
HOMOLOGICAL ALGEBRA FOR SCHWARTZ ALGEBRAS

RALF MEYER

Abstract. Let G be a reductive group over a non-Archimedean local field. For
two tempered smooth representations, it makes no difference for the Ext-groups
whether we work in the category of tempered smooth representations of G or of
all smooth representations of G. Similar results hold for certain discrete groups.
We explain the basic ideas from functional analysis and geometric group theory
that are needed to state this result correctly and prove it.

1. Introduction

These notes are based on my lecture at the conference “Symmetries in Algebra
and Number Theory” in Göttingen in October 2008, where I discussed results of
[5, 8, 9]. Since details are available in these articles, our presentation will sometimes
be informal and limited to the most basic ideas.

First I briefly introduce some categories of representations studied in represen-
tation theory, before focussing on the categories of smooth and tempered smooth
representations of reductive p-adic groups.

It was observed for such groups that it makes no difference for homological algebra
in which of these two categories we work: both Ext∗G(V,W ) and TorG∗ (V,W ) agree
in both worlds if V and W are tempered smooth representations. Even more is
true: the derived category of tempered smooth representations is a full subcategory
of the derived category of smooth representations. All this can be deduced from
the exactness of a single chain complex, namely, the chain complex that computes
TorC∞c (G)
∗

(
S(G),S(G)

)
for the Schwartz algebra S(G) of G, where C∞c (G) denotes

the Hecke algebra of G.
The result as stated above is false, however: to get a correct statement we must

incorporate some functional analysis into our homological algebra in order to replace
tensor products by complete tensor products. I explain this for the Schwartz algebra
S(Z) for the group of integers, where the same problem appears. After the necessary
excursion into bornological vector spaces and homological algebra for them, we can
correctly state our main result.

Let A be a dense subalgebra of a bornological algebra B. By density, a map
between two B-modules is B-linear once it is A-linear. Hence the category of
B-modules is always a full subcategory of the category of A-modules. This becomes
false when we pass to derived categories. But there are many cases where the
canonical functor from the derived category of B-modules to the derived category
of A-modules is fully faithful. I first met this phenomenon along the way in [7]
and studied it more systematically in [6]. The same phenomenon has been studied
under different names in slightly different contexts by other authors, as kindly
pointed out to me by Alexei Yu. Pirkovskii and Henning Krause. The first instance
I know is the notion of absolute localisation in Joseph L. Taylor’s work on the
functional calculus for several commuting operators on a Banach space ([14]); this
notion is formulated for continuous homomorphisms of topological algebras. Another
instance is the notion of a homological epimorphism introduced by Werner Geigle

2000 Mathematics Subject Classification. 20G05, 18E30.
1



2 RALF MEYER

and Helmut Lenzing in [2]; this notion is formulated for homomorphisms of rings
and has been applied to the representation theory of finite-dimensional algebras.
Amnon Neeman and Andrew Ranicki call such homomorphisms stably flat and use
them in connection with algebraic K-theory ([10], see also [4]). The same name is
used by Alexei Yu. Pirkovskii in [11]. I call such maps isocohomological because
they preserve cohomology.

The proof that the embedding C∞c (G) → S(G) of the Hecke algebra into the
Schwartz algebra of a reductive p-adic group is isocohomological is based on an
idea from geometric group theory. To make this point, I also discuss a similar
result for discrete groups from [8], which deals with the group ring C[G] of a finitely
generated discrete group G and a Schwartz algebra S(G) defined by weighted
`1-estimates. It turns out that the chain complex whose contractibility is crucial
for an isocohomological embedding C[G]→ S(G) for a discrete group G is a coarse
invariant of G. This leads to a recipe for contracting it, based on the notion of a
combing from geometric group theory.

Reductive p-adic groups have such a combing because they act cocompactly on a
CAT(0)-space – their affine Bruhat–Tits building. This led me to prove the result for
reductive p-adic groups. After I established results on isocohomological embeddings
for Abelian groups in [7], I wanted to extend them to reductive p-adic groups such as
Sln(Qp) but found this difficult. Therefore, I first worked out a similar problem for
discrete groups in [8], in a way that ought to generalise to reductive p-adic groups;
then I carried out this generalisation in [9].

In these notes I only sketch some rough ideas of the proof of the result for discrete
groups. After this sketch of a proof, I turn to some applications. The first is a
vanishing result for certain Ext and Tor-groups for square-integrable representations.
Together with results of Peter Schneider and Ulrich Stuhler from [12], this provides a
combinatorial formula for the formal dimension of a square-integrable representation,
which implies that these dimensions are quantised. As a consequence, the number
of square-integrable irreducible representations that contain a U -invariant vector
for a compact open subgroup U of G grows at most linearly in vol(U)−1.

2. Categories of representations

Here we discuss some classes of representations that have been studied in repre-
sentation theory. Later on, we will focus on smooth representations and tempered
smooth representations.

The first class of representations to be studied were the finite-dimensional ones.
Infinite-dimensional representations came into focus because of quantum mechanics,
which required understanding unitary representations of certain Lie groups on
Hilbert spaces.

For any locally compact group G, we know one basic example of a unitary
representation: the regular representation on the Hilbert space L2(G), given by
g · f(x) := f(g−1x) for all g, x ∈ G, f ∈ L2(G). If G is a compact group, then
any irreducible representation of G is contained in the regular representation. For
non-compact groups, we must restrict to unitary representations – unitarity is
automatic for compact groups – and weaken our notion of containment: already
for the Abelian group R, irreducible representations are only weakly contained
in the regular representation. (A unitary representation π of G on a Hilbert
space H is weakly contained in another unitary representation ρ of G if its matrix
coefficients g 7→ 〈πg~v, ~w〉 for ~v, ~w ∈ H can be approximated locally uniformly by
linear combinations of matrix coefficients of ρ.)

All non-compact semi-simple Lie groups have unitary representations that are not
weakly contained in the regular representations – the simplest example is the trivial
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representation of Sl(2,R). Unitary representations that are weakly contained in the
regular representation are called tempered unitary representations. The systematic
study of the representation theory of Lie groups showed that tempered unitary
representations are much easier to classify than general unitary representations –
we still lack a complete description of the latter for general semi-simple Lie groups,
while the tempered unitary representations are, in principle, classified.

Lie algebra methods are one of the major tools for studying finite-dimensional
representations of Lie groups. These do not directly apply to unitary representations
on Hilbert space because the Lie algebra is only represented by unbounded operators.
But they do apply nicely once we pass to a suitable subset of smooth vectors. Many
results in representation theory are established first in this category of smooth
representations and then translated to unitary Hilbert space representations.

This lecture mainly deals with reductive p-adic groups instead of Lie groups. A
reductive p-adic group is a reductive linear algebraic group over a non-Archimedean
local field. Their representation theory is remarkably similar to the representation
theory of Lie groups. For the following, it suffices to think of basic examples of
reductive p-adic groups such as the special linear groups Sln(Qp) or Sln(Fq[[t−1, t])
over the fields Qp of p-adic integers or over a local function field Fq[[t−1, t]. All groups
we consider are locally compact and totally disconnected, that is, their topology
has a basis consisting of subsets that are both compact and open. Moreover, the
unit element has a neighbourhood basis of compact open subgroups.

Definition 2.1. A representation of a locally compact, totally disconnected group
(on a C-vector space) is called smooth if each vector is fixed by some open subgroup.
Let Rep(G) denote the category of smooth representations of G.

Example 2.2. Let G = Sl2(Qp) and let V be the space of locally constant functions
on the projective line P1Qp, equipped with the induced action of G. This is a smooth
representation of G. The constant function is G-invariant, so that V contains a
subrepresentation isomorphic to the trivial representation. The quotient V/C · 1 is
a tempered, irreducible smooth representation called the Steinberg representation
of G. The representation V itself is not tempered because the trivial representation
of G is not tempered.

The definition of tempered smooth representations is more subtle. It may seem
natural to require the existence of an invariant inner product such that the Hilbert
space completion carries a tempered unitary representation. But it is better not to
require tempered smooth representations to be unitary at all.

One reason for this is the following desideratum: the category of tempered
smooth representations should be closed under extensions. In particular, a smooth
representation of finite length (that is, one with a finite Jordan–Hölder series) should
be tempered if all its irreducible subquotients are tempered. But the property of
being unitary is not closed under extensions.

Example 2.3. Represent the group Z on C2 by unipotent matrices: n 7→
(

1 n
0 1
)
. This

representation is a non-trivial extension of the trivial representation by itself and
should therefore be tempered because the trivial representation of Z is a tempered
unitary representation. But a unipotent matrix is not unitary for any inner product.

The correct definition of tempered smooth representations uses Schwartz algebras.
Smooth representations of a group G may be viewed as non-degenerate modules
over the convolution algebra C∞c (G) of smooth, compactly supported functions
on G. For totally disconnected groups, “smooth” means “locally constant,” and
C∞c (G) is also called the Hecke algebra of G. For Lie groups, the above statement is
only literally correct if we incorporate some functional analysis into our definitions
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– we should study smooth representations and C∞c (G)-modules in the category of
bornological vector spaces (see [5]).

Tempered representations are defined as modules over a certain completion of
C∞c (G), generically called Schwartz algebra. The cases G = Z and G = R are
most familiar: here the Schwartz algebra S(G) is the convolution algebra of rapidly
decreasing functions of Laurent Schwartz. Recall that the Fourier transform provides
algebra isomorphisms between S(Z) and the algebra C∞(Ẑ) of smooth functions
on the Pontrjagin dual Ẑ ∼= T of Z with pointwise multiplication, and between
S(R) with convolution and S(R) with pointwise product. We will soon use S(Z) to
motivate our results for reductive p-adic groups.

The definition of the Schwartz algebra S(G) for a reductive p-adic group G is
due to Harish–Chandra and involves two ingredients: uniform smoothness and rapid
decay. A function on G is uniformly smooth if it is U -invariant on the left and on
the right for some compact-open subgroup U in G, so that it descends to a function
on the double coset space G // U . A uniformly smooth function f on G has rapid
decay if and only if f · (` + 1)k ∈ L2(G) for all k ∈ N, where ` is an appropriate
length function on G; for G = Sln(Qp), we may take

`(g) := logpmax{‖g‖∞, ‖g−1‖∞}

where ‖g‖∞ denotes the maximum of the p-adic norms of the matrix entries of g. It
is non-trivial that convolutions of uniformly smooth functions of rapid decay are
well-defined and have rapid decay.

The above description of S(G) by L2-estimtes is due to Marie-France Vignéras [15].
Harish–Chandra defines S(G) using a weighted supremum norm instead. For
uniformly smooth functions, an L2-estimate is equivalent to suitable weighted
Lp-estimates for p ∈ [0,∞] because the set G // U of double cosets – unlike G itself
or G/U – has polynomial growth with respect to the length function `.

Roughly speaking, a tempered smooth representation of G is a module over the
Schwartz algebra S(G). But we must modify this definition because as stated above,
the derived category of S(G) does not embed into the derived category of C∞c (G).

Before we discuss this problem, we briefly define Schwartz algebras for finitely
generated discrete groups. If ` is a word-length function on such a group G, we let
f ∈ S(G) if f · (`+ 1)k ∈ `1(G) for all k ∈ N, that is,∑

g∈G
|f(g)|(`(g) + 1)k <∞.

We use this definition although modules over S(G) have little to do with tempered
unitary representations in general; they are more closely related to uniformly
bounded Banach space representations. For groups of rapid decay, the Jolissaint
algebra [3] is an interesting alternative to S(G) that is closely related to tempered
unitary representations. But our main results are false for the Jolissaint algebra,
that is, its derived category does not embed into the derived category of the group
ring.

3. Why do we need bornological modules?

Our main result asserts that the derived category of tempered smooth repre-
sentations of a reductive p-adic group is a full subcategory of the category of all
its smooth representations. In particular, if V and W are both tempered smooth
representations, then it makes no difference for Ext∗G(V,W ) and Tor∗G(V,W ) in
which of the two categories of smooth representations we work.
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In this section, we explain why this theorem is false and how to rectify it. The
issue is that we cannot work in a purely algebraic setting; we must complete tensor
products, forcing us to incorporate some functional analysis into our setup.

The problem is the same for reductive p-adic groups and Abelian groups and
already appears for the group G = Z. Hence we study this very simple case here. Let
A := C[Z] and B := S(Z). The basic input for all homological computations with
A-modules is a free A-bimodule resolution of A: once we know such a resolution, we
can get free resolutions for all left or right A-modules and compute derived functors.

The algebra A is isomorphic to the algebra C[t, t−1] of Laurent polynomials.
There is a very small free A-bimodule resolution of A,

0→ A⊗A d−→ A⊗A m−→ A→ 0,

where d(f ⊗ g) := tf ⊗ g − f ⊗ tg and m(f ⊗ g) = f · g for f, g ∈ C[t, t−1]. It is
routine to check that the above chain complex is exact.

The basic question is whether it remains exact when we replace A by the
completion B. The resulting chain complex

(3.1) 0→ B ⊗B d−→ B ⊗B m−→ B → 0

computes Tor∗A(B,B) and should be exact if Tor∗A(B,B) ∼= Tor∗B(B,B). Con-
versely, if this single chain complex is exact, then ExtnA(V,W ) ∼= ExtnB(V,W ) for all
B-modules V and W , similarly for Tor, and the canonical functor from the derived
category of B to the derived category of A is fully faithful (see [6]).

Unfortunately, the chain complex in (3.1) is not exact. Clearly, d is injective
and m is surjective, but kerm is bigger than the range of d. To remedy this,
we have to complete our tensor products and replace B ⊗ B = S(Z) ⊗ S(Z) by
B ⊗̂B := S(Z× Z). This is isomorphic by the Fourier transform to C∞(T2), and
the completed chain complex

0→ C∞(T2) d−→ C∞(T2) m−→ C∞(T)→ 0

is exact. Here df(x, y) := (x− y)f(x, y) and mf(x) = f(x, x).
Thus we need to modify our setup and consider a category of modules where the

algebraic tensor product is replaced by a completed tensor product with B ⊗̂B =
S(Z× Z).

The most familiar choice is the category of complete locally convex topological
vector spaces with the complete projective topological tensor product. While this
may still work well enough for the example Z, we get serious problems for the
Schwartz algebra S(G) of a reductive p-adic group G because the product in S(G) is
not jointly continuous. To accomodate this, we may follow [1] and use the complete
inductive topological tensor product, which is designed to be universal for separately
continuous bilinear maps. But this tensor product behaves rather badly for general
locally convex topological vector spaces – even associativity is unclear. Everything
works fine if we also restrict attention, say, to the category of nuclear LF-spaces.
This is enough to cover S(G) and the modules we need.

There is, however, a better way to combine functional analysis with homological
algebra, where the problems with completed tensor products mentioned above
disappear. In other words, these problems are mere artefacts produced by unsuitable
definitions. Instead of complete locally convex topological vector spaces, we should
use complete convex bornological vector spaces. A bornology on a vector space
is a collection of bounded subsets with certain properties – thus bounded subsets
replace open subsets in bornological analysis. Correspondingly, boundedness replaces
continuity for linear and bilinear maps. Any complete convex bornological vector
space is an inductive limit of Banach spaces in a natural way.
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The category of complete bornological vector spaces has very good algebraic
properties. For instance, the complete projective tensor product in this category
and the internal Hom functor are related by the familiar adjointness isomorphism

Hom
(
X,Hom(Y, Z)

) ∼= Hom(X ⊗̂ Y,Z).
Any vector space carries a canonical bornology, called the fine bornology. Its

bounded subsets are the bounded subsets of finite-dimensional subspaces. This
defines a fully faithful, fully exact embedding of the category of vector spaces into
the category of complete bornological vector spaces. Furthermore, the embedding is
symmetric monoidal, that is, compatible with (complete) tensor products. Roughly
speaking, nothing happens when we equip a vector space with the fine bornology.

Topological vector spaces also carry canonical bornologies. The most useful choice
is the precompact bornology, consisting of all precompact subsets. This defines a
fully faithful, fully exact, symmetric monoidal embedding of the category of Fréchet
spaces into the category of complete bornological vector spaces. The precompact
bornology also defines such an embedding on the category of nuclear LF-spaces.
On this category, the complete projective bornological tensor product agrees with
the complete inductive topological tensor product – exactly what we need. Thus
S(G) ⊗̂ S(G) ∼= S(G×G) for any reductive p-adic group G.

We now modify our definitions to allow smooth representations on (complete,
convex) bornological vector spaces; from now on, all bornological vector spaces are
requird complete and convex. A group representation of a locally compact, totally
disconnected group G on a bornological vector space V is called smooth if, for each
bounded subset S, there is a compact-open subgroup U of G with u · ~v = ~v for
all u ∈ U , ~v ∈ S. The category of smooth representations of G on bornological
vector spaces is isomorphic to the category of essential bornological C∞c (G)-modules
(a bornological A-module is essential if the multiplication map A ⊗̂M → M is a
bornological quotient map).

The tempered smooth representations of G are the essential S(G)-modules, where
we equip S(G) with the obvious bornology: a subset of S(G) is bounded if its
elements are uniformly smooth and of uniformly rapid decay.

When doing homological algebra in this setting, it is better to replace exactness
by a stronger condition, namely, the existence of a bounded contracting homotopy.
Otherwise, we would get a complicated derived category even for the trivial algebra C
because there are non-trivial extensions of bornological vector spaces. To get rid of
these complications, we do relative homological algebra with respect to the category
of bornological vector spaces. Formally, this means that we turn categories of
bornological vector spaces and modules into exact categories in the sense of Quillen.
These exact categories have enough injective and enough projective objects, so that
homological algebra works as usual. In particular, we can form derived categories.
The main point to remember is that resolutions are required to have a bounded
contracting homotopy.

We can now state our main theorem:

Theorem 3.2. The embedding C∞c (G) → S(G) induces a fully faithful functor
between the derived categories of non-degenerate bornological modules over C∞c (G)
and S(G). In particular, if both V and W are essential S(G)-modules, then

ExtnC∞c (G)(V,W ) ∼= ExtnS(G)(V,W ) and TorC∞c (G)
n (V,W ) ∼= TorS(G)

n (V,W ).

Various equivalent conditions for such an embedding of derived categories are
given in [6]. The one that is practical to check is the following:

Theorem 3.3. Let A and B be bornological algebras and let f : A → B be an
essential bounded algebra homomorphism; that is, B is essential as an A-bimodule.
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Let P• → A be a projective A-bimodule resolution of A. The functor between the
derived categories of essential bornological modules over A and B induced by f is
fully faithful if and only if B ⊗̂A P• ⊗̂AB → B has a bounded contracting homotopy.

We also call f isocohomological if this is the case. The argument above shows
that the embedding C[Z]→ S(Z) is isocohomological. Our main theorem states that
the embedding C∞c (G)→ S(G) for a reductive p-adic group is isocohomological.

The proof of Theorem 3.3 is not hard. Only the sufficiency of the condition
is relevant here. The main point is that if B ⊗̂A P• ⊗̂A B → B has a bounded
contracting homotopy, then it is a projective B-bimodule resolution of B. Hence all
derived functors for B can be computed using this bimodule resolutions. When we
compare them with similar computations for A, we get the same answer because
the two resolutions are so closely related.

4. Some ideas from the proof of the main theorem

We have now stated our main theorem correctly and established an analogous
result for the discrete group Z. To find a proof for reductive p-adic groups, we
identify a geometric property for discrete groups related to non-negative curvature
that ensures that the embedding C[G]→ S(G) is isocohomological.

What does “geometric” mean here? Any finitely generated group G becomes a
metric space with respect to a word-length function. This metric is not unique, but
it is unique up to quasi-isometry. Moreover, it frequently happens that a group G is
quasi-isometric to a nice geometric object like a smooth manifold. In general, if G
acts cocompactly, properly, and by isometries on a metric space X, then G and X
are quasi-isometric. For instance, the fundamental group of a Riemannian manifold
is quasi-isometric to the universal covering of this manifold.

Any reductive p-adic group G acts cocompactly and properly on a nice geometric
space – its affine Bruhat–Tits building. It is known that such buildings have non-
positive curvature – formally, they have the CAT(0)-property that triangles in them
are thinner than comparison triangles in flat Euclidean space. Hence a geometric
non-positive curvature condition covers reductive p-adic groups as well.

It is shown in [8] that the question whether or not the embedding C[G]→ S(G)
is isocohomological for a discrete group G depends only on the quasi-isometry type
of G. This can be formalised as follows: to any metric space we may associate a
certain chain complex that is a quasi-isometry invariant, and for the underlying
metric space of a finitely generated discrete group G, this chain complex has a
bounded contracting homotopy if and only if the embedding C[G] → S(G) is
isocohomological.

The chain complex in question is a certain completion of the reduced bar complex
on X. More precisely, we take the reduced chain complex C•(X) of the simplicial set
with Xn+1 as its set of n-simplices, and face and degeneracy maps deleting or adding
one of the entries. The completion involves chains with controlled support – there is
R > 0 such that f(x0, . . . , xn) vanishes if d(xi, xj) > R for some i, j – and with rapid
decay in the sense that the function (`(x0) + 1)kf(x0, . . . , xn) on Xn+1 is absolutely
summable for each k ∈ N. For a discrete group G, this chain complex has a bounded
contracting homotopy if and only if the embedding C[G]→ S(G) is isocohomological.
Thus our task is to find a contracting homotopy for the uncompleted chain complex
C•(X) that is bounded with respect to the appropriate bornology and therefore
extends to the completion.

The reduced bar complex above is huge and may therefore appear impractical for
cohomology computations. Nevertheless, it is ideal for our current purpose because
of its good functoriality properties. By design, the bar construction makes sense for
any discrete set X, and any map f : X → Y induces a chain map. If f, g : X → Y
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are two maps, then the induced chain maps are chain homotopic – simply because
the bar complex is contractible. But there is, in fact, an explicit and simple formula
for a chain homotopy between the chain maps induced by f and g.

In particular, this chain homotopy for the identity map and a constant map
provides a contracting homotopy for C•(X). This is just the standard contracting
homotopy of the reduced bar complex C•(X), and it is unbounded for the relevant
bornology. To get a bounded contracting homotopy, we must contract our group
more gently: we need a sequence of maps fn : X → X that, roughly speaking, move
each x ∈ X to the base point 0 in small steps; typically, we just let fn(x) be points
on a quasi-geodesic in X from x to 0; “moving in small steps” means that there is
S > 0 with d

(
fn(x), fn+1(x)

)
< R for all n ∈ N, x ∈ X.

Given such a sequence of maps (fn), we sum up the canonical chain homotopies
between the chain maps induced by the fn and hope that the sum remains bounded.
This requires further geometric conditions. Since our homotopy must preserve
controlled supports, we need that fn(x) and fn(y) remain close for all n ∈ N if x
and y are close; more precisely, for each R > 0 there is S > 0 such that if d(x, y) < R,
then d

(
fn(x), fn(y)

)
< S for all n ∈ N. A sequence of maps (fn) with the two

properties described above is called a (synchronous) combing on G. In addition,
to preserve the rapid decay condition, we need that the number of n ∈ N with
fn(x) 6= fn+1(x) grows at most polynomially in `(x) = d(x, 0); if the points fn(x)
follow a quasi-geodesic, then this number automatically grows linearly (polynomial
growth rules out some groups that only admit more complicated combings where
each element follows a huge detour). We can now formulate the main result of [8]:

Theorem 4.1. Let G be a finitely generated discrete group that has a combing of
polynomial growth. Then the embedding C[G]→ S(G) is isocohomological.

In a Riemannian metric, geodesics remain close to each other if the curvature
is non-positive. For instance, this happens in flat Rn. Since the group Zn with
word-length metric is quasi-isometric to Rn, the group Zn has a combing as well.
This explains why the embedding C[Zn] → S(Zn) is isocohomological. Another
class of groups that admit combings are hyperbolic groups, fundamental groups of
non-positively curved manifolds, and cocompact lattices in Lie groups – the latter
act cocompactly and properly on non-positively curved Riemannian manifolds.

For discrete groups, categories of representations are usually not well-behaved, so
that Ext- and Tor-groups for them are usually hard to compute. The most interesting
case of Theorem 4.1 seems to concern the trivial representation. The groups
Ext∗C[G](C,C) are group cohomology, while Ext∗S(G)(C,C) are group cohomology
with polynomial growth; that is, we take the standard bar complex computing group
cohomology and take the cohomology of the subcomplex of cochains of polynomial
growth. Theorem 4.1 implies that both chain complexes are homotopy equivalent
if G has a combing of polynomial growth. In particular, every class in the group
cohomology is represented by a cocycle of polynomial growth.

Any reductive p-adic group acts cocompactly on its affine Bruhat–Tits building,
which is another example of a non-positively curved space – formally, a CAT(0)-space.
Hence reductive p-adic groups have combings of linear growth. This suggested to me
that Theorem 4.1 should remain true for reductive p-adic groups. In fact, I checked
this for Sl2(Qp) by hand and added a remark to this extent in the introduction
of [8]. This intrigued Peter Schneider who had tried to prove such a statement but
hit the problem described in §3 and concluded that the statement was false.

As expected, the proof of Theorem 4.1 carries over to reductive p-adic groups.
But two new problems appear that still requires a significant amount of additional
work.
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One issue is that the trivial representation of a reductive p-adic group is not
tempered. In the discrete case, the trivial representation is always a module over
S(G) because the latter is defined using `1-estimates. This allows some simplification
in the chain complexes to be considered. The chain complex described involves
chains on Xn that are compactly supported in all but one direction. To treat
reductive p-adic groups, we must allow functions that are compactly supported in
all but two directions, and that satisfy a certain growth condition in the other two
directions.

A second issue is the uniform smoothness in the definition of the Schwartz algebra.
The contracting homotopy must be constructed more carefully in order to preserve
this property, and the argument requires results of Bruhat and Tits about stabilisers
of points in the building.

5. Some applications

In this section, we let G be a semi-simple p-adic group such as Sln(Qp) or
Sln(Fq[[t−1, t]). An extension to reductive groups such as Gln(Qp) or Gln(Fq[[t−1, t])
is possible but requires more notation, which I do not want to introduce here.

What can we learn from our main result that the embedding C∞c (G) → S(G)
is isocohomological? First of all, this implies that the subcategory of tempered
smooth representations is closed under extensions in the category of all smooth
representations because Ext1 is the same in both categories. We already observed
this important property of the category of tempered smooth representations in §2.
Example 2.3 shows that the categories of unitary representations or of uniformly
bounded Banach space representations are not closed under extensions. Hence the
embedding C[Z]→ `1(Z) is not isocohomological.

Another important general consequence is that S(G) has a projective bimodule
resolution of finite length – the same length as for C∞c (G). This means that derived
functors for S(G) vanish above some dimension.

In principle, this projective bimodule resolution can be used to compute the
Hochschild and cyclic homology of S(G). While such a computation for C∞c (G)
is feasible, the case of S(G) is considerably more complicated because it requires
careful estimates about the growth of the length function on conjugacy classes. It is
known that C∞c (G) and S(G) have isomorphic periodic cyclic homology ([13]), but
it seems very hard to prove this using the isocohomological embedding. There is no
general theorem to this effect.

Square-integrable representations are special tempered representations that are
isolated among tempered representations. That is, they are both projective and
injective in the category of tempered smooth representations. Hence ExtnS(G)(V,W )
vanishes for n 6= 0 if V or W is square-integrable and the other one tempered. Our
main theorem yields the same for ExtnC∞c (G)(V,W ). For instance, this applies if V
is the Steinberg representation of Sl2(Qp) (see Example 2.2). This vanishing result
is remarkable because, by its very definition, the Steinberg representation V has a
non-trivial extension by the trivial representation C, so that Ext1

C∞c (G)(V,C) 6= 0.
Vanishing results for square-integrable representations are particularly important

because these are the atoms of the Plancherel measure on the set of irreducible
representations ofG. Moreover, since ExtnC∞c (G)(V,W ) vanishes unless V andW have
the same central character, the support of the function V 7→ dim ExtnC∞c (G)(V,W ) is
always a finite set. Hence this function vanishes almost everywhere if W is tempered
and n 6= 0. In contrast, the function V 7→ dim Ext1

C∞c (Sl2 Qp)(V,C) does not vanish
almost everywhere because it is non-zero at the Steinberg representation, which is
an atom of the Plancherel measure.
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Another interesting application is the quantisation of formal dimensions of square-
integrable representations:

Theorem 5.1. There is α > 0 such that the formal dimension of any irreducible
square-integrable representation of G belongs to α · N≥1.

This implies a bound on the number of irreducible square-integrable representa-
tions that contain U -fixed vectors for some compact-open subgroup U : any such
representation is contained in L2(G/U), which has formal dimension vol(U)−1. Since
formal dimensions are additive and positive, we conclude that there are at most
1/(α volU) square-integrable representations that contain U -fixed vectors.

How is our main result related to formal dimensions? The following conceptual
explanation is taken from [9]. The ring C∞c (G) is a regular Noetherian ring,
that is, any finitely generated C∞c (G)-module has a resolution of finite length by
finitely generated projective modules. Hence any finitely generated C∞c (G)-module
determines a class in the algebraic K-theory of C∞c (G): take the Euler characteristic∑∞
n=0(−1)n[Pn] of a finite type projective resolution P•. Since the formal dimension

of representations defines a linear map K0(C∞c G)→ R, this yields a notion of formal
dimension for all finitely generated C∞c (G)-modules.

There seems to be no general formula for such a resolution for a general finitely
generated module. But if we restrict to representations of finite length, then Peter
Schneider and Ulrich Stuhler construct an explicit projective resolution in [12]. This
can be used to compute the formal dimension mentioned above and shows that it is
quantised. But it is not clear whether this new notion of formal dimension agrees
with the usual one that is based on traces on group von Neumann algebras.

This is exactly where our main theorem is needed. It implies that a projective
C∞c (G)-module resolution of an S(G)-module remains a resolution when we base
change to S(G). If we start with a square-integrable representation V , then V is
a projective S(G)-module. Hence the resolution S(G) ⊗̂C∞c (G) P• of V must split,
so that [V ] =

∑∞
n=0(−1)n[S(G) ⊗̂C∞c (G) Pn] in K0(SG). This implies that the

combinatorial formal dimension computed using the class of V in K0(C∞c G) agrees
with the usual formal dimension.

6. Conclusion

We have seen that the derived category of tempered smooth representations of a
reductive p-adic group G is a full subcategory of the derived category of all smooth
representations G. To achieve this, we had to incorporate some functional analysis
into our categories of modules. The proof of this result is inspired by the proof of a
similar result for discrete groups that uses ideas from geometric group theory.

This comparison result is useful in two ways: it shows that the modules over
the Schwartz algebra have reasonably simple projective resolutions because this
happens over the Hecke algebra. And it shows that Ext and Tor vanish for tempered
representations if one of them is square-integrable. We have also seen one consequence
– the quantisation of formal dimensions of square-integrable representations – whose
statement does not involve any homological algebra.
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