Exercise sheet 5.

Name

 $\frac{\text{Exercise } \mathbf{1} \quad \mathbf{2} \quad \mathbf{3} \quad \mathbf{4} \quad \boldsymbol{\Sigma}}{\text{Points}}$

Exercise group (tutor's name)

Deadline: Monday, 13.5.2024, 10:00.

Please use this page as a cover sheet and enter your name and tutor in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. (This exercise describes the hereditary C*-subalgebra generated by a single positive element. This is often useful to produce C*-hereditary subalgebras.) Let a be a positive element of a C*-algebra A. Show that $\overline{aAa} \subseteq A$ is the hereditary C*-subalgebra of A generated by a. (Hint: Use approximate units to show that a^2 lies in \overline{aAa}).

Exercise 2. (This exercise is about a counterexample, showing that the multiplication is not jointly continuous in the strong operator topology.) Show that multiplication is not jointly continuous in the strong operator topology. (Hint: let *I* consist of ordered pairs (M, x), where *M* is a finite-dimensional subspace and *x* is a unit vector orthogonal to *M*, ordered by the relation (M, x) < (N, y) if *M* and *x* are both contained in *N*. Let *e* be a fixed unit vector. For two vectors $a, b \in \mathcal{H}$, define the rank-one operator ab^* by $ab^*(c) \coloneqq a \cdot \langle b | c \rangle$. Set $A_{(M,x)} = (\dim M)ex^*$ and $B_{(M,x)} = (\dim M)^{-1}xe^*$.

Exercise 3. (This exercise is about a simple commutative example, where the statement of the Double Commutant Theorem is easy to check and where weak convergence has another nice interpretation.) Let μ be a probability measure – that is, $\mu(X) = 1$ – on a locally compact space X. Represent the C*-algebra $A = L^{\infty}(X, \mu)$ of essentially bounded functions in $\mathbb{B}(L^2(X, \mu))$ by pointwise multiplication operators.

- 1. Show that A' = A and deduce A'' = A.
- 2. Show that a net $(f_{\lambda})_{\lambda \in I}$ in A converges weakly to f if and only if $\int_X f_{\lambda}g d\mu(x) \to \int_X fg d\mu(x)$ for all $g \in L^1(X, \mu)$.
- 3. Deduce that A is weakly closed. You may use that the dual space of $L^1(X,\mu)$ is $L^{\infty}(X,\mu)$.

Exercise 4. (This exercise is about the important case when the commutant of a C*-subalgebra of $\mathbb{B}(\mathcal{H})$ is $\mathbb{C} \cdot 1$. We have already related this condition to irreducible representations.)

- 1. Let A be a C*-subalgebra of $\mathbb{B}(\mathcal{H})$ containing the identity operator 1. Show that A is weakly dense in $\mathbb{B}(\mathcal{H})$ if and only if $A' = \mathbb{C} \cdot 1$.
- 2. Let S be the unilateral shift operator defined by

$$S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N}), \qquad \delta_n \mapsto \delta_{n+1},$$

for all $n \in \mathbb{N}$. Show that the commutant of $\{S, S^*\}$ is $\mathbb{C} \cdot 1$