Exercise sheet 4.

Name

 $\frac{\text{Exercise} \ 1 \ 2 \ 3 \ 4 \ \Sigma}{\text{Points}}$

Exercise group (tutor's name)

Deadline: Monday, 6.5.2024, 10:00.

Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. (This exercise describes the hereditary C*-subalgebras in the commutative case. In particular, it follows that any hereditary C*-subalgebra in a commutative C*-algebra is a (twosided) ideal.) Show that every hereditary subalgebra of $C_0(X)$ has the form

$$\mathcal{J}_E = \{ f \in C_0(X) : f_{|E} = 0 \}$$

for a closed subset E of X. (*Hint*: Use the Stone–Weierstrass Theorem.)

Exercise 2. (This result about approximate units in a commutative C*-algebra was already mentioned during the class. It may be useful for some students to work out the details of this.) Let X be a locally compact space. Show that a net $(e_{\lambda})_{\lambda \in I}$ is an approximate unit in $C_0(X)$ if and only if

- 1. $0 \leq e_{\lambda}(x) \leq 1$ for all $x \in X$ and $\lambda \in I$;
- 2. $e_{\lambda}(x) \leq e_{\mu}(x)$ for all $x \in X$ and $\lambda, \mu \in I$ with $\lambda \leq \mu$;
- 3. $\lim_{\lambda \in I} e_{\lambda}(x) = 1$ for all $x \in X$ uniformly on compact subsets. Recall that a net of functions (f_{λ}) on a locally compact space X converges to a function f uniformly on compact subsets if for every compact subset $K \subseteq X$, $f_{\lambda|_{K}}$ converges uniformly to $f_{|_{K}}$.

Exercise 3. (Next we describe a particularly nice approximate unit for the compact operators on a Hilbert space, consisting of projections. Such approximate units only exist in special cases, compare the commutative case, where you cannot expect this.) Let \mathcal{H} be a Hilbert space and let $(e_i)_{i \in I}$ an orthonormal basis. For $S \subseteq I$, let p_S be the orthogonal projection onto $\operatorname{span}\{e_i : i \in S\}$. The set $\mathcal{F}(I)$ consisting of finite subsets of I ordered by inclusion is directed. Show that $(p_S)_{S \in \mathcal{F}(I)}$ is an approximate unit in $\mathbb{K}(\mathcal{H})$, the compact operators on a Hilbert space \mathcal{H} .

Exercise 4. (In general, a quotient seminorm is only a limit, there need not be a representative where the minimum is reached. This exercise shows that for quotient C*-algebras, the quotient norm is indeed the norm of a carefully chosen representative.) Show that if J is an ideal of a C*-algebra A and $a \in A$, then there is an element $j \in J$ such that ||a - j|| = dist(a, J). (Hint: You may let $a - j = af(a^*a)$ for a carefully chosen continuous function f on $[0, \infty[.)$