu,u′m−1y)=ϕ(x,y) ∀x,y∈G,m∈M,u,u′∈U

}

where the condition “compactly supported modulo ∆” means that supp(ϕ) is compact when
projected onto G × G/∆. The reason that we do not have to include something like “smooth
modulo ∆” is that the projection G ×G → G/U ×M U\G is open and continuous. Therefore, it
is equivalent for ϕ to be smooth or to be smooth after projection.
Now, recall that D(G × G)/∆ was defined as D(G × G)/D(G × G)(∆) with D(G × G)(∆) =
〈ϕ− δ∆(x)ϕ( x) | ϕ ∈ D(G ×G), x ∈ ∆〉.
Understand the assignment χ : (mu,mu′) 7→ δ−1

P (m) as a character of ∆. Then, if we divide by
〈ϕ− χ(x)δ∆(x)ϕ( x) | ϕ ∈ D(G ×G), x ∈ ∆〉 instead of D(G ×G)(∆), we get an isomorphism

D(G)/U ~ δ
−1
P ⊗M U\D(G) ∼= Dδ

−1
P (G/U ×M U\G).

where

Dδ
−1
P (G/U ×M U\G) =

{

ϕ : G×G −→ k
∣

∣

∣

ϕ smooth and compactly supported modulo ∆,

δ−1
P (m)ϕ(xmu,u′m−1y) =ϕ(x,y) ∀x,y∈G,m∈M,u,u′∈U

}

.

We can explicitly write down the isomorphism:

D(G)/U ~ δ
−1
P ⊗M U\D(G) −→ Dδ

−1
P (G/U ×M U\G)

ϕ⊗ ψ 7−→





(x, y) 7→

ˆ

U

ˆ

U

ˆ

M

ϕ(xum)ψ(u′m−1y) dµM (m) dµU (u)dµU (u′)







4.6 Summary of Bimodule Identifications

We give a summary of the identifications we worked out:

U\D(G) ∼= δ−1
P ~D(U\G)

D(G)/U ∼= D(G/U)~ δ+1
P

U\D(P ) ∼= δ−1
P ~D(U\P )

D(P )/U ∼= D(P/U)~ δ+1
P

indGH(V ) ∼=
(

D(G) ~ δ−1
H

)

⊗H V for V ∈ H-Repk
(

D(P )~ δ−1
P

)

⊗P V ∼= V for V ∈ P -Repk

V ⊗P
(

D(P )~ δ−1
P

)

∼= V for a smooth right P -module V

Therefore, we recover the basic functors of p-adic representation theory:

iGP (W ) = D(G)/U ~ δ
−1
P ⊗M W ∼= D(G/U)⊗M W

iGP (W ) = D(G)/U ~ δ
− 1

2

P ⊗M W ∼= D(G/U)~ δ
1
2

P ⊗M W

rGP (V ) = U\D(G) ⊗G V ∼= δ−1
P ~D(U\G)⊗G V

rGP (V ) = δ
1
2

P ~ U\D(G) ⊗G V ∼= δ
− 1

2

P ~D(U\G)⊗G V

with V ∈ G-Repk,W ∈ H-Repk.
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Chapter 5

Frobenius Reciprocity Revisited

In this chapter, we are going to prove that the functor

M -Repk −→ G-Repk W 7−→ D(G)/U ~ δ
−1
P ⊗M W = D(G/U)⊗M W

is right adjoint to the functor

G-Repk −→M -Repk V 7−→ U\D(G) ⊗G V = δ−1
P ~D(U\G)⊗G V.

We already know that the first functor equals parabolic induction1 and the second one equals
Jacquet restriction, therefore this chapter can be understood as another proof of Frobenius Reci-
procity.
If the reader distrusts our proof in Section 4.4 that D(G)/U ~ δ

−1
P ⊗M W is isomorphic to iGP (W ),

uniqueness of the adjoint functor gives another proof of this fact (at least if he is willing to accept
Frobenius Reciprocity).

5.1 Establishing Unit and Counit Transformations

Observation 5.1.1. Let V be a smooth G-representation, then

iGP ◦ rGP (V ) = D(G)/U ~ δ
−1
P ⊗M U\D(G)⊗G V = Dδ

−1
P (G/U ×M U\G)⊗G V.

Proof. This is just Remark 4.5.13.

Observation 5.1.2. Let W be a smooth M -representation, then we have

rGP ◦ iGP (W ) = U\D(G) ⊗G D(G/U)⊗M W = U\D(G/U)⊗M W.

We proceed like this: Define maps

η0 : D(G) −→ Dδ
−1
P (G/U ×M U\G) ϕ 7−→





(x, y) 7→

ˆ

U

ϕ(xuy) dµU (u)







and
ε0 : U\D(G/U) −→ D(M) [ϕ] 7−→ ϕ|M.

Proposition 5.1.3. The maps η0 and ε0 are well-defined morphisms between G-G-bimodules
(resp. between M -M -bimodules).

1We use unnormalized Jacquet functors because this makes the calculations easier, but, contrary to the Geometric
Lemma or Second Adjointness, this is arbitrary. In fact, unnormalized Frobenius Reciprocity is equivalent to
normalized Frobenius Reciprocity.
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Proof. We start with η0.
First of all, the integral does exist because the map

U ↪→ G→ G u 7→ u 7→ xuy

is proper and continuous for any x, y ∈ G, compare with our “Integration is possible”-paradigm.
Let ϕ ∈ D(G). Then there is an open, compact subgroup K ⊂ G such that ϕ(KxK) = ϕ(x) for
any x ∈ G. Consequently, η0(ϕ)(Kx, yK) = η0(ϕ)(x, y) holds for any two x, y ∈ G, therefore η0(ϕ)
is smooth.
Now we have to show that η0(ϕ) is compactly supported modulo ∆. For this, we fix a maximal
open, compact subgroup K0 such that the Iwasawa decomposition does hold: G = UMK0. More-
over, fix a compact subset Ξ ⊂ G that contains supp(ϕ). Then Ξ0 = Ξ ·K0 is compact and open
in G. We claim that

π
(

supp(η0(ϕ))
)

⊂ π(Ξ0,K0)

where π denotes the projection

π : G×G −→ G/U ×M U\G.

Take [x, k] ∈ G/U ×M U\G. We can assume k ∈ K0 since

G/U ×M U\G = G/U ×M U\UMK0.

Now suppose [x, k] 6∈ π(Ξ0,K0). This means that there is no m ∈ M such that xm ∈ Ξ0U and
m−1k ∈ UK0. Assume xuk ∈ Ξ0 for some u ∈ U , this yields xu ∈ Ξ0, hence x ∈ Ξ0U , and
k ∈ K0 ⊂ UK0 is clear. This is a contradiction. We conclude

[x, k] 6∈ π(Ξ0,K0) ⇒ ϕ(xuk) = 0 ∀u ∈ U ⇒ η0(ϕ)(x, k) =

ˆ

U

ϕ(xuk) dµU (u) = 0.

We proved that η0(ϕ) is smooth and compactly supported modulo ∆. It is straightforward to see

that η0(ϕ) lives in Dδ
−1
P (G/U ×M U\G) and that the assignment η0 is G-G-equivariant.

Now for ε0: Consider the continuous map

z : M ↪→ G� G/U.

z is a closed mapping, what one easily deduces from M ∼= P/U . Moreover,

z−1(xU) =

{

{g} if g ∈ xU ∩M 6= ∅,

∅ if xU ∩M = ∅.

Therefore, the pre-image of a point is compact and we may conclude that z is proper. This gives
a mapping

D(G/U) −→ D(M)

which clearly kills ϕ − ϕ(u ). Therefore, it factors through U\D(G/U) and we recover ε0. It is
obvious that this map commutes with the M -M -action.

These maps give rise to the following natural transformations

η : idG-Repk

•
−→ iGP ◦ rGP

id(V ) = V ∼= D(G) ⊗G V
ηV
−→ Dδ

−1
P (G/U ×M U\G)⊗G V ∼= iGP ◦ rGP (V )

ϕ⊗ v 7−→ η0(ϕ)⊗ v

and

ε : rGP ◦ iGP
•
−→ idM-Repk

rGP ◦ iGP (W ) ∼= U\D(G/U)⊗M W
εW−→ D(M)⊗M W = id(W )

[ϕ]⊗ w 7−→ ε0([ϕ])⊗ w
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The map ε0 induces a map

Dδ
−1
P (G/U ×M U\G)/U ~ δ

−1
P

// D(G/U)

which we want to analyze:

Dδ
−1
P (G/U ×M U\G)/U ~ δ

−1
P

// D(G/U)

D(G)/U ~ δ
−1
P ⊗M U\D(G)/U ~ δ

−1
P D(G)/U ~ δ

−1
P

D(G)/U ~ δ
−1
P ⊗M U\D(G/U)

id⊗ε0
// D(G)/U ~ δ

−1
P ⊗M D(M)

In order to understand this dotted map, it suffices to chase around a pure tensor [ϕ] ⊗ [ψ] in
D(G)/U ~ δ

−1
P ⊗M U\D(G)/U ~ δ

−1
P :



(x, y) 7→
´

U

´

U

´

M
ϕ(xum)ψ(u′m−1y)





/U

� //


gU 7→
´

U

´

M
ϕ(gum)

´

U
ψ(u′m−1)





[ϕ]⊗ [ψ]
_

OO

_

��



g 7→
´

M
ϕ(gm−1)δP (m−1)

´

U
ψ(mu′)





/U

_

OO

[ϕ]⊗ U\



gU 7→
´

U ψ(gu′)




� // [ϕ]⊗


m 7→
´

U ψ(mu′)




_

OO

Therefore, the dotted map acts as

[ζ] 7−→


gU 7→ ζ(g, 1)


 .

Or, equivalently, the dotted map sends [ζ] to the element [ϕ] ∈ D(G)/U~δ
−1
P for which the identity

ˆ

U

ϕ(gu) dµU (u) = ζ(g, 1)

holds for all g ∈ G.

With exactly the same reasoning we can work out the induced map

U\D
δ−1

P (G/U ×M U\G) //___ δ−1
P ~D(U\G)

as the map that acts as follows:

[ζ] 7−→


Ug 7→ ζ(1, g)




Or, equivalently, it sends [ζ] to the element [ϕ] ∈ U\D(G) for which the identity

ˆ

U

ϕ(ug) dµU (u) = ζ(1, g)

holds for any g ∈ G. We are ready to prove
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Theorem 5.1.4 (Frobenius Reciprocity). η and ε are unit and counit transformations between
the functors iGP and rGP , establishing a (right) adjointness relation between them.

Proof. We have to prove the zig-zag equations

idiGP
= iGP ε ◦ ηi

G
P and idrG

P
= εrGP ◦ rGP η.

We can prove the first identity if we can show that the composed G-M -module map

D(G)/U ~ δ
−1
P
∼= D(G)⊗G D(G)/U ~ δ

−1
P

η0⊗id
−→ D(G)/U ~ δ

−1
P ⊗M U\D(G)⊗G D(G)/U ~ δ

−1
P

∼= D(G)/U ~ δ
− 1

2

P ⊗M U\D(G/U)
id⊗ε0−→ D(G)/U ~ δ

−1
P ⊗M D(M) ∼= D(G)/U ~ δ

−1
P

equals the identity. Using our dotted map, we can write this down as

D(G)/U ~ δ
−1
P

ε0/U // Dδ
−1
P (G/U ×M U\G)/U ~ δ

−1
P

// D(G)/U ~ δ
−1
P .

And, in fact, [ϕ] is mapped to





(x, y) 7−→

ˆ

U

ϕ(xuy) dµU (u)





 /U

and then to [ψ] where
´

U
ψ(gu) dµU (u) =

´

U
ϕ(gu1) dµU (u). Therefore [ψ] = [ϕ] and we are

done.

The second equation is done in exactly the same manner. We have to show that the composed
M -G-module map

U\D(G) ∼= U\D(G) ⊗G D(G)
id⊗η0
−→ U\D(G)⊗G D(G)/U ~ δ

−1
P ⊗M U\D(G)

∼= U\D(G/U)⊗M U\D(G)
ε0⊗id
−→ D(M)⊗M U\D(G) ∼= U\D(G)

equals the identity. Now we can use the dashed map and write this as

U\D(G)
U\ε0 //

U\D
δ−1

P (G/U ×M U\G) //___
U\D(G).

Again, [ϕ] is mapped to

U\





(x, y) 7−→

ˆ

U

ϕ(xuy) dµU (u)







and then to [ψ] where
´

U ψ(ug) dµU (u) =
´

U ϕ(1ug) dµU (u). Thus [ψ] = [ϕ].
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Chapter 6

The Geometric Lemma

Fix two standard parabolic subgroups P = MU and Q = NV within a reductive p-adic group G.
If we have a smooth N -representation V , we can parabolically induce it up to G and then take
the Jacquet restriction in order to obtain an M -representation. This gives a functor

Γ = rGP ◦ i
G
Q : N -Repk −→M -Repk,

and the Geometric Lemma provides us with a fairly good understanding of Γ. Recall the following
definition:

Definition 6.0.5. Let F,Qi : A → B be functors between abelian categories (where 1 ≤ i ≤ n
for some n ∈ N.) We say that F has a finite filtration by {Qi} (or, according to [BZ77], that F
is glued from {Qi}), if there are subfunctors Fj : A → B of F (where 0 ≤ j ≤ n) such that there
is a filtration

F1(a) ↪→ F2(a) ↪→ . . . ↪→ Fn(a) = F (a)

for each object a in A with

∀j ≥ 1 ∃i such that Fj(a)/Fj−1(a) ∼= Gi(a).

The Geometric Lemma tells us that Γ is glued from certain (nice) functors Γw where w runs
through a set PWQ of representatives for P\G/Q, as we will explain now.

6.1 Preparation

Our aim here is to understand certain sub- and quotient spaces of G. We begin with

Proposition 6.1.1. Let P = MU ⊂ G be a parabolic subgroup, denote its opposite by P = MU .
As usual, understand P , P and P · P equipped with the subspace topology. Then, there is a
homeomorphism

P ×M P ∼= P · P

between `-spaces, equivariant with respect to the left P - and right P -multiplication.

Proof. P · P is an `-space since it is open in G (Proposition 4.10 (e) in [BT65]). P and P are
closed in G, hence `-spaces. M acts freely and properly on P × P , therefore the twisted product
is an `-space.
There is an obvious identification

P · P 3 p · p
1:1
←→ [p, p] ∈ P ×M P .

Call this map ρ. We have to show that ρ is a homeomorphism.
By definition, the projection P × P → P ×M P is a topological quotient map. We want to show
that this is also true for the multiplication

µ′ : P × P −→ P · P .
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It is easy to see that µ′ is continuous. We are done as soon as we can show that it is an open
map. For this, fix a neighborhood basis {Kn}n∈N for 1 in G such that each Kn admits an Iwahori
decomposition with respect to P :

Kn = K+
nK

0
nK

−
n K+

n = Kn ∩ U, K
0
n = Kn ∩M, K−

n = Kn ∩ U.

(In GLn(F ) we would take the congruence subgroups.) It suffices to show that the
µ′(Kn ∩ P,Kn ∩ P ) are open in P · P . But

µ′(Kn ∩ P,Kn ∩ P ) = (Kn ∩ P ) · (Kn ∩ P ) = K+
nK

0
nK

−
n = Kn

and Kn is open in G, hence open in P · P . This shows that µ′ is open at the point (1, 1). Indeed,
this is sufficient: For any other point (p, p),

{(

p · (Kn ∩ P ), (Kn ∩ P ) · p
)}

n∈N
is a neighborhood

basis and
µ′
(

p · (Kn ∩ P ), (Kn ∩ P ) · p
)

= pKnp

is open. Thus µ′ is an open mapping.
Therefore, we have a commutative diagram

P × P
top. quotient map

yyttttttttt
top. quotient map

##HH
HH

HHH
HH

P ×M P oo
ρ

// P · P

proving that ρ is a homeomorphism.

We are interested in the following variation of this result: Let P = MU,Q = NV be standard
parabolic subgroups of G, w an element of PWQ, then there is a homeomorphism

PwQ ∼= P ×
P ∩wQw−1

=w−1Pw∩Q

Q.

The homeomorphism between P ∩ wQw−1 and w−1Pw ∩ Q is conjugation with w−1.
We could prove this similar to the case Q = P ,w = 1 we investigated in the preceding proposition.
In fact, [Cas95] (p. 11-12) states that multiplication gives an isomorphism of varieties (hence a
homeomorphism)

P × {w} ×
∏

α∈Σ+−Σ+
Ω

w−1α/∈Σ+−Σ+
Θ

Nα
∼
−→ PwQ

where the Nα are certain subgroups of G. Moreover, there is a topological quotient map given by
the projections1

Q −→ Q/N ∼= V −→ (w−1Uw ∩ V )\V ∼=
∏

α∈Σ+−Σ+
Ω

w−1α/∈Σ+−Σ+
Θ

Nα.

We could now put this together into a similar proof. But we can get along with a rather different
argument.

Lemma 6.1.2. Let P,Q be standard parabolic subgroups of G, w ∈ PWQ, then there is a P -Q-
equivariant homeomorphism

PwQ ∼= P ×
P ∩wQw−1

=w−1Pw∩Q

Q.

1Observe the misprint in [Cas95]: w is mixed up with w−1.
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Proof. Recall Corollary 1.6 from [BZ76]: If an `-group (countable at infinity) acts transitively on
an `-space X , x0 ∈ X and H denotes the stability subgroup of x0, then the natural map of H\G
into X given by Hg 7→ g−1x0 is a homeomorphism.
Bruhat decomposition gives a way of enumerating PWQ such that

⋃

1≤i≤n−1

PwiQ
open
⊂

⋃

1≤i≤n

PwiQ for all 1 < n ≤ |PWQ|. (6.1)

The set
⋃

1≤i≤n PwiQ is open in G, hence an `-space. Therefore, (6.1) shows that PwnQ is a
closed subset of an `-space, hence an `-space on its own. The special case n = 1 is easy since this
is the open coset, hence an `-space.
We subsume: The conditions of Corollary 1.6 are met for the `-action

P ×Q y PwQ (p̃, q̃) • pwq = p̃pwqq̃−1.

The stabilizer of the element w ∈ PwQ is clearly H =
{

(x−1, w−1xw) |x ∈ P ∩ wQw−1
}

. This
yields the second homeomorphism in

P ×
P ∩wQw−1

=w−1Pw∩Q

Q ∼= H\
(

P ×Q
)

∼= PwQ

where the composition is indeed multiplication:

[p, q] 7→ H · (p−1, q) 7→ (p−1, q)−1 • w = pwq.

Therefore, equivariance is obvious.

6.2 The Statement

Let P = MU,Q = NV be as above. Then, according to Chapter 2.4, we have a finite set PWQ ⊂ G
such that

G =
⊔

w∈ P WQ

PwQ

and PWQ can be enumerated such that

⋃

1≤i≤n−1

PwiQ
open
⊂

⋃

1≤i≤n

PwiQ for all 1 < n ≤ |PWQ|.

We cite

Proposition 6.2.1. Let X be an `-space, Y ⊂ X open. Then we can extend any ϕ ∈ D(G)
trivially on X − Y , what gives rise to the exact sequence

0 −→ D(Y ) −→ D(X) −→ D(X − Y ) −→ 0.

Proof. This is Proposition 2 in [Ber92]. That paper is concerned with the case k = C, but the
given proof holds for any field.

Therefore, the filtration

Pw1Q
open
⊂

(

Pw1Q ∪ Pw2Q
) open
⊂ . . .

open
⊂

(

⋃

1≤i≤ | P WQ|

PwiQ
)

= G

gives the filtration
D(Pw1Q) ↪→ D(Pw1Q ∪ Pw2Q) ↪→ . . . ↪→ D(G)
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with P -Q-bimodule injections. The quotients of this filtration are

D
(

⋃

1≤i≤(n−1)

PwiQ −
⋃

1≤i≤n

PwiQ
)

= D(PwnQ)

considered as P -Q-bimodules.

Observation 6.2.2. Abbreviate X =
⋃n−1
i=1 wi for some n ≤ | PWQ|. Let S be a Q-representation,

then the previous remarks give rise to a sequence

0 −→ D(PXQ)⊗Q S −→ D(PXQ t PwnQ)⊗Q S −→ D(PwnQ)⊗Q S −→ 0.

We claim that it is exact. As tensoring is a right exact process, we just have to prove that the map
D(PXQ)⊗Q S −→ D(PXQ t PwnQ)⊗Q S is injective. But this is easy to deduce from the fact
that PXQ ·Q ⊂ PXQ and the definition of the map.

Now take S = W for some smoothN -representationW which we understand as aQ-representation
by trivial inflation. If we take into account that taking U -Jacquet modules is exact (see Proposition
10 of [Ber92]), we end up with an exact sequence

0→ U\D
(

⋃

1≤i≤(n−1)

PwiQ
)

/V ⊗NW → U\D
(

⋃

1≤i≤n

PwiQ
)

/V ⊗NW → U\D
(

PwnQ
)

/V ⊗NW → 0

for any 1 ≤ n ≤ | PWQ|. We subsume that the M -representation U\D(G)/V ⊗M W has a finite
filtration by subrepresentations with quotients

U\D(PwQ)/V ⊗M W w ∈ PWQ.

Now, recall (from Proposition 1.3.3 (c) of [Cas95]) that M ∩wQw−1 is a parabolic subgroup of M
with Levi decomposition

M ∩ wQw−1 =
(

M ∩wNw−1
)

·
(

M ∩ wV w−1
)

.

Similarly, we have a parabolic subgroup of N :

w−1Pw ∩N =
(

w−1Mw ∩N
)

·
(

w−1Uw ∩N
)

⊂ N.

The Levi components M ∩wNw−1 and w−1Mw∩N are evidently isomorphic via w-conjugation.
This induces an equivalence of categories

ŵ :
(

w−1Mw ∩N
)

-Repk −→
(

M ∩ wNw−1
)

-Repk.

Now we are in a position to prove

Lemma 6.2.3 (Geometric Lemma). Let P = MU and Q = NV be standard parabolic subgroups
of a reductive p-adic group G. Then the functor

Γ = rGP ◦ i
G
Q : N -Repk −→M -Repk

has a finite filtration by subfunctors with quotients

Γw = iMM∩wQw−1 ◦ ŵ ◦ rNw−1Pw∩N w ∈ PWQ.

Proof. After what has been said, it remains to investigate the M -N -bimodule

δ
1
2

P ~ U\D(PwQ)/V ~ δ
− 1

2

Q
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= δ
1
2

P ~ U\D(P )~ δ−1
P∩wQw−1

⊗

P∩wQw−1

=w−1Pw∩Q

D(Q)/V ~ δ
− 1

2

Q

= δ
− 1

2

P ~ D(M)~ δ−1
P∩wQw−1

⊗

P∩wQw−1

=w−1Pw∩Q

D(N)~ δ
1
2

Q

= δ
− 1

2

P ~ D(M)/M∩wV w−1 ~ δ−1
P∩wQw−1

⊗

M∩wNw−1

=w−1Mw∩N

w−1Uw∩N\D(N)~ δ
1
2

Q

= D(M)/M∩wV w−1 ~
(

δ
1
2

P · δ
1
2

wQw−1 · δ
−1
P∩wQw−1

)

⊗

M∩wNw−1

=w−1Mw∩N

w−1Uw∩N\D(N)

= D(M)/M∩wV w−1 ~ δ
− 1

2

M∩wQw−1

⊗

M∩wNw−1

=w−1Mw∩N

δ
1
2

w−1Pw∩N ~ w−1Uw∩N\D(N)

The last equation sign does hold because of Theorem 2.5.4. This expression is just Γw.

6.2.1 An Example: GL2(F )

Assume G = GL2(F ) for a non-archimedean local field F . As parabolic subgroup we take the
standard Borel subgroup

P = B =

(

∗ ∗
0 ∗

)

= TU =

(

∗ 0
0 ∗

)(

1 ∗
0 1

)

.

Recall from Example 2.4.10 that the Weyl group W equals S2
∼= Z/2Z in this case. We can write

down a set of representatives in G as

W =

{

1 :=

(

1 0
0 1

)

, w :=

(

0 1
1 0

)}

.

Now we can describe rGB ◦ i
G
B(V ) if V is a smooth M -representation:

Because of the identities wBw−1 = wBw = wBw−1 = B and wTw−1 = wTw = w−1Tw = T , the
occurring quotients in the filtration are Γ1(V ) = iTT ◦r

T
T (V ) = V and Γw(V ) = iTT ◦ŵ◦r

T
T (V ) = wV

where we abbreviate wV for the representation (π, V ) with π(t)v = wtwv.
In order to get the directions right, we must decide which set is open inG. Iwasawa’s decomposition
tells us that G/B is compact. Hence, if B would be open, we could conclude that G/B is finite.
This is nonsense: For example, the rule

x 7−→

(

1 0
x 1

)

· B

gives an injective mapping F −→ G/B. Hence BwB ⊂ G must be open and we can describe
rGB ◦ i

G
B(V ) as an extension of T -representations

0 −→ wV −→ rGB ◦ i
G
B(V ) −→ V −→ 0. (6.2)

Now, consider the question of describing the space of intertwining operators, that is

HomG(iGB(V ), iGB(V ′))

where V, V ′ are smooth irreducible T -representations. In this case, we can use Frobenius reciprocity
and rewrite this space as

HomM (rGB(iGB(V )), V ′).

Now, we can use the Geometric Lemma in order to study this space. If, for example, V equals V ′,
we immediately get a non-zero element belonging to the projection in (6.2). The general picture
is this
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Theorem 6.2.4. The space
HomG(iGB(V ), iGB(V ′))

is isomorphic to k if V ′ equals V or wV and vanishes otherwise.

Proof. This is very nicely explained in Section 9 of [BH06].
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Chapter 7

Second Adjointness

We saw that it is quite easy to prove Frobenius Reciprocity, that is, the fact that parabolic
induction iGP is right adjoint to Jacquet restriction rGP . As suggested by the representation theory
of finite groups, there should be an adjointness relation in the other direction, too. In our setting,
the situation is more subtle: In fact, iGP has a left adjoint: rG

P
– Jacquet restriction with respect

to the opposite parabolic P = MU . In contrast to Frobenius Reciprocity, this Second Adjointness
property is a highly non-trivial result, obtained by Bernstein in 1986.1

7.1 Prerequisites

Suppose, we have two reductive p-adic groups G and H . Fix a field k in which p is a non-zero
square. Let V be a G-representation and let M be a G-H-bimodule.

Definition 7.1.1. The space of (linear) G-intertwiners HomG(M,V ) is a left H-module (hence
an H-representation) via

(hϕ)(m) := ϕ(mh).

Call its smooth part
Hom∞

G (M,V )

and, for a subgroup K ⊂ H , the space of K-invariants

HomK
G (M,V ).

We have a first proposition:

Proposition 7.1.2. Take a K ∈ K (G). If V is a smooth G-representation, we have an isomor-
phism of vector spaces

HomK
G (D(G), V ) ∼= HomG(D(G/K), V ) ∼= V K .

Proof. Step 1: Recall that we denote the normalizer of K in G by NG(K). We want to establish
the following isomorphism of G-NG(K)-bimodules

D(G/K)
∼
−→ D(G)K ϕ 7−→



g 7→ ϕ(gK)




where D(G)K denotes the K-invariant space with respect to the right G-action.
This map is well defined, what follows from our general paradigm: π : G→ G/K is a continuous

1The author is a bit confused about the date of this theorem. The first occurrence seems to be in the unpublished
(and incomplete) draft [Ber87]. J.-F. Dat dates this paper to 1993. I chose 1986 because there is a nameless, undated
and quite sketchy draft [Ber86] on the University of Chicago Web server, named Bernstein86.pdf, which seems to
be the precursor of [Ber87] and contains the Second Adjointness Theorem.
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and proper2 G-NG(K)-equivariant map.
π is surjective, hence we get an injection

π∗ : D(G/K)↪→D(G).

Its image clearly lies in D(G)K .
We have to prove surjectivity: Take a ψ ∈ D(G)K , then we have a preimage

ψ : G/K → k gK 7→ ψ(g).

Smoothness is trivial: As K is open, G/K is discrete. Compactness of support follows immediately
from the continuousness of π. Therefore, ψ ∈ D(G/K) and π∗ provides us with the desired
isomorphism.

Step 2: Our next observation is the following: Let M be a smooth G-G-bimodule, V a smooth
G-representation and K ∈K (G). Then

HomK
G (M,V ) ∼= HomG(MK , V )

where MK denotes the K-invariants regarding the right G-action. We have two maps

ı : MK −→M the injection,

π : M −→MK m 7−→

ˆ

K

mk dµK(k).

where µK is a Haar measure on K, normalized such that µK(K) = 1. This gives two maps

HomK
G (M,V )

ı∗

((
HomG(MK , V )

π∗

hh

which are inverse to each other, as we now show: For the first direction, we clearly have

ı∗π∗ = (π ◦ ı)∗ = id∗ = idHomG(MK ,V ) .

Moreover, we have

ρ := ı ◦ π : M 3 m 7−→

ˆ

K

mk dµK(k) ∈M,

hence
π∗ı∗ = ρ∗ : Hom∞

G (M,V ) −→ Hom∞
G (M,V )

what clearly amounts to the identity when restricted to the K-invariants.

Step 3: We want to prove HomG(D(G)K , V ) ∼= V K . Any element Θ ∈ HomG(D(G)K , V ) is
completely determined by the value v0 ∈ V

K it answers to 1K : Understand the symbol G/K as
a set of representatives in G, then

D(G)K 3 ϕ =
∑

g∈G/K

λg · 1gK
Θ
7−→

∑

g∈G/K

λg · gv0 ∈ V

where λg = ϕ(g). Moreover, this rule produces (and allows only) one element in HomG(D(G)K , V )
for any given v0 ∈ V K that shall become the value at 1K .
Therefore, the (linear) assignment Θ 7→ Θ(1K) is a bijection and we are done.

2See Chap. 3, §4, Cor. 2 of [Bou60].
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7.2 Invariant Spaces of Jacquet Modules

For this section, fix a parabolic subgroup P = MU ⊂ G and a Haar measure µG on G. Let K be
an element of KP (G) with Iwahori decomposition

K = K+K0K− with K+ = K ∩ U, K0 = K ∩M, K− = K ∩ U.

Moreover, let λ ∈ G be strictly dominant with respect to P and K:

λK+λ−1 ) K+ ) λ−1K+λ, λK0λ−1 = K0, λK−λ−1 ( K− ( λ−1K−λ

and
U =

⋃

i∈N

λiK+λ−i.

Abbreviate

K(i) := λiKλ−i, K
(i)
U := λiK+λ−i, K

(i)
M := λiK0λ−i, K

(i)

U
:= λiK−λ−i.

Fix a smooth G-representation V . Then we have a projective (and inductive) system of vector
spaces

S̃λ =








· · ·

tii−1
−→ V K

(i) ti+1
i−→ V K

(i+1) ti+2
i+1
−→ · · ·









where i runs through Z and the maps are given by

v
ti+1
i7−→ µG(K)−1 ·

ˆ

K(i+1)

kv dµG(k).

For i+ 1 < j set
tji = tjj−1 ◦ t

j−1
j−2 ◦ · · · ◦ t

i+1
i .

Proposition 7.2.1. S̃λ is isomorphic to the following system

Sλ =


· · ·
t
−→ V K

t
−→ V K

t
−→ · · ·





where t is given by the rule

v 7−→ µG(K)−1 ·

ˆ

K

kλ−1v dµG(k).

Proof. We should explain what we mean by “isomorphic”: There are isomorphisms (hi)i∈Z, such
that all squares in

· · ·
tii−1 //

V K
(i)

ti+1
i //

hi

��

V K
(i+1)

ti+2
i+1 //

hi+1

��

V K
(i+2)

ti+3
i+2 //

hi+2

��

· · ·

· · ·
t

// V K t
// V K t

// V K t
// · · ·

commute. Take
hi : V

K(i)

3 v 7−→ λ−iv ∈ V K .

Since
ˆ

K(i+1)

kv dµG(k) =

ˆ

G

1K(i+1)(γ) γv dµG(γ)

=

ˆ

G

1K(λ−(i+1)γλi+1) γv dµG(γ) =

ˆ

K

λi+1kλ−(i+1)v dµG(k),
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we can easily verify that these squares commute. Take the square with upper map ti+1
i , then

v � //
_

��

µG(K)−1 ·
´

K
λi+1kλ−(i+1)v dµG(k)

_

��

λ−iv
� // µG(K)−1 ·

´

K kλ
−(i+1)v dµG(k)

clearly commutes.

This implies that the filtered limits of Sλ and S̃λ coincide, if they exist. The same is then true
about the colimits.

Lemma 7.2.2. Let K be as above, v ∈
(

VU
)KM

– the KM -fixed space of the Jacquet module VU .

Then we find an i ∈ Z and a ṽ ∈ V K
(i)

such that ṽ is mapped to v under the natural projection

π : V K
(i)

−→
(

VU
)KM

ṽ 7−→ [ṽ].

This is a direct consequence of the (strong) Jacquet Lemma (p. 65 in [Ber92]), but much easier to
prove.

Proof. We have an exact sequence of vector spaces

0 −→ V (U) −→ V −→ VU −→ 0.

Indeed, this is an exact sequence of smooth M -representations. Hence the reduced sequence

0 −→
(

V (U)
)KM −→ V KM −→

(

VU
)KM −→ 0.

is exact. In particular, the map V KM →
(

VU
)KM

is surjective. Take a preimage v′ of v under this
map. v′ is G-smooth, hence we find an open, compact subgroup C of G that fixes v′. Because of

Proposition 2.5.12 (iv) we find an i ∈ Z such that K
(i)

U
⊂ C ∩ U . Hence v′ ∈ V K

(i)

U . We find the
desired ṽ as

µG(K)−1 ·

ˆ

K(i)

kv′ dµG(g) ∈ V K
(i)

.

Proposition 7.2.3. For v ∈ V K
(i)

and i < j we have

tji (v) = µG(K)−1 ·

ˆ

K(j)

kv dµG(k).

Proof. We first prove the case j = i+ 2. We have

ti+1
i (v) = µG(K)−1 ·

ˆ

G

1K(i+1)(γ) γv dµG(γ).

As γ ∈ K(n) can be written as γ+γ0γ− with γ+ ∈ K
(n)
U , γ0 ∈ K

(n)
M and γ− ∈ K

(n)

U
, we can write

this as

ti+1
i (v) = µG(K)−1 ·

ˆ

G

1K(i+1)(γ) γ+v dµG(γ)

because v is fixed by γ0 ∈ K
(i+1)
M = K

(i)
M and by γ− ∈ K

(i+1)

U
⊂ K

(i)

U
.

Hence, using Fubini’s Theorem, we have

ti+2
i (v) = µG(K)−2

ˆ

G

1K(i+2)(δ) δ ·







ˆ

G

1K(i+1)(γ) γ+v dµG(γ)





 dµG(δ)

= µG(K)−2

ˆ

G







ˆ

G

1K(i+2)(δ)1K(i+1)(γ) δγ+v dµG(δ)





 dµG(γ).
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The claim follows from change of variable δ  δ · (γ+)−1 and the fact (γ+)−1 ∈ K(i+2). It is clear
how to proceed in order to produce an induction argument on i.

Our claim is now

Theorem 7.2.4. As vector-spaces,

lim
−→

S̃λ
∼=
(

VU
)KM

.

Proof. Let us recall the following characterization of the filtered colimit from Section 1.1:

lim
−→

S̃λ
∼=
(

∐

i∈Z

V K
(i)
)

/∼

where we understand x ∈ V K
(m)

and y ∈ V K
(n)

as equivalent precisely if there is an integer

c ≥ max(m,n) such that tcm(x) = tcn(y) ∈ V
K(c)

.

Now consider the map

Θ:
∐

i∈Z

V K
(i)

−→
(

VU
)KM

where any v ∈ V K
(i)

⊂ V is mapped simply to its image [v] under the projection onto the Jacquet
module VU . It is clear that [v] is invariant under the action of KM .

In order to see that Θ descends to a map from lim
−→

S̃λ to
(

VU
)KM

, it is sufficient to show that the
statement

Θ(v) = Θ
(

ti+1
i (v)

)

for all v ∈ V K
(i)

holds for any i ∈ Z. But this is easy: For such a v we find a finite subset U ⊂ K
(i+1)
U such that

ti+1
i (v) = µG(K)−1 ·

ˆ

K(i+1)

kv dµG(k) =
∑

u∈U

λu · uv

with
∑

U λu = 1. Then, because [v] = [uv] in VU , we have

Θ
(

ti+1
i (v)

)

= Θ
(

∑

u∈U

λu · uv
)

=
∑

u∈U

λu · [v] = [v]

and therefore Θ induces a map lim
−→

S̃λ −→
(

VU
)KM

.

We claim that this map is an isomorphism. Regarding injectivity, we have to prove the following:

Whenever Θ(x) equals Θ(y) with x ∈ V K
(m)

and y ∈ V K
(n)

, we can conclude that x ∼ y. In order
to do this, recall that [x] = [y] means that there is a finite subset Ω ⊂ U × V such that

x = y +
∑

(u,v)∈Ω

(v − uv).

Then take a c ∈ Z big enough such that u ∈ K(c) for all (u, v) ∈ Ω. We conclude

ˆ

K(c)

γx dµG(γ) =

ˆ

K(c)

γy dµG(γ)

where the left hand side equals tcm(x) and the right hand side equals tcn(y), according to the
proposition above. Surjectivity follows immediately from the last lemma.
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We finish with the following observation:
If V happens to be a smooth G-G-bimodule, the system S is indeed a system of right G-modules
(as the ti+1

i intertwine with the right G-action). It is clear that the preceding theorem holds if we
take the limit in the category of smooth G-representations and require the isomorphism

lim−→ S̃λ
∼=
(

VU
)KM

to be a right G-intertwiner.

Moreover, it was arbitrary that we took the left action first: If the symbols V K
(i)

and
(

VU
)KM

are understood as (co)-invariants with respect to the right G-action, and if we redefine

ti+1
i (v) = µG(K)−1 ·

ˆ

K(i+1)

vk dµG(k),

the preceding theorem holds as an isomorphism of left G-modules.

7.3 The Dual System

Consider a projective system

S =







· · ·
tii−1
−→ ai

ti+1
i−→ ai+1

ti+2
i+1
−→ · · ·









of G-representations, where i runs through Z.
For any other G-representation x, we can form the system

S x =













· · ·

(

tii−1

)∗

←− HomG(ai, x)

(

ti+1
i

)∗

←− HomG(ai+1, x)

(

ti+2
i+1

)∗

←− · · ·













.

S x is an inductive system of vector spaces and admits the filtered limit3

lim
←−

S x ∼= HomG(lim
−→

S , x).

In our setting, we have a quite detailed understanding of these t∗s:
Consider a smooth left G-module M and two subgroups K ⊂ C ∈ K (G).
Then we have the inclusion

ı : CM ↪→ KM

and the (normalized) projection

π : KM � CM m 7→ µG(C)−1

ˆ

C

γm dµG(γ).

We will use the same notations if M is a right G-module, where we just have to redefine π(m) =
µG(C)−1

´

C
mγ dµG(γ) ∈MC . Now we have

Proposition 7.3.1. Let K ⊂ C be as above and take a smooth G-representation V , then

(i) The inclusion ı induces the commutative diagram

HomK
G (D(G), V )

ı∗ // HomC
G(D(G), V )

V K π
// // V C

3See V.4 in [ML98]. We give the (pedantic) remark that there the limits are taken in the category of sets, so
we have to check that the isomorphism is linear, but this becomes obvious when writing down the identification
mapping.

79



(ii) The projection π induces the commutative diagram

HomC
G(D(G), V )

π∗
// HomK

G (D(G), V )

V C
�

�

ı
// V K

Proof. We use the identification HomK
G (D(G), V ) ∼= HomG(D(G)K , V ). We would like to em-

phasize that D(G)K means the K-invariants of the right G-module D(G) while V K means the
K-invariants of the left G-module V .

For the first claim, start at the upper-left corner:

Θ
� //

_

��

Θ|D(G)C
_

��
Θ(eK) Θ(eC)

Set vK = Θ(eK) ∈ V K . We have

π(vK) = µG(C)−1

ˆ

C

γvK dµG(γ) =
µG(K)

µG(C)

∑

γ∈C/K

γvK .

On the other hand, write

Θ(eC) = Θ





∑

γ∈C/K

γeK
µG(K)

µG(C)



 =
µG(K)

µG(C)

∑

γ∈C/K

γΘ(eK) = π(vK).

The second claim is similar: Consider

Θ
� //

_

��



ϕ 7→ Θ
(

π(ϕ)
)





_

��
Θ(eC) Θ

(

π(eK)
)

and

π(eK)(x) = µG(C)−1

ˆ

C

eK(x)γ dµG(γ) =
µG(K)

µG(C)

∑

γ∈K\C

eKγ(x) = eC(x).

For our next result, we need the same setting as in the preceding section: Let P = MU be a
parabolic subgroup of G. Moreover, fix a K ∈ KP (G) and an element λ ∈ G that is strictly
dominant with respect to P and K.
For a smooth G-representation V , recall the systems S̃ λ and S λ from the preceding chapter. It
is easy to see that the maps ti+1

i factorize as follows:

V K
(i)

ti+1
i //

� s

ı
&&LLLLLLLLLL V K

(i+1)

V K
(i)∩K(i+1)

π

88 88qqqqqqqqqqq

Now we are able to prove
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Theorem 7.3.2. Let P = MU , K, λ and V be as above, then

HomKM

G (D(G)/U , V ) ∼= lim
←−

S λ.

Proof. We will prove this for the system S̃ λ, what amounts to the same.
Define the system

T =







· · ·
ti−1
i←− D(G)K

(i) tii+1
←− D(G)K

(i+1) ti+1
i+2
←− · · ·









with

tii+1(ϕ) = µG(K)−1

ˆ

K(i)

ϕγ dµG(γ).

Now λ−1 is strictly dominant with respect to P and K. The system T is precisely the system
occurring in Theorem 7.2.4 if we replace P by P , λ by λ−1 and V by D(G) and use the right
G-action. This says

lim
−→

T ∼=
(

D(G)/U

)KM

.

Therefore, we have

HomKM

G (D(G)/U , V ) ∼= HomG(lim
−→

T , V ) ∼= lim
←−

T V

for the system

T V =













· · ·

(

ti−1
i

)∗

−→ HomG(D(G)K
(i)

, V )

(

tii+1

)∗

−→ HomG(D(G)K
(i+1)

, V )

(

ti+1
i+2

)∗

−→ · · ·













.

This looks clumsy, but in fact we know T V very well:

HomG(D(G)K
(i)

, V )

(

tii+1

)∗

//

π∗

++WWWWWWWWWWWWWWWWWWW
HomG(D(G)K

(i+1)

, V )

HomG(D(G)K
(i)∩K(i+1)

, V )

ı∗

33gggggggggggggggggggg

V K
(i)∩K(i)

π

++WWWWWWWWWWWWWWWWWWWWWWWWWW

V K
(i)

ti+1
i

//

ı

33gggggggggggggggggggggggggg
V K

(i+1)

where everything commutes. Hence T V is isomorphic to S̃ λ ∼= S λ.

7.4 Explicit Construction of the “Difficult” Unit

Let P = MU be a parabolic subgroup of G. We start this fairly technical section with collecting
the measures we need:

Proposition 7.4.1. There exist Haar measures µU , µM , µU , µG and a left Haar measure µP and
a right Haar measure µP such that for any K ∈KP (G) with Iwahori factorization K = K+K0K−

we have

(i)
µG(K) = µU (K+)µM (K0)µU (K−)
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(ii)
µP (K+K0) = µU (K+)µM (K0) and µP (K0K−) = µM (K0)µU (K−).

Proof. First of all, fix the Haar measures µU on U , µM on M and µU on U arbitrarily. The other
ones are delivered by Proposition 2.5.1. Observe that they are indeed k-valued, as µU , µM and
µU are k-valued. Then we have

µG(K) =

ˆ

G

1K(γ) dµG(γ) =

ˆ

U

ˆ

M

ˆ

U

1K(umu) · δP (m)−1 dµU (u) dµM (m) dµU (u)

=

ˆ

U

1K+(u) dµU (u)

ˆ

M

1K0(m) dµM (m)

ˆ

U

1K+(u) dµU (u) = µU (K+)µM (K0)µU (K−)

because the delta factor is trivial on compact subgroups. The second claim is similar, where we
get two left Haar measures µP and µP . But as delta factors are trivial on compact subgroups, we
destroy nothing if we replace µP by the right Haar measure

P ⊃ X 7−→

ˆ

P

δ−1
P (p) · 1X(p) dµP (p).

When dealing with more than one group, it may not always be clear which measure we use for
the normalization. In order to avoid ambiguity, we write for example

eGK = µG(K)−1 · 1K or eHK = µH(K)−1 · 1K .

Lemma 7.4.2. With the choice of Haar measures given by the preceding proposition, we have:

(i) Under the isomorphism
D(P )/U ∼= D(M)~ δ+1

P ,

the element [ePK0K+ ] corresponds to eMK0 .

(ii) Under the isomorphism

D(P )⊗M D(P ) ∼= D(P ×M P ) ∼= D(PP ),

the element ePK−K0 ⊗ ePK0K+ corresponds to eGK .

Proof. (i): [ePK0K+ ] is mapped to

ˆ

U

ePK0K+( u) dµU (u) = µP (K0K+)−1

ˆ

U

1K0K+( u) dµU (u) =
µU (K+)

µP (K0K+)
1K0( ) = eMK0( ).

(ii) The element 1K−K0 ⊗ 1K0K+ is mapped to the function that we temporarily denote by Θ:

PP = UMU 3 umu 7−→ Θ(umu) :=

ˆ

M

1K−K0(umν)1K0K+(ν−1u) dµM (ν)

Θ vanishes outside of K:

u /∈ K− ⇒ 6∃ν ∈M s. t. umν ∈ K−K0

u /∈ K+ ⇒ 6∃ν ∈M s. t. ν−1u ∈ K0K+

m /∈ K0 ⇒


ν−1u ∈ K0K+ ⇒ umν /∈ K−K0




So, let umu ∈ K−K0K+. We then have

Θ(umu) =

ˆ

M

1K−K0(umν)1K0K+(ν−1u) dµM (ν) =

ˆ

M

1K0(ν) dµM (ν) = µM (K0).

This says Θ = µM (K0) · 1K and the claim follows from the proposition.
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These results enable us to explain the occurrence of an M -intertwining injection

W ↪→ rG
P
◦ iGP (W ) (7.1)

predicted by the Geometric Lemma (as P · 1 · P is the unique open coset in P\G/P ).

Recall from Proposition 6.2.1 that trivial continuation gives a P -P -bimodule injection

D(PP ) ↪→ D(G).

Using our various identifications, we have

D(M) ∼= δ−1

P
~D(M)⊗M D(M)~ δP ∼= U\D(P )⊗M D(P )/U ∼= U\D(PP )/U

and

U\D(G)/U ∼= U\D(G) ⊗G D(G)/U ,

where the vanishing of the delta-factors is due to the identity δP = δ−1

P
. Because taking Jacquet-

modules is exact, this provides us with an M -M -bimodule injection4

η′ : D(M) ↪→ U\D(G)⊗G D(G)/U

which, adding the normalizing delta-factors via Proposition 4.1.2, gives rise to (7.1).

Observation 7.4.3. If K ∈ KP (G) with Iwahori decomposition K = K+K0K−, η′ maps eMK0

to [eGK ]⊗ [eGK ].

Proof.

eMK0
∼= eMK0 ⊗ eMK0

∼= [ePK−K0 ]⊗ [ePK0K+ ] ∼= [eGK ]

is mapped by η′ to
[eGK ] ∼= [eGK ]⊗ [eGK ].

7.5 Second Adjointness Theorem

Let P = MU be a parabolic subgroup of a reductive p-adic group G. We just established a map

η′ : D(M) ↪→ U\D(G) ⊗G D(G)/U .

For a smooth M -representation W and a smooth G-representation V , η′ gives rise to a map

η′V,W : HomG(D(G)/U ⊗M W,V ) −→ HomM (W,VU ) ∼= HomM (D(M) ⊗M W, U\D(G)⊗G V )

via
Θ 7−→



ϕ⊗M w 7→ [α]⊗G Θ
(

[β]⊗M w
)





where [α]⊗ [β] ∈ U\D(G) ⊗G D(G)/U is an image of ϕ under η′.

One way of proving Second Adjointness is showing that the η′V,W are isomorphisms (as Bernstein
and Kazhdan do). We will follow another way.

4Injectivity is not clear as tensoring is not necessarily left exact. But it is easy to see by hand and we explained
(and used) this fact already in the preparation for the Geometric Lemma, see Observation 6.2.2. But, after all, we
do not need injectivity in the sequel.
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Have a look at this:

HomG

(

D(G)/U ⊗M Hom∞
G (D(G)/U , V ), V

)

// HomM

(

Hom∞
G (D(G)/U , V ), U\D(G) ⊗G V

)

HomM

(

Hom∞
G (D(G)/U , V ),HomG(D(G)/U , V )

)

OO

where the horizontal map is the appropriate component of η′ and the vertical map comes from
the Hom-Tensor-adjunction.
This suggests that there is a distinguished M -map

z : Hom∞
G

(

D(G)/U , V
)

−→ VU = U\D(G) ⊗G V

coming from the injection mapping in the lower-left Hom-set.

Observation 7.5.1. If z is an isomorphism, Second Adjointness holds.

Proof. Recall that Second Adjointness means there are natural isomorphisms

HomG(iGP (W ), V ) ∼= HomG(W, rG
P
(V ))

for any smooth G-representation V and any smooth M -representation W . Our characterization
of iGP makes it obvious (using the Hom-Tensor-adjunction for bimodules, see Theorem 5.10 in
[Hun80]) that there must exist a right adjoint:

HomG

(

D(G)/U ~ δ
− 1

2

P ⊗M W,V
)

∼= HomM

(

W,HomG(D(G)/U ~ δ
− 1

2

P , V )
)

where, according to Proposition 3.1.5, we can replace the right hand side by

HomM

(

W,Hom∞
G (D(G)/U ~ δ

− 1
2

P , V )
)

.

Therefore the functor

Hom∞
G (D(G)/U ~ δ

− 1
2

P , ) = δ
− 1

2

P ~Hom∞
G (D(G)/U , )

is a right adjoint for iGP . It remains to provide an M -isomorphism

δ
− 1

2

P ~Hom∞
G (D(G)/U , V ) ∼= δ

1
2

P
~ VU .

As δP = δ−1

P
, we can ignore the delta-factors.

Now, how shall we proceed in order to prove that z is an isomorphism? Observe, that K0 = K∩M
gets arbitrary small in M as K runs through KP (G). Thus, as a consequence of Lemma 3.5.2, we
are done as soon as we can prove that for any such K the induced map

zK : HomK0

G

(

D(G)/U , V
)

−→
(

V/U
)K0

is an isomorphism of vector spaces.

We state the following crucial result without proof (see Appendix A for a more detailed treatment).
It can be proved only if k = C.

Theorem 7.5.2 ((Weak) Stabilization Theorem). For any smooth G-representation V and

any K ∈K (G), the map V K
t
−→ V K is weakly stable.

We come to the main result:
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Theorem 7.5.3. Weak Stabilization implies Second Adjointness.

Proof. For K ∈KP (G), fix λ ∈ G strictly dominant with respect to P and K.

Observation 7.4.3 tells us that Θ ∈ HomK0

G

(

D(G)/U , V
)

is mapped to U

[

Θ
(

[eG
K(i) ]U

)]

by zK . For
any i ∈ Z, have a look at

HomK0

G

(

D(G)/U , V
)

Projection
from lim
←− ��

zK // (VU
)K0

HomG

(

D(G)K
(i)

, V
)

Isomorphism
from Prop. 7.1.2

//
V K

(i)

Injection
into lim
−→

OO

This diagram commutes:

Θ_

��

� //
U

[

Θ
(

[eG
K(i) ]U

)]



ϕ 7−→ Θ
(

[ϕ]U
)





� // Θ
(

[eK(i) ]U
)

_

OO

Therefore, zK equals the natural map

lim
←−

S λ −→ lim
−→

S λ

and the result follows from Lemma 1.2.5.

7.6 Implications from the Second Adjointness Theorem

In this section, we want to give a brief discussion of some results that can be established using the
Second Adjointness Theorem in a crucial way. As this theorem is only known to be true in the
case k = C, we will restrict ourselves to this case.
The most obvious implication is:

Proposition 7.6.1. Let P = MU ⊂ G be as in the preceding section, then the functor rGP is
continuous.

Proof. This is a well-known alternative characterization for a right adjoint functor.

There is the very important concept of cuspidal representations. These representations can be
understood as the building blocks of the category G-Rep.

Definition 7.6.2. A smooth G-representation is called quasi-cuspidal if rGP = 0 holds for all
P 6= G.

It is clear how the above proposition implies

Corollary 7.6.3. Products of quasi-cuspidal representations are quasi-cuspidal.

Using this, we can work out the following remark.

Remark 7.6.4. Fix an open, compact subgroup K ⊂ G.
Theorem 16 in [Ber92] tells us that for any quasi-cuspidal representation V we find a compact
modulo center set ΩV such that every matrix coefficient is supported in ΩV . A matrix coefficient
is a mapping of the form

mξ,v : G −→ C g 7−→ 〈ξ, gv〉
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where ξ ∈ V ′, v ∈ V are K-invariant vectors.
Now, let Vi be a sequence of quasi-cuspidal representations ofG. We see that the matrix coefficients
are bounded above in the following sense: The representation W =

∏

i Vi is cuspidal, hence all
the ΩVi are contained in the compact modulo center set ΩW . For the connection between this fact
and the Uniform Admissibility Theorem we refer the reader to section III of [Ber92].

Using another well-known fact from general category theory, we have

Proposition 7.6.5. The functor iGP maps projective objects to projective objects.

Definition 7.6.6. An object Π is called a projective generator if the Hom-functor

X 7−→ HomG(Π, X)

is exact and faithful.

We cite lemma 22 from [Ber92]:

Lemma 7.6.7. Let C be an abelian category with arbitrary direct sums. If there exists a finitely
generated projective generator Π, then C is isomorphic to the category of right modules over
EndC(Π).

Luckily, parabolic induction preserves faithfulness as well:

Proposition 7.6.8. iGP maps projective generators to projective generators.

Proof. See proposition 34 in [Ber92].

We now cite two theorems which exploit this fact:

7.6.1 Trace Paley-Wiener Theorem

Suppose, we have an irreducible, quasi-cuspidal representation V of M , where M is the Levi factor
of a parabolic subgroup P = MU ⊂ G.
We need the following notation:

Definition 7.6.9. Denote by G◦ the subgroup generated by all compact subgroups. Then an
unramified character is a character χ : G −→ C such that χ|G◦ is trivial.

We cite moreover from [Ber92] that the set of unramified characters is isomorphic to
(

C×
)l

for
some l ∈ N.

Now V gives rise to a family of G-representations

{Vχ}χ with Vχ = iGM (χ~ V )

where χ runs through all unramified characters of M .
Accordingly, an element ϕ in the Hecke algebra H(G) induces a family of maps (fϕ,χ)χ defined by

fϕ,χ : Vχ −→ Vχ v 7−→

ˆ

G

ϕ(γ)γv dµG(γ).

Such a family (fϕ,χ)χ fulfills the following conditions:� fϕ,χ, considered as a function on χ, is a regular function,� There is an open, compact subgroup K ⊂ G such that

ˆ

K

ϕ(γ)γfϕ,χ(v) dµG(γ) = fϕ,χ(v) = fϕ,χ

(
ˆ

K

ϕ(γ)γv dµG(γ)

)

,
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� For any G-map τ : Vχ −→ Vχ′ we have fϕ,χ′ ◦ τ = τ ◦ fϕ,χ.

The main result is now

Theorem 7.6.10. Any family of maps

(hχ)χ hχ : Vχ −→ Vχ

that fulfills the three conditions above equals (fϕ,χ)χ for some ϕ ∈ H(G).

Unfortunately, the proof uses the powerful structure considerations by Bernstein which we failed
to introduce. Therefore we can only assure the reader that the crucial ingredient is proposition
7.6.8. The proof can be found in III.5.2 of [Ber92]. For a more detailed treatment see Chapter
A.5 in [DKV84] or the article [BDK86].

7.6.2 Cohomological Duality

As usual, let G be a reductive p-adic group and V a smooth G-representation. We can understand
V as a left H(G)-module and hence form the groups

Exti(V ) := Exti
(

V,H(G)
)

.

This construction has some interesting properties:

Observation 7.6.11. If V is irreducible, Exti(V ) vanishes for all but one i. As Exti(V ) carries
a right G-module structure, we can define an assignment

D : G-Rep −→ G-Rep

as follows: To any irreducible G-representation, take the unique non-vanishing Exti(V ) and con-
vert it into a left G-module in the standard way. This module is called D(V ).

Proposition 7.6.12. If V is irreducible, D(V ) is irreducible.

The main result is

Theorem 7.6.13. The mapping D is a duality map: D(D(V )) = V , and it defines a bijection on
the set of equivalence classes of irreducible smooth G-representations.

Additionally, this map intertwines with the induction and restriction in the following way:

Lemma 7.6.14. Keep the notations from above, then� D ◦ iGP = iG
P
◦D;� D ◦ rGP = rGP ◦D.

Unfortunately, again we are unable to prove anything because of our lack in the general decom-
position theory. Again, we ask the reader to believe that the Second Adjointness Theorem plays
a crucial role and that a more comprehensive treatment can be found in [Ber92] (see chapter IV.5).

7.7 In Search of a Counit

Recall our strategy from Chapter 5 to prove Frobenius Reciprocity: We gave natural transforma-
tions

η : idG-Repk

•
−→ iGP ◦ r

G
P – the unit,

ε : rGP ◦ i
G
P

•
−→ idM-Repk

– the counit.
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As they fulfill the so-called zig-zag equations

idiGP
= iGP ε ◦ ηi

G
P and idrG

P
= εrGP ◦ r

G
P η,

we conclude that iGP is right adjoint to rGP .
Consequently, if we were able to give natural transformations

η′ : idM-Repk

•
−→ rG

P
◦ iGP

ε′ : iGP ◦ r
G
P

•
−→ idG-Repk

which fulfill the associated zig-zag equations, this would immediately imply Second Adjointness.
Observe, that we already know η′ very well from Section 7.4.
Therefore, as the transformations η, ε and η′ (understood as bimodule mappings) seem to be very
natural and “canonical”, it is tempting to look out for a suitable G-G-mapping

D(G)/U ⊗M U\D(G) −→ D(G)

giving rise to ε′. As M acts freely, properly and with good decompositions on the `-space
G/U × U\G, it is easy to show that the first symbol can be replaced by D(G/U ×M U\G).
Despite serious efforts, the author is unable to construct such a map or even to point out where
the difficulty lies and where something like a stabilization theorem5 could come into play.

The author would like to thank David Kazhdan for sending him of some of his notes, where he
constructs such a map and proves the zig-zag equations. The author looks forward to a prospective
publication by Kazhdan.

5One could say that stability is the real reason why Second Adjointness holds.
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Appendix A

Stabilization Theorem

Here, we will say a few words about the stabilization property used in a crucial manner during
the proof of Second Adjointness.
Let G be a reductive p-adic group and take as ground field k = C.

Theorem A.0.1 (Weak Stabilization Theorem). For any parabolic subgroup P = MU of G
and any open, compact subgroup K ⊂ G which admits an Iwahori factorization with respect to P
there exists a λ ∈ Λ++ (strictly dominant with respect to P and K) such that the linear mapping

t : V K −→ V K

v 7−→

ˆ

K

kλv dµG(k)

is weakly stable.

Theorem A.0.2 (Stabilization Theorem). Replace the word “weakly” in the above theorem by
“eventually”.

Clearly, Stabilization implies Weak Stabilization.

Observation A.0.3. Let V be smooth and admissible. Then, due to dimension reasons, ker(tn)
and im(tn) stabilize in V K . This says that stability holds for all admissible representations. Note
that every irreducible smooth representation is admissible (see Theorem 12 in [Ber92]).

The Stabilization Theorem was proved by Bernstein in [Ber87] or [Ber92] for all smooth represen-
tations of reductive p-adic groups. He proceeds like this:
Let V be a t-stable C-vector space, V ′ be t′-stable. Then V ⊕ V ′ is t ⊕ t′-stable. On the other
hand, if f : V −→ V ′ is a linear map that commutes with the t- and t′-action, ker(f) is a t-stable
vector space and coker(f) is a t′-stable vector space.
Put into other words: We can understand vector spaces with an endomorphism as C[x]-modules.
Then the subcategory of x-stable modules is closed under taking sums, kernels and cokernels.

As a next step, Bernstein considers some smooth M -representation W and realizes iGP (W ) as a
cokernel in the following way:

∏

α

Π −→
∏

β

Π −→ iGP (W ) −→ 0

where Π = iGP (Π(D)) for a projective generator Π(D) for D-Rep. Here D-Rep is the category of
representations with Jordan-Hölder components in a cuspidal component D. For all these notions
see Chapter II of [Ber92]. It is possible to prove then that both

∏

αΠ and
∏

β Π are tc-stable for
some number c. One can conclude that induced representations are eventually stable.
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Next, Bernstein realizes an arbitrary G-representation V as a kernel in the following way:

0 −→ V −→
⊕

I1

iGPi
(Wi) −→

⊕

I2

iGPi
(Wi)

where the Pi are parabolic subgroups and the Wi are certain smooth (cuspidal) representations
of the Levi part of Wi. This shows that V fulfills the Stabilization property, this means that
each V K is tcK -stable for numbers cK ∈ N. Indeed, Bernstein shows that the numbers cK are
bounded above by numbers c(G,K) that solely depend on G and K and not on the particular
representation.

The author regrets that he cannot present more then this very rough sketch of the proof. He would
like to emphasize that the important steps (representing iGP (W ) as a cokernel and representing V
as a kernel) use the full force of Bernstein’s decomposition of G-Rep (as described in [Ber92]) and
rely crucially on the choice of base field k = C.
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