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Exercise 1. (This exercise practices working with two basic definitions (C∗-algebras, representations) and
computing operator norms.)

1. Show that the vector space A := L∞(R,dx) of essentially bounded functions with the essen-
tial supremum norm (with respect to Lebesgue measure) is a C∗-algebra under the pointwise
multiplication and the involution defined by f∗(x) := f(x).

2. Let H := L2(R, dx) be the Hilbert space of square-integrable functions. Define the multiplication
operator Mf ∈ B(H) for f ∈ A by (Mf (g))(x) := f(x)g(x) for g ∈ H and x ∈ R. Show that

A→ B(H), f 7→Mf ,

is an isometric ∗-homomorphism.

Exercise 2. (This exercise practices working with two definition of a C∗-algebra by giving an equivalent
variation.) Let A be a Banach algebra with a ∗-algebra structure that satisfies ‖x‖2 ≤ ‖x∗x‖ for all
x ∈ A. Show that ‖x∗‖ = ‖x‖ and conclude that A is a C∗-algebra.

Exercise 3. (This exercise introduces an important result about general C∗-algebras in an easier special
case. It refreshes your memory about a relevant concept from linear algebra.) Let A ∈Mn×n(C). Use the
C∗-identity to show that ‖A‖2 = ρ(A∗A), where ρ is the spectral radius of a matrix.

Exercise 4. (Several important classes of C∗-algebra elements such as projections, unitaries, (partial)
isometries may be defined both geometrically or by algebraic conditions. The projections studied in this
exercise are fundamental objects for K-theory, which will be the topic of a course in the next semester.)

1. Let p ∈ B(H) be a bounded operator on a Hilbert space H. Show that p is a projection in the
C∗-algebra B(H) – that is, p∗ = p and p2 = p – if and only if p is the orthogonal projection onto
a closed subspace of H.

2. If A is an arbitrary C∗-algebra, show that p is a projection if and only if p∗p = p.


