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1 Introduction and overview of results
We are interested in the continuity of the map

Σ: T → C(Cn), t 7→ σj(At).

T is a topological space. C(Cn) are the non-empty closed subsets of Cn. At are
families of pairwise strongly commuting normal operators on Hilbert spaces Ht. σj
denotes the joint spectrum.

As a motivation consider quantum mechanics. Here, observables are described by
self-adjoint operators on a given Hilbert space. Several commuting observables can
be measured simultaneously. The possible measurement outcomes are tuples of
real numbers. These will make up the corresponding joint spectrum. For many
applications it is too difficult to calculate these spectra exactly. Physicists will then
resort to approximations of the given operators. Let us say At

t→t0−−−→ A in some sense,
where A is the family of operators of interest. If one now wants to obtain results
about the spectrum of A by studying the spectra of the At it is in general necessary
that the spectra change continuously with t. So we ask ourselves: When exactly is
this the case? Of course, the answer depends on the topology on C(Cn).

We will start by considering families of pairwise commuting normal bounded oper-
ators in Section 2. Using the framework of C∗-algebras there is a straightforward
generalization from the spectrum of a single normal operator to the case of families
of pairwise commuting normal operators. We present the construction of this joint
spectrum and show some useful properties in Section 2.2.

Before we can talk about the continuity of Σ we have to specify a topology on C(Cn).
In the case of bounded operators the joint spectrum will be compact. Therefore, it
is enough to consider the non-empty compact subsets K(Cn) of Cn. The Hausdorff
metric introduces a measure of distance between compact subsets. The corresponding
topology makes K(Cn) a complete metric space. This is discussed in Section 2.3.

We will further introduce the rather abstract concept of continuous fields of C∗-
algebras in Section 2.4. It turns out that for bounded operators the following are
equivalent (Theorem 2.5.1 and Corollary 2.5.2):

(i) Σ is continuous in the Hausdorff-metric.

(ii) The map T ∋ t 7→ ∥p(At)∥ ∈ [0, ∞) is continuous for all polynomials p.

(iii) The map T ∋ t 7→ ∥ϕ(At)∥ ∈ [0, ∞) is continuous for all continuous functions
ϕ : Cn → C.
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(iv) There is a continuous field of unital C∗-algebras generated by the At such that
the elements of At are continuous sections.

This is a direct generalization of results obtained by Siegfried Beckus in his dissertation
on the ‘Spectral approximation of aperiodic Schrödinger operators’ [1] (2017). He
considered the case of single normal operators and their spectra. The implication that
self-adjoint continuous sections of continuous fields of C∗-algebras have continuous
spectra had already been shown by Kaplanski in 1951 [7]. Beckus seems to be the
first to show the converse. He also introduced the formulation in terms of continuous
norm maps for certain sets of functions as in statements (ii) and (iii).

There are situations where continuous fields of C∗-algebras naturally arise, e.g., from
fields of groupoids [1]. This yields a direct application of the result above. We will
not discuss this direction here, though.

In the second part of the thesis we consider the case of families of pairwise strongly
commuting normal unbounded operators (Section 3). We start by introducing the
necessary definitions and results such as spectral measures and integrals, as well as a
version of the Spectral Theorem and the (Borel) functional calculus (Sections 3.1,
3.2 and 3.3). Now, we need to consider topologies on C(Cn). Here, the Hausdorff
metric is not well-defined. Instead we work with the Vietoris and the Fell topology,
which are possible generalizations (Section 3.4).

Maps between subsets of Cn can induce maps between the corresponding spaces of
closed subsets. E.g., for ϕ : Cn → Cn define ϕ : C(Cn) → C(Cn), K 7→ ϕ(K). Here,
the bar denotes the closure in Cn. For different situations we study the connection
between the continuity of the underlying maps and the Fell or Vietoris continuity of
the induced maps. We introduce a bounded transform b. It will bijectively transform
unbounded operators into bounded ones via the functional calculus of

b : C → C, b(z) ..= z√
1 + |z|2

.

This map conserves the relevant properties. E.g., normal, self-adjoint or positive
operators will be mapped to normal, self-adjoint or positive bounded operators,
respectively (Proposition 3.3.1). Also, two operators strongly commute if and only if
their bounded transforms commute (Definition 3.3.2 and Lemma 3.3.3).

Our results for the case of unbounded operators are the following (Theorem 3.5.5):

(i) The Vietoris continuity of Σ implies the Hausdorff continuity of the spectra of
the corresponding bounded transforms.
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(ii) The Hausdorff continuity of the spectra of the bounded transforms implies the
Fell continuity of Σ.

(iii) The result for the bounded case applies to the bounded transforms.

(iv) Σ is Vietoris continuous if and only if the map T ∋ t 7→ ∥ϕ(At)∥ ∈ [0, ∞) is
continuous for all bounded continuous functions ϕ ∈ Cb(Cn).

As the Fell topology is coarser than the Vietoris topology this result is not entirely
satisfactory. Let B be the open unit ball in C. We will define the β-topology on
C(Cn) by transporting the Hausdorff topology from a subset of K

(
Bn
)

(Section 3.6).
This yields (Proposition 3.6.6)

(v) Σ is β-continuous if and only if the spectra of the bounded transforms are
Hausdorff continuous.

The β-topology is strictly finer than the Fell topology and strictly coarser than the
Vietoris topology (Proposition 3.6.8). It is constructed using the specific choice of
the bounded transform b. We take a brief look at possible alternative constructions
using the Cayley transform for self-adjoint operators and the resolvent (Section 3.7).
This leads to the γ-topology on C(Cn). In particular, stronger topologies with an
analogous property to (v) would be of interest. We could not settle whether the
β- or γ-topology are the optimal choice in this regard. Depending on the specific
situation one or the other notion of continuity may be preferable.

In the last part of the thesis we briefly introduce multiplier algebras (Section 4).
In this context Woronowicz defined the concept of unbounded elements affiliated
with C∗-algebras [11]. Roughly, an unbounded operator a on a C∗-algebra A is
affiliated with A if its bounded transform is a multiplier of A. We extend this notion
to continuous fields of C∗-algebras. The relation to the continuity of Σ is explored.

If the bounded transforms of the families of operators At generate a continuous field of
C∗-algebras, then (At)t∈T is in general not affiliated with this field (Proposition 4.2.2).
However, if the C0-functions of At generate a continuous field of C∗-algebras in a
certain sense, then (At)t∈T is affiliated with this field (Proposition 4.2.3). The
existence of this field can be characterized by the ζ-continuity of Σ (Lemma 4.2.7).
The ζ-topology is yet another topology on C(Cn). On C(R) it coincides with the
γ-topology (Corollary 4.2.8).

In the end, we consider constant fields of C∗-algebras. For the constant field generated
by the compact operators K(H) the affiliation relation does not yield a useful notion of
continuity: The continuity of Σ is not implied with respect to any topology on C(Cn)
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where limits are unique (Proposition 4.2.13). For the constant field generated by the
bounded operators B(H) the affiliation relation implies the continuity of the bounded
transforms in norm. This is too strong in the sense that it cannot be captured by
the continuity of Σ in any topology on C(Cn) (Proposition 4.2.17).
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2 Bounded commuting normal operators
In this section we define the joint spectrum for several commuting normal bounded
operators. We introduce the Hausdorff metric and give a characterization of the
continuity of joint spectra for the case of bounded operators.

2.1 Basic C∗-algebra theory

We begin by introducing the necessary basics of C∗-algebra theory. These definitions,
theorems and the corresponding proofs can be found in introductory textbooks on
C∗-algebras. See for example the books by Davidson [4] or Dixmier [5].

Definition 2.1.1. A Banach algebra (A, ∥·∥) is a complete, normed C-algebra whose
norm is submultiplicative:

∀a, b ∈ A : ∥ab∥ ≤ ∥a∥∥b∥.

Definition 2.1.2. A Banach ∗-algebra is a Banach algebra A with an involution
∗ : A → A, a 7→ a∗, satisfying

(i) ∀a, b ∈ A : (a+ b)∗ = a∗ + b∗,

(ii) ∀a ∈ A ∀λ ∈ C : (λa)∗ = λ∗a∗ where λ∗ is the complex conjugate of λ,

(iii) ∀a, b ∈ A : (ab)∗ = b∗a∗,

(iv) ∀a ∈ A : (a∗)∗ = a,

(v) ∀a ∈ A : ∥a∗∥ = ∥a∥.

For a ∈ A we call a∗ the adjoint of a.

Definition 2.1.3. A C∗-algebra A is a Banach ∗-algebra where the C∗-identity holds:

∀a ∈ A : ∥a∗a∥ = ∥a∥2.

For a unital C∗-algebra we further require the existence of a neutral element with
respect to multiplication 1 ∈ A.

Remark 2.1.4. For C∗-algebras the involution is automatically isometric by the C∗-
identity and submultiplicativity of the norm. We also have 1∗ = 1 and ∥1∥ = 1
(unless dimA = 0).



2 Bounded commuting normal operators 6

Definition 2.1.5. Let X be a topological space. We write

C(X) ..= {f : X → C | f continuous}

for the continuous functions on X.

Example 2.1.6. Let X be a compact Hausdorff space. Then, C(X) is a unital,
commutative C∗-algebra under pointwise operations. The norm is the supremum
norm

∥·∥∞ : C(X) → [0, ∞), ∥f∥∞ ..= sup
x∈X

|f(x)|,

and the involution is pointwise complex conjugation.

We denote the algebra of bounded linear operators on a Hilbert space H by B(H).

Example 2.1.7. Let H be a Hilbert space and let A ⊆ B(H) be an (operator) norm-
closed subalgebra of the bounded linear operators on H. Then, A is a C∗-algebra.
The involution corresponds to the adjoint with respect to the inner product on H.
(All Hilbert spaces are assumed to be complex.)

Remark 2.1.8. The Gelfand-Naimark Theorem states that these are the general
cases: Any C∗-algebra is isomorphic to a closed subalgebra of B(H) for some Hilbert
space H. Any unital, commutative C∗-algebra is isomorphic to C(X) for some
compact Hausdorff space X.

An isomorphism of C∗-algebras is a linear, multiplicative, isometric bijection that
preserves the involution (and is then automatically continuous).

From here on let A be a unital C∗-algebra.

Remark 2.1.9. This is no serious restriction as we can isometrically embed any
C∗-algebra into a unital one. There are more things to be said about non-unital (in
particular commutative) C∗-algebras, but we do not consider them here.

Definition 2.1.10. In analogy to B(H) we say that a ∈ A is

• normal if a∗a = aa∗,

• self-adjoint if a∗ = a,

• unitary if a∗a = 1 = aa∗.

Definition 2.1.11. Let a ∈ A. We regard C as a subset of A via λ 7→ λ1. The
resolvent set of a is

ρ(a) ..= {λ ∈ C | (a− λ) is invertible in A},
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that is, the set of complex numbers λ for which the resolvent function Rλ(a) ..=
(a− λ)−1 exists. The spectrum of a is

σ(a) ..= C\ρ(a).

The spectral radius of a is

r(a) ..= sup |σ(a)| = sup{|λ| | λ ∈ σ(a)}.

Theorem 2.1.12. Let a ∈ A. Then, σ(a) ⊆ C is non-empty and compact. If a is
normal, then

∥a∥ = r(a).

Definition 2.1.13. Let A ⊆ A. We write C∗
1(A) ⊆ A for the smallest unital C∗-

algebra that contains A. In the case of A = {a}, a ∈ A, we write C∗
1 (a) ..= C∗

1 ({a}).

2.2 Joint spectrum

In the following, n will always denote a natural number, n ∈ N = {1, 2, 3, . . .}. From
here on we mainly consider C∗-subalgebras of B(H) for some Hilbert space H. Most
things will make sense in more general settings, though.

Throughout this section let

A = (ak)nk=1 ⊆ B(H)

be a family of normal and pairwise commuting bounded operators. We will define a
joint spectrum of A.

Due to B. Fuglede we have the following theorem [6].

Theorem 2.2.1. Let a, b ∈ B(H), let a be normal and let ab = ba. Then, a∗b = ba∗.

Thus, in the set A ∪ A∗ ⊆ B(H) any two operators commute and the following
definition makes sense.

Definition 2.2.2. (Polynomial functional calculus) We write Pn for the set of
polynomials in n variables (z1, . . . , zn) ∈ Cn and their conjugates (z∗

1 , . . . , z
∗
n). For

p ∈ Pn define p(A) ∈ B(H) as the corresponding operator obtained by formally
replacing zk 7→ ak, z∗

k 7→ a∗
k.

By Theorem 2.2.1
A ..= C∗

1(A) = {p(A) | p ∈ Pn}
∥·∥ (2.1)
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is a unital and commutative C∗-algebra.

Definition 2.2.3. The spectrum Â of a commutative, unital C∗-algebra A is the set
of characters:

Â ..= {χ : A → C | χ unital ∗-algebra homomorphism}.

The Gelfand transform of an element a ∈ A is the map

â : Â → C, χ 7→ â(χ) ..= χ(a).

Remark 2.2.4. Characters on C∗-algebras have norm one, in particular they are
continuous.

Theorem 2.2.5. By equipping Â with the coarsest topology that makes all Gelfand
transforms â continuous it becomes a non-empty, compact Hausdorff space.

Equip C(Â) with the supremum norm. Then we have the commutative Gelfand-
Naimark Theorem.

Theorem 2.2.6. The Gelfand transform A → C(Â), a 7→ â, is an isomorphism of
C∗-algebras.

Recall that we consider the specific case of A = C∗
1 (A) where A = (ak)nk=1 ⊆ B(H) is

a family of normal and pairwise commuting operators.

Theorem 2.2.7. The map

EA : Â → Cn, χ 7→ (χ(ak))nk=1,

is a homeomorphism onto a non-empty, compact subset of Cn.

Proof. The Gelfand transforms âk are continuous by definition of the topology on Â.
Then, EA = (â1, . . . , ân) is continuous because it is continuous in every component.

Let χ1, χ2 ∈ Â and let EA(χ1) = EA(χ2). So, for all k ∈ {1, . . . , n} : χ1(ak) = χ2(ak).
Thus, for all p ∈ Pn:

χ1(p(A)) = p((χ1(ak))nk=1) = p((χ2(ak))nk=1) = χ2(p(A))

because characters are ∗-algebra homomorphisms. The subset {p(A) | p ∈ Pn} ⊆
C∗

1 (A) is dense (cf. equation (2.1)). Hence, χ1 = χ2 because characters are continuous.
Therefore, EA is injective.
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Accordingly, EA is a continuous bijection onto its image ImEA = EA(Â) ⊆ Cn. The
domain Â is compact and non-empty by Theorem 2.2.5. The image is Hausdorff as a
subset of Cn. Thus, EA is a homeomorphism onto its image.

Definition 2.2.8. We call

σj(A) ..= Im(EA) =
{

(âi(χ))ni=1 | χ ∈ Ĉ∗
1(A)

}
⊆ Cn

the joint spectrum of A.

Corollary 2.2.9. The joint spectrum of A with the induced topology from Cn is
homeomorphic to Â by Theorem 2.2.7. In particular, σj(A) is compact and non-
empty. A = C∗

1 (A) and C(σj(A)) are isomorphic as C∗-algebras by the commutative
Gelfand-Naimark Theorem (Theorem 2.2.6).

There are more connections and analogies to the spectra of single normal operators.
In particular, our notion of the joint spectrum reduces to the usual spectrum in the
case of single operators:

Theorem 2.2.10. Let A be a commutative, unital C∗-algebra and a ∈ A. Then

Im(â) = σ(a).

Remark 2.2.11. The spectrum of a ∈ A is independent of A in the sense that it is
the same when we consider a as an element of C∗

1(a) ⊆ A.

Corollary 2.2.12. Let a ∈ B(H) be normal. Then

σ(a) =
{
â(χ) | χ ∈ Ĉ∗

1(a)
}

= σj((a)).

Corollary 2.2.13. Let A = (ak)nk=1 ⊆ B(H) be a family of normal and pairwise
commuting bounded operators. Then

σj(A) ⊆
n∏
k=1

σ(ak).

Lemma 2.2.14. Let p ∈ Pn. Then p(σj(A)) = σ(p(A)).

Proof. Calculate

p(σj(A)) = p
(
EA(Â)

)
= p
({

(âk(χ))nk=1
∣∣ χ ∈ Â

})
=
{
p((χ(ak))nk=1)

∣∣ χ ∈ Â
}

=
{
χ(p(A))

∣∣ χ ∈ Â
}

=
{
p̂(A)(χ)

∣∣ χ ∈ Â
}

= σ(p(A)).
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In the last equation of the second line we used that the characters χ are ∗-algebra
homomorphisms.

Corollary 2.2.15. The spectra of the ak can be recovered as the axis projections of
the joint spectrum. Let pk : Cn → C, (z1, . . . , zn) 7→ zk. Then

σ(ak) = pk(σj(A)).

Proof. We have pk ∈ Pn and pk(A) = ak.

We have a generalization of the continuous functional calculus (CFC) to several
variables.

Definition 2.2.16. Let ϕ : Cn → C be continuous. Define ϕ(A) ∈ A to be the
operator obtained from the inverse Gelfand transform of the map ϕ ◦ EA ∈ C(Â).

Remark 2.2.17. Only the values of ϕ on the joint spectrum of A are relevant for ϕ(A).
Also, ϕ(A) ∈ A by definition and A is commutative. In particular, ϕ(A) is normal.
For polynomials p ∈ Pn the naive definition for p(A) that we used up to now and the
one obtained from the continuous functional calculus coincide. Denoting the latter
with ‘CFCA(p)’ the reason is

p̂(A)(χ) = p(χ(a1), . . . , χ(an)) = p ◦ EA(χ) = ̂CFCA(p)(χ) for all χ ∈ Â.

Lemma 2.2.18. Let ϕ : σj(A) → C be continuous. Then

σ(ϕ(A)) = ϕ(σj(A)).

Proof. We have σ(ϕ(A)) = σ(ϕ ◦ EA) = σ(ϕ) by Corollary 2.2.9 and the definition
of ϕ(A). The multiplication in C(σj(A)) is pointwise. Then, for λ ∈ C we have that
(ϕ− λ) ∈ C(σj(A)) is invertible if and only if 0 ̸∈ Im(ϕ− λ). Thus, λ ∈ σ(ϕ) if and
only if λ ∈ Imϕ = ϕ(σj(A)).

Example 2.2.19. Let A = (ak)nk=1 ⊆ B(H) be as above and write the joint spectrum
as

σj(A) =
{
λ(χ) ..= (χ(a1), . . . , χ(an)) ∈ Cn

∣∣ χ ∈ Â
}
.

Let µ ..= (µk)mk=1 ⊆ C be finitely many complex numbers. Identify µk =̂ µk ·1 ∈ B(H)
as bounded, normal operators that commute with everything in B(H). We have
the normal and commuting set of bounded operators B ..= (a1, . . . , an, µ1, . . . , µm).
The assertion A = C∗

1(A) = C∗
1(B) =.. B holds. So, Â = B̂. Characters are unital,
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therefore

σj(A ∪ µ) = σj(B) = EB(B̂)

=
{

(χ(a1), . . . , χ(an), χ(µ1), . . . , χ(µm)) ∈ Cn+m ∣∣ χ ∈ Â
}

=
{(
λ(χ), µ

)
∈ Cn+m ∣∣ χ ∈ Â

}
= σj(A) × {µ}.

In the first line we interpret µ as a subset of C ⊆ B(H), in the last line as an element
of Cm.

Example 2.2.20. Let H be finite-dimensional. That is, the ak are complex, normal,
commuting N ×N matrices. Then, the ak are simultaneously diagonalizable. In the
common eigenbasis we can write

ak = diag(λ(1)
k , . . . , λ

(N)
k ) ∈ CN×N ,

where λ(1)
k , . . . , λ

(N)
k are the eigenvalues of ak. Identify

CN×N ∋ diag(λ(1)
k , . . . , λ

(N)
k ) 7→ (λ(1)

k , . . . , λ
(N)
k ) ∈ CN .

The C∗-algebra A = C∗
1 (A) generated by the ak is isomorphic to a C∗-subalgebra of

CN with entrywise multiplication and conjugation. The norm is the sup-norm

∥(z1, . . . , zN)∥∞ = max
k∈{1,...,N}

|zk|.

Characters on this space are in particular linear maps CN → C. Thus, Â can be
viewed as a subset of CN in the sense

Â ∋ χ =̂ (χ1, . . . , χN) ∈ CN , χ(z) = χ1 · z1 + · · · + χN · zN ∈ C.

Characters further need to be unital. As 1 = (1, . . . , 1) ∈ CN is the multiplicative
unit of A we have

∀χ ∈ Â : 1 = χ(1) = χ1 + · · · + χN .

Finally, characters need to be multiplicative. Let e(k) = (0, . . . , 1, . . . , 0) ∈ CN be the
kth unit vector: e(k)

j = δkj. Then, for all k ∈ {1, . . . , N} and every character χ ∈ Â

χk = χ(e(k)) = χ(e(k)e(k)) = χ(e(k))2 = χ2
k.
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Thus, χk ∈ {0, 1} and Â ⊆ {e(k) | k ∈ {1, . . . , N}}. In fact, Â = {e(k) | k ∈
{1, . . . , N}} because all e(k) are multiplicative. Now,

EA(e(k)) =
(
e(k)(a1), . . . , e(k)(an)

)
=
(
λ

(k)
1 , . . . , λ(k)

n

)
∈ Cn.

This yields the joint spectrum

σj(A) =
{(
λ

(k)
1 , . . . , λ(k)

n

) ∣∣∣ k ∈ {1, . . . , N}
}

⊂
{(
λ

(k1)
1 , . . . , λ(kn)

n

) ∣∣∣ k1, . . . , kn ∈ {1, . . . , N}
}

=
n∏
k=1

σ(ak).

Here, the joint spectrum corresponds to the ‘diagonal’ in the product of the indi-
vidual spectra. The joint eigenvalues λ(k) ..= (λ(k)

1 , . . . , λ
(k)
n ) correspond to the same

kth common eigenspace. In the case of self-adjoint ak we can interpret them as
observables in the context of quantum mechanics. Commuting observables can be
measured simultaneously. Then, the joint eigenvalues correspond to the possible
joint measurement outcomes.

2.3 Hausdorff topology

Figure 2.1: Visualization of the
Hausdorff distance between two
compact subsets of R2 [8].

To talk about the continuity of joint spectra,
which are compact subsets of Cn, we need a
topology on that space.

Definition 2.3.1. Let (X, d) be a complete
metric space. We define the space of non-
empty compact subsets

K(X) ..= {K ⊆ X | K compact, K ̸= ∅}.

The Hausdorff topology on K(X) is induced
by the Hausdorff metric (see Figure 2.1 for a
visualization):

dH : K(X)2 → [0, ∞), dH(A, B) ..= max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
.

Remark 2.3.2. The assumption of X being complete is not necessary for the Hausdorff
metric to be well defined. We will only consider closed subspaces of Cn, though.
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Lemma 2.3.3 (Thm. II-5 in [3, p. 41]). Let (X, d) be a complete metric space. Then,
(K(X), dH) is a complete metric space.

Lemma 2.3.4 (Thm. II-6 in [3, p. 41]). A basis for the Hausdorff topology on K(X)
is given by sets of the form

UX(F, (Ok)mk=1) ..= {K ∈ K(X) | K ∩ F = ∅, ∀k ∈ {1, . . . ,m} : K ∩Ok ̸= ∅}

for F ⊆ X closed and Ok ⊆ X open for all k. That is, every open subset of K(X) is
a union of these types of sets.

The following lemma is similar to Proposition 2.2.3 in [1, p. 27]. In this version we
can drop the assumption of ϕ being closed, though. This is important because, e.g.,
polynomials in several variables are not necessarily closed maps.

Lemma 2.3.5. Let X, Y be complete metric spaces. Let ϕ : X → Y be continuous.
Write ϕ̃ : K(X) → K(Y ), K 7→ ϕ(K), for the induced map on the corresponding
spaces of compact subsets equipped with the Hausdorff topology. Then, ϕ̃ is continuous.

Proof. For all K ∈ K(X) : ϕ̃(K) = ϕ(K) ∈ K(Y ) because ϕ is continuous. Thus, ϕ̃
is well defined. Use the characterization of Lemma 2.3.4 for the Hausdorff topology.
The rest of the proof is similar to the proof of Proposition 2.2.3 in [1, p. 27].

We show continuity at every point. Let K0 ∈ K(X) and let W ⊆ K(Y ) be an open
neighborhood of ϕ(K0). W.l.o.g. W = UY (F, (Ok)mk=1) for a closed set F ⊆ Y and
open sets Ok ⊆ Y . Define

V ..= UX(ϕ−1(F ), (ϕ−1(Ok))mk=1) ⊆ K(X).

ϕ−1(F ) ⊆ X is closed and the ϕ−1(Ok) ⊆ X are open because ϕ is continuous. Thus,
V is open. Let A ⊆ X, B ⊆ Y be any sets. Then,

ϕ(A) ∩B = ∅ ⇔ ∀a ∈ A : ϕ(a) ̸∈ B ⇔ ∀a ∈ A : a ̸∈ ϕ−1(B) ⇔ A ∩ ϕ−1(B) = ∅.

This equivalence yields

K ∈ V ⇔ K ∩ ϕ−1(F ) = ∅, ∀k : K ∩ ϕ−1(Ok) ̸= ∅

⇔ ϕ(K) ∩ F = ∅, ∀k : ϕ(K) ∩Ok ̸= ∅

⇔ ϕ(K) ∈ UY (F, (Ok)mk=1) = W.

In particular, ϕ̃(V ) ⊆ W and K0 ∈ V because ϕ(K0) ∈ W by assumption. Then, ϕ̃
is continuous as it is continuous at every point K0 ∈ K(X).
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Corollary 2.3.6. For the norm map | · | : C → [0, ∞) and polynomials p ∈ Pn the
induced maps |̃ · | and p̃ are continuous.

Lemma 2.3.7. The map

sup: K(R) → R, K 7→ supK,

is continuous.

Proof. For non-empty, compact sets K ∈ K(R) the supremum is indeed a real
number. So, sup is well defined. Again use the characterization of Lemma 2.3.4 for
the Hausdorff topology. The proof is now the same as the proof of Proposition 2.2.4
in [1, p. 28].

Let K0 ∈ K(R), let s ..= supK0 ∈ R and let ϵ > 0. s ∈ K0 because K0 is closed.
Define

F ..= [s+ ϵ, ∞) and O ..= (s− ϵ, ∞).

Then, F ⊆ R is closed, O ⊆ R is open, K0 ∩ F = ∅ and K0 ∩ O ̸= ∅. Thus,
V ..= UR(F, (O)) ⊆ K(R) is an open neighborhood of K0. Let K ∈ V . Then,
K ∩ F = ∅ and K ∩O ̸= ∅. This means supK < s+ ϵ and supK > s− ϵ. That is,

| supK0 − supK| < ϵ

and sup is continuous at K0. Therefore, sup is continuous as K0 was arbitrary.

2.4 Continuous fields of C∗-algebras

We will relate the continuity of joint spectra to continuous fields of C∗-algebras.

Definition 2.4.1. Let T be a topological space and (Ct)t∈T a family of unital
C∗-algebras. Let Γ ⊆ C ..=

∏
t∈T Ct. Then, ((Ct)t∈T , Γ) is called a continuous field

of unital C∗-algebras if the following assertions hold.

(B1) Γ is a unital ∗-subalgebra of C (for the pointwise involution and multiplication).

(B2) For all t ∈ T the set Γt ..= {at | (at)t∈T ∈ Γ} is dense in Ct.

(B3) For all (at)t∈T ∈ Γ the map T ∋ t 7→ ∥at∥ ∈ [0, ∞) is continuous.

(B4) A section (at)t∈T ∈ C is an element of Γ if and only if for all t0 ∈ T and for all
ϵ > 0 there exists (bt)t∈T ∈ Γ and a neighborhood U ⊆ T of t0 such that for
all t ∈ U : ∥at − bt∥ < ϵ.
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The elements of Γ are called the continuous sections of C.1 A continuous section
(at)t∈T is called normal if at ∈ Ct is normal for every t ∈ T .

Remark 2.4.2. This definition also makes sense for non-unital C∗-algebras. Then, Γ
is just a ∗-subalgebra of C. In this case we speak of continuous fields of C∗-algebras.
The following lemma holds in the non-unital case as well.

Lemma 2.4.3 (Prop. 2.7.6 in [1, p. 54], Prop. 10.2.3 in [5, p. 216]). Let T be a
topological space and let (Ct)t∈T be a family of unital C∗-algebras. Let Λ ⊆ C satisfy
(B1), (B2) and (B3) (replace Γ by Λ). Then, there exists a unique subset Γ ⊆ C with
Λ ⊆ Γ such that ((Ct)t∈T , Γ) is a continuous field of unital C∗-algebras.

We call such a set Λ a generating family.

For single operators we have the following two results.

Lemma 2.4.4 (Prop. 2.7.8 in [1, p. 54], Prop. 10.3.3 in [5, p. 219]). Let ((Ct)t∈T , Γ)
be a continuous field of unital C∗-algebras and let (at)t∈T ∈ Γ be a continuous, normal
section. Let ϕ ∈ C(C). Then (ϕ(at))t∈T ∈ Γ is also a continuous, normal section.

Theorem 2.4.5 (Thm. 2.7.9 in [1, p. 55]). Let ((Ct)t∈T , Γ) be a continuous field of
unital C∗-algebras and let (at)t∈T ∈ Γ be a continuous, normal section. Then, the
map

T ∋ t 7→ σ(at) ∈ K(C)

is continuous with respect to the Hausdorff metric on K(C).

We can generalize to families of operators.

Definition 2.4.6. Let T be a topological space and for every t ∈ T let Ht be a
Hilbert space. Then, we call (Ht)t∈T a field of Hilbert spaces (over T ).

Definition 2.4.7. Let T be a topological space and let (Ht)t∈T be a field of Hilbert
spaces. For every t ∈ T let At ⊆ B(Ht) be a subset of n ∈ N operators. We
call (At)t∈T a field of families of bounded operators. The field is said to be normal
or commuting whenever all At consist of normal or pairwise commuting elements,
respectively. If n = 1 we speak of fields of bounded operators.

Theorem 2.4.8. Let T ≠ ∅ be a topological space and let (Ht)t∈T be a field of Hilbert
spaces. Let n ∈ N. For t ∈ T let At ..= (at,k)nk=1 ⊆ B(Ht) be such that (At)t∈T is
a normal, commuting field of families of bounded operators. Let ((Ct)t∈T , Γ) be a
continuous field of unital C∗-algebras such that

1In the literature they are sometimes called continuous vector fields.
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(a) for all t ∈ T : Ct ⊆ B(Ht) is a C∗-subalgebra with At ⊆ Ct,

(b) for all k ∈ {1, . . . , n} : (at,k)t∈T ∈ Γ is a continuous section.

Then, the following assertions hold.

(i) For all ϕ ∈ C(Cn) : (ϕ(At))t∈T ∈ Γ is a continuous section.

(ii) The map Σ: T → K(Cn), t 7→ σj(At), is continuous with respect to the
Hausdorff metric on K(Cn).

Proof. (i) (Adapted from [1, p. 54], Prop. 2.7.7, 2.7.8): Γ is a unital ∗-subalgebra by
(B1): Γ is closed under finite algebraic operations (sums, products, involutions, scaling
by complex numbers). Also (1)t∈T ∈ Γ is the multiplicative unit and (at,k)t∈T ∈ Γ
by assumption. Therefore, for every polynomial p ∈ Pn the section (p(At))t∈T ∈ Γ is
continuous.

To show (ϕ(At))t∈T ∈ Γ we use property (B4). Let t0 ∈ T and let ϵ > 0. For every
k ∈ {1, . . . , n} the map T ∋ t 7→ ∥ak,t∥ ∈ [0, ∞) is continuous by (B3). Then,
there exists an open neighborhood U ⊆ T of t0 such that sk ..= supt∈U ∥ak,t∥ < ∞.
Consequently, s ..= maxk∈{1,...,n} sk < ∞. For all k ∈ {1, . . . , n} and for all t ∈
U : σ(at,k) ⊆ Bs(0) ..= {z ∈ C | |z| ≤ s}. Therefore, for all t ∈ U : σj(At) ⊆ Bs(0)n ⊆
Cn by Corollary 2.2.13. Bs(0)n is compact as a product of compact sets. Thus, the
set of polynomials Pn restricted to Bs(0)n is dense in C(Bs(0)n) with respect to the
supremum norm. Then, there exists p ∈ Pn such that

∀t ∈ U : ∥ϕ(At) − p(At)∥
Cor. 2.2.9=

∥∥ϕ|σj(At) − p|σj(At)
∥∥

∞ ≤
∥∥(ϕ− p)|Bs(0)n

∥∥
∞ < ϵ.

Hence, (ϕ(At))t∈T ∈ Γ because (p(At))t∈T ∈ Γ.

(ii) (Adapted from [1, p. 55], Prop. 2.7.9): Σ is well defined by Corollary 2.2.9.
We show continuity at every point. Let t0 ∈ T and let W ⊆ K(Cn) be an open
neighborhood of Σ(t0). W.l.o.g. W = UCn(F, (Ok)mk=1) for a closed subset F ⊆ Cn

and open subsets Ok ⊆ Cn for k ∈ {1, . . . ,m} by Lemma 2.3.4. We construct an
open neighborhood U ⊆ T of t0 with Σ(U) ⊆ W .

The assertion σj(At0) ∩ F = ∅ holds by assumption. Then, there exists a continuous
function ϕ : Cn → [0, 1] with

ϕ|F ≡ 1, ϕ|σj(At0 ) ≡ 0

by Urysohn’s Lemma. In particular, ϕ(At0) = 0 = ∥ϕ(At0)∥. The section (ϕ(At))t∈T ∈
Γ is normal and continuous by (i). Then, T ∋ t 7→ ∥ϕ(At)∥ ∈ [0, ∞) is con-
tinuous by (B3). Thus, there exists an open neighborhood UF ⊆ T of t0 with
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{∥ϕ(At)∥}t∈UF
⊆ [0, 1/2). Suppose that there exists t ∈ UF such that σj(At)∩F ̸= ∅.

Then, there exists λ ∈ σj(At) ∩ F and

1/2 > ∥ϕ(At)∥ =
∥∥ϕ|σj(At)

∥∥
∞ ≥

∥∥ϕ|{λ}
∥∥

∞ = 1.

This is a contradiction. Therefore, for all t ∈ UF : σj(At) ∩ F = ∅.

Let k ∈ {1, . . . ,m}. The assertion σj(At0) ∩ Ok ̸= ∅ holds by assumption. Let
z0 ∈ σj(At0) ∩Ok and let ϵ > 0 be small enough such that

Bϵ(z0) ..= {z ∈ Cn |∥z − z0∥ < ϵ} ⊆ Ok.

Then, σj(At0) ∩Bϵ(z0) ̸= ∅. There exists a continuous function ϕ : Cn → [0, 1] with

ϕ(z0) = 1, ϕ|C\Bϵ(z0) ≡ 0

by Urysohn’s Lemma. In particular, (ϕ(At))t∈T ∈ Γ is a continuous, normal section
by (i). Also,

∥ϕ(At0)∥ =
∥∥ϕ|σj(At0 )

∥∥
∞ = 1

because z0 ∈ σj(At0). The map T ∋ t 7→ ∥ϕ(At)∥ ∈ [0, ∞) is again continu-
ous by (B3). Therefore, there exists an open neighborhood UO,k ⊆ T of t0 with
{∥ϕ(At)∥}t∈UO,k

⊆ (1/2, 1]. Thus, for every t ∈ UO,k there exists zt ∈ σj(At) with
ϕ(zt) > 1/2. Then, zt ∈ Bϵ(z0) by definition of ϕ. In particular, for every t ∈ UO,k:

σj(At) ∩Ok ⊇ σj(At) ∩Bϵ(z0) ̸= ∅.

Define the open set

U ..= UF ∩

(
m⋂
k=1

UO,k

)
⊆ T .

t0 ∈ U so U is an open neighborhood of t0. Further, for all t ∈ U and k ∈
{1, . . . ,m} : σj(At)∩F = ∅ and σj(At)∩Ok ≠ ∅. This means, for all t ∈ U : σj(At) ∈
UCn(F, (Ok)mk=1) = W or Σ(U) ⊆ W . Thus, Σ is continuous because it is continuous
at every point.

2.5 Characterizing the continuity of joint spectra

The following theorem is a generalization of Theorem 2.7.12 in [1, p. 56]. The proof
is conceptually similar.
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Theorem 2.5.1. Let T ≠ ∅ be a topological space and let (Ht)t∈T be a field of Hilbert
spaces. Let n ∈ N. For t ∈ T let At ..= (at,k)nk=1 ⊆ B(Ht) be such that (At)t∈T is a
normal, commuting field of families of bounded operators. Then, the following are
equivalent.

(i) The map Σ: T → K(Cn), t 7→ σj(At), is continuous with respect to the
Hausdorff metric on K(Cn).

(ii) For all p ∈ Pn the maps T ∋ t 7→ ∥p(At)∥ ∈ [0, ∞) are continuous.

(iii) There exists a continuous field of unital C∗-algebras ((Ct)t∈T , Γ) satisfying

(a) for all t ∈ T : Ct ⊆ B(Ht) is a C∗-subalgebra with At ⊆ Ct,

(b) for all k ∈ {1, . . . , n} : (at,k)t∈T ∈ Γ is a continuous section.

Proof. (i) ⇒ (ii): Let p ∈ Pn. For all t ∈ T : p(At) ∈ B(Ht) is normal and bounded.
In particular, these operators have compact spectra. Then,

T ∋ t
Σ7−→ σj(At)

p̃7−→ p(σj(At))
Lemma 2.2.14= σ(p(At))

|̃·|7−→ |σ(p(At))|
sup7−−→ sup |σ(p(At))|

Thm. 2.1.12= ∥p(At)∥ ∈ [0, ∞)

is continuous as a composition of continuous maps: Σ is continuous by assumption,
p̃ and |̃ · | are continuous by Corollary 2.3.6 and sup is continuous by Lemma 2.3.7.

(ii) ⇒ (iii): Let Ct = C∗
1(At) ⊇ At and C =

∏
t∈T Ct. We show that the set

Λ ..= {(p(At))t∈T | p ∈ Pn} ⊆ C

is a generating set for a continuous field of unital C∗-algebras.

The constant polynomial p ≡ 1 generates the unit element (1)t∈T ∈ Λ. Sums,
products, conjugates and multiples by complex numbers of polynomials are again
polynomials. Thus, Λ is a unital ∗-subalgebra of C and (B1) holds. For all t ∈ T the
set

Λt ..= {at | (at)t∈T ∈ Λ} = {p(At) | p ∈ Pn}

is dense in Ct = C∗
1(At) by definition (cf. Equation (2.1)) so (B2) holds. (B3) holds

by assumption. Therefore, Λ is a generating family and there exists a unique subset
Γ ⊆ C with Λ ⊆ Γ such that ((Ct)t∈T , Γ) is a continuous field of unital C∗-algebras
by Lemma 2.4.3.

(a) is satisfied by definition. Let k ∈ {1, . . . , n} and let pk(z1, . . . , zn) ..= zk. Then,
pk ∈ Pn and

(at,k)t∈T = (pk(At))t∈T ∈ Λ ⊆ Γ
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is a continuous section. Hence, (b) holds.

(iii) ⇒ (i): This is the content of Theorem 2.4.8.

Corollary 2.5.2. In the setting of Theorem 2.5.1 (i), (ii) and (iii) are also equivalent
to the following.

(iv) There exists a subset Γ ⊆
∏

t∈T C
∗
1 (At) such that ((C∗

1 (At))t∈T , Γ) is a contin-
uous field of unital C∗-algebras with generating family

Λ = {(p(At))t∈T | p ∈ Pn} ⊆ Γ.

(v) For all ϕ ∈ C(Cn) the map T ∋ t 7→ ∥ϕ(At)∥ ∈ [0, ∞) is continuous.

Proof. The equivalence of (i), (ii), (iii) and (iv) follows from the proof of the above
theorem.

Assume (iii). Then, for all ϕ ∈ C(Cn) : (ϕ(At))t∈T ∈ Γ is a continuous normal
section by Theorem 2.4.8. Therefore, (v) holds by the definition of continuous fields
of C∗-algebras (B3). (v) implies (ii) because polynomials are continuous.

Example 2.5.3. Consider the case n = 1. Let T = N (H) be the subset of normal
operators of B(H) for some Hilbert space H. Then, (a)a∈N (H) defines a normal field
of bounded operators on the constant field of Hilbert spaces (H)a∈N (H). For all
p ∈ Pn the map

N (H) ∋ a 7→ ∥p(a)∥ ∈ [0, ∞)

is continuous because adjoining, scaling, products, sums and the norm map are
continuous on B(H). Therefore, the map

N (H) ∋ a 7→ σ(a) ∈ K(C)

is continuous. In particular, if (an)n∈N ⊆ N (H) is a sequence of normal operators
that converges in operator norm: an

n→∞−−−→ a ∈ N (H), then σ(an) n→∞−−−→ σ(a) in the
Hausdorff metric.

Remark 2.5.4. In applications one might like to study the spectrum of a given normal
(in physics often self-adjoint) operator a ∈ N (H). If this problem is too hard one
can resort to an approximation by a sequence (an)n∈N and consider some finite n.
For this to be ‘reasonable’ the spectra σ(an) need to converge to σ(a) in some sense.
But often convergence of the an in operator norm is too much of a restriction. As
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Beckus shows in [1] one can use statement (ii) from the above theorem to define
a topology on B(H). It is constructed in such a way that σ(an) converges in the
Hausdorff metric if and only if an converges in this topology. He then shows that this
topology is coarser than the topology induced by the operator norm. But in general
it is neither finer nor coarser than the strong operator topology. In particular, strong
convergence of an is in general not sufficient for the convergence of σ(an).

Example 2.5.5. Let (T , d) be a compact metric space and let K ⊆ C be compact
and non-empty. Consider the Hilbert space L2(K, dx). Any continuous function f

on K acts as a normal, bounded operator Mult(f) on this Hilbert space via pointwise
multiplication. The norm is ∥Mult(f)∥ = ∥f∥∞ = maxz∈K |f(z)|.

Let

F : T ×K → Cn, (t, z) 7→ F (t, z) ..= (f1(t, z), . . . , fn(t, z)),

be a continuous map. This yields the normal, commuting field of families of bounded
operators

(At)t∈T ..= ((Mult(fk(t, ·)))nk=1)t∈T

on the constant field of Hilbert spaces (L2(K, dx))t∈T .

Claim: For every polynomial p ∈ Pn the map

T ∋ t 7→ ∥p(At)∥ = ∥p ◦ F (t, ·)∥∞ ∈ [0, ∞)

is uniformly continuous.

Proof. p◦F is uniformly continuous because it is continuous and T ×K is a compact
metric space. Let ϵ > 0. Then, there exists a δ > 0 such that for all t1, t2 ∈ T and
z1, z2 ∈ K

d(t1, t2) + |z1 − z2| < δ ⇒ |p ◦ F (t1, z1) − p ◦ F (t1, z2)| < ϵ.

Apply this for ‘z = z1 = z2’. Then, d(t1, t2) < δ implies

|∥p ◦ F (t1, ·)∥∞ − ∥p ◦ F (t2, ·)∥∞| ≤ ∥p ◦ F (t1, ·) − p ◦ F (t2, ·)∥∞

= max
z∈K

|p ◦ F (t1, z) − p ◦ F (t2, z)| < ϵ.
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From Theorem 2.5.1 it follows that

T ∋ t 7→ σj(At) = σj((Mult(fk(t, ·)))nk=1) ∈ K(Cn)

is continuous. Furthermore, (C∗
1((Mult(fk(t, ·)))nk=1))t∈T yields a continuous field of

unital C∗-algebras, where the continuous sections Γ can be constructed as described
in Corollary 2.5.2.

For every t ∈ T these C∗-algebras are (isomorphic to) C∗-subalgebras of C(K). The
characters on C(K) are exactly the evaluation maps at fixed points: For z ∈ K and
f ∈ C(K) define χz(f) ..= f(z). Then, Ĉ(K) = {χz | z ∈ K}.2 Thus,

σj(At) = {(χz(f1(t, ·)), . . . , χz(fk(t, ·))) | z ∈ K}

= {F (t, z) | z ∈ K}

= Im(F (t, ·)).

For the special case n = 1 an example for the continuous change of spectra is depicted
in Figure 2.2.

Figure 2.2: For the case of n = 1 and f(t, z) ..= π sin(z − t)/(t+ π) the spectra of
Mult(f(t, ·)) as operators on L2([0, π/2] ∪ [11/4, 3], dx) are depicted for t ∈ [0, 2π].

2Ĉ(X) ∼= X for any compact Hausdorff space X in this way.
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3 Unbounded strongly commuting normal operators
We aim to generalize our results to the case of unbounded operators. The next three
subsections introduce the necessary notions and results that we need to work with
unbounded operators. They are mainly based on the textbook by Schmüdgen [9].
We omit the proofs.

3.1 Unbounded operators

Definition 3.1.1. An unbounded operator a on a Hilbert space H is a linear, not
necessarily continuous map

a : D(a) → H.

Here, the linear subspace D(a) ⊆ H is called the domain of a. The set of unbounded
operators on a given Hilbert space H is denoted by L(H). Two unbounded operators
a1, a2 ∈ L(H) are said to be equal (a1 = a2) if

(i) the domains are equal: D(a1) = D(a2),

(ii) they coincide on the common domain: ∀x ∈ D(a1) : a1(x) = a2(x).

The following definitions are such that they reduce to the previously introduced
notions in the special case of bounded operators.
If the domain of an unbounded operator is dense in the corresponding Hilbert space,
we speak of densely defined unbounded operators. In this case we can define the
adjoint operator.

Lemma 3.1.2. Let a ∈ L(H) be densely defined. Then, there is a well defined
unbounded operator a∗ ∈ L(H) with domain

D(a∗) = {y ∈ H | ∃u ∈ H : ∀x ∈ D(a) ⟨a(x), y⟩ = ⟨x, u⟩}

that satisfies

∀x ∈ D(a) ∀y ∈ D(a∗) : ⟨a(x), y⟩ = ⟨x, a∗(y)⟩.

a∗ is called the adjoint operator of a.3

Remark 3.1.3. The adjoint need not be densely defined.

Definition 3.1.4. Let a ∈ L(H) be densely defined. Then a is called self-adjoint if
a∗ = a.

3⟨ · , · ⟩ denotes the inner product on H. It is taken to be linear in the second argument.
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Remark 3.1.5. Note that

∀x, y ∈ D(a) : ⟨a(x), y⟩ = ⟨x, a(y)⟩

is not a sufficient condition for a to be self-adjoint. Similarly, a∗a = aa∗ is not
sufficient for a to be normal if we want similar properties as in the bounded case.

Definition 3.1.6. An unbounded operator a ∈ L(H) is called closed if its graph

G(a) ..= {(x, a(x)) | x ∈ D(a)}

is a closed subset of the direct sum H ⊕ H. For non-closed operators it is possible
that the closure of the graph G(a) defines a valid unbounded operator. Then, this
operator is denoted a and called the closure of a.

Remark 3.1.7. For unbounded operators a, b ∈ L(H) the notion a ⊆ b is meant as an
inclusion of the graphs: G(a) ⊆ G(b).

Definition 3.1.8. An unbounded, densely defined operator a ∈ L(H) is called
normal if

(i) a is closed: ā = a,

(ii) a∗a = aa∗.

This is equivalent to requiring D(a) = D(a∗) and

∀x ∈ D(a) : ∥a(x)∥ = ∥a∗(x)∥.

Remark 3.1.9. The adjoint of an unbounded, densely defined operator is closed. In
particular, self-adjoint operators are closed and therefore also normal.

Remark 3.1.10. Let a ∈ L(H) be injective. Define an operator a−1 ∈ L(H) by
D(a−1) ..= Im(a) and for x ∈ D(a) : a−1(a(x)) ..= x. Denote by I the identity
operator on H. Then,

aa−1, a−1a ⊆ I.

a−1 is the inverse of a in L(H).

We regard the complex numbers as a subset of B(H) ⊆ L(H) via λ 7→ λ · I.

Definition 3.1.11. Let a ∈ L(H) be closed. The resolvent set of a is

ρ(a) ..= {λ ∈ C | (a− λ) has a bounded, everywhere on H defined inverse},
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that is, the set of complex numbers λ for which the resolvent function Rλ(a) ..=
(a− λ)−1 exists in B(H). The spectrum of a is

σ(a) ..= C\ρ(a).

Lemma 3.1.12. The spectra of closed unbounded operators are closed subsets of C.

3.2 Spectral measures and integrals

The Spectral Theorem for unbounded, normal operators can be formulated in terms
of spectral measures.

Definition 3.2.1. Let A be a σ-algebra on a set Ω. A spectral measure on A is a
map E from A into the orthogonal projections on a given Hilbert space H such that

(i) E(Ω) = I,

(ii) E is countably additive: For any sequence (Mm)m∈N ⊆ A of pairwise disjoint
sets Mm ⊆ Ω whose union is in A we have

E

(
∞⋃
m=1

Mm

)
=

∞∑
m=1

E(Mm).

The infinite sum of orthogonal projections is required to converge strongly.

Remark 3.2.2. Given point (i), point (ii) is equivalent to

(iii) ∀x ∈ H : Ex(·) ..= ⟨x, E(·)x⟩ defines a (scalar) measure on Ω.

E(∅) = 0 and spectral projections are also finitely additive.

Lemma 3.2.3. Let E be a spectral projection on the σ-algebra A. Let M1,M2 ∈ A.
Then,

E(M1)E(M2) = E(M1 ∩M2).

If M1 ⊆ M2, then E(M1) ≤ E(M2).

From here on we will only consider the case where Ω ⊆ Cn and A = B(Ω) is the
Borel σ-algebra on Ω.
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Definition 3.2.4. The support of a spectral measure E is the complement of all
open sets whose measure is the zero projection

supp(E) ..= Ω\

 ⋃
N⊆Ω open
E(N)=0

N

 .

Similar to Lebesgue integration one can define spectral integrals of E-a.e. finite Borel
measurable functions f :

I(f) ≡
∫

Ω
f(t) dE(t) ≡

∫
Ω
f dE ∈ L(H).

For measurable sets M ⊆ Ω and their characteristic functions χM one defines

I(χM) ..= E(M)

and then proceeds as in the case of usual (scalar) measures. Special care has to
be taken for the case of unbounded functions. We omit further details on the
construction and state some properties.4

Proposition 3.2.5. Let Ω ⊆ Cn and let E be a spectral measure on B(Ω) with
values in the orthogonal projections of a Hilbert space H. Let f, g be Borel measurable
E-a.e. finite functions on Ω. Let α, β ∈ C and let x ∈ D(I(f)), y ∈ D(I(g)). Then

(i) D(I(f)) =
{
v ∈ H |

∫
Ω |f(t)|2 d⟨v, E(t)v⟩ < ∞

}
,

(ii) ⟨I(f)x, I(g)y⟩ =
∫

Ω f(t)∗g(t) d⟨x, E(t)y⟩,

(iii) I(f ∗) = I(f)∗,

(iv) I(αf + βg) = αI(f) + βI(g),

(v) I(fg) = I(f)I(g),

(vi) I(f) is normal, in particular closed and I(f)∗I(f) = I(f ∗f),

(vii) f E-a.e. real-valued (non-negative) ⇒ I(f) is self-adjoint (and positive),

(viii) f = g E-a.e. ⇒ I(f) = I(g),

(ix) f E-a.e. bounded ⇒ I(f) ∈ B(H) and ∥I(f)∥ = ∥f∥∞,

4For the purpose of this thesis one can also read the following proposition as ‘there exists a map
I : {E-a.e. finite Borel functions} → L(H) with the listed properties’.
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(x) f E-a.e. non zero ⇔ I(f) invertible. In this case I(f)−1 = I(1/f),

(xi) The spectrum of I(f) is the essential range of f :
σ(I(f)) = {λ ∈ C | ∀ϵ > 0: E ({t ∈ Ω | |f(t) − λ| < ϵ}) ̸= 0},

(xii) For p a polynomial in one complex variable and its conjugate: p(I(f)) = I(p◦f).

Remark 3.2.6. ⟨x, E(t)y⟩ can be rewritten as a linear combination of four scalar
measures using the polarization formula.

3.3 Spectral Theorem

We can transform unbounded operators into bounded ones.

Proposition 3.3.1. Let a ∈ L(H) be densely defined and closed. Then,

b(a) ..= a(I + a∗a)−1

is a bounded linear operator defined on H with norm less than or equal to one. b(a)
is called the bounded transform of a. If a is normal, self-adjoint or positive, then so
is b(a).

In the finite-dimensional and bounded cases there are nice spectral theorems for
several commuting normal operators. To get analogous results in the unbounded
case we need the correct notion of commutativity.

Definition 3.3.2. We say that two unbounded, normal operators a1, a2 ∈ L(H)
strongly commute if their bounded transforms commute: b(a1)b(a2) = b(a2)b(a1).

Lemma 3.3.3. For two unbounded, normal operators a1, a2 ∈ L(H) consider the
following statements:

(i) a1 and a2 strongly commute.

(ii) ∃λ ∈ ρ(a1) : Rλ(a1)a2 ⊆ a2Rλ(a1).

(iii) ∀λ ∈ ρ(a1) : Rλ(a1)a2 ⊆ a2Rλ(a1).

(iv) ∃λ ∈ ρ(a1) ∃µ ∈ ρ(a2) : Rλ(a1)Rµ(a2) = Rµ(a2)Rλ(a1).

(v) Their resolvents commute:
∀λ ∈ ρ(a1) ∀µ ∈ ρ(a2) : Rλ(a1)Rµ(a2) = Rµ(a2)Rλ(a1).

(vi) a1a2 ⊆ a2a1.
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(vii) They commute: a1a2 = a2a1.

If ρ(a1) ̸= ∅ then (i), (ii) and (iii) are equivalent. If ρ(a1) ̸= ∅ and ρ(a2) ̸= ∅ then
(i), (iv) and (v) are equivalent. If a1 is bounded then (i) and (vi) are equivalent. If
a1 and a2 are both bounded then (i), (vi) and (vii) are equivalent.

Theorem 3.3.4 (Spectral Theorem). Let A = (ak)nk=1 ⊆ L(H) be n ∈ N pairwise
strongly commuting normal operators. Then, there exists a unique spectral measure
E on the Borel σ-algebra B(Cn) such that for all k ∈ {1, . . . , n}

ak =
∫
Cn

zk dE(z1, . . . , zn).

In the setting of the above theorem we can define a functional calculus.

Lemma 3.3.5. Let E be the spectral measure for A and let f be an E-a.e. finite
Borel function on Cn. Define

f(A) = f(a1, . . . , an) ..= I(f) =
∫
Cn

f(z) dE(z).

f(A) commutes strongly with all ak and also with any other Borel function of A.

Definition 3.3.6. In the setting of the Spectral Theorem 3.3.4 we define the joint
spectrum of A

σj(A) ..= supp(E).

This is a closed, non-empty subset of Cn.

Lemma 3.3.7. For every continuous function f ∈ C(σj(A))

σ(f(A)) = f(σj(A)).

Remark 3.3.8. In the case of a single operator A = (a1) the joint spectrum coincides
with the usual spectrum of a1: σj((a1)) = σ(a1).

Remark 3.3.9. For A = (ak)nk=1 ⊆ L(H) as in the Spectral Theorem

σj(A) ⊆
n∏
k=1

σ(ak).

σj(A) consists of the joint approximate eigenvalues of A: λ = (λ1, . . . , λn) ∈ σj(A) if
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and only if there exists a sequence of unit vectors (xm)m∈N ⊆
⋂n
k=1 D(ak) such that

lim
m→∞

(ak(xm) − λk · xm) = 0 for all k ∈ {1, . . . , n}.

Remark 3.3.10. Let K ⊆ Cn be a Borel set such that σj(A) ⊆ K. Then

ak =
∫
K

zk dE(z).

We show that this notion of the joint spectrum and the functional calculus reduce to
the definitions for the bounded case from Section 2.2.

Lemma 3.3.11. Let A = (ak)nk=1 ⊆ B(H) ⊆ L(H) be pairwise commuting normal
bounded operators. Then,

(i) the functional calculus as defined in Lemma 3.3.5 coincides with the continuous
functional calculus for all f ∈ C(Cn),

(ii) the joint spectrum of A in the sense of unbounded operators coincides with the
joint spectrum as defined for bounded operators in Section 2.2.

Proof. Let E be the spectral measure for A. Let σu = supp(E) be the joint spectrum
of A as in the above definition. Let σb be the joint spectrum of A as defined in
Section 2.2 for bounded operators. σb ⊆ Cn is compact and non-empty by Corollary
2.2.9. σu is compact and non-empty by Remark 3.3.9.

Recall that we denote the set of complex polynomials in n variables and their
conjugates by Pn. Let p ∈ Pn. The assertion p(A) = CFC(p) holds by Remark
2.2.17. Here, the left hand side denotes the formal replacement (z1, . . . , zn) 7→
(a1, . . . , an) in the argument of p. The right hand side denotes the operator obtained
by the continuous functional calculus. Similarly, p(A) = I(p) by Proposition 3.2.5
((iii), (iv), (v)) because bounded operators are closed.

Let χu, χb and χub denote the characteristic functions for σu, σb and σu ∪ σb,
respectively. Let f ∈ C(Cn). Then

I(f) = I(χuf) = I(χubf) and CFC(f) = CFC(χbf) = CFC(χubf).

Now, there exists a sequence (pm)m∈N ⊆ Pn such that χubpm
m→∞−−−→ χubf uniformly.

This implies

CFC(f) = lim
m→∞

CFC(χubpm) = lim
m→∞

pm(A) = lim
m→∞

I(χubpm) = I(f).
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For the first equality we use that the inverse Gelfand transform is continuous. For
the last equality we use that the map I is continuous on bounded functions by
Proposition 3.2.5 (ix). This shows (i).

Suppose there exists z ∈ σu such that z ̸∈ σb. Then, there exists a continuous function
f : C(Cn) → [0, 1] such that f(z) = 1 and f |σb

≡ 0 by Urysohn’s Lemma. Therefore,
0 = CFC(χbf) = I(χuf). Then, 1 = ∥χuf∥∞ = ∥I(χuf)∥ = 0 by Proposition 3.2.5
(ix). This is a contradiction.
Suppose there exists z ∈ σb such that z ̸∈ σu. Then, there exists a continuous
function f : C(Cn) → [0, 1] such that f(z) = 1 and f |σu ≡ 0. Therefore, 0 =
I(χuf) = CFC(χbf). This is a contradiction because the Gelfand transform is an
isomorphism and f |σb

̸≡ 0.
Hence, σb = σu. This shows (ii).

3.4 Vietoris and Fell topology

Let B ..= {λ ∈ C | |λ| < 1} ⊆ C be the open unit ball. We define the map

b : Cn → Bn, (z1, . . . , zn) = z 7→ (b1(z), . . . , bn(z)),

where for k ∈ {1, . . . , n}
bk(z) = zk√

1 + z∗
kzk

.

This is a homeomorphism when considering the induced topology on Bn. The inverse
is given by

b−1 : Bn → Cn, (u1, . . . , un) = u 7→ (b−1
1 (u), . . . , b−1

n (u)),

where for k ∈ {1, . . . , n}
b−1
k (u) = uk√

1 − u∗
kuk

.

Definition 3.4.1. For a family of normal and pairwise strongly commuting un-
bounded operators A = (ak)nk=1 ⊆ L(H) the family of normal bounded operators

(bk)nk=1 = BA ..= b(A) ..= (bk(A))nk=1 ⊆ B(H)

is called the bounded transform of A.

The joint spectrum for unbounded operators is closed but in general not compact.
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Definition 3.4.2. Let X be a Hausdorff space. We define the space of closed,
non-empty subsets of X

C(X) ..= {K ⊆ X | K closed, K ̸= ∅}.

Now the Hausdorff metric is not well-defined on C(X). The distance between two
closed subsets may be formally infinite. However, the characterization of the basis
elements for the Hausdorff topology is adaptable.

Definition 3.4.3 ([1]). Let X be a Hausdorff space. Sets of the form

UX(F, (Ok)mk=1) ..= {K ∈ C(X) | K ∩ F = ∅, ∀k ∈ {1, . . . ,m} : K ∩Ok ̸= ∅}

for F ⊆ X closed and Ok ⊆ X open for all k define a basis for a topology on C(X).
This is the Vietoris topology on C(X). If we require the sets F to be compact the
above sets UX define a basis for the Fell topology on C(X).

Remark 3.4.4 ([1]). For complete metric spaces the Hausdorff topology on K(X) ⊆
C(X) corresponds to the subspace topology induced by the Vietoris topology. For
compact spaces the Vietoris and Fell topology coincide. For compact metric spaces
all three topologies coincide. In general, the Fell topology is coarser than the Vietoris
topology.

In the following, we will call maps Hausdorff, Vietoris or Fell continuous if they are
continuous with respect to these topologies on the domain and/or the codomain
depending on the context.

We generalize Lemma 2.3.5 in different ways.

Lemma 3.4.5. Let X, Y be locally compact Hausdorff spaces. Let ϕ : X → Y be a
continuous and closed map. Define

ϕ̃ : C(X) → C(Y ), K 7→ ϕ(K).

Then, ϕ̃ is Vietoris continuous. If ϕ is also a proper map, then ϕ̃ is Fell continuous.

Proof. ϕ̃ is well-defined because ϕ is a closed map. For the case of Vietoris continuity
the rest of the proof is the same as for Lemma 2.3.5. This proof can also be found
in [1] (Proposition 2.2.3).
For the case of Fell continuity the proof is again the same. The appearing set
UX(ϕ−1(F ), (ϕ−1(Ok))mk=1) is Fell-open in C(X) for compact F ⊆ Y and open Ok ⊆ Y

because ϕ is proper.
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Corollary 3.4.6. The maps b : Cn → Bn and b−1 : Bn → Cn are continuous and
proper because they are homeomorphisms. Thus, the corresponding maps b̃ and b̃−1

are Vietoris and Fell continuous.

In the case that ϕ is only continuous we need to take the closure of the image to get
a well-defined map.

Lemma 3.4.7 (Prop. II.7 in [10]). Let X, Y be Hausdorff spaces, let Y be normal
and let ϕ : X → Y be continuous. Define

ϕ : C(X) → C(Y ), K 7→ ϕ(K).

Then, ϕ is Vietoris continuous.

Corollary 3.4.8. View b as a map b : Cn → Cn. Then, the corresponding map b is
Vietoris continuous.

Lemma 3.4.9. Let X, Y be Hausdorff spaces such that Y ⊆ X is an open subset.
Consider the subspace topology on Y . Then, the restriction map

R : C(X) → C(Y ), K 7→ K ∩ Y,

is Fell-continuous.

Proof. R is well-defined by the definition of the subspace topology on Y . Let
K0 ∈ C(X) and let W ⊆ C(Y ) be an open neighborhood of R(K0) = K0 ∩ Y .
W.l.o.g. W = UY (F, (Ok)mk=1) for a compact subset F ⊆ Y and open subsets
Ok ⊆ Y . Now, F ⊆ X is compact because the inclusion Y ↪→ X is continuous. For
every k : Ok ⊆ X is open because Y ⊆ X is open. This yields the Fell-open set
V ..= UX(F, (Ok)mk=1) ⊆ C(X). Let K ∈ C(X). Then,

K ∈ V ⇔ R(K) ∩ F = K ∩ Y ∩ F = K ∩ F = ∅

and for all k : R(K) ∩Ok = K ∩ Y ∩Ok = K ∩Ok ̸= ∅

⇔ R(K) ∈ W.

Therefore, K0 ∈ V and V is an open neighborhood of K0. Also, R(V ) ⊆ W . Thus,
R is continuous as it is continuous at every point.

Corollary 3.4.10. The map

R : C(Cn) → C(Bn), K 7→ K ∩Bn,

is Fell continuous.
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3.5 Bounded transform

In the proof of the Spectral Theorem in [9, pp. 101 sq.] some more useful relations
are proven. In the following, closures are meant with respect to the topology on Cn.

Lemma 3.5.1. Let A = (ak)nk=1 ⊆ L(H) be a family of pairwise strongly commuting
normal operators. Let E be the spectral measure for A and let F be the spectral
measure for b(A). Then

(i) suppF ⊆ Bn,

(ii) F (Bn) = I, F (Cn\Bn) = 0,

(iii) E = F ◦ b.

For the last equality we view b as a map from B(Cn) into itself via M → b(M).

The bounded transform is one possibility to obtain bounded operators from un-
bounded ones. The following theorem shows how the corresponding spectra are
related.

Theorem 3.5.2. Let A = (ak)nk=1 ⊆ L(H) be a family of normal and pairwise
strongly commuting unbounded operators. Then

(i) b(σj(A)) = σj(b(A)) ∩Bn,

(ii) σj(b(A)) = b(σj(A)).

Proof. Let E be the spectral measure for A and let F be the spectral measure
for b(A). E = F ◦ b by Lemma 3.5.1. In fact, this is how E is constructed. We
calculate

b−1(supp(F ) ∩Bn) = b−1


Cn\

⋃
F (M)=0,

M⊆Cn open

M

 ∩Bn



= b−1

Bn\
⋃

F (M)=0,
M⊆Cn open

(M ∩Bn)


= b−1(Bn)\

⋃
F (M∩Bn)=0,

M∩Bn⊆Bn open

b−1(M ∩Bn)

= Cn\
⋃

F (N)=0,
N⊆Bn open

b−1(N)



33 3.5 Bounded transform

= Cn\
⋃

E(b−1(N))=0,
b−1(N)⊆Cn open

b−1(N)

= Cn\
⋃

E(P )=0,
P⊆Cn open

P

= supp(E).

In the first line we expand the definition for the support of a spectral measure. The
second line is obtained by set theoretic manipulations. For the third line we use that
b is bijective, the definition of the induced topology on subspaces and the fact that
F (M) = 0 is equivalent to F (M ∩Bn) = 0 for any open set M ⊆ Cn :

F (M) = 0 ⇒ F (M ∩Bn) Lemma 3.2.3= F (M)F (Bn) = 0,
F (M ∩Bn) = 0 ⇒ F (M) = F ((M ∩Bn) ∪ (M\Bn)) = F (M ∩Bn) + F (M\Bn)

Lemma 3.2.3
≤ F (Cn\Bn) Lemma 3.5.1= 0 ⇒ F (M) = 0.

Here, we used the finite additivity of spectral measures and that F (M) ≥ 0 as an
orthogonal projection.
For line four we again use the definition of the subspace topology. In line five we
insert the relation between E and F . For line six we use that b is a homeomorphism.
The last line holds by definition.
Applying the map b to both sides we obtain

b(supp(E)) = supp(F ) ∩Bn. (3.1)

Now, inserting the two relations supp(F ) = σj(b(A)) and supp(E) = σj(A) we obtain
the first equality.

Starting from Equation (3.1)

b(supp(E)) = supp(F ) ∩Bn ⊆ supp(F ) ∩Bn = supp(F ) = supp(F ).

We used that supp(F ) ⊆ Bn by Lemma 3.5.1 and that supp(F ) is closed by definition.
Now let x ∈ supp(F ) and let U ⊆ Cn be open such that x ∈ U . Then F (U) ̸= 0
because ‘F (U) = 0’ would contradict x ∈ supp(F ). Consequently,

F (U ∩Bn) Lemma 3.2.3= F (U)F (Bn) Lemma 3.5.1= F (U) ̸= 0.

Suppose (U ∩ Bn) ∩ supp(F ) = ∅. Then, U ∩ Bn ⊆ C\ supp(F ) and F (U ∩ Bn) ≤



3 Unbounded strongly commuting normal operators 34

F (C\ supp(F )) = 0 by Lemma 3.2.3. This means F (U ∩ Bn) = 0, which is a
contradiction. Therefore, U ∩ (supp(F ) ∩Bn) ̸= ∅. This implies x ∈ supp(F ) ∩Bn

because U was arbitrary. Thus,

supp(F ) ⊆ supp(F ) ∩Bn = b(supp(E)).

We have shown that supp(F ) = b(supp(E)). Again, inserting the relations supp(F ) =
σj(b(A)) and supp(E) = σj(A) we obtain the second equality.

We will use this result to relate the continuity of the joint spectra for unbounded
operators to the continuity of the joint spectra of the corresponding bounded trans-
forms.
In analogy to the bounded case we have the following notion.

Definition 3.5.3. Let T be a topological space and let (Ht)t∈T be a field of Hilbert
spaces. For every t ∈ T let At ⊆ L(Ht) be a subset of n ∈ N unbounded operators.
We call (At)t∈T a field of families of unbounded operators. The field is said to be
normal or strongly commuting whenever all At consist of normal or pairwise strongly
commuting elements, respectively.

Lemma 3.5.4. Let T be a topological space and let (Ht)t∈T be a field of Hilbert
spaces. Let n ∈ N. For t ∈ T let At ..= (at,k)nk=1 ⊆ L(Ht) be such that (At)t∈T is a
normal, strongly commuting field of families of unbounded operators. Define

Bt ..= (bt,k)nk=1 ..= b(At).

Then, (Bt)t∈T is called the bounded transform of (At)t∈T . (Bt)t∈T is a normal
commuting field of families of bounded operators on (Ht)t∈T .

Proof. For every t ∈ T the elements of Bt are normal and bounded by Proposi-
tion 3.3.1. They pairwise commute by definition of the strong commutativity for the
elements of At.

We generalize Theorem 2.5.1 to the case of unbounded operators.

Theorem 3.5.5. Let T ≠ ∅ be a topological space and let (Ht)t∈T be a field of Hilbert
spaces. Let n ∈ N. For t ∈ T let At ..= (at,k)nk=1 ⊆ L(Ht) be such that (At)t∈T is a
normal strongly commuting field of families of unbounded operators. Let (Bt)t∈T be
its bounded transform. Define the maps

Σ: T → C(Cn), t 7→ σj(At), and Σb : T → K(Cn), t 7→ σj(Bt).
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The following assertions hold.

(i) Theorem 2.5.1 applies to the normal commuting field of families of bounded
operators (Bt)t∈T .

(ii) Σ is Vietoris continuous if and only if the norm map

T ∋ t 7→ ∥ϕ(At)∥ ∈ [0, ∞)

is continuous for every bounded continuous function ϕ : Cn → C.

(iii) If Σ is Vietoris continuous, then Σb is Hausdorff continuous.

(iv) If Σb is Hausdorff continuous, then Σ is Fell continuous.

Proof. (i): This holds by Lemma 3.5.4.

(ii), ‘ ⇒’: This part is similar to the proof of ‘(i) ⇒ (ii)’ for Theorem 2.5.1. Let
f ∈ C(Cn) be bounded. Then, the norm map is continuous as a composition of
continuous maps:

T ∋ t
Σ7−→ σj(At)

ϕ7−→ ϕ(σj(At))
Lemma 3.3.7= σ(ϕ(At))

|̃·|7−→ |σ(ϕ(At))|
sup7−−→ sup |σ(ϕ(At))|

Thm. 2.1.12= ∥ϕ(At)∥ ∈ [0, ∞).

Σ is Vietoris continuous by assumption. ϕ is Vietoris continuous by Lemma 3.4.7. For
every t ∈ T : ϕ(At) is a bounded normal operator because ϕ is bounded (cf. Propo-
sition 3.2.5 (vi), (ix)). Therefore, σ(ϕ(At)) is compact. So, ϕ is also continuous
with respect to the Hausdorff topology on the codomain K(C) (cf. Remark 3.4.4).
|̃ · | is Hausdorff continuous by Corollary 2.3.6 and sup is Hausdorff continuous by
Lemma 2.3.7.

(ii), ‘ ⇐’: Consider the proof of Theorem 2.4.8 (ii). Replace ‘K(Cn)’ by ‘C(Cn)’ and
interpret UCn(F, (Ok)mk=1) as the basis elements of the Vietoris topology instead of
the Hausdorff topology. Finally, use that the appearing maps ϕ are continuous and
bounded. Their corresponding norm maps are continuous by assumption. We do not
restate the proof.

(iii): Write Σb as a composition of maps

T ∋ t
Σ7−→ σj(At)

b7−→ b(σj(At))
Thm. 3.5.2= σj(b(At)) = σj(Bt) ∈ C(Cn).

Σ is Vietoris continuous by assumption. b is Vietoris continuous by Corollary 3.4.8.
This shows Σb to be Vietoris continuous. The Hausdorff topology corresponds
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to the subspace topology on K(Cn) ⊆ C(Cn) induced by the Vietoris topology
(cf. Remark 3.4.4). Thus, Σb is also Hausdorff continuous because Im(Σb) ⊆ K(Cn).

(iv): Write Σ as a composition of maps

T ∋ t
Σb7−→ σj(Bt)

R7−→ σj(Bt) ∩Bn b̃−1
7−−→ b−1(σj(b(At) ∩Bn)) Thm. 3.5.2= σj(At) ∈ C(Cn).

Σb is Hausdorff continuous by assumption. The inclusion of its image, a subset
of K(Cn), into the domain of R, C(Cn) with the Fell topology, is also continuous:
The Hausdorff topology on K(Cn) is the subspace topology induced by the Vietoris
topology on C(Cn) by Remark 3.4.4. The Fell topology is, in turn, coarser than
the Vietoris topology by the same remark. R is Fell continuous by Corollary 3.4.10.
b̃−1 is Fell continuous by Corollary 3.4.6. This shows Σ to be Fell continuous.

The reverse implications of the statements (iii) and (iv) are in general not true. In
the following lemma we construct two corresponding counterexamples.

Lemma 3.5.6. In the setting of the above theorem we have:

(i) The Hausdorff continuity of Σb does not imply the Vietoris continuity of Σ.

(ii) The Fell continuity of Σ does not imply the Hausdorff continuity of Σb.

Proof. Let S : C(Bn) → C(Cn), K 7→ K. In the proof of the above theorem we have
seen that

Σb = S ◦ b̃ ◦ Σ and Σ = b̃−1 ◦R ◦ Σb.

b̃ and b̃−1 are Vietoris continuous by Corollary 3.4.6. They are also inverse to each
other. That is, b̃ : C(Cn) → C(Bn) is a homeomorphism with respect to the Vietoris
topology. The same is true with respect to the Fell topology by the same corollary.

Consider the case n = 1. Every non-empty, closed subset of C can be realised as the
spectrum of a normal, unbounded operator on some Hilbert space [9].5 So, for every
map T ∋ t 7→ Kt ∈ C(B) there exists a normal field of unbounded operators (at)t∈T

on some field of Hilbert spaces such that Σ(t) = b̃−1(Kt) for all t ∈ T .
We construct such a map that is not Vietoris continuous but where t 7→ S(Kt) ∈ K(C)
is Hausdorff continuous. Then,

t 7→ Σb(t) = S ◦ b̃ ◦ b̃−1(Kt) = S(Kt)

5We prove a more general version of this statement in Lemma 3.6.7.



37 3.5 Bounded transform

is Hausdorff continuous, but Σ is not Vietoris continuous. This shows (i).

Let T = [1/2, 1] and define Kt ..= {0} ∪ [t, 1) ∈ C(B). Consider the open set

W ..= UB([1/2, 1), (B)) ⊆ C(B).

This is a Vietoris-open neighborhood of K1 = {0} ∈ C(B) because K1 ∩ [1/2, 1) = ∅
and K1 ∩ B ̸= ∅. Let V ⊆ T be an open neighborhood of 1 ∈ T . Then, there is
an ϵ ∈ (0, 1/2) such that (1 − ϵ) ∈ V . We have K(1−ϵ) = {0} ∪ [1 − ϵ, 1) ∋ (1 − ϵ).
Therefore, K(1−ϵ) ∩ [1/2, 1) ̸= ∅ and {Kt | t ∈ V } ̸⊆ W . Thus, t 7→ Kt is not Vietoris
continuous because it is not continuous at t = 1.
Now consider t 7→ S(Kt) = {0} ∪ [t, 1] ∈ K(C). Let t0 ∈ T and let ϵ > 0. If t ∈ T
with |t− t0| < δ ..= ϵ, then

dH(S(Kt), S(Kt0)) = max
{

sup
x∈{0}∪[t,1]

inf
y∈{0}∪[t0,1]

|x− y|, sup
y∈{0}∪[t0,1]

inf
x∈{0}∪[t,1]

|x− y|

}
= |t− t0| < ϵ.

Thus, t 7→ S(Kt) is Hausdorff continuous.

Similarly, if t 7→ Kt ∈ K(C), then there exists a normal field of unbounded operators
(at)t∈T on some field of Hilbert spaces such that Σ(t) = b̃−1 ◦R(Kt) for all t ∈ T . We
construct such a map that is not Hausdorff continuous with the property S ◦R(Kt) =
Kt and such that t 7→ R(Kt) is Fell continuous. Then

t 7→ Σb(t) = S ◦ b̃ ◦ b̃−1 ◦R(Kt) = Kt

is not Hausdorff continuous, but Σ is Fell continuous. This shows (ii).

Let T = [1/2, 1] and consider

t 7→ Kt ..=

{0} ∪ [t, 1] for 1/2 ≤ t < 1,

{0} for t = 1
∈ C(C).

Set ϵ = 1/2 > 0 and let δ > 0. Then, (1 − δ/2) ∈ T and |1 − (1 − δ/2)| < δ. But

dH(K1, K(1−δ/2)) = 1 > ϵ.

Thus, t 7→ Kt is not Hausdorff continuous because it is not continuous at t = 1.

Now consider t 7→ R(Kt) = {0}∪[t, 1). We already showed that t 7→ {0}∪[t, 1] ∈ K(C)
is Hausdorff continuous. The latter is also Vietoris and hence Fell continuous when
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viewed as a map into C(C) by Remark 3.4.4. Then

T ∋ t 7→ R({0} ∪ [t, 1]) = {0} ∪ [t, 1) = R(Kt) ∈ C(B)

is Fell continuous because R is Fell continuous by Corollary 3.4.10.

3.6 β-topology

We would like a topology on C(Cn) such that

Σ: T → C(Cn), t 7→ σj(At), is continuous (3.2)
⇔ Σb : T → K(Cn), t 7→ σj(b(At)), is Hausdorff-continuous.

We use Theorem 3.5.2 to transport the Hausdorff topology from K
(
Bn
)

⊆ K(Cn) to
C(Cn). Define

D ..=
{
K ∈ K

(
Bn
) ∣∣ K ∩Bn = K

}
⊆ K

(
Bn
)
.

Lemma 3.6.1. The map

R : D → C(Bn), K 7→ K ∩Bn,

is bijective with inverse

S : C(Bn) → D, L 7→ L.

The closure is with respect to the topology on Cn.

Proof. Let L ∈ C(Bn). Then, there exists L′ ∈ C(Cn) such that L = L′ ∩Bn. Now,

L′ ∩Bn ∩Bn ⊆ L′ ∩Bn = L′ ∩Bn ⊆ L′ ∩Bn ∩Bn.

Hence, L′ ∩Bn ∩Bn = L′ ∩Bn or equivalently L ∩Bn = L. Therefore, L ∩Bn = L

and L ∈ D. In particular, L = R
(
L
)

and R is surjective.

Let K1, K2 ∈ D and let R(K1) = R(K2). Then,

K1 = K1 ∩Bn = R(K1) = R(K2) = K2 ∩Bn = K2

and R is injective.
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Let L ∈ C(Bn). The assertion L = R
(
L
)

holds as shown above. Thus,

R−1(L) = R−1(R(L)) = L = S(L)

and R−1 = S.

Corollary 3.6.2. The map

β : C(Cn) → D, M 7→ S ◦ b(M),

is a bijection with inverse

β−1 : D → C(Cn), K 7→ b−1 ◦R(K).

Remark 3.6.3. The topology on D ⊆ K
(
Bn
)

is the subspace topology. On K
(
Bn
)

we
consider the Hausdorff topology, which coincides with the Fell and Vietoris topology
by Remark 3.4.4.

Definition 3.6.4. The β-topology on C(Cn) is the topology obtained by declaring
the map β to be a homeomorphism. The open sets are exactly all preimages of the
open sets in D under β.

Remark 3.6.5. A basis for the β-topology is given by

Uβ(F, (Ok)mk=1) ..= {β−1(K) | K ∈ D, K ∩ F = ∅, ∀k ∈ {1, . . . ,m} : K ∩Ok ̸= ∅}
K=β(M)= {M ∈ C(Cn) | b(M) ∩ F = ∅, ∀k ∈ {1, . . . ,m} : b(M) ∩Ok ̸= ∅}.

Here, F ⊆ Bn is closed and the Ok ⊆ Bn are open. However, we get the same basis
sets for F ⊆ Cn closed and the Ok ⊆ Cn open.

Proposition 3.6.6. Let T ̸= ∅ be a topological space and let (Ht)t∈T be a field of
Hilbert spaces. Let n ∈ N. For t ∈ T let At ..= (at,k)nk=1 ⊆ L(Ht) be such that (At)t∈T

is a normal strongly commuting field of families of unbounded operators. Let (Bt)t∈T

be its bounded transform. Define the maps

Σ: T → C(Cn), t 7→ σj(At), and Σb : T → K(Cn), t 7→ σj(Bt).

Then, Σ is β-continuous if and only if Σb is Hausdorff continuous.

Proof. For all t ∈ T we have σj(Bt) = β(σj(At)) by Theorem 3.5.2. Hence, Σb = β◦Σ.
Now use that β is a homeomorphism by definition of the β-topology.
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Our previous results indicate that the β-topology is coarser than the Vietoris topology
and finer than the Fell topology. We prove this by using the following lemma.

Lemma 3.6.7. For every K ∈ C(Cn) there is a family A ..= (ak)nk=1 ⊆ L(ℓ2(N)) of
normal pairwise strongly commuting unbounded operators such that K = σj(A).

Proof. (Inspired by Example 2.2 in [9]) There exists a sequence (λm)m∈N ⊆ Cn

such that {λm}m∈N = K because K is separable as a closed, non-empty subset of
Cn. For m ∈ N write λm = (λ(1)

m , . . . , λ
(n)
m ) ∈ Cn. For k ∈ {1, . . . , n} let ak be the

multiplication operator corresponding to the sequence (λ(k)
m )m∈N ⊆ C

ak : D(ak) → ℓ2(N), x = (xm)m∈N 7→ ak(x), (ak(x))m..= λ(k)
m xm for m ∈ N,

D(ak) =
{
x ∈ ℓ2(N)

∣∣∣ ∞∑
m=1

|(ak(x))m|2 < ∞

}
.

The adjoint operators are given by

(a∗
k(x))m =

(
λ(k)
m

)∗
xm, for all x ∈ D(a∗

k) = D(ak) and m ∈ N.

We have ∥a∗
k(x)∥ = ∥ak(x)∥ for all x ∈ D(ak). Also, the ak are closed because (a∗

k)
∗ =

ak. Hence, all ak are normal. For every k ∈ {1, . . . , n} :

((I + a∗
kak) (x))m =

(
1 +

∣∣λ(k)
m

∣∣2)xm, for all x ∈ D(a∗
kak) and m ∈ N

⇒ (b(ak)x)m = λ
(k)
m xm

1 +
∣∣∣λ(k)
m

∣∣∣2 , for all x ∈ ℓ2(N) and m ∈ N.

The bounded transforms b(ak) again act by pointwise multiplication with some
sequence. In particular, the bounded transforms pairwise commute. Hence, the ak
pairwise strongly commute.

σj(A) consists exactly of the joint approximate eigenvalues of A by Remark 3.3.9.

‘K ⊆ σj(A)’: For l ∈ N let el ∈ ℓ2(N) be the unit vector with entries (el)m = δlm.
For all k ∈ {1, . . . , n} and all l ∈ N :

(ak(el))m = λ(k)
m δlm = λ

(k)
l (el)m for all m ∈ N =⇒ ak(el) = λ

(k)
l el.

So, for every l ∈ N : λl is a joint eigenvalue of A. Therefore,

K = {λm}m∈N ⊆ σj(A) = σj(A).
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‘σj(A) ⊆ K’: Let µ = (µ1, . . . , µk) ∈ σj(A) ⊆ Cn. Denote the euclidean norm on
Cn by ∥·∥2. There exists a sequence of unit vectors (x(l))l∈N, x(l) = (x(l)

m )m∈N ∈⋂n
k=1 D(ak), such that for all k ∈ {1, . . . , n}

lim
l→∞

(
ak
(
x(l))− µkx

(l)) = 0 in ℓ2(N).

⇒ inf
m∈N

∥λm − µ∥2
2 = inf

m∈N

n∑
k=1

∣∣λ(k)
m − µk

∣∣2
≤ n inf

m∈N
max

k∈{1,...,n}

∣∣λ(k)
m − µk

∣∣2︸ ︷︷ ︸
attained at k= km

∞∑
m′=1

∣∣∣x(l)
m′

∣∣∣2︸ ︷︷ ︸
= 1 ∀ l∈N

= n
∞∑

m′=1

inf
m∈N

∣∣λ(km)
m − µkm

∣∣2∣∣∣x(l)
m′

∣∣∣2
≤ n

∞∑
m=1

∣∣λ(km)
m − µkm

∣∣2∣∣x(l)
m

∣∣2
≤ n

∞∑
m=1

n∑
k=1

∣∣λ(k)
m − µk

∣∣2∣∣x(l)
m

∣∣2
= n

n∑
k=1

∥∥ak(x(l))− µkx
(l)∥∥2 l→∞−−−→ 0.

Hence, infm∈N ∥λm − µ∥2
2 = 0 and there is a sequence (mj)j∈N ⊆ N satisfying

lim
j→∞

∥∥λmj
− µ

∥∥2
2 = inf

m∈N
∥λm − µ∥2

2 = 0.

Thus, µ ∈ {λm}m∈N = K and σj(A) ⊆ K.

Proposition 3.6.8. On C(Cn) the β-topology is strictly coarser than the Vietoris
topology and strictly finer than the Fell topology.

Proof. Consider T = C(Cn) with the Vietoris topology. For every t ∈ T there is a
family At ⊆ L(ℓ2(N)) of normal pairwise strongly commuting unbounded operators
with σj(At) = t by the previous lemma. The map

Σ: T → C(Cn), t 7→ σj(At) = t,

is Vietoris continuous.6 Hence, the corresponding map Σb = β ◦ Σ is Hausdorff
continuous by Theorem 3.5.5. Then, Σ is β-continuous by Proposition 3.6.6. That is,
for every β-open subset M ⊆ C(Cn) its preimage Σ−1(M) = M ⊆ T is Vietoris-open.

6The ‘specifically stated’ topologies refer to C(Cn). T is considered with the Vietoris topology.
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Therefore, the β-topology is coarser than the Vietoris topology.

Now consider T = C(Cn) with the β-topology. Then, the map Σ is β-continuous.7

Hence, the corresponding map Σb is Hausdorff continuous by Proposition 3.6.6. Thus,
Σ is Fell continuous by Theorem 3.5.5. That is, for every Fell-open subset M ⊆ C(Cn)
its preimage Σ−1(M) = M ⊆ T is β-open. Therefore, the β-topology is finer than
the Fell topology.

The β-topology cannot coincide with the Vietoris or the Fell topology by Lemma
3.5.6 and Proposition 3.6.6: The Hausdorff continuity of Σb implies the β- but not
the Vietoris continuity of Σ. The β- but not the Fell continuity of Σ implies the
Hausdorff continuity of Σb. Thus, the β-topology is strictly coarser than the Vietoris
and strictly finer than the Fell topology.

Remark 3.6.9. The only property of the β-topology needed for the above proof is
that Σ is β-continuous if and only if Σb is Hausdorff continuous.

3.7 Cayley transform and resolvent

The β-topology on C(Cn) depends on our choice of the map b for the bounded
transform. Of course, there are other ways to transform unbounded operators into
bounded ones. We ask ourselves if and how the corresponding topologies on C(Cn)
differ.

We consider the Cayley transform (see, e.g., Chapter 13.1 in [9]) and restrict to the
case of self-adjoint operators. It can be defined by the functional calculus of the
homeomorphism

c : R → S1\{1}, x 7→ x− i

x+ i
.

For self-adjoint operators a ∈ L(H) the operator c(a) ∈ B(H) is unitary, in particular
bounded. The inverse Cayley transform is given by

c−1 : S1\{1} → R, u 7→ i
1 + u

1 − u
.

In analogy to equation (3.2) we would like to have a topology on C(Rn) such that

Σ: T → C(Rn), t 7→ σj(At), is continuous
⇔ Σc : T → K(Tn), t 7→ σj(c(At)), is Hausdorff-continuous.

7The specifically stated topologies again refer to C(Cn). T is now considered with the β-topology.
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Here, At = (at,k)nk=1 ⊆ L(H) is a self-adjoint strongly commuting field of families of
unbounded operators. The joint spectra are subsets of Rn because the spectra of
single self-adjoint operators are subsets of R and by Remark 3.3.9. Similarly, the
families of unitaries c(At) = (c(at,k))nk=1 ⊆ B(H) have joint spectra in the n-torus
Tn = (S1)n. They pairwise commute because they are bounded and pairwise strongly
commute by Lemma 3.3.5.

We now assume the existence of at least one such topology on C(Rn) and call it
the γ-topology. It has to be strictly coarser than the Vietoris topology and strictly
finer than the Fell topology by the same arguments as presented in the proof of
Proposition 3.6.8 and Remark 3.6.9.

Lemma 3.7.1. On C(R) the γ-topology is not finer than the β-topology.

Proof. We use some properties of unbounded multiplication operators (cf. Exam-
ple 3.8 and 5.3 in [9]).

Let T = [0, 2π]. For t ∈ T consider the Hilbert spaces Ht = L2([t, t+π], dx) and let
at = Mult(− cot(·/2)) ∈ L(Ht). The domains are Dt = {f ∈ Ht | f(·) cot(·/2) ∈ Ht}.
This defines a field of unbounded self-adjoint operators (at)t∈T . We have

c(at) = Mult(c(− cot(·/2)) = Mult(exp(i·)).

The spectrum of a multiplication operator corresponds to its essential range. In this
case

σ(c(at)) =
{
eiλ | λ ∈ [t, t+ π]

}
.

The map Σc : T ∋ t 7→ σ(c(at)) ∈ K(C) is Hausdorff continuous: Let t0 ∈ T and let
ϵ > 0. Let |t− t0| < δ ..= ϵ. Then,

dH(σ(c(at)), σ(c(at0))) = sup
λ∈[t, t+π]

inf
λ0∈[t0, t0+π]

∣∣eiλ − eiλ0
∣∣ ≤ ϵ.

Thus, the map Σ: T ∋ t 7→ σ(at) ∈ C(R) is γ-continuous by definition.

Now consider the bounded transform

b(at) = Mult(b(− cot(·/2)) = Mult

 − cot(·/2)√
1 + cot(·/2)2

 .
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The spectra are

σ(b(at)) =



[
− cot(t/2)√
1+cot(t/2)2 ,

− cot((t+π)/2)√
1+cot((t+π)/2)2

]
, t ≤ π

[
−1, − cot((t−π)/2)√

1+cot((t−π)/2)2

]
∪
[

− cot(t/2)√
1+cot(t/2)2 , 1

]
, t > π.

The map Σb : T ∋ t 7→ σ(b(at)) ∈ K(C) is not Hausdorff continuous because it
is not Hausdorff continuous at t = π: Consider the Hausdorff-open neighborhood
W = UC([−1,−1/2], (C)) of Σb(π). For every t ∈ T with t > π : Σb(t) ̸∈ W .
Therefore, Σ: T ∋ t 7→ σ(at) ∈ C(C) is not β-continuous. The same holds when
restricting the codomain to C(R) using the subspace topology.

Remark 3.7.2. The map Σ does not ‘look’ continuous at t = π the same way σ(b(at))
is not Hausdorff continuous at t = π. This discontinuity is of a type not seen by the
Fell topology. As we just showed the same holds for the γ-topology in this example.
The Vietoris and β-topology, however do detect it. This indicates that the γ-topology
might not be so useful, e.g., in the light of applications. Of course we did not prove
that the converse cannot happen. Also, there may be situations where it makes
sense to regard ‘spectrum appearing at infinity’ as continuous. For a visualization
see Figure 3.1.

As a second possibility we briefly consider the resolvent. It also transforms unbounded
operators into bounded ones. Here, we have the additional complication that we
need some λ ∈ C such that for all t ∈ T : λ ∈ ρ(at) or equivalently

⋂
t∈T ρ(at) ̸= ∅.

In the case of multiple strongly commuting operators this has to hold ‘in every entry’.
That is, ∀k ∈ {1, . . . , n} we need

⋂
t∈T ρ(at,k) ̸= ∅.

We again restrict to the case of self-adjoint operators. Then, e.g., λ = −i works. In
this case the resolvent can be obtained from the functional calculus of

R−i : R → C, x 7→ 1
x+ i

.

Constant shifts and multiplication by constants are Hausdorff continuous:

∀K1, K2 ∈ K(C) ∀s, r ∈ C :
dH(K1 + s, K2 + s) = dH(K1, K2) = dH(r ·K1, r ·K2) · |r|−1.

Let R′
s,r ..= rR−i+s. Then, for any field of strongly commuting self-adjoint unbounded
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Figure 3.1: The spectra of b(at) for t ∈ [0, 2π] are depicted. At t = π there is a
Hausdorff discontinuity: The spectrum suddenly picks up a contribution at −1. The
spectra of at qualitatively look the same, but the range is (−∞, ∞) instead of [−1, 1].
In the latter case the Fell topology does not see this discontinuity. For the case of the
Cayley transform one can think of [−1, 1] 7→ [0, 2π] as the phases of the spectra of
c(at) (of course then the change of the boundaries is actually linear). This effectively
identifies the points −1 and 1 in the image above leading to a γ-continuous change.

operators (at)t∈T :

T ∋ t 7→ σ(R−i(at)) ∈ K(C) is Hausdorff continuous
⇔ T ∋ t 7→ σ(R′

s,r(at)) ∈ K(C) is Hausdorff continuous.

Choose s = 1 and r = −2i. For all x ∈ R :

R′
1,−2i(x) = −2i

x+ i
+ 1 = x− i

x+ i
= c(x).

Therefore, using the resolvent yields the same ‘problem’ as with the Cayley transform.
It can happen that: (at)t∈T is a field of unbounded self-adjoint operators; T ∋ t 7→
σ(R−i(at)) ∈ K(C) is Hausdorff continuous; T ∋ t 7→ σ(at) ∈ C(R) is neither Vietoris
nor β-continuous and also does not ‘look’ continuous.

We presume that out of the three possibilities considered the bounded transform
might be most suitable to describe the continuity of spectra of unbounded operators
through bounded ones. It also has the advantage that it works for all normal
operators. As mentioned before there may be situations dealing with self-adjoint
operators where the γ-topology is preferable.
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4 Unbounded affiliated elements
In the last section one of the approaches for dealing with the spectra of unbounded
operators was to investigate under what conditions certain bounded functions of
these operators form continuous fields of C∗-algebras. Now we consider an alternative
approach: unbounded elements affiliated with C∗-algebras and fields of C∗-algebras.

4.1 Multiplier algebra and affiliation relation

Definition 4.1.1 ([11]). Let A be a C∗-algebra. In particular, A is a Banach space.
By B(A) we denote the algebra of bounded linear operators on A. Let a ∈ B(A). If
there exists an element b ∈ B(A) such that

∀x, y ∈ A : x∗ay = (bx)∗y,

then we call b the adjoint of a and write b = a∗.

Remark 4.1.2. These adjoints are the adjoint operators with respect to the A-valued
inner product ⟨x, y⟩ = x∗y on A. Not every bounded operator on A has an adjoint.

Definition 4.1.3 ([11]). The set of all bounded operators on a C∗-algebra A for
which the adjoint exists is called the multiplier algebra of A:

M(A) ..= {a ∈ B(A) | a∗ exists}.

The elements of M(A) are called multipliers of A. We endow M(A) with the natural
algebraic operations. The considered norm is

∥·∥ : M(A) → [0, ∞), ∥a∥ ..= sup
x∈A, ∥x∥=1

∥ax∥.

This makes M(A) a unital C∗-algebra. The identity operator on A is denoted by
I ∈ M(A).

Lemma 4.1.4 ([11]). Let A be a C∗-algebra. Then

(i) ∀a ∈ M(A) ∀x, y ∈ A : (ax)y = a(xy),

(ii) A ⊆ M(A) as left multiplication operators,

(iii) A is unital ⇔ M(A) = A,

(iv) A ⊆ M(A) is a closed, two-sided ideal.
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Definition 4.1.5 ([2]). The strict topology τs on M(A) is induced by the families of
seminorms (a 7→ ∥ax∥)x∈A and (a 7→ ∥a∗x∥)x∈A. A net (aλ)λ∈Λ ⊆ M(A) converges
in the strict topology to a ∈ M(A) if and only if

∀x ∈ A : ∥aλx− ax∥, ∥a∗
λx− a∗x∥ λ∈Λ−−→ 0.

Lemma 4.1.6. If M(A) = A, then the strict topology coincides with the norm
topology on A.

Proof. Let (aλ)λ∈Λ ⊆ A be a net. Convergence in norm implies convergence in the
strict topology. For the reverse implication set x = I ∈ A in the definition above.

Lemma 4.1.7 ([2]). (M(A), τs) is a topological vector space. A ⊆ M(A) is dense in
the strict topology and (M(A), τs) is complete.

Example 4.1.8 ([11]). Let X be a locally compact Hausdorff space. Let C0(X) be
the C∗-algebra of continuous functions on X vanishing at infinity. Then, M(C0(X)) =
Cb(X) is the C∗-algebra of continuous bounded functions on X.

Let K(H) be the C∗-algebra of compact operators on a Hilbert space H. Then,
M(K(H)) = B(H).

We give the definition for the affiliation relation introduced by Woronowicz [11].
Heuristically, an unbounded linear operator on A is affiliated with A if its bounded
transform is a multiplier of A.

Definition 4.1.9. Let A be a C∗-algebra. By L(A) we denote the set of linear
operators on A. Analogous to the Hilbert space setting a potentially unbounded
operator a ∈ L(A) is only defined on a linear subspace, its domain D(a) ⊆ A. The
operator a is closed if its graph is closed.

Definition 4.1.10 (Def. 1.1 in [11]). Let A be a C∗-algebra and let a ∈ L(A) be
densely defined. a is affiliated with A – we write a η A – if there exists a multiplier
b ∈ M(A) such that ∥b∥ ≤ 1 and

∀x, y ∈ A : (x ∈ D(a), ax = y) ⇔ (∃z ∈ A : x = (I − b∗b) 1
2 z, y = bz).

Lemma 4.1.11 ([11]). Let a η A. Then,

(i) a is a closed operator,

(ii) the multiplier b is uniquely determined by a and vice versa,
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(iii) D(a) ⊆ A is a right ideal,

(iv) ∀x ∈ D(a) ∀y ∈ A : a(xy) = (ax)y,

(v) A unital implies a ∈ A.

Proposition 4.1.12 (Example 1 in [11]). The multiplier algebra consists exactly of
the bounded elements affiliated with A :

M(A) = {a ∈ L(A) | a η A, a ∈ B(A)}.

For a ∈ M(A) the corresponding multiplier b as in Definition 4.1.10 is given by the
bounded transform:

b = b(a) = a(I + a∗a)− 1
2 .

Example 4.1.13 ([11]). Let X be a locally compact Hausdorff space. Let C0(X)
be the C∗-algebra of continuous functions on X vanishing at infinity. The set of
elements affiliated with C0(X) is C(X), the continuous functions on X.

Let K(H) be the C∗-algebra of compact operators on a Hilbert space H. The set of
elements affiliated with K(H) is the set of closed operators on H.

Proposition 4.1.14 (Example 4 in [11]). Let A be a C∗-subalgebra of B(H) for
some Hilbert space H. Let a ∈ L(H) be a closed operator. Then,

a η A ⇔ (b(a) = a(I + a∗a)− 1
2 ∈ M(A), (I + a∗a)− 1

2A ⊆ A is dense).

Lemma 4.1.15 (Thm. 1.4 in [11]). Let a η A. There exists an operator a∗ η A such
that

∀x, y ∈ A : (x ∈ D(a∗), y = a∗x) ⇔ (∀z ∈ D(a) : x∗(az) = y∗z).

It satisfies b(a∗) = b(a)∗ and (a∗)∗ = a. This ∗-operation reduces to the usual
definitions in special cases, e.g., a ∈ M(A), a ∈ L(H) closed or a ∈ C(X).

4.2 Affiliation relation for continuous fields of C∗-algebras

Definition 4.2.1. Let T be a topological space. Let C = ((Ct)t∈T , Γ) be a continuous
field of C∗-algebras. For every t ∈ T let at ∈ L(Ct) be densely defined. We say that
a = (at)t∈T is affiliated with C – we write a η C – if

(i) for every t ∈ T : at η Ct,
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(ii) for every x = (xt)t∈T ∈ Γ:
b(a)x = (b(at)xt)t∈T ∈ Γ and b(a)∗x = (b(at)∗xt)t∈T ∈ Γ.

Let (Ht)t∈T be a field of Hilbert spaces. Let n ∈ N. For t ∈ T let At = (at,k)nk=1 ⊆
L(Ht) be such that A = (At)t∈T is a normal strongly commuting field of families of
unbounded operators. We say that A is affiliated with C – we write A η C – if for
every k ∈ {1, . . . , n} : ak = (at,k)t∈T is affiliated with C.

We study for which continuous fields of C∗-algebras the affiliation relation yields a
useful notion for the continuity of the spectra.

Let T be a topological space. Let (Ht)t∈T be a field of Hilbert spaces. Let n ∈ N.
For t ∈ T let At = (at,k)nk=1 ⊆ L(Ht) be such that A = (At)t∈T is a normal strongly
commuting field of families of unbounded operators.

Proposition 4.2.2. Assume that the bounded transform b(A) = (b(At))t∈T of A
generates a continuous field of unital C∗-algebras C = ((Ct)t∈T , Γ) in the sense of
Theorem 2.5.1 and Corollary 2.5.2. Then, in general A is not affiliated with C.

Proof. Consider the case n = 1. Assume there is a t ∈ T such that at ..= at,1 is not
bounded. at is a closed linear operator on Ht. Its bounded transform bt ..= b(at)
is an element of Ct = C∗

1(b(At)). For every z ∈ C : (1 + z∗z)− 1
2 = (1 − b(z)∗b(z)) 1

2 .
Therefore,

(1 + a∗
tat)− 1

2 = (1 − b∗
t bt)

1
2 ∈ Ct.

Suppose, there is a sequence (xm)m∈N ⊆ Ct with

lim
m→∞

(1 + a∗
tat)− 1

2xm = bt ∈ Ct

For every m ∈ N there is a continuous function fm ∈ C(σj(b(At))) = C(σ(bt)) with
fm(bt) = xm. Then, the equation above translates to an equation in C(σ(bt)):

lim
m→∞

sup
z∈σ(bt)

∣∣∣∣fm(z)
√

1 − |z|2 − z

∣∣∣∣ = 0.

However, there is a λ ∈ σ(bt) with norm 1 because σ(at) ⊆ C is unbounded
(cf. Theorem 3.5.2). Hence,

lim
m→∞

sup
z∈σ(bt)

∣∣∣∣fm(z)
√

1 − |z|2 − z

∣∣∣∣ ≥ lim
m→∞

∣∣∣∣fm(λ)
√

1 − |λ|2 − λ

∣∣∣∣ = 1 > 0.
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This is a contradiction. Therefore, (1 +a∗
tat)− 1

2Ct is not dense in Ct. This means that
at is not affiliated with Ct by Proposition 4.1.14. Then, A is not affiliated with C.

The bounded transform of A generates a continuous field of unital C∗-algebras if
and only if the spectrum map Σ: T → C(Cn), t 7→ σj(At), is β-continuous. So, the
β-continuity of Σ does not imply that A is affiliated with the continuous field of
C∗-algebras generated by the bounded transform of A.

Now, we consider a different field of C∗-algebras. For t ∈ T we denote the C∗-algebra
obtained from the functional calculus of all C0-functions on the joint spectrum of At
by C0(At). This C∗-algebra is isomorphic to C0(σj(At)) by Proposition 3.2.5. For
every t ∈ T set Ct ..= C0(At). Define

Λ ..= {(ϕ(At))t∈T | ϕ ∈ C0(Cn)} ⊆
∏
t∈T

Ct.

Λ is a ∗-subalgebra of
∏

t∈T Ct. For every t ∈ T the set

Λt = {xt | (xt)t∈T ∈ Λ} = {ϕ(At) | ϕ ∈ C0(C)} = Ct

is dense in Ct. Hence, Λ satisfies (B1) and (B2) from Definition 2.4.1. Therefore,
there exists a continuous field of C∗-algebras C ..= ((Ct)t∈T , Γ) with generating family
Λ ⊆ Γ if and only if the map

T ∋ t 7→ ∥ϕ(At)∥ ∈ [0, ∞)

is continuous for every ϕ ∈ C0(Cn) (cf. Lemma 2.4.3). We call this condition ‘(C)’.

Proposition 4.2.3. Assume (C). Then A η C.

Proof. Let k ∈ {1, . . . , n}. For every t ∈ T : at,k is a closed linear operator on Ht. It
can be obtained from the functional calculus of the map

pk : σj(At) → C, z 7→ zk.

pk is affiliated with C0(σj(At)) because it is continuous (cf. Example 4.1.13). Hence,
at,k is affiliated with Ct ∼= C0(σj(At)).

Let (xt)t∈T ∈ Γ be a continuous section of C. Let t0 ∈ T and let ϵ > 0. There exists
an open neighborhood U ⊆ T of t0 and a continuous section (yt)t∈T ∈ Λ such that
∥xt − yt∥ < ϵ for every t ∈ U (cf. Proposition 10.2.2 in [5]). There is a C0-function
ϕ with yt = ϕ(At) for every t ∈ T by definition of Λ. The map (b ◦ pk) · ϕ is also a
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C0-function because b is bounded. Thus,

(b(at,k)yt)t∈T = (((b ◦ pk) · ϕ)(At))t∈T ∈ Λ ⊆ Γ

is a continuous section. Considering C0(At) as a C∗-subalgebra of B(Ht) we have
that

∥b(at,k)xt − b(at,k)yt∥ ≤ ∥b(at,k)∥∥xt − yt∥ < ϵ

for every t ∈ U . Hence, (b(at,k)xt)t∈T ∈ Γ is a continuous section by property (B4) of
continuous fields of C∗-algebras. Similarly, (b(at,k)∗xt)t∈T ∈ Γ is a continuous section.
Therefore, (at,k)t∈T η C for every k and A η C holds.

In the case of a single self-adjoint operator condition (C), i.e., that Λ defines a
generating family, is related to the γ-topology.

Proposition 4.2.4. Consider the case n = 1 and write at ..= at,1. If A = (at)t∈T is
a self-adjoint field, then condition (C) holds if and only if the spectra of the at are
γ-continuous.

Proof. Condition (C) – that the continuous field of C∗-algebras C exists – is equivalent
to the map

T ∋ t 7→ ∥ϕ(At)∥ ∈ [0, ∞)

being continuous for every ϕ ∈ C0(C). The condition that the spectrum map

Σ : T → C(R), t 7→ σ(at),

is γ-continuous is equivalent to

ΣR : T → K(C), t 7→ σ(R−i(at)),

being Hausdorff continuous (cf. Section 3.7). Here, R−i is the resolvent function
for −i.

Let Σ be γ-continuous. Let ϕ ∈ C0(C). Define a function ψ via

ψ(x) ..=

ϕ
( 1
x

− i
)

for x ∈ C\{0},

0 for x = 0.



4 Unbounded affiliated elements 52

ψ is continuous. Also, ψ ◦R−i = ϕ. Then, the norm map

T ∋ t
ΣR7−−→ σ(R−i(at))

ψ7−→ ψ(σ(R−i(at))) = σ(ψ ◦R−i(at)) = σ(ϕ(at))
sup ◦|̃·|7−−−−→ sup |σ(ϕ(at))| = ∥ϕ(at)∥ ∈ [0, ∞)

is continuous as a composition of continuous maps and (C) holds.

Assume (C). R−i ∈ C0(R). Therefore, the section (R−i(at))t∈T ∈ Γ is continuous.
Then, ΣR is Hausdorff continuous by Theorem 2.4.8. So, Σ is γ-continuous.

For n > 1 the resolvent functions are not C0-functions on Rn. Therefore, for families
of operators, which also may not be self-adjoint, a different topology on C(Cn) needs
to be considered.

Definition 4.2.5. Let T be a topological space. For t ∈ T let Kt ∈ C(Cn). We call
the map T ∋ t 7→ Kt ∈ C(Cn) ζ-continuous if T ∋ t 7→ ϕ(Kt) ∈ K(C) is Hausdorff
continuous for every ϕ ∈ C0(Cn).

Remark 4.2.6. The ζ-continuity corresponds to a topology (the ζ-topology) on C(Cn).
It can be defined as the coarsest topology on C(Cn) that makes the maps

ϕ : C(Cn) → K(C), K 7→ ϕ(K),

continuous for every ϕ ∈ C0(Cn). On K(C) the Hausdorff topology is considered.
The ζ-topology is coarser than the Vietoris topology by Lemma 3.4.7.

Lemma 4.2.7. (C) holds if and only if Σ is ζ-continuous.

Proof. ‘⇐’: The map

T ∋ t 7→ ϕ(σj(At))
Lemma 3.3.7= σ(ϕ(At)) ∈ K(C)

is Hausdorff continuous for every C0-function ϕ by assumption. Hence,

T ∋ t 7→ ∥ϕ(At)∥ = sup |σ(ϕ(At))| ∈ [0, ∞)

is continuous as argued before and (C) holds.

‘⇒’: For every ϕ ∈ C0(Cn) we have the continuous section (ϕ(At))t∈T ∈ Γ. Then,

T ∋ t 7→ σ(ϕ(At)) = ϕ(σj(At)) ∈ K(C)

is Hausdorff continuous by Theorem 2.4.8. Hence, Σ is ζ-continuous.
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Corollary 4.2.8. On C(R) the ζ-topology coincides with the γ-topology.

Finally, we consider an approach where the continuous field of C∗-algebras is given
independently of the operators At.

Definition 4.2.9 (Example 10.1.4 in [5]). Let T be a topological space. Let A be a
C∗-algebra. Let Γ = C(T , A) be the algebra of continuous functions from T to A.
Then, ((A)t∈T , Γ) is a continuous field of C∗-algebras. It is called the constant field
over T generated by A.

Lemma 4.2.10. Let T be a topological space. Let A be a C∗-algebra. Let C ..=
((A)t∈T , Γ) be the constant field generated by A. Let a = (at)t∈T ⊆ L(A). Then,
a η C if and only if

(i) for every t ∈ T : at η A,

(ii) the map T ∋ t 7→ b(at) ∈ M(A) is continuous in the strict topology.

Proof. ‘⇒’: (i) holds by definition of a η C. For every x ∈ Γ: b(a)x, b(a)∗x ∈ Γ by
assumption. That is, for every x ∈ Γ = C(T , A) the maps

T ∋ t 7→ b(at)xt ∈ A, T ∋ t 7→ b(at)∗xt ∈ A

are continuous. Let (tλ)λ∈Λ ⊆ T be a net converging to t ∈ T . Let x ∈ A. Interpret
x as the constant function (t 7→ x) ∈ Γ. Then,

lim
λ∈Λ

∥b(atλ)x− b(at)x∥ = lim
λ∈Λ

∥b(atλ)∗x− b(at)∗x∥ = 0.

That is, the net (b(atλ))λ∈Λ converges to b(at) in the strict topology on M(A). Thus,
T ∋ t 7→ b(at) ∈ M(A) is continuous in the strict topology and (ii) holds.

‘⇐’: For every t ∈ T : at η A by (i). Let x = (xt)t∈T ∈ Γ. Let (tλ)λ∈Λ ⊆ T be a net
converging to t ∈ T . Then,

∥b(atλ)xtλ − b(at)xt∥ ≤ ∥b(atλ)∥︸ ︷︷ ︸
≤ 1

∥xtλ − xt∥︸ ︷︷ ︸
λ∈Λ−−→0

+ ∥b(atλ)xt − b(at)xt∥︸ ︷︷ ︸
λ∈Λ−−→0

λ∈Λ−−→ 0

because x is continuous and b(a) is continuous in the strict topology by (ii). Similarly,
∥b(atλ)∗xtλ − b(at)∗xt∥

λ∈Λ−−→ 0. Therefore, b(a)x, b(a)∗x ∈ Γ and a η C.

For the remainder of this section let T be a topological space and let H be a Hilbert
space. Let n ∈ N. For t ∈ T let At = (at,k)nk=1 ⊆ L(H) be such that A = (At)t∈T is a
normal strongly commuting field of families of unbounded operators on the constant
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field of Hilbert spaces (H)t∈T . For k ∈ {1, . . . , n} we write ak = (at,k)t∈T . We denote
Σ : T → C(Cn), t 7→ σj(At), as before.

Definition 4.2.11. Let B ⊆ B(H) be a C∗-subalgebra. Let C = ((B)t∈T , Γ) be the
constant field generated by B. If A η C, then we say the field A is B-continuous.

Remark 4.2.12. We would like to relate the continuity of Σ to this notion. As seen
in Example 4.1.13 every closed operator a on a Hilbert space H is affiliated with the
compact operators K(H). We consider the C∗-algebras K(H) and B(H) as candidates
for B in the definition above.

Proposition 4.2.13. The K(H)-continuity of A does not imply the continuity of Σ
with respect to any topology on C(Cn) where limits are unique, in particular in no
Hausdorff topology.

Proof. Assume H to be separable. Consider an orthonormal Hilbert basis (ek)k∈N

for H. For N ∈ N define the orthogonal projections

pN ..=
N∑
k=1

⟨ek, · ⟩ ek ∈ K(H) ⊆ B(H) = M(K(H)).

Set T = 1
N ∪ {0} ⊆ R. Consider the normal field of unbounded operators a 1

N
..= pN

for N ∈ N and a0 ..= I. For every t ∈ T : at η K(H). The bounded transforms
are given by b(at) = at/

√
2. This can be seen using the functional calculus. Let

x ∈ K(H). Let (tλ)λ∈Λ ⊆ T be a net converging to t ∈ T . Due to the topology of T
there are two cases:
(i) The net (tλ)λ∈Λ is eventually constant: There is a λ0 ∈ Λ: ∀λ ≥ λ0 : tλ = t. Then,
for λ ≥ λ0 :

∥b(atλ)x− b(at)x∥ = 0 λ∈Λ−−→ 0.

(ii) (tλ)λ∈Λ converges to t = 0. Then, for every λ ∈ Λ there is an N(λ) ∈ N with
tλ ≤ 1/N(λ) and N(λ) λ∈Λ−−→ ∞. Thus,

∥b(atλ)x− b(a0)x∥ ≤ 1√
2
∥∥pN(λ)x− x

∥∥ λ∈Λ−−→ 0

because the sequence (pN)N∈N is an approximate unit for K(H).
In both cases ∥b(atλ)∗xtλ − b(at)∗xt∥

λ∈Λ−−→ 0 follows because the operators b(at) are
self-adjoint. Therefore, (b(at))t∈T is continuous in the strict topology on B(H) =
M(K(H)). Then, the field A = (at)t∈T is affiliated with the constant field generated
by K(H) by Lemma 4.2.10. So, A is K(H)-continuous.
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Here, the map Σ is given by

T 7→ C(C),

 1
N

7→ σ(pN) = {0, 1}, N ∈ N

0 7→ σ(I) = {1}.

Let τ be any topology on C(C). Assume Σ is continuous in this topology. Then,

{0, 1} = σ
(
a 1

N

)
N→∞−−−→ σ(a0) = {1}

in τ . However, the assertion {0, 1} N→∞−−−→ {0, 1} always holds. Hence, limits in τ

cannot be unique.

Remark 4.2.14. We conclude that K(H)-continuity is too weak to be useful. In
particular, just requiring the existence of any continuous field of C∗-algebras such
that A is affiliated with it is not a useful notion for the continuity of the spectra.

Proposition 4.2.15. The B(H)-continuity of A implies the β-continuity of Σ.

Proof. The C∗-algebra B(H) is unital. Hence, M(B(H)) = B(H) by Lemma 4.1.4.
Then, the strict topology on B(H) is the operator norm topology by Lemma 4.1.6.
Therefore, for every k ∈ {1, . . . , n} the maps

Bk : T → B(H), t 7→ b(at,k) = bk(At),

are continuous in the norm topology on B(H) by 4.2.10. Let p ∈ Pn be a polynomial
in n variables and their complex conjugates. Then, the map

T ∋ t 7→ ∥p(b(At))∥ = ∥p(b1(At), . . . , bn(At))∥ ∈ [0, ∞)

is continuous because adjoining, scaling, products, sums and the norm map are
continuous on B(H). Therefore, the spectrum of the bounded transforms of At is
continuous in the Hausdorff distance by Theorem 2.5.1. This is equivalent to the
β-continuity of Σ by Proposition 3.6.6.

Remark 4.2.16. The proof shows that B(H)-continuity implies the continuity of the
bounded transforms in norm. We prove that this is too strong to be captured by the
spectra.

Proposition 4.2.17. In general there is no topology on C(Cn) such that the continuity
of Σ in this topology implies the B(H)-continuity of A.
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Proof. Assume H to be separable. Let (ek)k∈N0 ⊆ H be an orthonormal Hilbert
basis. For t ∈ R denote the largest integer smaller than or equal to t by ⌊t⌋. For
t ∈ [0, ∞) =.. T define the operators

at ..= ⟨e⌊t⌋, · ⟩ e⌊t⌋ ∈ B(H).

Then, (at)t∈T is a normal bounded field of operators on the constant field of Hilbert
spaces (H)t∈T . The operators at are orthogonal projections and not equal to the
identity or the zero operator. Hence, σ(at) = {0, 1} for all t ∈ T . In particular
the map Σ for this case is constant. Therefore, it is continuous independent of the
topology on C(C). However, the map

T ∋ t 7→ b(at) = 1√
2
at ∈ B(H)

is not continuous in the operator norm topology on B(H):

∀k ∈ N :
∥∥∥b(a1− 1

k

)
− b(a1)

∥∥∥ = 1√
2

∥⟨e0, · ⟩ e0 − ⟨e1, · ⟩ e1∥ = 1√
2

̸= 0.

Thus, A = (at)t∈T cannot be B(H)-continuous.

Remark 4.2.18. We conclude that B(H)-continuity is too strong to be useful.
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