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Abstract

The (reduced) C*-algebra of the tangent groupoid of R™ is a continuous field of C*-
algebras over the interval [0, 00), such that the fibre at zero is isomorphic to Cy(R™ x R™)
and all the other fibres are isomorphic to K(L?(R™)). This is called a deformation of the
noncommutative C*-algebra K(L?(R™)) to the commutative algebra Co(R™ x R™).
There is scaling action of R% on the reduced C*-algebra of the tangent groupoid. We
prove that this scaling action is continuously square-integrable in the sense of Meyer [1]
when restricted to an ideal. The generalised fixed point algebra for this action is an
extension of Co(R"™ x S"~1) by K(L?(R"™)). It is isomorphic to the so-called pseudodif-
ferential extension as described by Higson and Roe.
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Introduction

In the first chapter we present Meyers theory of square-integrable group actions on C*-
algebras[l]. For a G-C*-algebra A with action (ag)seq, we define the G-equivariant
Hilbert A-module L?(G, A) and square-integrable functions G — A. An element of A is
called square-integrable if the function g — ag4(a)*b is square-integrable for all b € B. If
the square-integrable elements are dense in A, then A is called square-integrable.

To define the generalised fixed point algebra one needs further requirements invoking the
crossed product of the action. We represent the twisted convolution algebra C.(G, A)
on L?(G, A) to obtain the reduced crossed product C;*(G, A).

We define continuously square-integrable group actions. For these actios a C;(G, A)-
module is constructed and the generalised fixed point algebra is defined, such that this
Hilbert module gets a bimodule over it and the crossed product.

The second chapter deals with Locally Compact Hausdorff Groupoids and their reduced
C*-algebras . We discuss the tangent bundle TR™ and the pair groupoid PR"™ and
prove that C(TR") = Cy(R") and C*(PR"™) = K(L?(R")). We introduce the tangent
groupoid of R™ with its fibre epimorphisms.

In the third chapter We define the scaling action on the reduced C*-algebra of the tangent
groupoid and prove that it is continuously square integrable on an appropriate ideal. The
generalised fixed point algebra is an extension of Co(R™ x S*~1) by K(L?(R")).

In the fourth chapter we consider the C*-algebra P generated by pseudodifferential
operators on Rn of the form D,y := M, o Flo My o F, where M, is a multiplication
operator by a Co-function, F is the Fourir transform and M} is a multiplication operator
by a function on R™ that extends to the compactification of R" to a closed n-dimensional
ball. We prove that that P is isomorphic to the generalised fixed point algebra. We
obtain a short exact sequence K(L?(R")) ¢ P 5 Co(R" x S*~!) with

m(Dys)(x,€) = g(w) - lim f(A).

Finally we prove that P is the C*-algebra mentioned in Higson and Roe’s Analytic
K-homology [2, pages 46-48] generated by pseudodifferential operators.

1 Square-Integrable Group Actions and The Generalized
Fixed Point Algebra

1.1 The Hilbert Module L?*(G, A) and Square-Integrable Functions

We define and characterise the G-equivariant Hilbert module L?(G,A) for a locally
compact group G acting continuously on a C*-algebra A. This Hilbert A-module should
generalise the Hilbert space L?(G) of square integrable functions G' — C with the action
by left translation. We will define L?(G, A) as a completion of the space C.(G, A) of
compactly supported functions G — A with respect to the A-valued inner product

i fo) = /G £1(9)" Falg) du(g)-



We show that there is a natural isomorphism between L?*(G, A) and L*(G) ® A.

The Hilbert Module L?(X, A)

Let us first review some facts about Hilbert modules and fix the notation.

Let & be a Hilbert A-module. We write B(E) for the C*-algebra of adjointable operators
on . For £, n € &, we define a so-called rank-one operator 6¢, € B(E) by 0¢,(¢) = &-(n, ().
The closed linear span of all rank-one operators is denoted by K(&). It is a closed two-
sided ideal in B(€) and its elements are called compact operators on £.

Let B be another C*-algebra and F a Hilbert module over B. Given a *-homomorphism
f: B — B(€) we form the A-module F ®@p €. It is the completion of the algebraic
B-balanced tensor product F ®a§g & with respect to the A-module structure defined by
M®E&)-a=n® (£ a) and the A-valued the inner product

(m @ &1,m2 @ &2) = (&1, f (M1, m2)) §2) -

If B = C we use the canonical map C — B(&). In this case, we omit the subscript and
just write F ® &.

Let X be a locally compact Hausdorff space and p a locally finite, strictly positive Borel
measure on X. Before we turn to the G-equivariant case, we define the Hilbert A-module
L?(X, A) and show that it is isomorphic to L?(X) ® A.

If feC(X,A)and a € A, then we define (f-a)(z) = f(z)-a and obtain f-a € C.(X, A).
Obviously, C.(X, A) is a right A- module with this multiplication. For f1, fo € C.(X, A)
the map = +— fi(x)* fa(x) is continuous and compactly supported. Hence the pairing

i fa) = /X f1(@) fa(e) dulz) € A

is well-defined by Proposition 5.7.

Proposition 1.1 (C.(X, A) is a pre-Hilbert A-module).
The above multiplication and inner product turn C.(X, A) into a pre-Hilbert A-module.

Proof. For f € C.(X,A) we have f(z)*f(z) > 0 for all x € X. Therefore, 5.13(iii)

yields (f, f) >0
If (f,f) = 0 we have f(z)*f(z) = 0 for all x € X by 5.13(iv). Hence f = 0 by the
C*-condition. If f1, fo € C.(X, A) and a € A, then

(f1, f2)" (/ fi(x)" fa(x) dp(z > 5131)/ (fi(z du(x)

:/ng(x)*fl(x) dp(x) = (f2, f1)
and

(s fo - a) /f1 “fo(w)a du(a ’”/ f1(2) fo(@) dulz) - a= (i, fo)a. O



Definition 1.2 (The Hilbert A-module L?(X, A)).
The Hilbert A-module L?(X, A) is the completion of the pre-Hilbert A-module C.(X, A).

We view C.(X,A) as a dense submodule of L?(X, A) and write || - ||2 for the norm
induced by the inner product. For A = C, we obtain the Hilbert space L?(X) of
square-integrable functions on X. Considering A as a Hilbert A-module with right
multiplication and (a1, a2) = ataz, we obtain the Hilbert A-Module L?(X) ® A, where
the inner product simplifies to

(fi ® a1, fa ® az) = (a1, (f1, f2)a2) = (f1, f2)a]as.

Hence we have || f @ al| = ||(f, f)a*a||”> = || f||2 - ||a|| by the C*-condition. If f € C.(X)
and a € A , then we write (f.a)(x) = f(x) - a for and get f.a € C.(X,A) C L*(X, A).
The next proposition shows that the elements of the form f.a span a dense subspace of
L*(X, A).

Proposition 1.3. The subspace
M :=span{f.a: f € Co(X),a € A}
is dense in L?(X, A).

Proof. Let f € C.(X,A) and € > 0. Let U C X be open with compact closure and
supp(f) € U. We have 0 < u(U) < 11 (U) < oo. By Lemma 5.5, there is h € M such
that

supp(h) CU and |[[f(z) —h(x)| < for all x € X.

uw(U)

We estimate

If = hlI3 = H/ (f(x) = h(x))"(f(2) — h(z)) dp(z)

/ Iz 12 du(a) = /U 1£(@) - h@)IP du(z)

< u(U) - =2,

Hence ||f — h|l2 < e. This shows C.(X,A) C M. So that L?(X,A) = C.(X,A) C M.
Therefore, M is dense in L?(X, A). O

Theorem 1.4. There is a unique isomorphism of Hilbert A-modules
O: LA(X)® A S LA(X,A) with®(f®a) = f.a forfeCl(X) anda € A.

Proof. Let f € L?(X) and a € A. There is a sequence (hy,)nen C Ce(X, A) converging
to f in the L?-norm. We obtain

n—oo

If ®a—hn@al =|f = hall2 - [lal] — 0.



Hence ®(f ® a) = f.a for all f € C.(X,A) determines ® uniquely on all elementary
tensors of L2(X) ® A. Since these span a dense subspace of L?(X) ® A, this shows, that
® is unique, if it exits.

The bilinear map

Co(X) x A— L*(X,A) given by (f,a) — f.a.
gives rise to a linear map
$1: Co(X) @8 A — [2(X,A) with f ®a s f.a.
Ifbe A, then
¢1(f @a)-b=(fa) b= f(ab) = ¢1(f © ab).

Therefore, ¢ is an A-module homomorphism. The range of ¢, is dense by Proposi-
tion 1.3.
There is also an A-module homomorphism

$2: Co(X) @8 A - L2(X)® A given by f@a — f ®a.
The range of ¢9 is dense by the approximation argument above. If f1, fo € C.(X) and
ai,as € A, then

(91(f1 ® a1), ¢1(f2 ® a2)) = (f1.a1, fa.a2) = /X (fi(z)ar)" (fa(z)az) dp(z)
2 [ R du) - die.

= (fi®a1, fo ® az)
= (¢2(f1 ® a1), P2(f2 ® a2)).

Therefore, ¢; and ¢9 induce the same inner product on the A-module C,(X) @8 A.
Both, ¢; and ¢2, extend to unitaries ®; and ®5 from the completion of C.(X) @8 A in
this inner product to L?(X, A) and Ly(X) ® A respectively. Therefore, ®: = &1 0 &,
is a unitary L*(X) ® A — L3(X, A). If f € Ce(X) and a € A, then

O(f ©a) = ®(Da(f ®a)) = B1(f ®a) = fua. =

Let &€ be a right Hilbert A-module and I < A an ideal with quotient map 7: A — A/I.
By Cohen’s factorisation theorem we have

E-I:=span{-i:{e&ieclt={¢-i:{ec&iecl}.

E - I is a submodule of £. Using an approximate identity of I Cohen’s factorisation
theorem yields, that £ € £ - I if and only if (§,&) € I.

Let q: £ — &£/(€ - I) be the quotient map. &£/(E - I) becomes a right Hilbert A/I-
module, when equipped with the well-defined multiplication ¢(&) - m(a) := ¢(£ - a) and
inner product (q(§),q(n)) := m((£,n)). The bilinear map

Ex(AJI) = EJ(E-I) given by (£,b) — q(&) - b



induces an isomorphism ¢: &€ ®4 (A/I) — E/(E - I). Here A acts on A/I by

a - w(b) := w(ab). Therefore we get a *-isomorphism
B(E/(E-T)) = BE®RsA/I) by T ¢ LoTod.
Moreover we define
Q1:B(E) = B(E/(€-1)) by Qu(T)(q(§)) = ¢(T€) forall T €.

We have T(E -I) = T(E)-1 C E-1 for all T € E. Therefore, Q; is a well defined
x-homomorphism. Finally we define a *-homomorphism

Then we obtain a commutative diagram

B(E) \
Q/ Q2
B(E/(E-1)) > B(E ®a (A/T))

We have
ker(Q1) = ker(Q2) ={T € &:T(E) CE-1}.

Let (uj)jes be an approximate identity of I and T" € ker(Q1). Then

T(&) =lmT () -uj =lmT (¢ -u;) forall { €f.
J j

Therefore, |[T]| = |[Te.q].

Lemma 1.5 (Short Exact Sequences lift to L?(X,-)).

Let I < A be an ideal. The inclusion map C.(X,I) — C.(X, A) extends to an isometry
i: L2(X, 1) — L*(X,A). The image of i is L>(X, A) - I.

The pointwise quotient map C.(X,A) — C.(X,A/I) extends to a surjective map
7 L2(X, A) — L*(X, A/I).

There is an isomorphism L*(X,A/I) = L*(X,A)/(L*(X,A) - I) of right Hilbert A/I-
modules, such that the following diagram commutes

L2(X, A)

S T

L*(X,A/I) = y L2(X,A)/(L2(X, A) - I)

Proof. The inclusion map C.(X, 1) — C.(X, A) is isometric. Therefore, its extension to
L*(X,I) — L*(X,A) is isometric. Let f € C.(X,I). Then (i(f),i(f)) = (f,f) € L.
Therefore i(f) € L*(X, A) - I.



Since L?(X, A) - I is closed, this implies i(L?(X,I)) C L?(X, A) - I.
If feC.(X,A)and i €I, then f i€ C.(X,I), hence

Co(X,A)-ICi(Cu(X, 1)) Ci(L*(X,1)).

Since i(L?(X, I)) is closed, this implies that i(L?(X, I)) = L?(X, A) - I
The commutative diagram

/\

» A®a (A/T)
gives rise to a a commutative diagram
X)®
LX(X) @ (A/T) = X)® A®a (A/D).

By Theorem 1.4 this yields the diagram

L2(X,A)T) —— L*(X,A) ®a (A/]) ——— L*(X,A)/(L*(X,A) I

Square-Integrable Functions

To define square-integrable group actions, we need a notion of square-integrable func-
tions. We want to identify a square integrable function with an element of L?(X, A). As
above, let X be a locally compact space and p a locally finite and strictly positive Borel
measure on X. This time, we also need to require that p is inner regular on open sets.

That is, for U C X open, we have

w(U) =sup{u(K): K is compact with K C U} .

We write T(X) for the set of all h € C.(X) with 0 < h < 1. For f: X — A continuous
and h € T(X), we obtain h- f € C(X,A). If hy,hy € T(X) with hy < hg, then

0 < h3(z)f(x)*f(z) — hi(z)f(z)* f(x) for all z € X.
Therefore,

/ B2 (@) f(2) f(x) dulx) < / W) f(@)" f(x) d(z)
X X



by 5.13(iii) and hence

Hm¢ﬁ=“@ﬁwvwvwwmm — e 12
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For h € T(X) we define a linear map C.(X,A) — C.(X,A) by f — h- f. Since
0 < f(x)*f(x) — R?(z)f(x)* f(z) for all z € X, we obtain | f - k2 < ||f|l2 by the same
computation as above. Therefore, the map extends to a self-adjoint operator

My: L (X, A) — L*(X, A) with | My (f)l2 < [|f]l2-

Lemma 1.6 (The Multiplication Operators Mp,).
Let (Xi);er € T(X) be a net with x; — 1 uniformly on compact subsets.
For f € L*(X, A), we have
lim My, f = J.
K3

Proof. Let f € La(X,A) and € > 0. There is h € C.(X,A), such that h # 0 and
<

|f —hlly < §. There is 49 € I, such that [1 — x;(z)| 3”2”2 for all =z € supp(h) and
i > ig. We obtain

1/2
1h = h-xilly = ‘/X h(z)*h(z) (1= xi(2))* dp(z) /
5.13(iii) ¢ 1/2
<o /Xh(x)*h(x) an(a)| ==
Therefore,
If = My, flly < If = hlly + |h = Myl + [|My;h — My, £,
S2[f = hlly + b = Myhll, <e
for all ¢ > 7g. This shows lim; M, , f = f. O

The set 7(X) is a directed set with the pointwise order. max{hy,ha} € T(X) is
an upper bound for hi,hy € T(X). For K C X compact, there is h € T(X) with
h(K) = {1}. Hence the net (h),c7(y) converges to 1 uniformly on compact subsets.
This shows that there always exists a net as in Lemma 1.6.

The following corollary motivates the definition of a square-integrable function.

Corollary 1.7. For f € Lo(X, A), we have

1fll2 = sup {[[Mnfll2: h € T(X)}.
Proof. It h € T(X), then | My, f|l2 < || f||2. Therefore,

sup {|[Mpfll2: € T(X)} < |[[fll2-

Pick a net (x;);c; in 7(X) with x; — 1 uniformly on compact subsets.
Then Lemma 1.6 implies lim; | M,, f||, = || f||2, proving the assertion. O

10



Definition 1.8 (Square-Integrable Function).
A continuous function f: X — A is called square-integrable if there is M € [0, 00), such
that

|h- flla < M for all h € T(X).

We write S?(X, A) for the set of all continuous and square-integrable functions.

Proposition 1.9 (The Normed Space S?(X, A)).
S?(X, A) is a vector space and

[ llfllse = sup{[lh- flla < M for all h € T(X)}
defines a norm on S*(X, A).

Proof. Let fi1, fo € S?(X, A) and A1, A2 € C. By definition, there are Mj, My € [0, 00),
such that
||h . f1||2 < M; and ||h . f2||2 < M, for all h € T(X)

Put M = |)\1|M1 + |)\2|M2 Then M € [O, OO) and
(hAfL 4 Af2) ll2 < (Al fullz + (A2l foll2 < M.

Therefore, A\1f1 + Aafo € S?(X, A), so S?(X, A) is a subspace of the vector space of
continuous functions X — A.

It is easy to see that the map f +— ||h- f|]2 for h € T(X) is a seminorm on S?(X, A).
Therefore, f +— ||f]|s2 is a seminorm. It remains to check that it is positive definite.
Let f € S?(X, A) with ||f||lsz = 0. For x € X there is h € T(X) with h(x) = 1. Since
|h - fll =0, we obtain f(x) = (h- f)(z) = 0. Hence f = 0. O

Lemma 1.10. Let f: X — A be continuous. If [y If(2)|)? du(z) < oo then f is
square-integrable.

Proof. If h € T(X), then

151y = | [y stame) duto "

2([ 1@ sl we du<m>)1/2

< ([ 1w du<x>)l/2-

Therefore, f is square-integrable. O

The next lemma states the converse of Lemma 1.10 for A = C. So in this case
continuous and square-integrable functions are exactly continuous L?-functions.

Lemma 1.11 (Square-Integrable Functions to C).
A continuous function f: X — C is square-integrable in the sense of Definition 1.8 if
and only if [y IfI? du < oo.

11



Proof. The reverse implication is Lemma 1.10, so we suppose f: X — C continuous and
square-integrable in the sense of Definition 1.8.
Let M € [0, 00), such that

|h- flla < M for all h € T(X).

For a Borel set B C X put vg(B) = [5|f|* du. Then vy is a Borel measure on X. Let
K C X be compact. Since there is h € T(X) with h(K) = {1}, we obtain

- / P dp< / FPh2 du= |- fll2 < M.
K X

Let § > 0 and put Us = {z € X: |f(z)]* > 6}. Supposing p(Us) = oo, we would find
K C Us compact with v(K) > %. Then we would get

(1) = [ 11 = [ 6 du=ptr) 5> 1

contradicting v¢(K) < 1.
Therefore, y(Us) < oo and there is L, C Us compact with u(Us \ L,) < %. Then we
obtain

(U(;\U ) U5\L)<%foralln€N.

Hence p (Us \ ;2 Ly,) = 0. This implies v¢ (Us \ U,—; Ln) = 0, and we obtain

o0

vy (Us) = vy <U Ln> = lim vp(L1U...ULn) < M,

n=1
since Ly U...U L, is compact for all n € N.
Put U = {z € X: |f(2)]> > 0}. For § = L, we observe U1 CU . and U = |, U1
Therefore,
I/f(U) lim I/f <U1) SM

n—oo

Finally, we get
J AP d= [ 1P dp= vy 0) < 0 < o, 0
X U
Ezxample 1.12. The converse of Lemma 1.10 is false in general. Consider N with the
discrete topology and counting measure p. It is easy to see that p is locally finite,

strictly positive and inner regular on open sets.
Let V be a Banach space and f € C.(N, V), then

¢(Zf(n)> :Z¢(f(n)):/¢of dp  forall ¢ € V',
n=1 n=1 N

Therefore, [y f du =37, f(n) by Proposition 5.7.
Let A = B(¢*(N)) and (ey),cy, the standard orthonormal basis of 3(N). Consider

12



the projections (P,),cy in A, where P,(z) = (2,en)e,. Let f: N — A be given by

n— ﬁpn. Then

1
—P,
N

oo
=1

/N 1F@)2 du(n) =S

But given h € T(N), we have

9]
n=1

1
n=1

Puh?(k) < Po=idpy) -

n=1

S|

Hence
1/2 1/2

<1.

b fl = H |10 503570

=1
Z %Pkg(k)
k=1

Therefore, f is square-integrable.

Next we characterise square-integrability with nets. This characterisation is used as
a definition in [3, page 22| and [1, page 175]. From now on, let (x;);c; € T(X) with
x; — 1 uniformly on compact subsets.

Lemma 1.13 (Square-Integrability with Nets).
Let f: X — A be a continuous function. The following statements are equivalent:

(i) f is square-integrable.
(ii) The net (x; - f);e; converges in L*(X, A).

Proof.

(i)=(ii) Since L*(X, A) is complete, it suffices to show that (x; - f),c; is a Cauchy net.
Let € > 0.

Claim: There is a compact K C X such that ||h - fll2 < § for all h € T(X) with
supp(h) € X\ K.

Proof of the claim: Since f is assumed to be square-integrable,
M =sup{||h- fll2: he T(X)} < 0.

There is k € T(X) such that ||k f||3 > M? — %. We define K = supp(k). Let h € T(X)
with supp(h) € X \ K. Then h+ k € T(X) and

(h-fokf) = /X h(a)k(x) f(2)* f(z) dp(x) = 0.

Therefore, [[h- f + k- fI3 = [k JII3 + Ik - fII3. Hence

1/2 62 /2 £
I flls = (1F - (h+ BB = £ - k[3) <<M2—(M2—)> €.

13



Now let V' C X be open and L C X compact with K C V C L. Choose h; € T(X) such
that hy(L) = {1} and put hy = 1 — hy. There is iy such that [1 — x;(x)| < 57 for all
x € supp(hy1) and i > ig. For i,j > ig, we obtain
€
hi(z) - Ixi(2) = x5(@)] < ha(z) - (xa2) = 1 + 1 = x5(2)]) < (@) - 577

As above this implies

&
1Pt (xi = x5) - fll2 = 1halxi — x5 - fll2 < R Rt~ fll2 <

If x € V, then hy(x) = 1. Therefore, ho(z) = 0. Hence

| ™

supp (ha|x: — x;|) € supp(h2) C X \V C X\ K.

Ixi — xj| € Ce(X) implies ho|x; — x;| € T(X). The above claim implies
5

Ih2 (xi — x5) - fll2 = [lhalxi — x51 - fll2 < 5

All in all, we get

| O = x5)- fll2 = [ (he + h2) (xi = x5)- fll2 < [ha (i — x5) - Fll2+1lhe (xi — x5) - fll2 <e.

Hence (x; - f);cr is a Cauchy net.

(ii)=(i) Assume lim; (x; - f) = F € L*(X,A) and let h € T(X). For i € I, we have
xih < xi. Hence ||xih - fll2 < ||xi - f|l2 as above. Since h- f € C.(X, A) we obtain

1.6 . . .
1~ fll2 = [Himx; - (2 )]z = lim [xih - fll2 < limlx; - fllz = [1F]]2.

Therefore, f is square-integrable. O

The next lemma and its corollary prove that the limit of 1.13(ii) is independent of the
chosen net (x;)ier-

Lemma 1.14. Let f € S?>(X, A) and F = lim; (x; - f). Then
MpF =h- f for all h € T(X).
Proof. Let h € T(X). Since M}, is bounded,

MyF = M, <1im(><i-f)> =lim My, (x; - f) =limh (x; - /) =limx; (h- f) L h-f. O

As a corollary of 1.14 we show that the limit in 1.13(ii) is independent of the chosen
net (x;)ier:

Corollary 1.15. Let f € S*(X, A) and (k;)jes C T(X) be another net with k; — 1
uniformly on compact subsets. Then

li%rn (xif) = lijm (Kif) .
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Proof. Let Fy = lim; (x;f) and F5 = lim; (k; f). If h € T(X) ,then M} Fy = h-f = MpF»
by Lemma 1.14. Therefore, by Corollary 1.7,

| F1 — Fall2 = sup {|| M}, (F1 — Fy) [l2: h € T(X)} = 0.
Hence I} = F5. L]

The next corollary allows us to view S?(X, A) as a subspace of L*(X, A).

Corollary 1.16 (The Embedding of S?(X, A) into L?(X, A)).
The linear map t: S?(X, A) — L*(X, A) given by f + lim; (x; - f) is isometric.

Proof. Let f € S?(X,A). Corollary 1.7 and Lemma 1.14 imply
[e(F)ll2 = sup {| M ((f)) ll2: b € T(X)}
=sup{[|h- fll2: h € T(X)} = [|flls2- O
If f € S%(X, A) we want to compute inner products of ¢(f) and elements of C.(G, A).
Lemma 1.17. If f1 € S*(X, A) and f € C.(X.A), then

W) ) = [ ila) la) duta).
Proof. Since the statement is trivial for fo = 0, we assume fy # 0.
Let € > 0. Since the net (- f1)ne7(x) converges to ¢(f1), there is hg € T(X), such that

Ie(f1) — R~ filla < ﬁ for all h € T(X) with h > ho.
2112

Choose hy € T(X) with hy(supp(f2)) = {1}. Put h = min{hg + h1,1}. Then h € T(X)
with h > hg. We estimate

W(fo). o) /X (@) fole) dp(z)

W) ) = [ W) ila) ala) dta)
= I{e(f1) = h- f1, f2)l
< |le(f1) = R+ full2 - I f2ll2 < e. O

Corollary 1.18. Let I <1 A be an ideal of A.
If f € S2(X, A) with f(x) €I for all x € X, then o(f) € L*(G,A) - I

Proof. Let fy € Co(X, A). Then Lemma 1.17 yields

(W), f2) = /X @) fole) dp(z)

Since [ is an ideal, we gave f(x)*fo(x) € I for all 2 € I. Therefore, we can view the
integral as an I-valued integral. Since the inclusion I C A is continuous, the integral
viewed as an A-valued gives the same element. Hence (¢(f), fo) € I for all fy € C.(X, A).
Since C.(X, A) is dense in L?(X, A), we obtain (c(f), fo) € I for all fo € L*(X, A). In
particular (¢t(f),¢(f)) € I. So that «(f) € L*(G, A) - I. O
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Another proof of the above Corollary is by approximating f with C.(X, I)-functions.
The following lemma allows us to identify pointwise limits with L2-limits, if both exist.

Lemma 1.19 (Pointwise Convergence).

Let (fu)nen € Co(X, A) be uniform bounded a sequence. That is, there is a constant
C > 0 with || fulloo < C for alln € N. Assume g € Cy(X, A) and f € L*(X, A), such
that ||f — full2 = 0 for n — oo and f,(x) — g(x) for n — oo for all x € X.

Then g € S%(X, A) with 1(g) = f.

Proof. Since (fn)nen is convergent in || - ||2, there is M > 0 with ||fu]l2 < M. Let
h € T(X). Since || fn]lcoc < C for all n € N Lemma 5.10 applies and we obtain

weak

fim [ e @) 0 f0@) dute) = [ @) o) gla) dute) = - gl
where

= [Ih- fall3 < I £all3 < M2

H/hn (- f) (@) da()

The Hahn-Banach theorem implies ||h - g|l2 < M. Hence g € S?(X, A).
Let k € Co(X, A). Then

W@ ) = [ o@)hie) aute) ™2 T [ @) bo) duta) = im (k) = (£.),
Since C.(X, A) is dense in L?(X, A) this implies ¢(g) = f. O

Remark 1.20. Let A = B((*(N)), (Py),cy as in Example 1.12, X = [0,1] and p the
Lebesgue measure on X. Let (hy)nen be a sequence of continuous functions X — [0, 00),
n—oo

such that for all z € X the sequence (hy,(z)) is unbounded while ||h, || —— 0. Consider
the functions f, = hy.P,: X — A given by f,(z) = hy,(z)P,. For Ny < Ny we have

Na Na Na /2
n=Ni ||, n=N; k=N,
Ny Ny 2
=11 22 > (s )Py
n=N; k=N,
Ny /2
= D 1ali3Pa|| = oA [ l2-
n=N1
Hence )7, fn € L2(X, A).
But for x € X, we obtain
N
= Zhn(x)Pn = max_hy(z) Moo,
v 1<n<N
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Hence not even a subsequence of (Ziv—l fn) converges pointwise.
- NeN

In this sense, there is no general possibility to view an element f € Lo(X, A) as a function
from X to A.

The Hilbert G-A-Module L?(G, A)

The Hilbert space L?*(G) carries a natural action (\y)gec by left translation. We want
to endow L?(G, A) with a G-action in a way that it is compatible with the G-action on
A, so that the isomorphism of Theorem 1.4 gets G-equivariant.

If f € L*(G) and g,z € G, then (\y(f)) (z) = f (9 'x). Hence for f1, fo € L*(G), we
compute

D (f): Ag(2)) = /G Fr D) f2 (97 '2) dpu(e) = /G @) o) du(z) = (fu, fo),

using the translation invariance of the Haar measure. Since )\, is invertible, this shows
that A\, is unitary.

The next lemma proves the strong continuity of (A\g)scq. Hence Example 5.15(ii) yields
that L?(G) is Hilbert G-C-module.

Lemma 1.21 (Strong Continuity of the Left Translation Action).
The action (A\g)gec on L*(G) is strongly continuous.

Proof. Let 0 # f € C.(G) and € > 0. Let W be a compact neighbourhood of the identity
element 1 € G. We put K = Wsupp(f). Then supp(f) C K. Hence pu(K) > 0. Since
the multiplication map is continuous, K is compact. For z ¢ K and h € W, we have
h~'z ¢ supp(f), so that |f(z) — f (htz) | = 0.

Let € > 0. The essential step is to show that there is a neighbourhood U of 1 € GG, such
that for all h € U we have ||f — A\, (f)]2 < e.

Since f is continuous, every x € K has a neighbourhood U, such that

for every y € U,.

The open set U, ! is a neighbourhood of 1. Since the multiplication is continuous, there
is an open neighbourhood W, of 1 such that g1, g2 € W, implies g1go € 2U, L.

Since K is compact and W, !z is an open neighbourhood of # € K, we find
r1,...,T, € K such that Wm_llxl, . ..W;zlxn cover K.

Put U =Wn W;ll:rl N...N W;nlmn. Then U is a neighbourhood of 1.

Now let z € K and h € U. There is 1 < i < n, such that z € Wx_ilazi. We have
izl e Wy, and h € W,,. Hence zix th € ZL‘iU;l_l. Therefore, h ™'z = (:Uflh)fl e Uyg,.
Since Wy, C inx_il, we have x € W;ilxi C U, and we get

wW(K)

|f () = f(h™ )| < |f(x) = fla)] + | f(xi) — f(h™ )] <
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All in all, we obtain

I =l = ([ 1) - 16712 aut )>1/2<(M(K)M(€;)>1/2=5-

Finally, let go € G. Then goU is a neighbourhood of gy and for g € ¢g,U, we have
galg € U. Hence

Ago () = Ag(Nll2 = IIf = Agory(Hll2 <&

This shows that the map g + Ay(f) is continuous. Since C.(G) is dense in L*(G)
Lemma 5.16 yields the strong continuity of (Ag)geq- O

For g € G and f € C.(G, A) we define

Yo(f): G — Az ay (f (gflx)).

The map ~(f) is continuous. Since supp (75( f)) = gsupp(f) is compact, we obtain a
linear map

Yg: Ce(X, A) = Co(X, A), [ = 75(f)
We have
1/2

()l = ] 65 @ (5) @) auta)
~[ fa(raa s ) au

1/2
/G f(g'e) £ (g7'e) du(z)
1/2

1/2

du(z)| = [I1]2

Therefore, ¢ extends to a linear isometry 7y: L*(G,A) — L*(G, A).

Theorem 1.22. The collection (vg)gec is a Hilbert module action on L*(G,A). The
isomorphism ®: L*(G) ® A = L?(G, A) of Theorem 1.4 is G-equivariant and thus an
isomorphism of Hilbert G-A-modules.

Proof. We denote (Jy),ec for the G-action on L?*(G) @ A.
Let f € C.(G) and a € A. We have

(v9(f-a)) (2) = ag ((f-a) (g7 '2))
= f(gilx) ag( a)
= (Ag([f), ag(a)) (2)
= (2 (A\g(f) ® ag(a))) ()
= (2 (0g (f ®a))) (z)
( 0dg0P” (fa))(x),
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for all z € G. By linearity, the continuous functions v, and ® o §, o ®~! agree on the
subspace of L?(G, A) spanned by elements of the form f.a for f € C.(G) and a € A.
This subspace is dense by Proposition 1.3. Therefore, 74 = ® 0, o o1,

Because ® is an isomorphism of Hilbert A-modules, it is clear that (v4)4eq is a Hilbert
module action on L?(G, A).

We have 7,0 ® = ® 0 j,. Hence ® is G-equivariant and an isomorphism of Hilbert
G-A-modules. O

1.2 The Reduced Crossed Product

Let G be a unimodular! locally compact ? group and A be a G-C*-algebra with action
(og)gec. We want to define the reduced product C*-algebra C; (G, A) as a completion
of the twisted convolution algebra C.(G, A).

The Completion to C}: (G, A)

We want to represent C.(G, A) on L?(G, A) as G-equivariant adjointable operators. We
do this by defining representations of A and G' on L?(G, A) separately and integrate to
a representation of C.(G, A).

If g€ G and f € C.(G, A), then we define (64(f))(z) = f(zg).

Since supp(d,(f)) = supp(f)g~* is compact, we have d,4(f) € C.(G, A). It is easy to see
that §4: Ce(G, A) = C.(G, A) is linear. If fi, fo € C.(G, A), then

(500500 = [ Fla0) alag) ant) "2 (1, 1)

Therefore ||5,(f)|l2 = ||f|l2, hence &, extends uniquely to &,: L?(G, A) — L*(G, A). If
g,h € G, then 500, = dgp and 01 = idp2(g,4). Therefore, every d, is a unitary on
L*(G, A). We have

Og (N (@) = () (xg) = an(f(h™ 2g)) = an((6g(N)) (R 2)) = (y(84(f))) ().

Therefore, §: G — BY(L?*(G, A)), g — J, is an action on L?*(G, A) by G-equivariant

unitaries.

Now let a € A. We define (m,(f))(x) = az(a) - f(x).

Since (ag)geq is continuous and supp(me(f)) = supp(f) is compact, we obtain
7a(f) € Ce(G, A). Obviously m,: Co(G, A) — C.(G, A) is linear. We estimate

12 5. 13 (47)

Imalf ”2‘H [ 16 e are) aiw la*all”® - I ll2 = llal - £l

Therefore, 7, extends to m,: L?(G, A) — L*(G, A) with ||7.| < |lal|.
If fl’fQ € CC(G’A)’ then

(malf1): f2) = /G fi(@) ag(@) f2lg) dulg) = (froma (f2)).

'We only assume G to be modular, to simplify the formulas. Everything we do works for general locally
compact groups by adding modular functions in the correct places.(see [1])
2We always assume, that locally compact groups are Hausdorff.
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This implies 7, € B(L*(G, A)) with 7} = 7. If b € A, then

((ma 0o m)(f))(2) = agla) - ag(b) - f(z) = ag(ab) - f(x) = (Tap(f))(2).
If g € G, then

(M0 0 99) () () = aw(a)ag(f(g7'2)) = ag (ag-1.(a) flg™" 7)) = (7 © 7a) () (2).

Therefore, m: A — B¢ (L*(G, A)), a + m, is a *-homomorphism.
We compute

((dg © ma © 03) () () = azg(a)(dg-1(f))(29) = aug(a) f(z) = (Ta,(a)(f))(@)-

Hence 7 and 4 fulfil the covariance condition d40 g 0 6y = o (a)-

If f € C.(G,A), then we define (inv(f))(z) = f(z~!). Then inv(f) € C.(G, A). Hence
inv: C.(G,A) — C.(G,A) is well defined and linear. We have inv? = idey(q,a). I
f1, f2 € C.(G, A), then

(inv(f1),inv(f2)) = /G fi@ Y fole™) dulz) °= (f1, fo).

Therefore inv extends to a unitary L?(G, A) — L?(G, A). To define the integrated repre-
sentation C.(G, A) — B%(L?(G, A)) we need the following lemma concerning continuity.

Lemma 1.23. If f € C.(G, A) and h € L*(G, A), then the map G — L*(G, A) given by
g = (Tfg) ©64)(h) is continuous.

Proof. Let A = A as a C*-algebra and let G act trivially on A. The action (Vg)geq on
L?(G, A) is strongly continuous by 1.22.
If k € C.(G,A), then

((inv o 7, 0 inv) (k) () = (inv(k))(g~'2 ") = k(zg) = (34(k))(=)

Therefore, §;, = inv o 7, o inv. Hence the map g — d4(h) is continuous.

Since f € C.(G, A), there is M > 0, such that ||f(g)|| < M for all g € G. Let go € G and
€ > 0. Since the lemma is trivial for h = 0, we suppose h = 0. There is a neighbourhood
U of gg in G, such that

€ €
1f(9) — f(g0)ll < M and [|9g(h) — dge (h)[]2 < M forall z € U

If g € U, then
(7 1(g) © ) (h) = (g (ge) © 8go) (R)ll2 < || (g) (Gg(R) = Ggo ()2

+ (T tg) = Tr(90)) (990 (R)) |12
< M - [|5g(h) = dgo(R)ll2 + [1Rll2 - 1£(9) — flg0)ll <€

This shows that g + (7 © dg)(h) is continuous. O
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If f € C(G, A), we define py : L*(G,A) = L*(G, A) by h — [ (7 0 g)(h) du(g).
The integrand is continuous by Lemma 1.23 and compactly supported. Hence the integral
is well-defined by Proposition 5.7. If hy, hy € L*(G, A), then we have

(o5 (ha), ha) = ( /G (7100 © 60) (1) du(g), o)

5.8

2 /G<(7Tf(g)o5g)(h1),h2> du(g)
:/G<h1,(5g_1 o Ty(g)-)(h2)) du(g)
512 /G<h1,(5 O (g 1)-)(h2)) du(g)

= [ b1 gy 0 ) h2) o)
= <h17 Pr (h2)>
Therefore, py € BY(L?(G, A)) with py = py+. It g € G, then

pr (g () = /G (7 1o © 82) (g (1)) dpu() = /G (v © 1001 0 82)(9) dpz) 2 7 (pg(h)).

This shows that ps is G-equivariant. Therefore, the map p: C.(G, A) — BE(L?(G, A))

given by f — py is well-defined. Obviously p is linear. If fi, fo € C.(G, A), then we
obtain

T(fref2)(g) ©0g = T ( /G fi(@)oe(f2(x7g)) d,u(m)) o d,

5.8

- /C¥7rf1($) 00z O Mpy(1g) © Op-1g dpi(w).
If h € L*(G, A), this implies

Proxfs(h) = /G (T(f1x12)(g) © Og)(R) dp(g)

5.8
= /G (/G(Ffl(x) 00y 0T fy(p—1g) © Oz-14)(h) d,u,(gj)‘> du(g)
5.9

2 [ (rpayo60) ([ (et 082 0) o)) dte)

5.11

2l /G (71w © 82)(pra () dpa(z)
= (ps, o pg,)(h).

Hence p is a *-homomorphism.
We have

los(R)]l2 < /GII(Wf(g)O% )2 dp(g / 175l - IAll2 du(g) <[ flly - [17]l2-
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Therefore |lps]| < |17l
The next lemma gives a more concrete formula for p¢(h) with h € C.(G, A).

Lemma 1.24. If f.h € C.(G, A), then

(1)) = [ a(F@)hlgo) du).
G
Therefore, ps(h) € Ce(G, A).
Proof. If x € G, then (7, 0 0.)(h) € Ce(G, A) and
((Tf(2) © 02)(P)(9) = ag(f(2)) - (62(h))(9) = g (f(x))h(g2)-

The function (x,g9) — a4(f(x)) - h(gz) is continuous by Lemma 1.23 and compactly
supported. Therefore, k: G — A,g — [, o4(f(x)) - h(g9x) dp(z) is continuous and
compactly supported by Lemma 5.9. We compute

(pr(h), ha) 22 /G () © 62) (), ha) dpu(z)
-/ ( [ @sl0@) - blge))*hafe) dﬂ(Q)) e
2 / k(g)" o halg) dpu(g) = (k. ha)
G

for all hy € C.(G, A). This implies ps(h) = k. O
Corollary 1.25. The x-homomorphism p s injective.

Proof. Let f € C.(G,A), such that py = 0. Put h(z) = f(x)* for all x € G. Then
h € C.(G,A). Lemma 1.24 implies

0 = (ps(m))(1) = /G 1(9) - hlg) dplg) = /G h(g)*hlg) dulg) = (hh).
Therefore, h = 0. Hence f = 0. O

Definition 1.26 (The Reduced Crossed Product [1, page 173]).
The reduced crossed product C; (G, A) is the closure of p(C.(G, A)) with respect to the
operator norm on BE(L2(G, A)).

Remark 1.27. Many authors define the reduced product slightly different. We want to
show that the crossed product defined above is isomorphic to the usual one.

First we modify our representation p to simplify the formulas. If a € A, g € G, then we
define

/. . A .
T, =Invom,oinv  and d, = inv o dy o inv.

For h € C.(G, A) we get
(ma(h))(z) = oz (a)h(z) and (5y(h))(z) = h(g™"2).

a T
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If f € C.(G,A) and h € L?(G, A), then integration yields

() = | (%10 ) () du) = (inv o py 0 0v) 1)
Since p is an injective *-homomorphism, so is p/. Since inv is unitary, we have

1971l = llinv o py o inv|| = [|o].

Next we present the usual definition of the reduced crossed product. Let ¢: A — B(H) be
a non-degenerate faithful representation. We get a representation ®: A — B(L*(G,H))
and a strongly continuous group homomorphism \: G — U(L*(G,H)), where

(P(a)h)(z) = d(az " (a))h(x) and (Ag(h))(x) = h(g™'x) for h € Ce(G, H).

The covariant pair (®, \) integrates to a x-homomorphism
0: ClG.A) = BUA(G. ) where 05(0h) = [ (@(F(6)) 2 (1) dula).

In this situation the crossed product is defined as the closure of 6(C.(G,A)) in the
operator norm.
From the isomorphisms

LX(G,AQuHZLAG)@ A H = LA(G) @M = LG, H).

we obtain a isomorphism L : L*(G,A) ®4 H — L*(G,H). If f € C.(G,A) and
& € H, then (L(f ® &))(z) = ¢(f(x))§. Using the faithfulness of ¢ one can check
that ¥ : B(L?(G, A)) — B(L*(G,A)®@H), T ~ T®idy is an injective, hence isometric
*-homomorphism.

Let f € Cc(G, A). It is not hard to see that L o ¥(p;) = 6y o L. This implies

sl = 1pFll = 1L o T ()l = [l6]l-

Therefore the closure of 6(C.(G,A)) is isomorphic to the crossed product C}(G, A)
defined in 1.26.

Lemma 1.28 (C}(G, A) has an approximate identity of C.-functions).
There is a net (u;)ier € Co(G, A) with ||ui|l1 <1 and u) = u; for alli € I, such that

1Y — o py,|| — 0 and || — pu, o Y|| — 0 for all ¢p € CJ (G, A).

Proof. Let (u;)icr be a net as in Lemma 5.20.
For f € C.(G, A), we obtain

s — pg o pull = llof—feull < |If = f * willi — 0.

Likewise ||py — pu, © pf| — 0.
Since p(C.(G, A)) is dense in C}f (G, A) this implies the assertion for all ¢ € C*(G, A). O
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The following lemma allows us to identify continuous L'-functions with elements of

Cr(G,A).

Lemma 1.29. Let f: G — A be continuous, such that [, f(x)|| du(z) < oo. For
h e C.(G, A), we define

(os1)(0) = [ ay(Fle)biao) duta).
Then prh € Cy(X, A). The image of the map pr: C.(G,A) — Cp(X, A) is contained in
f f

S*(X,A) and 1o py extends to an operator L*(G, A) — L*(G, A).
We have Lo py € CF (G, A).

Proof. With similar arguments as in the proof of Lemma 1.11 we obtain a sequence
wp: G — [0, 1] of continuous, compactly supported functions, such that

/waﬂmwmm—f/wmnwm for n — oo,
G G

If h € C.(G, A), then Lemma 1.24 yields

mwmwwwmﬂmwmzHéu—%u»@aﬂwwa>wu>

< [ (= wale)) - F@I - Ihle dute) =0,
G

Hence |p¢(h) = pu,.f(h)||oc — 0 for n — oco. Therefore, p¢(h) is continuous.

We have [[(prh)(9)l < [ If(@)I] du(@) - [|hlloc. Therefore, ps: Ce(G, A) — Cy(G, A)

is well defined. The sequence (p, f)nen € Cr(G, A) is a Cauchy sequence. Let T be

the limit. Then T' € C#(G, A). If h € C.(G, A), then ||p,, ;(h) — T(h)]2 == 0 and

(Pwnth) () = (pr(h))(z) for all € G. Hence Lemma 1.19 yields pf(h) € S*(G, A) with

t(ps(h)) = T(h). Therefore copy extends to L(G, A) and we have topy =T € C}(G, A).
U

G and A multiply C}(G, A)

The next two lemmas shows that G and A multiply C} (G, A).

Lemma 1.30 (A multiplies C}(G, A)).
Let a € A and ip € C}(G,A). Then mg oy € CX(G, A).
If (a;)ier is an approzimate identity of A, then ||mq, o9 — | — 0.

Proof. Let f € C.(G, A). For h € L*(G, A), we obtain

(ma 0 py)(h) = /G (Ta-p(g) © 6g)(h) dp(g) = pa.s-

Hence m, o py € Cr(G,A). Since p(C.(G,A)) is dense in C) (G, A), this implies
a0 € CHG, A) for all ¢ € CX (G, A).
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Now let (a;)ier is an approximate identity of A and £ > 0. Since f(G) = f(supp(f)) is
compact, a standard compactness argument shows that there is ig € I, such that

1 f(g) —aif(9)ll <

3

" forallgeg.
uupp(f)) g€

Therefore,
I —ai-fl —/ 1£(9) —wi- F@)l dulg) < <.
G

Hence
lpg = ma; © psll = llpg = pa-gll < If = ai- fll — 0.
Using the density of p(C.(G, A)) in C; (G, A) the assertion follows by an §-argument. [

Lemma 1.31 (G multiplies C} (G, A)).
Let g € G and ¢ € CF (G, A). Then §,01 € Cr(G, A).
The function G — C} (G, A) given by g +— 0401 is continuous.

)

Proof. Let f € C.(G,A). For h € L*(G, A), we have

(g0 0)0) =y [ (702 0)(1) (o))

5.8

= /6:(59 O Tf(z) © (5; 0 0gz)(h) dp(x)

- /G (T (e © Bya) () dp(z)

5.11
- /a(”agu(g—lx)) 0 0z)(h) dp(x) = pyy(p)(h).

Hence 64 0 py € Cy(G,A). Since p(C.(G,A)) is dense in C)(G,A), this implies
dgop € CHG, A) for all Y € Ci (G, A).

With similar arguments as in the proof of Lemma 1.21 we see, that the function
G — C.(G, A) given by g — 74(f) is continuous with respect to || - [|1. Since p is contin-
uous, this implies that the function G — C;(G, A), g — p(74(f)) = 640 py is continuous.
The continuity for an arbitrary element ¢ € C;(G, A) follows by an £-argument. O

Exactness of the Reduced Crossed Product

Let I < A be a G-invariant ideal of A. We view C.(G,I) as a subset of C.(G, A).
Lemma 1.5 allows us to view L?(X,I) = L*(X, A) - I as a submodule of L?(G, A).
Ifaeland f e C.(G,A), then

(ma(f))(x) = ag(a) - f(x) e I forall z € G.
Hence 7,(f) € La(G, A) - I. Since C.(G, A) is dense in L?(G, A) it follows
7"-a(L2(C¥7 A)) - L2(Ga A) 1.
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We consider the representations
p: Cu(G, A) = B(L*(G, A)) and p!: C.(G,T) = BE(L*(G, I)).

Let f € Ce(G,I) and h € L*(G, A) then (ms(,) 0 6,)(h) € L*(G,A) - I for all z € G.
Hence p?(h) € L*(G,A) - I. This shows p}“(LQ(G A)) C L*(G, A) - I. Therefore the
considerations in the first chapter yield ||p?|] = ||p |L2(G,A) 7l = ||pf||

Therefore C*(G, I) is isomorphic to the closure of p(C.(G,T)) € C#(G, A). Thus we
may identify C*(G, I) with the closure of p*(C.(G, I)).

The formula for the convolution shows, that C.(G, I) is a an ideal in C.(G.A). Therefore,
CH(G,I) is a closed ideal in C}(G, A).

If a € I and f € C.(G,A), then m, op? = pa.f € pa(Ce(G,I)) C CY(G,I). Hence
a0 € Ci(G,I) for all ¥ € Cr(G, A). Let (u;)jes be an approximate unit of I and
¢ € CHG, A). Using Lemma 1.30 and its proof we see, that ¢ € C*(G,I) if and only
if |4 — 7y, o 9|| = 0. Since K := {T € BY(L*(G, A)): T(L*(G, A)) € L*(G,A) - I} is
closed in ]B%G(LQ(G A)), we obtain C}(G,I) C C¥(G,A)N K.

Now consider A/l and the quotient map m: A — A/I. Since [ is G-invariant, A/I is a
G-C*-algebra and 7 is G-equivariant. Let q: C.(G, A) — C.(G, A/I) be the pointwise
quotient map. By Lemma 1.5 and the considerations above it, we obtain a commutative
diagram of C*-algebras

BE(L2(G, A)) » B(L?(G, A/I))

\Ql} /

B(L*(G, A)/(L*(G, A) - 1))

Let 74/1 be the action of A/T on L?*(G, A/I) and p*/! the representation of C,(G, A/I)
on B(L*(G, A/I)). Since

w0 (a() = ag(a(@) - 4 (@) = a(x () = Qra)(a(f))

the s-homomorphism Q is compatible with the representations p# and pA/!. That is we
obtain a commutative diagram

C.(G, A) 1 C.(G, A/T)
‘/pA ‘/pA/I
BC(L2(G, A)) @ s B(L2(G, A/I))

\621 /
B(L*(G, A)/(L*(G, A) - 1))

From

Q(p*(Cu(@, A))) € pM(4(C(G, A))) € CF (G, A/T),
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we deduce Q(C; (G, A)) C Cx(G,A/I).

Let f € C.(G) and a € A, then ¢(f.a) = f.(7(a)), therefore Q(C; (G, A)) contains all
elements of the form p?ir I(a). The elements of this form generate C)(G, A/I). There-
fore, Q(C;(G,A)) = CF(G,A/I). Hence Q|cs(g,4) is a surjective *-homomorphism
Cr(G,A) — C}(G,A/I). K is the kernel of the map @Q; of the diagram above. There-
fore the kernel of Q[cx (g 4) is Cr (G, A) N K.

All in all we obtain a sequence

0—CHG,I)— C:HG,A) = C:HG,A/I) — 0.

This sequence is in general not exact in the middle. If we fix the group G and obtain
an exact sequence for all G-C*-algebras A and G-invariant ideals, then the group G is
called ezxact.

Our considerations show that the sequence is exact if and only if

pA(Ce(G, 1)) = {¢ € C}(G, A): Y(L*(G, 4)) € L*(G, A) - I}.

1.3 Square-Integrable Group Actions

Let G be a unimodular locally compact group and A be a G-C*-algebra with action
(0g)gec. We view A as a Hilbert G-A-module.

The C*-algebra A acts on itself by left multiplication. This action yields an embedding
A — B(A). M(A) = B(A) is called the multiplier algebra of A. It carries the strict
topology, where a net (7;);e; € M(A) converges to T' € M(A), if and only if

Ti(a) — T(a) and T;(a) — T*(z) for alla € A.

In this case, we write 7' = limj 7T;.

Let B be a C*-algebra. A x-homomorphism f: A — B is called nondegenerate if
f(A) - B = B. A nondegenerate x-homomorphism A — B extends uniquely to a
strictly continuous *-homomorphism f: M(A) — M(B). If T € M(A) and a € A,
then f(F)f(a) = f(Fa). If g € G, then the *-automorphism a, extends to M(A), by
T — agoT oa, 1. We obtain an action of G on M(A) as in Section 5.3. The fixed
points of this action are exactly the G-equivariant adjointable operators (or multipliers)
A — A. We write MY (A) :=BY(A).

Let a,b € A. We define the coefficient function cqp: G — A by © +— ay(a)*b. Moreover
we define two linear maps

Aui C(G,A) 5 A by frs /G au(a) f(x) du(z).

and
Iy: A= Cy(G,A) by br— cep.

We collect some properties of Ag:

Proposition 1.32 (Properties of A,).
Let a € A.
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(i) Aq is G-equivariant.

(ii) If g € G, then Ay (a) = Aa 0 6g-1.

)

)
(iii) Ifbe A, then Agp = Ay o mp.
(iv) If T € MY(A), then Ap@y=ToA,
)

(v) If Ag =0, then a = 0.
Proof. (i)

This shows, that A, is G-equivariant.

(i)

(i)
Aw(f) = /G au(ab) f(z) dpie
- / a(a)(my())() duz
G
= (Aa © 7rb)(f)-
(iv)
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(v) Assume A, = 0. Choose h € T(G), with h(1) = 1. Define f(z) = agz(a*)h(z).
Then f € C.(G,A). We have

0=Aq(f) = /Gam(aa*)h(a:) dp(x).
Since o, (aa*)h(z) > 0 for all z € G, we obtain
aa® = ai(aa*)h(1) =0

by Lemma 5.13(iv). Hence the C*-condition yields a = 0.
O

Definition 1.33 (Square-Integrable Elements[3, page 222]).
An element a € A is called square-integrable if the function cg is square-integrable for
all b e A.

Theorem 1.34 (Characterisation of Square-Integrability).
An element a € A is square-integrable if and only if Ay extends to a G-equivariant
adjointable operator L?(G, A) — A.

Proof.
"=" If a € A is square-integrable, then the image of I', is contained in (G, A). Using
the canonical embedding ¢: S?(G, A) — L*(G, A), we obtain a linear map

I/ :=10T,: A— L*G,A).

As a first step, we show that I/, is bounded.
If h € T(G), then we define Tj,: A — L?*(G,A) by b+~ h - cq. Then T}, is linear. Let
b € A. We estimate

1/2

1T (B2 = H [ H@rasta duw)| < ol o] - [l

Since h € C¢(G), we have ||hl|2 < co. Hence T}, is bounded.
Since cgqp, is square integrable, there is My > 0, such that

ITh(D)||2 = ||h - caplla < My for all h € T(G).

The uniform boundedness principal implies, that there is a constant C' > 0, such that
|Th|| < C for all h € T(G). Using Corollary 1.16 we conclude

TGOz = llcaplls2e,a) = sup{lITh(b)ll2: 1 € T(G)} < Cllb]l.

Therefore I", is bounded.
Let f € C.(G,A) and b € A. We calculate

Aa(f)"b = /G F@) au(a)” du(a)p ™2 /G F@) ea(@) du@) 2T (£TL0). (1)
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This implies

1A (I = [Aa(f) Bl = IF Ta(Aa(HN < FIAITEN - [Aa(AI.

Therefore, ||Aq|| < ||T|l. Hence A, extends to a G-equivariant bounded linear operator
L?(G,A) — A. Since C.(G,A) is dense in L?*(G, A). Equation (1) shows that A, is
adjointable with A} =T

"< Assume A, extends to an adjointable operator L*(G,A) — A. Let b € A. If
h e T(G) and f € C.(G, A), then

{f, Mh(A*(b))> = < n(f); ALb)
Aa(Mp(f))* -0

/ F(a)" b)) )
= ([, h - cap)-
Since C.(G, A) is dense in L?(G, A), this implies h - c,p = My (A%(b)). Therefore,
17+ capllz = [MA(Ag(0))]l2 < [AG(B)]l2 for all h € T(G).
Hence ¢,y is square-integrable for all b € A. That is, a is square-integrable. ]

Remark 1.35. In the above proof, we showed that if a € A is square-integrable, then
Ay =10T,.

The next computation motivates the definition of the generalised fixed point algebra.

Lemma 1.36. Let (x;i);c; € T(X) be a net with x; — 1 uniformly on compact subsets.
If a,b € A are square integrable elements, then

Ago Ay = liin/ Xi(x)ag (ab®) du(z).
¢ G
Proof. If © € I, then we define
T, = / Xi(z)az(ab®) du(x) € A.
G

We have
. 5.13(i) .
Ty 2 /G xi(z)az(ba®) du(z)

Let d € A. Then L
Ay(b) = (toTp)(d) = v(cpa) = lign(xz‘ “ Cpd)-
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Hence

(Ao Ap)(d) = h?ﬂ Aa(Xi - cba)

— i [ vitg)as(o) - o) auto))

)

= lim ( /G Xi(g) o (ab®) du(ﬂf)-d)

]

= lim(T; - d)

By changing the roles of a and b we obtain
(Aao AD)* = Ayo A} = (T - d).

This shows that left multiplication with (7;);cr converges strictly to Ag o Aj. O

Let A be the subset of square-integrable elements of A. Since a — ¢y is anti-linear,
Ag; is a linear subspace of A.

Proposition 1.37. A,; is a G-invariant right ideal of A. We have MG (A)o Ay C Ag.

Proof. Let a € Ag; and b € A. Then Ay, = A, o mp by Proposition 1.32(iii). By Theo-

rem 1.34 A, extends to an adjointable operator L?(G, A) — A. Since m, € B (L?(G, A)),

this implies, that Ay, extends to an adjointable operator L?(G,A) — A. Therefore,

ab € Ag by Theorem 1.34. This proves, that Ag; is a right ideal.

We use the same argument to prove that Ag; is G-invariant and that M%(A)oA,; C As;..
O

Definition 1.38 (Square-Integrable G-C*-algebra).
A is called square-integrable if Ag; is dense in A.

For a € Ay, we define ||al|si = ||a|| + ||Aa]|- It is easy to see, that || - ||s; defines a norm
on Asi-

Proposition 1.39. A, is complete with respect to || - ||si-
Let a € Ag;. We have the following estimations:

(i) If b€ A, then ||a-b|ls < |lallsi - ||b]]-

(ii) If g € G, then [lag(a)l|si = [lals:-
(iii) If '€ ME(A), then ||T(a)]lsi < ||T1| - [|a]s:-

Proof. Let (an)nen be a Cauchy sequence in A with respect to || - ||s;. Since ||| < || - ||si,
(an)nen is a norm Cauchy-sequence in A. Since A is complete, there is a € A, such that
|lan, — al| = 0 for n — oo.

Likewise [[Aq, — Ag,, |l < |lan — amllsi- So that (A4, )nen is a Cauchy sequence in
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B(L?(G, A), A). Hence there is A € B(L?(G, A), A), such that A, — A in the oper-
ator norm. For f € C.(G, A), we have

[Aa, (f) = Aa () S/G\Ian—all @) dule) = llan —all - [Lfl == 0.

Therefore, Ay(f) = limy, 00 Ag, (f) = A(f). Hence A, extends to an adjointable opera-
tor L?(G, A) — A with A, = A. Theorem 1.34 implies a € A;. Since

”Aan - Aa” = HAan - AH — 0 for n — oo,

we obtain ||a, — al|s; — 0 for n — oco. This shows that Ag; is complete. The estimations
follow from Proposition 1.32 by elementary computations. O

Lemma 1.40. Let a € Ag;. If AN, € C(G, A), then the function G — A, g — ag4(a)
is continuous with respect to || - ||s;.

Proof. Let g € G and € > 0. By Lemma 1.31 the function g — d40(A};A,) is continuous.
Therefore, there is a neighbourhood U;j of g in G, such that

1
65 0 (AiAG) — 0z 0 (AEAL)| < §g2. for all z € U.

If x € U, then
1.32(ii)
1Ay (@) = Mas@ P =" I[Ag 0 (85-1 — 6,-1)]|
= H((Sg - ‘53:)A2Aa(5g*1 - 53:*1)”
1
< 25, — BN < 32
Since G — A, g — «g4(a) is continuous with respect to || - ||, there is a neighbourhood

Us C G of g, such that

llag(a) — ag(a)| < % for all x € Us.
If £ € Uy N Uy, then we obtain
leg(a) = ax(a)llsi = llag(a) — az(a)l| + [[Aay(a) = Aas(@ll <& O

The Right Module Structure over C.(G, A)

In the following we turn A into a right module over the convolution algebra Cc(G, A).
Let f € C.(G, A). We define f(z) = a(f(z71)). Then f € C.(G, A). If a € A, then we
define

x f 1= arla- :13_1 xr) = v.
axf: /G L @) du(z) = Aa(f)
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Since f +— f and a — A, are linear the map (a, f) — a * f is bilinear.
If h € C.(G, A), then

Bars(W) = [ 0y ([ astese™) anta)) -hta) duto

5.9

2 [ ([ astastasta) b duto)) dute)
—/GAozx(af(:cl))(h) du(z)

:/(Aamf(x_l)o&x_l)(h) ()
G

5.12
= (Aaopf)(h).
Therefore, Aysp = Ag o py. If f1, fo € C.(G, A), then this implies

Aa*(fl*fg) = Aa O Pfixfy = Aa OpPf CPf = Aa*f1 O pPf = A(a*fl)*f2-

By Proposition 1.32(v) a — A, is injective. Hence ax (f1 * fa) = (a* f1)* fo. This shows
that A is a right module over C.(G, A). If F € M%(A), then

v v

Fa) « f = Ap@)(f) = (F o Ad)(f) = Flax f).

If a € Ay, then Ay s = Aopy extends to an adjointable operator L*(G, A) — A therefore
ax* f € Ag by Theorem 1.34.

The following lemma collects three norm estimates for this module structure.

Lemma 1.41 (Norm Estimations for C.(G, A) module structure).

Let f € C.(G, A).

(i) Ifa € A, then |lax fI| < llall - [|f]lx.

(il) If a € A, then |lax fllsi < llallsi - [l and ax fllsi < [1Aall - (IFll2 + lo5])-
Proof.

From the definition of a * f, we obtain

lax fI| < /GH%(a-f(w_l))H dp(z) < flall - [[f]lx
If a € A, then
lla* fllsi = lla* fll + [ Aassll
= [lax* fll + [[Aa o oy
= lla[l - | f1lx + 1 Aall - I £]12
= llallsi - [ f]l1-

v

Using a x f = Ay(f), we obtain
lax fllsi = [Aa(HI + [1Aa © prll < Al - (1Fll2 + Nl 1)-
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Lemma 1.42. AxC.(G, A) is dense in A.

Proof. Let a € A. There is a u € A, with [ju|| <1 and [lau — u| < 5.

Since (ay)gec is continuous, there is a compact neighbourhood U of 1 in G, such that

loaz(a) —al| < § for all z € U. Let h: G — [0,00) be a continuous function with

Joh dp =1 and supp(h) C U. Define f(z) = h(z™!) - ap(u). Then f € Co(G, A) with

f = h.u. We estimate
lax f—all = [[Aa(h.u) —al

= | [ Ma)owau—a) du(o)]

< /G h(z) - (| (aw(a)u — aul) + flau — af)) du(z)

a/hdu:a O
G

Corollary 1.43. Let (u;)icr be an approximate identity as in Lemma 5.20. Then
la —ax*ui]| — 0  for all a € A.

Proof. Let a € A and € > 0. By the previous lemma, there is b € A and f € C.(G, A),
such that [ja —b* f|| < £.

There is ig, such that

for all 7 > 1.

1f = *ul| <

W M

If i > iy, we estimate

la—axuil] < lla—bsx fll +[bx f=bx (f xw)ll + [[(bx f) % ui — axui

1.41(31) ¢
< gl = Frudlln +l1bx f = afllluills <e.

Continuously Square-Integrable Subsets and the Generalized Fixed Point
Algebra

We want to extend the module structure over C.(G, A) to a Hilbert module structure
over the reduced crossed product C}(G,A). To get an inner product with values in
Cy (G, A), we define relatively continuous subsets.

Definition 1.44 (Relatively Continuous Subset and Complete Subspaces).
Let R C Ag; be a subset.

(i) R is called relatively continuous if

Aoy e CHG,A) forallabeR.
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(ii) R is called complete if R is a linear subspace of As;, closed with respect to || - |5
and R * C.(G,A) CR.

Definition 1.45 (Continuously Square-Integrable G-C*-algebra).
A continuously square-integrable G-C*-algebra (A, R) is a G-C*-algebra A together with
a dense, complete and relatively continuous subspace R.

Let R be a relatively continuous and complete subspace of A. We define £ as the
closure of % = {A,: a € R} C BY(L?(G, A), A) in the operator norm.

Proposition 1.46 (Ex is a right Hilbert C}(G, A)-module).

Let &,n € &r and € CHG,A). Then Eotp € E and £ on € CH(G, A).

Er becomes a right Hilbert C(G, A)-module, when equipped with the right module struc-
ture £ - := € o ¢p and the C(G, A)-valued inner product (£,n) = * on.

Proof. There are sequences (fn)nen C Ce(G, A) and (an)nen € R, such that py, — ¢
and A,, — ¢ in the operator norms. Since R is complete Ay, 0 ps, = Ag, 5 € ES for all
n € N. Therefore

fotp = lim Ag, opy, € ER.

To prove, that £* on € C¥ (G, A), let (by)nen be a sequence, such that A, — 7. Since
R is relatively continuous A} oAy, € Cf(G, A) for all n € N. Therefore,

Eon= li_>rn A oMy, € Cr (G, A).

Hence the module structure is well-defined. The conditions (£,7n - 1) = ({,7n) o ¢ and
(&, n)* = (n,&) are obviously satisfied.
Also (£,£) =& o0& >0 for all £ € Ex. Since

€]l = [|€% 0 €] = ||[(€, )]~

the norm induced by the inner product equals the operator norm.
This shows, that Ex is a right Hilbert C)(G, A)-module. O]

Definition 1.47 (The Generalised Fixed Point Algebra).
Let R C Ag; be a relatively continuous and complete subspace of A. The generalised fixed
point algebra Fixg is defined to be the norm-closed linear span of {A,0A;: a,b € R} in

ME(A).
Proposition 1.48 (Fixg is a C*-algebra).
Fixg is a C*-subalgebra of M (A). Therefore, Fixgp is a C*-algebra.

Proof. Let ai,a2,b1,b; € R. Since R is relatively continuous Ay o Ag, € CHG,A).
Therefore, there is a sequence (fn)nen C Cc(G, A), such that p, — Aj o Ag,. We
obtain

(Agy 0 A ) o (A, 0 AG) = nlingo Aaysp, o Ay, € Fixg .

Obviously Fixp* = Fixg and Fixg is closed by definition. Therefore Fixg is a C*-
subalgebra of M%(A). O
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Proposition 1.49 (Ex is a Hilbert Fixg-C; (G, A)-bimodule).

Let §,me &r and F € Fixg. Then Fo& € Eg and £ on* € Fixg .

Er becomes a Hilbert Fixg-C(G, A)-bimodule, when equipped with right Hilbert module
structure from above and the left module structure defined by F - £ := F o & and the
Fixg -valued inner product (({,n)) := £ o n*.

Proof. Let a,b,c € R. Then
(AgoAp)oAc=Ag0(AfoA,) € ERoCH(G,A) CEx.

Since £x° is dense in Er, this implies (A4 o A) - € € Eg for all £ € Eg. Therefore
Fixg -Er CER.

Similarly A, o Aj € Fixg by definition and hence { o n* € Fixg for all {,n € &x.
Similar arguments as in the proof of Proposition 1.46 show, that £r is a left Hilbert
Fixr-module. Since the module structures are defined by composition of maps the
conditions (F-&) -y =F-(£-4) and ((§,7n)) -0 =& - (n,0) for F € Fixg,y € C}(G, A)
and &,7,0 € Eg are obviously satisfied. O

Remark 1.50. The bimodule & is full on the left by definition of Fixg . Therefore Fixg
is Morita-Rieffel equivalent to the ideal (Er,Er) of Ci (G, A).

Lemma 1.51 (£x detects elements of R).
Let R be a relatively continuous and complete subspace of A and a € As;.
If A, € ER, thena € R.

Proof. Let u € C.(G,A) and € > 0. Assume u # 0. Define C' = ||ii|2 + ||pu||. Since
A, € &R, there is r € R, such that ||[A, — A.[| < &. Therefore, Lemma 1.41(ii) yields
la*u—rxuls < e. Since R is complete, we have r x u € R. Hence a x u € R, since R
is || - ||si- closed.
Let (u;)ier be the approximate identity of 5.20. Corollary 1.43 yields ||a — a * u;|| — 0.
By Lemma 1.28 (py, )icr is an approximate identity of C}(G,A). Since g is a right
Hilbert C} (G, A)-module, this implies ||Aq — Ag © py, || = 0.
Therefore,

la —ax*ul|si = |la —a*u| + ||Ag — Ag 0 pu;|| — 0.
Since a *u; € R for all i € I and R is || - ||s; closed, this leads to a € R. O

Theorem 1.52 (Properties of a Complete, Relatively Continuous Subspace).
Let R C A be a complete, relatively continuous subspace.

(i) R is G-invariant and the action of G on R is continuous with respect to || - ||s;-
(i) R-A=R.
(iii) Ifa € R and F € Fr, then F(a) € R.

)

(iv) If G is exact and I C A is a G-invariant closed ideal, then R -1 =RNI
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Proof. (i) Let r € R and g € G. Proposition 1.37 yields a4(r) € As;.

(iii)

Since A, € &r and £ is a right Hilbert C)(G, A)-module, there is £ € Ex and
Y € CHG, A), such that A, = ¢ -1. By Lemma 1.31, we have

Y od,1 = (6, 00%)* € C(G, A),

Hence .
Aayir) "2V A 08,1 = Eotod, 1 = Er-CH(G, A) C Er.

Lemma 1.51 implies ay(r) € R. Since Aj o A, € C}(G, A) the map G — R given
by g — ag4(r) is continuous with respect to || - ||;; by Lemma 1.40.

Let r € R and a € A. Proposition 1.37 yields r-a € Ag;. As above, there is £ € Ex
and ¢ € C¥(G, A) with A, = £ - 9. Hence Lemma 1.30 implies

A 1'32:(111) ANoomg=Eopomy € ER 'C:(G7A> Cér.

This shows R- A C R.
Let (a;)ier be an approximate identity of A. Then |r — r - a;]| — 0. Since
Ao A, € CF(G,A) Lemma 1.30 yields
[Ar — Amin = [|Ar — Arﬂai||2

= [[(A7 — 7, AD) (A — Ayrg, )|

< 2-[[AFA, — mo, AT A || — 0.
Therefore,

lr —7r-aillsi = |r — 7 ai + ||Ar — Ay, || — 0.

Cohen’s factorisation theorem implies r € R - A. Therefore R C R - A.

Let r € R and F € Fixg. Since Fixg C M%(A) we obtain F(r) € Ay from
Proposition 1.37. Proposition 1.32(iv) yields

AF(T‘) =FoA, eFixp-Er C&R.
Therefore, F(r) € R by Lemma 1.51.

Part (ii) yields R- I C R- A C R. Also R - I C I, since [ is an ideal of A. Hence
R-ICRNI.
To prove the other inclusion, we will use Cohen’s Factorisation Theorem. Let
re RNI.Ifbe A, then ¢p(9) = ax(r)*b € I for all g € G. Since r € R C Ay, we
have ¢, € S?(G, A). Corollary 1.18 yields ¢(c,4) € L?(G, A)-I. Hence Remark 1.35
implies

N2() = 0 T4 (b) = tlery) € LA(G, A) - 1
Hence (A} o A,)(L%(G, A)) C L*(G, A) - I.
Since G is assumed to be exact, this yields AfoA, € C(G,I) by the considerations
in Section 1.2. Let (u;);cs be an approximate identity of I. Then

A o Ay — AL o Ay omy, || — 0.
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The same computations as in Part (ii) show ||r —r - u;||s; — 0. Hence the Factori-
sation Theorem yields r € R - I.
O

The following lemma and its corollary give a more explicit criteria weather a given
subset R is relatively continuous.

Lemma 1.53. Let R be a dense subset of A, such that for all a,b € R the image of
the map Ty o Ay: Co(G, A) — Cy(G, A) is contained in S*(G, A) and the map 1oTq 0 Ay
extends to a bounded operator L*(G, A) — L*(G, A) with Lo Ty 0 Ay € CF(G, A).

Then R C Ag and R is relatively continuous.

Proof. Fix a € R.
Ifbe R and fi, fo € C.(G, A), then

(LoTuo M) (1), f2) 7 /G (T o A (F1)(9)" f2(g) dulg)

_ /G (ag(@)" A1) F2(g) dpa(g)
= Ap(f1)" o Aa(f2)

If f € C.(G, A), this implies This implies

HAa(f)Hz = HAa(f)*Aa<f)H
= [{((toTao Ap)(f), Al
< [leo Ty 0 Alll| £113-

Hence A, extends to a bounded operator L?(G, A) — A. In view of Theorem 1.34 it
remains to prove, that A, is adjointable.
Let Ag be the domain of A*. That is x € Ag if and only if there is f, € L?(G, A), such
that

2*Ag(h) = (fz,h) for all h € L*(G, A).
Since A, is bounded it suffices to look at h € C.(G, A). The computation at the beginning
of this proof shows b k = Ay(k) € Ag for all b € R and k € C.(G, A). Since R is dense
1.41(i) yields A * C.(G, A) C Ap. By Lemma 1.42 A % C.(G, A) is dense in A. Hence Ag
is dense in A. Since A, is bounded Ay is closed. Therefore, Ag = A and the map x — f,
serves as an adjoint for A,.
Theorem 1.34 yields R C A,;. By Remark 1.35 we obtain

A, oAy =10T,0A, € Cr(G, A).
Therefore R is relatively continuous. O

If a,b € A we define a function fu, € Cy(G, A) by far(9) = a*ay(b).
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Corollary 1.54. Let R be a dense subset of A, such that

/G V(@) dulg) < oo for all a,be R.

Then R C A and R is relatively continuous.

Proof. Let a,b € R and k € C.(G, A) We compute
((Fa 0 Ap)(K))(g) = ag(a) Ap(k)
=a(@) - [ adb)- (@) dp(o)

L a* oy -k(gx x
2 /G J(a%an(f)) - k(gr) dp(z)
/G o (fan(@)) - k(gz) dpu(x) = (p7,,)1)(9).

By Lemma 1.29 the image of I'y0A, = py,, is contained in S?(G, A) and tol',0Ay, = topy,,
extends to an operator L*(G, A) — L?(G, A) with oLy 0 Ay =10 ps,, € CF(G, A).
Therefore, R C A, and R is relatively continuous by Lemma 1.53. ]

The last of this section is customized for our application to the scaling action of the
tangent groupoid.

Lemma 1.55. Let Ry C Ag; be a dense, relatively continuous, G-invariant subspace,
such that Ry - Rog C Ro.

Then the closure R of R with respect to || - ||s; is dense, complete and relatively contin-
uous. Therefore (A, R) is a continuously square-integrable G-C*-algebra.

Proof. Clearly R C A, is a closed linear subspace of the Banach space Ag. Since
|Aall < |lal|si for all @ € Ag; we get Af oAy € CF(G, A) for all a,b € R by approximation
with elements of Rg. Therefore, R is relatively continuous.

It remains to prove R * C.(G, A) CR.

Claim: R-ACR.

Proof of the claim: Let » € R and a € A. There is a sequence (r,)pen € Ro such
that |7 — 7,]|si — 0. Since Ryg is dense, there is a sequence (ap)nen C Ry, such that
la — an| — 0. since every convergent sequence is bounded and by Lemma 1.41(ii) we

obtain
n—oo

——0

ra — rpanllsi < |I7llsi - la — anl| + {7 — rallsi - lan]]

As rpan € Ro-Ro C R for all n € N, we get ra € R. This proves the Claim.
Since Ry is G-invariant R is G-invariant by Proposition 1.39(ii).
If re Rand f € C.(G,A), then

ref =M = [ adlr) - F@) duto)

G
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By the above claim and since R is G-invariant a,(r) - f(z) € R for all z € G. By
Lemma 1.40 the map G — R given by = — a,(r) is continuous with respect to || - ||s:-
The estimation 1.39(i) shows that the multiplication map R x A — R is continuous with
respect to || - || on R. Hence the map z — . (r) - f(z) is continuous with respect to
|| - ||si- Hence the integral above makes sense as an integral with values in (R, || - ||s)-
Since the inclusion (R, || - ||si) = (A, ] - ||) is continuous, we obtain r * f € R.

O

2 The Tangent Groupoid of R"

2.1 Locally Compact Hausdorff Groupoids and their reduced
C*-Algebras

Notation and Definitions

Definition 2.1 (Locally Compact Hausdorff Groupoid).
A locally compact Hausdorff groupoid is a groupoid G with object set G(9) together with
locally compact Hausdorff topologies on G and on G(¥), such that the structure maps
r: G — GO,
s:G— GO,
mv: G — G,
mult: G — g,

are continuous. Here the set 9(2) C G x G of composable arrows carries the induced
topology from G x G.

For z € G, we define
G'={veg:r(y) =2} and G, ={y€G:s(y) =x}.

To construct a C*-algebra associated to a locally compact Hausdorff groupoid, we need
our groupoid to provide a Haar system.

Definition 2.2 (Left Haar System).

Let G be a locally compact Hausdorff groupoid. A family (1*),cg) of positive Radon
measures u* on G7 is called a right Haar system G if satisfies the following conditions
for all f € C.(G).

(i) The function GO — C, 2 — Jg= f du® is continuous.

(ii) If v € G, then

Lo, 50 w02 = [ g du )

Ggstv
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The definition for a right Haar system is analogously. Every left Haar system (u”),.cg
gives rise to a right Haar system (p;),cg) defined by

: () dpg(y) = . FOrh) dut(y) for f € Ce(G).

The Reduced C*- Algebra of a Locally Compact Hausdorff Groupoid
For fi, fo € C.(G) the convolution is defined by

(f1* f2)(v / Alr2) - 2 ) dpt (12)

= Ai(2) - 2005 1) A (42)

Ggr(

If f € C.(G) the involution is defined by f*(y) = f(y~!). With this operators C.(G)
becomes a x-algebra.
We define a norm || f||; as the maximum of

£l i= sup [ 17| dut) and (e = sup [ 1F)] diel)

Then | - ||7 is a submultiplicative norm on C.(G). We have || f||1,, = || f*|l1,s- Therefore,
11l =11f]lz-

Let x € Q(O). There is a representation
Aw: Ce(G) — B(Lz(g:c)vﬂx))
defined by the formula

el = [ 5Gmb) dun).

We call these representations the reqular representations of G.
The reduced C*-algebra C}(G) is defined as the completion of C.(G) in the norm

[fllr = sup [|Az(f)]]-

x6g<0>
We have || f|l» < || f|lr for all f € C.(G).

2.2 The Tangent Bundle of R™

Let TR™ = R™ x R™ be the tangent bundle of R™. We view TR™ as a locally compact
Hausdorff groupoid with object set R™ and arrow set R™ x R™. The structure maps are

given by
s(y, ) =r(y,z) =y,
(v, z1)(y, x2) = (y, 1 + x2),
(y,2)~" = (y,—=).
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If y € R™, then
(TR™)Y = (TR"), = {(y,z): z € R"}.

The Lebesgue measure on R" gives a left Haar-system (p¥)ycrn for TR™ with
| fa) dya) = [ (o) do forall f € CUTRY).
(TR™)v R™
Let F: C.(R") — Co(R™) be the Fourier-transformation. That is
(FUNE) = | fla)-e ™0z for all £ € R™.
R
If f € C(TR™) and y € R", then we define f, € C.(R") by f,(z) = f(y,x) for all

z € R". The function R" x R" — C given by (y,§) — F(f,)(§) is continuous and
vanishes at co. Therefore, we obtain a linear map Fi: C.(TR") — Co(R™ x R"™) with

(FiUN@:6) = F()EO = | flya)-e >0 da,

Rn

Theorem 2.3. The map F1 lifts to a x-isomorphism of C*-algebras
Fi: CH(TR"™) — Co(R™ x R™).

Proof. First we prove that Fj is a *-homomorphism on the C.-level. If f1, fo € C.(TR"™),
then

(f1* fo)y(z) = (f1* fo)(y,2) = /Rn f1(y, 2) - fa((y, —2) - (y,2)) dz
= |, f1y(2) - foy(z = 2) d2 = (f1,, * f2,) ().

Since F is a *-homomorphism, this implies

Fi(fr* f2)(y,§) = F((f1 * f2)y)(§)
(

If f € C.(TR"), then

(fy)* (@) = fy(=2) = f((y,2)7") = [*(y, 2) = (f)y ().

Therefore,




This proves, that F; is a *-homomorphism.
Let a: C.(R") — B(L?*(R")) be given by a(f)(h) = f x h for h € C.(R"). The
Pancharel theorem yields [|a(f)|| = [[F(f)|lco- Hence F extends to an isomorphism
Cr(R™) — Co(R™).
Let y € R” = (TR™)(®). The regular representation o, of C.(TR™) on L? (TRy) = L*(R™)
identifies with

(ay(f))h)(x) = - fly,x = 2) - h(z) dz = (fy * h)(2) = (a(fy)h)(2).
Therefore,

[F1(N) (O = 1F () < [ F(fy)lloe = llalfy)ll < sup ley (D =11 £l (2)

This implies [[¥(f)|loco < || f]lr. Choosing appropriate y,& € R™, we see that (2) implies

|F1(f)|lco = || f]l-- Hence F; extends to a isometric *-homomorphism
Fi: CH(TR"™) = Co(R™ x R™).
Let h,k € Co(R™). We define f € Co(R™ x R"™) by f(y,&) = h(y) - k(§). There are
sequences (gn)neN, (hn)nen, € Co(R™), such that
1B = hlloe “=22 0 and || F(gn) — Elloo = 0.

We define fn € Ce (TRn) by fn(ya ) hn(y)gn(x) Then fl(fn)(yag) = hn(y)f(gn)(g)

n—oo

Therefore, || Fi(fn) — flloo — 0.

Since the range of Fj is closed, this shows that f is in the range of Fj.

By the Stone-Weierstrass theorem elements of the form h(y)- k(&) generate Co(R™ x R™).
Hence F7 is surjective.

Therefore, F1 is a x-isomorphism of C*-algebras. O

2.3 The Pair Groupoid of R"

The locally compact space PR™ := R™ x R™ becomes a is a locally compact Hausdorff
groupoid with object set R™ and arrow set R™ x R" together with the structure maps

s(z,y) =y,
r(x,y) ==
(z,y)(y,2) = (z,2)
(z,9)"" = (y,2).
PR" is called the pair groupoid of R™. If x € R", then
(PR")* ={(z,y): y ¢ R"} and (PR"), ={(y,x): y € R"}.

As above the Lebesgue measure gives a left Haar system (u”*),ern for PR™ with

/ fa,y) @ y) = [ fley) dy for all f € Co(PRY).
(PRn)= R7

For f € C.(PR") and h € C.(R"), we define (K¢h)(x) = [pn f( h(y) dy.
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Theorem 2.4 (C.(PR")-functions as Integral Kernels).
The linear map Ky : C.(R™) = C.(R™) extends to a bounded operator on La(R™).
The map C.(PR™) — B(L*(R™)) given by f — K; extends to a x-isomorphism

K: C:(PR") — K(L*(R"™)).

Proof. Let y € R™ and h € C.(R"). The regular representation «, of C.(PR") on
L*(PR}) = L*(R™) identifies with

(ay(HP) (@) = | f((2,9)-(y,2)) - h(z) dz

]Rn

= flx,2) - h(z) dz
Rn

— (K7h)(@).

Hence ay(f) = Ky. The theory of regular representations of groupoids implies, that K
extends to a bounded operator on L(R™) and that C.(PR™) — B(L?(R")), f — Ky is
a *-homomorphism.

If f € C(RR") is of the form f(z,y) = fi(z) - fa(y) for fi, fo € Cc(R™), then Ky
is a rank-one operator. Using the Stone-Weierstral theorem, we see that the linear
span of elements of the form fi(x) - fa(y) is dense in C.(PR") in the I-norm. Hence
C(PR™) is generated by elements of this form. Therefore, K (C;(PR")) C K(L*(R")).
Since K(L?(R™)) is generated by rank-one operators and every rank-one operator is
in the image of K, we obtain K(C}(PR")) D K(L?*(R")). This shows, that K is a
*-isomorphism. O

2.4 The Transformation Groupoid of a Group Action

Let G be a locally compact group with left Haar measure p and X a locally compact
space together with a continuous action

GxX— X, (9,2)— gx.

The transformation groupoid X x G has arrow set X x G and object set X. The structure
maps are given by

s(z,9) =z,
r(z,9) = gz,
(hx,g)(x, h) = (z,gh)
(,9)"" = (92,97

If x € X, then

(X 3G ={(g7'z,9): g€ G} and (X x G, = {(z,9): g € G}.
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We define a measure p* on (X x G)* by
[ 179 dwla g = [ fo ) dule) forall f € CU(X % G)
(XxG)= G

The family (u*)zex provides a left Haar system for X x G.

Ezxample 2.5. The tangent bundle TR" is R x R”, where the group R™ acts trivially on
the space R".

The action of G on X induces a continuous action on the C*-algebra Cy(X) by
(9 F)@) = flg™') for all f € Co(X).
We define a map
©: Ce(G x X) = Ce(G, Co(X)) by (@(f)(9))(@) = f(g~ 'z, 9).

If f e Cu(X xG), then

If fl,fg S CC(G X X), then

(@(f1* f2)(9) (@) = (f1 % f2)(g "z, 9)
- /G Fi(h ) - folg™ e hYg) dpu()

= ([ ot - @(@09) au)) @
— (®(f1) * B(/2)) (9))(x)

This shows that ® is a *-homomorphism. By merging the regular representations of
X x G together to a representation on a Hilbert bundle and comparing to the represen-
tation of C.(G, Cy(X)) one proves, that ® extends to an isomorphism of C*-algebras

Cr(Gx X)— CHG.Ch(X)).

2.5 The Tangent Groupoid of R™

Before we define the tangent groupoid of R™ we give the definition of a continuous bundle
of C*-algebras.
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Definition 2.6 (Continuous Bundle of C*-algebras).

A continuous bundle of Cx-algebras is a triple (X, (m: A — Ay)ex, A), where A is a C*-
algebra, and for each t € X, A is a C*-algebra (called the fibre att € X)and m: A — A,
a surjective *-homomorphism, such that the following conditions are satisfied.

(i) llall = supiex [[me(a)ll-

(ii) For f € Cp(X) and a € A, there is an element f -a € A, such that

m(f-a) = f(t) -m(a) forallte X

(iii) The function X — [0, 00) given by ¢ — ||m(a)|| belongs to Cy(X) for all a € A.

The group R™ acts continuously on R" x [0,00)) by = - (y,t) = (y + tx,t). We obtain
a continuous action of R on Cy(R™ x [0, 00) given by

x-f(y,t):f(y—tx,t) fOI“fECO(Rn X [O’OO»

Let t € [0,00). We define R} = R" x {t} C R" x [0,00). Then R} is an R™-invariant
closed subset. Thus the restriction s;: Cp(R™ X [0,00)) — Co(R}) to R} is a surjective
R™equivariant *-homomorphism.

As in the consideration of 1.2 we obtain a surjective *-homomorphism

G CX(R™, Co(R" x [0,00))) — C*(R™, Co(RP)) for ¢ € R.

The triple ([0, 00), (s¢)ter, Co(R™ x [0,00))) is a continuous bundle of C*- algebras. The
group R”™ is exact. Therefore, [4, Theorem 4.2] implies, that

([0, 00), (8)ter; Cr (R™, Co(R™ x [0,00)))
is again a continuous field of C*-algebras.

Definition 2.7 (The Tangent Groupoid of R™).

The transformation groupoid GR™: = (R™ x [0,00)) x R™ is called the tangent groupoid
of R™. It has the set of objects R™ x [0, 00) and the set of arrows R™ x [0, 00) x R". The
structure maps of GR™ are given by

s(y, t,x) = (y, 1),
r(y,t,x) = (y + ta, t),
(y +tx,t,2) - (y,t,x) = (y,t, 2 + ),
(y,t,z)"' = (y + ta, t, —x).

Let ¢t € [0,00). We define the subgroupoid

GR} =R} xR" ={(y,t,x): y,x € R"} C GR".
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We use the isomorphisms
C(GR") = C(R", Co(R" x [0,50))) and  C}(GR) = (R, Co(R}))

to define a surjective x-homomorphism 7: C;(GR") — C}(GR}), such that the following
diagram commutes

Cr(R™, Co(R™ x [0,00))) — = C(R™, Co(RY))

Since the vertical arrows are isomorphisms ([0, 00), (7¢)er, C;f (GR™)) is a continuous field
of C*-algebras.

If f € C.(GR™), then 7(f) is just the restriction of f to GRY.

The map TR™ — GR{ given by (y,z) — (y,0,z) is a groupoid isomorphism compatible
with the Haar-measures. By Theorem 2.3 we get isomorphisms

C*(GRY) — C*(TR™) 2 Cy(R™ x R™)

of C*-algebras.

We define m: C}(GR™) — Cp(R™ x R™) as the isomorphism C}(GRy) — Cp(R™ x R™)
composed with 79. Therefore, 7y is a surjective *-homomorphism. For f € C.(GR") we
have

(mo(f))(y,€) = o f(y,0,2) - e 2™ da,

Let ¢t > 0. The map PR™ — GR} given by (z,y) — (ty,t,x—y) is a groupoid isomorphism
compatible with the Haar measures. By Theorem 2.4 we get isomorphisms

Cr(GRY) — CF(PR™) 15 K(LX(R™))

of C*-algebras.
We define m¢: C(GR"™) — K(L?(R™)) as the isomorphism C(GR}) — K(L?(R")) com-
posed with 7;. Therefore, m; is a surjective x-homomorphism. For f € C.(GR") we
obtain

(me(f)) (@) = | f(ty,t,x—y) h(y) dy for all h € C.(R™).

Rn

We changed the fibres of (][0, 00), (7¢)tcr, C;(GR™)) in an isomorphic way, that is com-
patible with the 7. Therefore, ([0,00), (7¢)ier, Ci(GR™)) is still a continuous bundle.
Before we introduce the scaling action on the tangent groupoid, we will prove a lemma
about continuous bundles of C*-algebras, that will be useful later.

Lemma 2.8 (The Kernels of the Fibre Epimorphisms are Essential).
Let (X, (m: A = Ap)ex,A) be a continuous bundle of C*-algebras. If t € X is not
isolated, then ker(my) is an essential ideal of A.
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Proof. Let a € A, such that a-k = 0 for all k € ker(m;). Let s € X with s # ¢. There
is f € Cy(X), such that f(t) = 0 and f(s) = 1. We have m(f - a*) = f(t)m(a*) = 0.
Hence f - a* € ker(m;), so that a- (f -a*) = 0. Hence

0=ms(a-(f-a"))=ms(a) f(s)ms(a”) = 7ms(a) - ms(a”).

Using the C*-condition in A, we obtain 7s(a) = 0.
Since t is not isolated and the function s — ||7s(a)|| is continuous, this implies m¢(a) = 0.
Therefore a € ker(m;). Using the C*-condition in A, we achieve a = 0. O

Since [0, 00) has no isolated points ker(7;) is essential in C¥(GR™) for all ¢ € [0.00).

3 The Scaling Action on the Tangent Groupoid and its
Generalized Fixed Point Algebra

3.1 The Scaling Action

The multiplicative group R’ of positive real numbers is a locally compact group with
Haar measure A — [, % for all Borel sets A C R If A € R} and f € C.(GR"), then
we define

(oA, t,x) = A"« fly, \"'t, ).
We obtain ox(f) € Cc(GR"). It is easy to check, that (ox)rery is a linear action of R}
on C.(GR™). If f1, fa € C.(GR™), then
(U)\(fl * fZ))(y,t7$) =" (fl * f?)(y7 )‘71757 )\13)

=\ [ A=Az AT s+ 2) - fa(y, AN, —2) dz
Rn

= / N fi(y —tz, N, A — Az) - A fo(y, A, —Az) dz

= /n ox(f1)(y —tz, t,x+ 2) - oa(f2)(y,t,—2) dz
= (oa(f1) * oa(f2)) (2, y, 1)

Furthermore,

o\(f* )y t,x) = A" f*(y, A"t )
= A\ f(y + te, \71t, —\x)
= (O-Af)(y + tl‘a ta -z
= (oa(f)"(: 1, 2).
The function RY — C.(GR™), A — o,(f) is continuous with respect to the I-norm on

Cc(GR™). Since the I-norm dominates the reduced norm the action (o)rery extends
uniquely to a continuous action on C¥(GR™). We denote this extended action again by
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(o) AERY - At this point we also prove that o) is isometric with respect to the I-norm,
because we need this later. Let f € C.(GR"). For | - ||;,s we compute

Jor (e =suw [ (oa(£) (.t 0)] da

(y:t)

= SUP/ X' f(y, A7 A)| da
(y;t) /R"

— sup / Py A )] da

(y,t)

= [[fllrs-

This implies
lox(Dllrr = lloalf)

Hence |lox(H)Ilr = I fll1-

I,s = ||f*

rs = [lfllzs-

The Scaling Action and the Fibre Epimorphisms

We define a continuous action of R} on R™ x R™ by ox(y,§) = (y,A§). This action
induces a continuous action of R* on Co(R™ x R™) by (ox(f))(y,€) = f(y, \71E).

Proposition 3.1 (m is R’ -equivariant).
The x-homomorphism my: Cy(GR™) = Co(R™ x R™) is R -equivariant.

Proof. Let f € C.(GR™) and A € R%. We compute

(mo(ox(£)) (Y, €) —/ (ox(f))(y, 0, 2) - e~ 2745E) qz

n

= / A" f(y,0, Ax) - e 2mi®L) g,
= f(y’ $) . 6—27F7:<27,>\_1§> dz
Rn

= m0(f)(y, A71€) = (oa(mo(£)) (5, €).
Since C.(GR") is dense in C;(GR™) this implies that 7 is R’ -equivariant. O

Let A € R% and h € C.(R™). We define (Unh)(z) = A™"/2h(A"1z). Then Uph € C(R™).
We have
(Uxh1,Uzhg) = / AT by (A 12) - ho(WNTMz) da = (hy, ho).

n

The family (U,) AER?, fulfils Uy, o Uy, = Uy,,- Therefore Uy extends to a unitary
operator L?(R™) — L?(R™). Hence (Uy) Aer: defines a unitary action of R} on L?(R™).
Let U € B(L*(R"™)) be a unitary. If T € K(L*(R")), we define Ady(T) = U*oT o U.
Then Ady: B(L2(R")) — B(L?(R")) is a *-automorphism.
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Proposition 3.2. Lett > 0. If A € R* | then
m(0xf) = U omyn(f) o Uy for all f € CH(GR™).

Hence my o o) = Ady, o my,.

Proof. Let f € C.GR™. We compute

(milorf)) () = / (o)) (ty.tsz — ) - h(y) dy

n

= [ Al e = ) hi) dy

_ /n N2 fO Ty, AT Az — ) - (Uah)(y) dy
=\ ((mya(f) 0 UR)(N - @)
= ((Ux o7/ (f) o Ux)h)(z)

Since C.(GR") is dense in C;(GR") this implies the assertion for all f € C}'(GR"). O

The R* -invariant Ideal J < C}(GR™)

Since R™ x (R™\ {0}) is open in R x R", we may view
Co(R™ x (R"\ {0})) = {f € Co(R" x R"): f(y,0) =0 for all y € R"} C Cp(R" x R").

Then Co(R™ x (R™ \ {0})) is a closed R* -invariant ideal in Cp(R™ x R™). Therefore
J =75 (Co(R™ x (R™\ {0})) is a closed R -invariant ideal in C*(GR™). In particular
J is a R% -C*-algebra. Our aim is to prove that J is continuously square-integrable.
Let f € C.(GR™). If y € R™, then

mo(f)(y,0) = - f(y,0,z) dx.
Hence f € J if and only if
o f(y,0,z) dz =0 for all y € R"™.
Let Rg be the set of smooth functions f: GR™ — C with compact support and
A f(y,0,z) de =0 for all y € R".

Then Ro is a R -invariant linear subspace of J. The Leibniz integral rule yields
Ro * Ro € Ro. Moreover, we have R = Ro.

Proposition 3.3 (R is dense).
Ro is a dense subspace of J.
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Proof. Let f € J and ¢ > 0. Then f € C!(GR™). There is fi € C.(GR") with
If = fill» < §. There is R > 0, such that fi(y,t,2) =0, if [|y|| > Rort > Ror [|z|| > R.
We write vol for the Lebesgue measure on R". By the Stone-Weierstrass theorem, there
is a smooth function h € Co(R™ x R™ x [0,00)), such that

g
4-vol({z]| < R+1})

Let 0: R™ x R™ x [0,00) — [0, 1] be smooth, such that

11 = hlleo <

O(z,y,t) =1 if lyl,¢, [lz|| < R and

O(z,y,t) =0 if |y >R+1lort>R+1or |z|| >R+1.
Then fo: =6 - h is smooth and compactly supported.
Let (y,t) € R™ x [0,00). We estimate

° / 1dx = £
4-vol({[lz]| <R+1}) Jja<rs1 4

/R |f1(yatvl')_f2(yat7x)‘ dZCS
Therefore, || f1 — f2|1,s < . Likewise

/ |f1(y—t$at,$)—fz(y—tx,t,x)\d:):§
R’ﬂ

>~ ™

Hence || f1 — fa||7, < §. This implies

1 = folle  IF = falle + 11 = folle < 5 + 112 = Follr <

We define g(y) = (m0(f2))(y,0) = [gn f2(y,0,2) dz. Then g is smooth and compactly
supported. Since f € J, we have
€

191 = ((7o(£)(y, 0) = (m0(f2)) (5, O)| < [[m0(f) = mo(f2)lloc < [If = follr < 3

Let h € C.(R™) be smooth, such that [p, h(z) dz =1 and h > 0. Let w € C([0,0))
be smooth, such that w(0) = 1 and ||w||cc = 1. We define k(z,y,t) = g(y) - w(t) - h(x).
Then k is smooth and k € C.(GR™).

Therefore, f3: = fa — k € C.(GR") is smooth. If (y,t) € R™ x [0,00), then

| ™

[ Kt dz =lg)]- (0] - [ hiz) do <
and
[kt o) do = (o)l [ oty + )] ho) do <5 [ hia) do =,

Hence ||k||7 < 5.
If y € R™, then

f3(y,0,2) doe = fo(y,0,2) de — g(y) - w(0) - &(x) dz = 0.
R" R" R"
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Therefore, f3 € Ro. Finally we estimate

1f = Fall < IF = Fellr +11f2 = Foll < = + llklls <.

This proves that R is dense in J. O

The following lemma is the main ingredient to prove, that J is a continuously square-
integrable R -C*-algebra.

Lemma 3.4 (Main Estimation).
Iff17f2 € R; then

d\
/ | f1* on(fo)llr BN < o0.
R*

+

Proof. If (y,t,z) € GR™, then

(i e o(P)ta) = [ Flu=tetat ) @)t —2) s

= A" fily +tx,t,—x — 2) - fa(y, A, —\z) dz
Rn

=" fl(y-l-t:n,t,Z—ﬂ’J)‘fz(y,A_lt,)\z) dz
Rn

Since f; and fy are compactly supported and continuous, there is R > 0, such that
fily,t,z) = fa(y,t,x) = 0 whenever |ly|| > Ror ¢t > R or |x| > R. There is M > 0,
such that |fi(y,t,2)] < M and fa(y,t,z) < M for all (y,t,z) € GR™.

If t > R, then (f{ * ox(f2))(y,t,x) =0 for all A € R} and y,z € R".

Fix A > 1. If ||lz|| > 2R, then ||z — z|| > ||z| — ||zl > 2R — & > R for all z € R" with
|Az]] < R. Hence (ff *ox(f2))(y,t,2) =0 for all y € R™ and ¢ € [0, 00).

Using the Mean value theorem for real and imaginary part separately we obtain
rg: R™ x [0,00) x R™ — C and C > 0 such that

f?(yatvx) = f2(y,0,l‘) + TQ(yvt7x) with ’TQ(yvtvx)‘ < CQ -t

for all (y,t,x) € GR™. If ||| > R, then ro(y,t,x) = 0.
By the Mean value theorem in multiple variables there are 1 : R x [0, 00) x R” x R" — C
and C7 > 0, such that

fl(y7t7aj + h) = fl(yatvm) +’I”1(y,t,l',h) with |7"1(y,t,$,h)| < Cth‘H

for all (y,t,z,h) € R™ x [0,00) x R™ x R™.
Since fo € Ry we have

A" f1(y+t:v,t,—$)'f2(y,0,)\2,)dZ=f1(y+tx,t,—x)' f2(y)072) dz = 0.
Rn R™
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Therefore,

(fik *J)\(fQ)) (y,t,x) = \" an fl(y—l—tx,t,z —$) ’ f2(y707)‘z> dz

+ A" fily+tx,t,z —x) 1oy, A_lt, Az) dz
Rn

= )\"/ ri(y,t,—z,2) - fo(y,0,A2) dz
[21<Z

+)\n/ Rfl(y+tx,t,z—x)-rg(y,)\_lt,)\z) dz
llzlI<x

Let (y,t,x) € GR". We estimate

((F7* oa(f2)) (, 8 )] = [(f1 % 0x(f2) (4,6 2)] - Xwerr: o <2r) (%)

< \"M (/” o C1 - ||z|| + Cox7t dZ) “ X{zern: ||z]|<2R} (T)
SN

< AIMR(Cy+ Co) -vol ({[|2] < AT'RY) - Xqaern: o <2r) (@)
<Ot X{zeR": || <2R}(T),

where C3 = MR(C; + Cs) - vol ({||z]| < R}).
Hence

157+ sl =sup ([ 107 < or() ot )] d )

(y:t)
< CsA ™" vol ({||z]| < 2R})

and likewise

157 5 on(llis =sup ([ 1067 < or(f)y - tant.0)] do)

(y,t)
< OsA ! vol ({1 < 2R})

Therefore,

[ Mol G < ool (el < 28D [ A Par<os.

s 1,00

We analyse A € (0, 1) using the following trick:

dA dA
Jo ol T = [ s el T

s 1,00

dA
A

— [ @l <o
)

)

)

- / loatsi) « ol
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Finally,

. dx . A ) ar
Lowisaml $= [ Aol S [ ol <o
R (0,1) [1,00)

O]

Theorem 3.5 (J is a Continuously Square-Integrable R’ -C*-Algebra).
The || - ||si-closure R of Ro C Js; is a dense, complete and relatively continuous subspace
of J. Therefore, (J,R) is a continuously square-integrable R’ -C*-algebra.

Proof. By Lemma 3.4 we obtain

dA dA
/R: I <Rl 5 < [ I sl 5 < o0

+

for all f1, fo € Ro.

By Proposition 3.3 Ry is dense in J. Therefore, Corollary 1.54 yields Ry C Js; and Ry is
relatively continuous. By Lemma 1.55 R is a dense, complete and relatively continuous
subspace of J. O

3.2 The Generalized Fixed Point Algebra

Since (J,R) is continuously square-integrable we obtain the generalized fixed point alge-
bra Fixg and the Hilbert Fixg-Cy (R, J) bimodule £ as in Section 1.3. The following
technical lemma provides functions of the form f; * f5 with separated variables. We
write C°(R™) and CZ°([0,00)) for the vector spaces of smooth, compactly supported
C-valued functions on [0, c0) and R"™ respectively.

Lemma 3.6 (Functions of a Spezial Form).
Let w € C([0,00)) and ki, kg, h € CP(R™) with [, ki(x) de = [p, ko(z) dz = 0.
Then there are f1, fa € Ro, such that

(fr* f3)(y,t,x) = h(y +tx) - w(t) - (kr % k3)().

Proof. Define fi(y,t,z) = h(y+tz)-w(t)-ki(x). Then f; is smooth, compactly supported
and

f1(5,0,2) da = h(y) - w(t) - / () de =0

R’ﬂ
Therefore, f1 € Ry.
There is R > 0, such that

w(t)=0 for ¢t> R and
h(y) =0 for [y| > R and
(k1 % k3)(x) =0 for |z| > R.
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Let hy € C2°(R™), such that ha(y) = 1 for all y € R™ with [jy|| < R+ R
Let wy € C2°([0,00)), such that walsypp() = 1. Define fa(y,t, x) = ha(y+tx)-wa(t) -ka(z).
Then fy € Rg as above. We compute

(et = [ fily=tato+2) Rly=int2) d

= h(y +tx) - ha(y) - w(t) - wa(t) - - ki(x + z) - ka(z) dz

= h(y) - w(t) - / ki(x + z) - k3(—z) dz

n

= h(y) - w(t) - (k1 * k) ().

The second last equation holds, because w(t) - wa(t) = w(t) for all ¢t € [0,00). If
ly +tz| < R, t < R and ||z|| < R, then ||y|| < R+ R?, hence ho(y + tx) = 1. O

The Epimorphism 7jj: Fixg — Co(R™ x S™~1)

The R -invariant surjective *-homomorphism my: J — Co(R™ x (R™ \ {0})) extends
uniquely to a strictly continuous *-homomorphism

M(J) = M(Co(R" x (R™\ {0}))) = Cp(R™ x (R™ \ {0})).

This *-homomorphism restricts to a *-homomorphism 7g: Fixg — Cy(R" x (R™\ {0})).3
Let S*! = {z € R": ||z|| = 1} be the unit sphere. By restriction to the closed subset
R™ x S~ ¢ R™ x (R™\ {0}), we obtain a *—homomorphism

res: Cp(R" x (R™\ {0})) — Cy(R™ x S"~1)  given by f = f|gnygn-1-

We define 75 :=res o mp: Fixg — Cp(R™ x S"71).
Let (xx)pen € Cc(R% ) be a sequence, such that 0 < x; <1 and x; < xgx41 for all k € N
and xr — 1 uniformly on compact subsets.

Theorem 3.7 (The *-Homomorphism ().
If F € Fixg, then 7} € Co(R"xS"1). The x-homomorphism 7§: Fixg — Co(R*xS" 1)
18 surjective.

Proof. Let f1, fo € Ro. By the definition of 7y there is R > 0, such that R > 0, such
that mo(f1)(y, ) = 0 for all (y,€) € R" x (R"\ {0}) with [|y]| > R.
In view of Lemma 1.36, we define

Ti= [ a5 e

R

3This is a slight abuse of notion. It will be clear from context if we talk about

mo: J — Co(R™ x (R™\ {0})) or mo: Fixg — Cy(R™ x (R™\ {0})).

95



Since the evaluation homomorphisms are continuous, we can compute

M6 = [ ) - mlfx A0 S

R:

- / Xk (A) - mo(f1) (g, A1E) - mo(f2) (y, A71E) %

If (y,§) € R" x (R™\ {0}) with |y|| > R, then mo(T%)(y,&) = 0 for all £ € N. By
Lemma 1.36 the sequence (T})zen converges strictly to Ay o A?Q. Since the extension
of mg to the multiplier algebras is strictly continuous, we obtain

mo(Ap 0 A},) = klingo mo(T%).

Since the strict topology on Cp(R™ x (R™\ {0})) is the topology of uniform convergence
on compact subsets, this implies

Mo (Mg 0 ARy, €) = lim 7o (Tx)(y. €) =0
for all (y,&) € R™ x S"~! with ||y|| > R. Therefore
mh(Ag, 0 A%,) € Co(R" x S"71) € Co(R™ x §™71).

Since Fixg is spanned by elements of the form Ay, oA% this shows 7 (F) € Co(R" % sn=1)
for all F' € Fixp .

To prove that () is surjective, we use the Stone-Weierstrafl theorem.

Let A := mjj(Fixg) C Co(R"™ x S*71). Let hy € C.(R™). Then h(y, &) := hi(y) defines an
element of Cy(R™ x S"~1). We want to show h € A.

Let g € C2°([0,00)), such that g # 0 and [;° g(r)r"~! dr = 0. Put f(x) = g(||z||). Then
f € CP(R™) and

f(z) dz = /OO g(r)yr™= 1 dr - area(S"1) = 0.
R" 0
If R € SO,,, then
FENRY = [ fa)e e o

:/ F(Ra)e2m(RRE) 4y
Rn
- (FN)e).
Therefore (Ff)(&) = g(||§]]) for g(\) = (]-"f)()\fo) mdependent of & € S™71. The

function g : [0, 00) is smooth. Since §(0) = = Jgn f(x) dz = 0 and g has rapid

decay A — oo, the integral fR* lg(\) |2 @ is ﬁnlte The 1ntegral is not zero, since F f is
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not zero. By a normalisation of g, we assume [p. |§(A)[* % = 1.
+

Now fix w € C;(R) with w(0) = 1. By Lemma 3.6 there are fi, fo € Ro, such that

(fr* £y, t,x) = h(y + tx) - w(t) - (f * ) ().

We compute
mo(f1* £3)(& ) = w(0) - hly) - |F(HE).
If (y,&) € R™ x S*~ 1, then the Monotone Convergence Theorem yields

=) Jim [ u) IFHO )P S
—00 R

=m@)- [ 1a0E S

= hi(y) = h(y; o)

Hence h € A. This shows that for every (y,&) € R™ x S*~!, there is h € A, such that
h(y,&) # 0. It remains the show that A separates points.

Let (y1,&1), (y2,&) € R™ x "1 with (y1,&1) # (y2,&2). If y1 # yo, then there is
h € C*(R™), with h(y1) # h(y2). Therefore A separates (y1,&1) and (y2,&2) by the
above computations.

If y1 = y9, so that & # &, then there is 1 < j < n, such that & and & differ in the
J'th component. Take h; € C.(R™) with h(y1) = h(y2) = 1. Let k(z) = (9x, f) (%), then
k € C°(R™) with (Fk)(§) = 2mi - & - (Ff)(§). Hence [p, k(x) dz = (F[)(0) = 0.

Take f and w as above. Again by Lemma 3.6 there are g1, g2 € Ry, such that

dA
T 0 M) &) = Jim [ )l < )0 A0 T
2

(91 % 93)(y, t, ) = h(y + tx) - w(t) - (k* f7)(2).

We compute

mo(91 % 92)(& 1) = h(y1) - w(0) - (FE)(E) - (FF)(€)
= 2mi - §I(FF)E)]-

If & € S™1, then the Monotone Convergence Theorem yields

dA

= klim XN mo(fi* f3)(y1, X&) 5y
— 00 Ri

dA
=oricgy [ XUENOTWE T

+

= 2migo- [ 1GOVE

+

o (Agy 0 Ag, ) (w1 o)
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Since g # 0, we have fRi |G(A\)|? dX # 0. Therefore,

o (Agy - M) (1, €1) 7 mo(Agy - Ag, ) (42, €2)-

This proves that A separates the points of R™ x S*~1.

A is the image of the *-homomorphism 7. Therefore A is closed and A* = A. The
Stone-Weierstraf theorem implies that A is dense in Cp(R™ x S*~1).

Therefore, A = Cy(R™ x S*1), so that 7§} is surjective. O

w1 as a Faithful Representation of Fixg on L2?(R™)

Let ¢t > 0. The restriction of the *-homomorphism 7;: C}(GR") — K(L?(R")) is still
surjective. To see this, let K € K(L?(R")). There is f € C*(GR™), such that m;(f) = K.
Let w € Cp(R), such that w(0) = 0 and w(t) = 1. Since (R, (m)er, C;f(GR™)) is a
continuous bundle, there is f-w € CX(GR™), such that 7s(f - w) = w(t) - ms(f) for all
s € R. In particular m(w - f) = m(f) = K and mo(w - f) = 0. Therefore even the
restriction of 7 to ker(mg) C J is surjective.

As is the case t = 0 the x-homomorphism 7; extends uniquely to a strictly continuous
*-homomorphism

M(J) = M(K(L*([R"))) = B(L*(R"))
This *homomorphism restricts to a *-homomorphism m;: Fixg — B(L?*(R")). By
Proposition 3.2 we have ¢ o oy = Ady, o my,. The same formula still holds for the
extensions to Fixg . Since Fixg € M%(A), we obtain

T (F) = m(o¢(F)) = U om(F)o Uy for all T € Fixg .
Therefore, the representations m;: Fixg — B(L?(R")) are unitary equivalent.

Theorem 3.8 (7 is a Faithful Representation of Fixg in L?(R")).
The x-homomorphism 71 : Fixg — B(L?(R™)) is injective.

Proof. Let F' € Fixg with m(F) = 0. Then m(F) = U} o mi(F) o U = 0 for all
t > 0. If g € ker(m), then m(F(g)) = m(F) - m(g) = 0 for all ¢ € [0,00). Hence
IF(9)ll = Suprcioumy I7(F(9))| = 0. Now let f € J, then F(f) g = F(f 5 g) = 0 for
all g € ker(mp). Lemma 2.8 yields F'(f) = 0. Therefore F = 0. O

3.3 Pseudodifferential Operator Extension

Our aim is to prove, that 7 restricts to a x-isomorphism ker(7j;) = K(L*(R")). Since m
is injective, it suffices to prove K(L?(R")) = my(ker(n5)). We use the following lemma
to prove K(L?(R"™)) C my (ker(75)).

Lemma 3.9. Let w: [0,00) — [0,00) be smooth and compactly supported with
supp(w) C (0,00). If h1, ha € C(R™), then there are fi, fa € Ro with

(fl * f;)(yvtax) = hl(y + tﬂj) ' hQ(y) : W(t) fOT’ all (y7t7:l:) € an
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Proof. There is R > 0 and ¢ > 0, such that

hi(x) = ha(x) =0 for ||z|| > R
0 fort <eort>R.

There is w1 : [0,00) — [0, 00) smooth and compactly supported with supp(w;) C (0, 00),
such that wy(t) =1 for all e <t < R. Then w(t) = w(t) - wy(t) for all ¢t € [0, 00).

Let ky € CZ°(R™) with [, k1(x) dz =1 and ki (z) = 0 for ||z| > 1. There is ky € C.(R"™),
such that ky(z) =1 for ||lz|| < 28 4+ 1. We define fi(y,t,2) = hi(y + tz) - wi(t) - k1 (z)
and fa(y,t,x) = ha(y + tz) - w(t) - k2(x). Since wi(0) = w(0) = 0 we obtain fi, fo € Ryo.
We compute

(fl *f;)(y7t7x) :/R" fl(y_tzvt’x'i_z) 'fg(y—tz,t,z) dz

— hi(y + to) - aly) - w(t) - / Fa(z+ 2) - Ta(z) dz

= hi(y +tz) - ha(y) - w(t) - o ki(z) dz

= hi(y +tx) - ha(y) - w(?). O

Proposition 3.10.
K(L2(R™)) C i (ker(m5)).

Proof. For hy,he € L*(R"), we write 0, 5, for the rank-one operator given by
th,hz(g) = <h279>h1 for g € L2(Rn).

C(R™) is dense in L?(R™) and |0, p, || = ||h1]l2 - ||h2]l2. Therefore K(L?(R™)) is gener-
ated by the set of 0y, p, for hi, ho € CZ°(R™).

Let hi,he € C°(R™). There is w: [0,00) — [0,00) compactly supported and smooth,
such that supp(w) C (0, 00) and fRi Nw(A™h) % =1.

By the previous lemma, there is f;, fo € Rg, such that

(fl * f;)(y7t7$) = hl(y + tI) ’ hQ(y) ’ w(t) for all (y’tv $) € gR™.

If X € R and g € C.(R"), then we compute

n

(m1(oa(f1* f3))9)(x) = / Mal(fr+ f3)(y AN Mz — ) - Aly) dy

n

= (Aaw(A™) - Ony hy)9) (@)

:)\nw(A_l)~h1(m)-/ ha(y) - g(y) dy
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Using Lemma 1.36 and the Monotone convergence theorem, we archive
* 5 o dA
m(Ag 0 A}) =m | lim Xk(A) - ox(fi* f3) 5%
R

k—o00 *
+

dA

= lim . Xe(A) - mi(oa(fi+ f3)) =

. n 1y dA
= (hm / XE(A) - AMw(A 1) ) On, hs
k—oo JR A

-
_1y dA
— (/ Nw(AT A) Oy hy = Ony g
R%
Since w(0) = 0, we have mo(f1 * f5) = 0. Therefore,

i oy A
mo(Ag 0 Ap,) = lim /R* Xk(A) - ox(mo(fi* f7)) == = 0.
"

Hence 7 (Af, o Ay,) = 0. This shows 0y, p, € m1(ker(n()).
Since 7 (ker(7j)) is a C*-algebra we conclude K(L?*(R™)) C my (ker(n})). O

Corollary 3.11 (m; is nondegenerate).
The representation w1 : Fixg — B(L?(R™)) is nondegenerate. That is

71 (Fixg ) L*(R") = L*(R™).

Proof. L*(R") = K(L*(R"))L*(R") C 7 (ker(nf)) L*(R") C 7 (Fixg)L%(R™) C L*(R").
O

The following lemmas and their corollaries are the key ingredients for the proof of the
remaining inclusion 7 (ker(7j)) C K(L?(R™)).

Lemma 3.12. Let f € C.(GR") be smooth, such that mo(f) = 0. The sequence
(Te)kern C K(L*(R™)) , with

A
Ty =/ Xk(A) - T1(oA(f)) BN
R*
+
converges in the operator-norm. The limit is a compact operator.

Proof. Since m is defined as an isomorphism composed with 79 we obtain 79(f) = 0. As
70(f) is the restriction to GR{, this implies f(y,0,z) =0 for all y,z € R™.
We define

[yt y)

t .
(0:f)(y,0,2) ift=0

ift>0
g(y, t,x) =
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Using the Mean Value Theorem for the real and imaginary part of f separately, we
obtain g € C.(GR™). We have f(y,t,x) =t-g(y,t,z) for all (y,t,x) € G. Let t > 0 and
h € C¢(R™). Then

:t-/ng(ty,t,a:—y)-h(y) dy
= ((t-m(g9))h)(z)
Hence m(f) =t - m(g). Therefore,
Ime(f)l < t-llme(g)l <t |lgllr  for all £ > 0.

Since f is compactly supported, there is R > 0, such that m(f) = 0 for all ¢ > R. Let
k,m € N with k < m. We estimate

| T — Tkl = H/R (xm(A) = xk(N) - mi(oa(f)) %

< e =) IUR om0 Ui T

*
+

dA
< /[é’m)(lm(k))llm—l(f)\l "

1
<loll- f, (=) &
[E,OO)

The Dominated Convergence Theorem yields

1
/ (1=x£(N) 5 dA— 0 for k — oo.
[:00) A

Hence (T))ren € K(L?(R™)) is a Cauchy-sequence in the operator-norm. Therefore,
(Ti)ken € K(L*(R™)) converges. Since 71(or(f)) € K(L*(R™)) for all A € R% and
K(L?(R™)) is closed in B(L?(R™)), we obtain T}, € K(L?(R™)) for all k € N. This implies
limy, T, € K(L2(R")). O

Corollary 3.13. If f € Ro, with mo(f) = 0, then m(Ayo A}) € K(L3(R™)) for all
geR.

Proof. Let first g € Rg. Then 7o(f *g*) = mo(f) *xmo(g)* = 0. Hence Lemma 3.12 shows
T1(((Ay, Ag))) = mi(Ag o Ay)

a6 0 oy dX
1.36 lim Xe(A) - mi(oa(f*9%))
k—o0 R* A

= lim [ mloa(frg) T e KIA®Y).

k—oo Ri
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If g € R arbitrary, then there is a sequence (gx)reny C R with
[Ag = Agll < llg = gkllsi — O for k — oc.

Therefore
mi(ApoAy) = kl;rgo mi(ApoAy,) € K(L?*(R™)). O

To generalise the statement of the previous corollary to f € R arbitrary, we need
another lemma.

Lemma 3.14. R Nker(mp) is || - ||si-dense in R Nker(mp).

Proof. First we prove, that Ry N ker(mp) is || - ||-dense in ker ().

Let f € C*(GR™) with 7o(f) = 0. Since the function ¢ +— ||7(f)|| is continuous, there is
a § > 0, such that ||m(f)|| < § for all 0 < ¢ < 4. By the argument in the beginning of
the proof of Proposition 3.3 there is a smooth fi € C.(GR"), with || f — fi|l» < §.

Let w € C2°([0,00)), such that 0 < w < 1, w(0) = 1 and w(t) = 0 for ¢ > §. Let
k(y,t,z) = fi(y,t,x) - w(t). Then k is compactly supported and smooth. If ¢ € [0, c0),

then
[me(R)I| = w(t) - lme(f)ll = w(t) - (Ime(fr = O+ (7 (ON) < 235

Therefore 9
€
[kl = sup |[[m (k)| < 3
te[0,00)

We define fo := fi — k. Then fy is smooth and compactly supported. We have
f2(y,0,2) =0 for all y,z € R™. Therefore fy € Ry Nker(m). We estimate

If = fellr < 1f = Al + [IK]lr <e.

This shows, that Rg Nker(m) is | - ||-dense in ker(myp).

Now let f € R Nker(m) and € > 0. The group R is exact. Theorem 1.52(iv) yields
R Nker(my) = R * ker(my). Hence there is r € R and k € ker(m), such that f =rx k.
There is k1 € Ro Nker(m), such that ||k — k1|, < m Since R is the || - ||s; closure of

Ry there is 1 € Ry, such that ||r —ri]|s < ;- Then rix ki € RoN ker(mp). Using

Proposition 1.39(i) we obtain

||f — 7 *k1||si = HT‘* k — T * kl”si
< |Irllsi - 1k = Ealle + 1l = 71llsi - [ Rallr <

This shows that Ro Nker(m) is || - ||si-dense in R N ker(mp). O
Corollary 3.15. Let f € R. If mo(f) =0, then m(AgoA%) € K(L*(R™)) for all g € R.
Proof. By the previous lemma there is a sequence (fi)reny € Ro Nker(m), such that
[Af = Agll < WIf = fallsi — 0 for k — oo.
Corollary 3.13 yields m (Ay, o AZ) € K(L?(R™)) for all k € N. Therefore,
mi(AgoAg) = lim mi(Ag 0 A7) € K(L*(R™)). O
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Theorem 3.16 (ker(m) is isomorph to K(L2(R"))).
The *-homomorphism w1 : Fixg — B(L?(R™)) restricts to a *-isomorphism

Wl’ker(rr(’;): kel‘(TFS) - K(L2(Rn))

Proof. By Theorem 3.8 m: Fixg — B(L?(R")) is injective. Therefore, 1 [ker(xy) 18
injective. Let F' € Fixg with mj(F) = 0. We have to show m(F) € K.
Let (y,€) € R™ x (R™\ {0}). Then

mo(F)(y,€) = (o)1 (m0(F)) (y’ H;!)

= (mo(oyg-1F)) <y, HEH)

= i(F) (157) =0

Let f,g € R. Then F(f) € R by Theorem 1.52(iii). Furthermore,
mo(F(f)) = mo(F)(mo(f) = 0.
Corollary 3.15 yields
m(F)om (Ao A}) =mi(Fo(ApoA))) =mi(ApgyyoA;) € K(L*(R™)).
Since Fixg is the closed linear span of {A, 0 Aj: a,b € R}, we conclude
m(X) om (X)* € K(L*(R™)).

Let ¢: B(L*(R")) — B(L?(R"))/K(L?(R™)) be the quotient map onto the Calkin algebra.
Then

la(mi (CON* = llg(m1(X))a(m (X)) = lla(m(X) o m (X)) = 0.
Therefore 71 (X) € ker(q) = K(L*(R™)).
Hence 71 [xer(np): ker(mg) — K(L?*(R™)) is well-defined. By Proposition 3.10 we have
K(L*(R™)) C 7 (ker(nf)). Therefore, 71 [ker(ny) Maps onto K(L?(R™)). O

Corollary 3.17 (Pseudodifferential Operator Extension).
The map sym := 7 o 7y '+ 71 (Fixg) — Co(R™ x S"1) yields a short exact sequence

0 — K(L*(R")) — 71 (Fixg) 2 Co(R™ x S"71) — 0.

Proof. Consider the diagram

0 — ker(nf) —— Fixg T, Co(R* x S*=1) —— 0

lﬂ-l ‘ker(‘irg) lﬂ'l lld

0 —— K(L2(R")) —— 71 (Fixg) —— Co(R" x S" 1) —— 0.

The upper sequence is exact and all vertical arrows are isomorphisms. Therefore, the
lower sequence is exact. O
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4 Connection to Pseudo-Differential Operators

Let H C Cu(R™) be the set of bounded continuous complex-valued function on R”
satisfying the condition h(A§) = h(€) for all ||€|| > 1 and A > 1.
Let B ={£ € R™: ||z|| < 1} be the open unit ball. Then ¢: B — R", z — Ty tan (Z1l=])

is a homeomorphism. For f € C,(R™), A > 0 and ¢ € S"~! we define f2(¢) = f(\€) and
obtain f* € C(S"1).

We define f*(£) = limy_oo f(AE) if the limit exists for all £ € S*~!. The function
f°: 8" ! — C need not to be continuous even if the limit exists for all £ € S"~1.
The following proposition describes functions f € Cy(R™), where f exists and gives a
continuous function on S*1.

Proposition 4.1. For f € Cy(R™) the following statements are equivalent:
(i) f=h+Ek forhe H and k € Cy(R"™).
(ii) £ € C(S*1) and the net (fM)aso converges uniformly to f>.

(iii) f o ¢ extends to a continuous function B — C.

Proof.
(i)= (ii): If € € S*7 L, then

: L B §
/\h_)nolo f(\) = )\11_)120 h(A) + k(A\) = h (Hf”) :

Let € > 0, There is R > 0, such that |k(¢)| < e for ||£]| > R. For £ € S ! and A\ > R,

we obtain
1£2°(6) = FAE] = [h(€) — B(AE) + k(AE)| < e.
Hence ||f>° — f||oo < &. Therefore, f* € C(S™ 1) with f* — f°°0 uniformly.
(i)= (iii): Let
(fo@)(&) ifléll<1
[ () if ¢l =1

Then u: B — C. Obviously u is continuous in all ¢ € B and extends f o ¢. Let € > 0
and & € S"~!. There is a 61, such that

|f(&) — [ (&)] < % for all & € S*™1 with ||& — & || < 1.

There is Ao > 0, such that || — f*||ls < § for all A > Ao.
We define § = 1 min{d;,1 — 2tan"'(\o)}. Let £ € B with [|§ — £|| < 6. We estimate

s
A

o i <te-a+ Jo- o <o+ a-nen <z <o
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We have

(Fod)(€) = <!§H tan(gHﬁ\)>=ftan 2 el (2)
Since tan (§]€]) > Ao, we obtain
|f°°(€o)—(f0¢)(€)\§‘f“’(fo)—f“’ <||5|>' ‘f""( )’

Hence |u(&) — u(€)| < e for all £ € B with [|& — €[] < 6.
(iii)= (i): Let u be the extension of f o¢ to B. Let w: B — [0,1] be continuous, such
that w(0) and w(&) = 1 for ||{]| > 5. Define hp(§) = w() - u (||§T|) Then hy € C(B).

Put kg = u — hp. Then kp|sn-1 = 0. Hence kg € Co(B). Define k = kg o ¢~ *
h=hpgo¢l. Then k € Co(R™). If ||| > 1 and A > 1, then

h(A) = (hp o ¢71)(XE)

o000 (1g7)

— w(¢ O (én) — (9.

Finally h + k = (hg + k) oot = f. O

Let S C Cp(R™) be the set of functions satisfying one and therefore all conditions of
the previous proposition. We have a map s: S — C(S*71) , f s f°°.

Proposition 4.2. S is a C*-subalgebra of Cy,(R™). The sequence
0= Cy(R") — S — C(S" 1) =0
15 ezxact.

Proof. By Proposition 4.1 the map a: C(B) — S given by a(u) = u|g o ¢! is a well
defined, surjective *-homomorphism. Since B C B is dense « is injective. If u € C(B),
then

s(a(u))(§) = )\li_}rgo(a(u))(/\f)
= Ali—>11(;lo ulp(¢™ 1 (AE)) = u(§)

for all ¢ € S"~1. Let ¢*: Co(R"™) — Co(B), f + fo¢. we obtain a commutative diagram

0 —— Cy(B) C(B) cE 1) —s 0
¢>*T la Jid
0 —— Co(R™) S L OsT — 0.

The upper sequence is exact and all vertical arrows are isomorphisms. Hence the upper
sequence is exact. O
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Since S = C(B) the spectrum of S is homeomorph to B. Thus S corresponds to the
compactification of R™ to a closed ball.
If f € Cy(R") we define My: L*(R") — Lo(R") by (Msg)(z) = f(z) - g(z). Then
M: Cy(R™) — B(L?(R")) is a *-homomorphism. M is the unique strictly continuous
extension of M : Co(R") — B(L?(R")) to M(Co(R™)) = Cy(R™). The strict topology on
Cy(R™) is the topology of uniform convergence on compact subsets.
For g € Cyp(R™) and f € S, we define D,y = My o F ' o MsoF € B(L?*(R™)). Then
1 Dgfll < 1lglloc - || flloo- Let P be the C*-algebra generated by {Dyr: g € Co(R™), f € S}.
Our aim is to prove R = 71 (Fixg).
If h € C.(R™), then

(Dggh)(x) = g(x) - (F~' o My o F)h)(x)
= [ o) 10 () 70 a.
Therefore, Dgyy is an order zero pseudo-differential operator.

Proposition 4.3. If g, f € Co(R™), then Dys € K(L*(R")).
Proof. Let first g, f € C.(R™). Then the computation above shows

(Mo F Vo Mpb(a) = [ gla) - F€) 2759 h(e) de.

Hence M, o F “loM ¢ is an operator with compactly supported integral kernel. Theo-
rem 2.4 shows M, o F~!1 o My € K(L*(R™)). Since K(L?(R™)) is an ideal in B(L*(R")),
we obtain Dy € K(L*(R™))

The assertion follows for f,g € Cp(R"), since C.(R™) is dense in Cy(R™). O

The following lemma is helpful to prove the inclusion R C m(Fixg).
Lemma 4.4. Let A C B(L?(R")) be a C*-algebra with a *-homomorphism
i A— Co(R™® x S such that K(L*(R™)) C ker(m).

Let Dy C Co(R™) be a dense set and Do C C(S™ 1) a set, such that the linear span of
Dy is dense in C(S"1). .
Assume that for every f € Do, there is f € S with f*° = f, such that Dyy € A and

T(Dgp)(y,&) = g(y) - (&) for all g € Dy.
Then P C A and

m(Dgg)(y,€) = g(y) - f7(§)  for all g € Co(R") and f € S.

Proof. Let fo € S with f§© € span(Dg). Then there are m € N, p1, ...,y € C and
Jis--+, fm € D2, such that f5© = o, wif1. By assumption there are f; € S, such that
£ = fi with

Dy € A and  7w(Dyy,)(y, &) = g(y) - f7°(€) for all g € Dy.
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We define f =" p;fi. Then f € S with f*° = f5°. We have Dgy = >, piDgy, € A

and
Dop)(:0) = > _ m(Dgs)(w,6) = _g(y) - £7°(5) = gly) - f=(€) for all g € Dy.
i=1 k=1

Since (fo—f)>° = 0 we have fo—f € Cy(R™) by Proposition 4.2. The previous proposition
yields
Dy(o—p) € K(L*(R™) C A with 7(Dys—p) =0 for all g € Dy.

Hence Dy, = Dyy + Dg(fo—p) € A with

T(Dys)(y: &) = g(y) - () = g(y) - f5°(§) for all g € Dy.

If g € Cy(R™), then there is a sequence (gx)ren € Dy with ||g — gk|loo — 0 for & — oc.
We obtain Dy = limg o0 D, 5, € A with

T(Dggo)(y,€) = Um w(Dg, 1, )(y,€) = im gr(y) - f5°(€) = 9(y) - 5~ (&).

Now let g € Co(R™) and f € S arbitrary. The *-homomorphism s: S — C(S"71) is
surjective and continuous. Hence it is open by the Open Mapping Theorem. Therefore,
the density of span(Ds) C C(S™!) implies that s 1(Ds) = {f € S: f> € span(D3)} is
dense in S. Hence there is a sequence (f)reny C s 1(D2), such that ||f — fi|| — 0 for
k — oco. We obtain Dyr = limy_,oc Dy, € A with

T(Dgs)(y,€) = lim m(Dyyp,)(y,€) = lim g(y) - (&) = g(y) - [*(E)-
Since all the generators D,y of P are in A. We conclude P C A. O
Proposition 4.5. K(L?(R")) C P.

Proof. Let k € L*(R™ x R™). If h € L*(R™), we define (Tih)(z) = [gn k( h(y) dy.
Using the Cauchy—Schwarz inequality we obtain ||Tk|| < ||k||2 - HhHg Hence Tk extends
to a bounded operator L?(R") — L2?(R") with ||T}|| < ||k|l2. We obtain a bounded
operator T: L?>(R® x R") — B(L?(R")), k + Ty. For g,f € C.(R"), we define
(9@ f)(x,&) = g(x)- f(&). Then g® f € L?*(R™ x R"). Using Lemma 5.5 we see, that the
linear span of D = {g® f: g, f € C.(R™)} is dense in L?(R" x R™). T, is a rank-one op-
erator and every rank one operator is of this form. Hence T'(L?(R™ x R")) C K(L*(R"))
is dense.* We define W: L2(R" x R") — L3(R" x R") by (¥(k))(x,&) = k(z, &) - e2mH®:E),
Then ¥ is a unitary operator. If g, f € C.(R™), then

(To(goph) () = / ox) - O =En(e) d

R’I’L

= (Mg F~" o Mp)h)(x).

AT(L*(R™ x R™)) is the set of Hilbert-Schmidt operators on L*(R™).
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Hence F - Ty (g f) = Dys € P. Since W is unitary ¥(span(D)) is dense in L*(R" x R").
Therefore, (T'oW)(span(D)) is dense in K(L?(R™)). Since P is closed, we have FoS € P
forall S € (ToW)(span(D)). Let K € K(L*(R")) and ¢ > 0. Then F 1o K € K(L*(R")).
So there is S € (T o ¥)(span(D)) such that

|IK—FoS|=|F'oK~-9|<e.
Since F - S € P this implies K € P = P. O
From now on fix w € C2°([0,00)) with 0 <w <1, wljp ;) = 1 and w]f,oc) = 0.
Lemma 4.6. Let f € CX°(R") with [g, f(x) dz = 0. For every & € R" the integral

Li©) = [ w7 (F0l

exists. We have Ly € S with

IFE) = [ FNele) T raes

The sequence (Lyg)ren € Co(R™) given by

Lia®) = [ 20w - (FHOT1O T

converges uniformly on compact subsets to Ly.

Proof. Let R > 0. Ff is smooth with (Ff)(0) = [gn f(x) dz = 0. The Mean Value
Theorem yields a constant C' > 0, such that |(ff)( )| < C||§|| for [|£]] < 2R. If |[£]| < R,
then

W) (FHOTONS X3 V) - C - NN < CRAT X3 0y (V).

Since CRA™! - X(%,oo)()\) e LY(Rx, %) this shows the existence of the integral.
The Dominated Convergence Theorem yields

|Lp(&) — Lix(6)] < /(1 )(1 —xx(\)-CR- % d\ — 0 for k — co.

Hence Ly, koo, L uniformly on {{ € R": ||€]| < R}. Therefore, L is continuous.
Next we prove that Ly is bounded. As above there is C' > 0, such that |(Ff)(§)| < C|¢||

for ||¢]| < 1. From
(; (Z agy)) () = 2mi)2" - [¢I2(F)(E)
j=1

we get [(Ff)(&)] < D& 2 for a constant D > 0. For & € S"~! we estimate

(FHAT ) <D xogA +C - Xao0A
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We define §(\) = D - X(071})\2 +C- X(l,oo))\il- Then 6 € L' (R, %) We estimate

Lol < [ 1FEN0TOIS

Fn (v 1||§||>‘ X

-/,

:/* o(N) %.

+

Therefore, L is bounded.
Let £ > 0. Since § € L'(R%, d—/\’\), there is § > 0, such that f(o,é) 6(N) d—)\)‘ <e. Let s > %

and & € S™!'. Then

| [Foota- [ SANFENATs6)

/*(ff)( &) Q—LS (o)

_ _ dA
< [ a-eGNOIENO0) T

+

< / () Q < / Q < e.
(0,1) AT Jos A

Hence the net (L%)s>o converges uniformly to [5. (Ff)(A ~1&) % onS"~L. Hence L € S
+
with L>®(&) = fR* (FfY(A"1&) d—)\)‘ by Proposition 4.1. O

If k,g € C.(R"), we define Cong(g) = k * g. We obtain
(F o Cong)(g) = Flkxg) = F(k) - Flg) = (Mrw) © F)(9)-
Hence Cony, = F~' o Mz o F € B(L2(R™)).
Theorem 4.7. m(Fixg) = P. If g € Co(R") and f € S, then
sym(Dgy)(y,£) = g(y) - £(8).

Proof. Let g,ki,ka € CP(R") with [z, ki(z) dz = [p, ko(x) do = 0. We define
f =k *k3 and fo(z) = w(A7Y) - A" - f(\r). By Lemma 3.6 there are fi, f2 € Ro,
such that (fi * f3)(y,t,2) = g(y +tx) -w(t) - f(x). Let A € R}. We compute

(o @) = [ (i 50\ A =) - hw) dy
= [N gle) w7 FNG ) )

~gta)- [ Be=9)-h) dy
= (M, o Cong, ) ()
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Hence m1(oa(f1 % f3)) = Mgo F 1o Mgy o F. If £ € R", then

(FHE) = - NwA™) - f(z) - 208 dg = wATY) - (FHATLE).

Let Ly and Ly as in Lemma 4.6. We have

x oy 1.36 .5 wy dA
mi(Ap 0 Af,) = lim . Xk(A) - mi(oa(fix f3)) =
+
— lim ) (M, 0 F~' o My F) 2
T oo Re Xk g F(fr) \

S
:Mgoj’:_lo <lim MLk> oF
k—o00
=MyoF 'oMpoF =Dy,
because Ly — Ly uniformly on compact subsets. Let (y,&) € R" x S"=1. We compute

sym(Dyz)(y, &) = (g o my ) (Dyr)(y, o)
= 7h(Ag, 0 M%), &0)
dA

= <liin /R Xe(N)ox(mo(fix f3)) >\> (y, o)

k—o0 jr

. * d)\
= khm Xke(A)mo(f1* f3) (Y, &o) By

— 00 R:

— o) im [ aEHRE) D

k—o00 Rjr

—o)- [ FNOle) T

2 g(y) - LF¥ (&)

In Lemma 4.6 we saw that |(F f)(A~!¢)| is dominated by a L*(R%, %)-function. Hence
second last equality holds by the Dominated Convergence Theorem.

Let E = 7 '(P) C Fixg. Then F is a C*-subalgebra of Fixg. The computation above
shows, that Ay o A}Q € F, for all fi, fo € Ry that are obtained from the construction
in Lemma 3.6. For the Stone-Weierstral argument in the proof of Theorem 3.7 we
only used functions obtained by the construction in Lemma 3.6. Therefore, the same
arguments as in the proof of Lemma 3.6 show 75 (E) = Co(R"™ x S"71).

Let F € ker(r}). Then m (F) € K(L?*(R")) by Corollary 3.17. Hence m(F) € P by
Proposition 4.5. That is F' € E. Therefore, ker(m(,) C E.

Let Fy € Fixg . Then there is F' € E with n{j(Fy) = n{(F). Hence Fy = (Fo—F)+F € E.
Therefore, Fixg = E, so that m (Fixg) C P.

To prove the other inclusion, we use Lemma 4.4. By the computations above, we have
Dngl*kg € m(Fixg) and sym(Dyr, .., ) (¥, %0) = 9(y) L ks (&) for all g € C°(R™) and

*
+
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Li, «k, With ky, kg € C2°(R") integrating to 0. Let D1 = C°(R") and Dy € C(S"!) be
the set of functions ¢ € C(S"™1) of the form q(¢) = ™ - ... - &M for mq,...,m, € N.
Then D is dense in Co(R™) and the linear span of Dy is dense in C(S"~!) by the Stone-
Weierstra8 Theorem. By Corollary 3.17 we have K(L?(R")) = ker(sym).
Let ¢ € Dy with ¢(&) = & -...- &, Let ky € C°(R™), such that [p, ko(x) dz = 0 and
(Fk2) = g(]|&]]) with g € C2°(]0,00)) not equal to 0. We constructed such a function in
Theorem 3.7. We define m = 7%_; m; and
¢ = miy [ g S
R A

Then C # 0. Let k1 = % OO0 k. Then ki € C°(R™) with

1

(FR)(€) = &(2mi)"a(€) (FR) ©).

Since ¢(0) = 0 we have [, ki(z) dz = 0. Let & € S*~*. We compute

I (@) = [ Flhn s k(37 160)
- [ Fmie) TG
Ry
= S a6 [ ATIFRIO ) S = o)

+

This shows that for every ¢ € Dy there is L € S, such that L> = ¢ and Dy, € mi(Fixg)
and sym(Dyr)(y, o) = g(y) - L™= (&o) for all g € D;. Hence Lemma 4.4 applies and yields
P C m(Fixg), with sym(Dg¢)(y,&0) = g(y) - [ (&) for all g € Co(R™ x S”_l) and
fes. O
Corollary 4.8. The sequence

0= K(L2(R")) — P 2 Cp(R™ x S™71) = 0
18 exact.
Proof. Since P = m(Fixg), this is the same the statement as in Corollary 3.17. O
4.1 Comparison to the Pseudodifferential Operator Extension

described by Higson and Roe

In Higson and Roe’s Analytic K-homology there is a brief discussion on a C*-algebra
generated by pseudodifferential operators on a smooth manifold.[2, pages 46-48] In the
case of R™ the construction is as follows:

Consider complex-valued function v on T*R"™ = R” x R™ with the following properties:

o u(z,tf) =u(z,§) for t > 1 and [|£]] > 1.

71



e u(z,£) vanishes for x outside a compact subset of R™.

Define the linear map T3,: C2°(R") — C2°(R™) by the formula

Tuhe) = [ uleOFN©S de.
The first condition on w implies that u gives rise to a function on the cosphere bundle
S*R™ = R™ x S"~1. This function is called the symbol of T,. T, extends to L?(R™),
so define the C*-algebra B(R™) generated by the T,. Higson and Roe claim that the
map sending T, to its symbol extends to a surjective x-homomorphism from B(R") to
Co(R™ x S*~1) whose kernel is precisely K(L?(R™)).

Using functions of the form wu(z,§) = g(x) - f(§) where g € C°(R") and f € H smooth
we obtain T, = Dyy € PB(R") and the symbol of D, is

sym(Dy)(z, &) = g(x) - f7(§) = g(x) - £(£)-

Lemma 4.4 yields P C B(R"). Both P and PB(R") are extensions of Cp(R"™ x S"~!) by
K(L?(R™)) with compatible *-homomorphisms onto Co(R"™ x S*~!). Hence P = PB(R").
Therefore, the generalised fixed point algebra Fixg of the scaling action on J < C}f(GR™)
is isomorphic to m (Fixg) = P = P(R").

By Remark 1.50 the C*-algebra B(R™) is Morita-Rieffel equivalent to an ideal of
Cr(R%, J). The existence of such a Morita-Rieffel equivalence is a special case of Debords
and Skandalis’ results in [5].

5 Appendix

5.1 Positive Linear Functionals

To define an inner product on C.(G, A) and in many other places in this work we need
to integrate functions with values in C*-algebras. We define and describe the integral
using positive linear functionals and deduce the needed properties from the standard
C-valued integral.

For this we first need two lemmas about positive linear functionals. A positive linear
functional ¢ on A is a linear map ¢: A — C, such that ¢(a) > 0 for all positive a € A.
We denote the set of all positive linear functionals on A by P(A).

Lemma 5.1 (Selfadjointness).
Let ¢ be a positive linear functional, then

¢(a*) = ¢(a) for alla € A and ¢(a) € R if a is self-adjoint.

Proof. First let a € A be self-adjoint. Then we have a = a™ —a™~ for a™,a™ € A positive.
Therefore, ¢(a) = ¢p(a™) — ¢(a™) € R as a difference of two non-negative numbers.
Now take an arbitrary a € A and write a = ay + iao, where ai,as are the real and
imaginary part of a. Since a1, as are self-adjoint, we obtain

#(a*) = ¢(ar + iaz) = Pp(a1) — ig(az) = P(a1) +ig(az) = ¢(a). O
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Lemma 5.2 (Boundedness [6, Lemma 1.9.5]).
Positive linear functionals are bounded.

Proof. Assume that ¢ is a positive linear functional and that there is a sequence
(an)nen € A of positive elements with ||a,| < 1, such that ¢(a,) > 2". Since the
positive cone is closed, we have 32°° 27", > SN 977¢,; 5o

[e'S) N
f (Z 2_”an> > f (Z 2_"an) >N
n=1 n=1

for all N € N, which is absurd. Therefore, there is M > 0, such that ¢(a) < M for all
a € A positive with ||a]] < 1.

If @ = a* € A with |ja]| < 1, then we write a = a™ —a~ for a™,a™ € A positive with
la*]l, la~ || < [lall <1 and obtain |¢(a)| < ¢(a™) + ¢(a”) < 2M.

Finally, for a« € A arbitrary, write a = a1 + tas for ai,as self-adjoint. Then
lla|l, [laz|| < |lal|, so that |p(a)] < |p(a1)|+|p(a2)] < 4M. This proves that ¢ is bounded
on the unit ball of A. O

The next lemma says that there are enough positive linear functionals to detect the
elements of A and their positivity or self-adjointness.
Its proof uses that for every self-adjoint element a € A there is a positive linear functional
¢, such that |¢(a)| = ||a|| and ||¢|| = 1. This fact is proved by a Hahn-Banach type
argument and is used in the proof of the Gelfand—Naimark Theorem, which says that
every C*-algebra has a faithful representation (see for example [6, Lemma 1.9.10] or [7,
Chapter 4.3]).

Lemma 5.3 (Separation and Positivity via positive linear functionals).
For a,b € A we have

(1) bla) = B(b) for all 6 € P(A) iff a = b;
(ii) ¢(a) >0 for all p € P(A) iff a > 0.
Proof. (i) First assume a € A such that ¢(a) = 0 for every ¢ € P(A). As mentioned

above, for a self-adjoint, we can pick ¢ € P(A) with ||a|]| = ¢(a) = 0. Hence a = 0.
For a € A arbitrary, we decompose a = ay + ias for ay, as self-adjoint. From

0= ¢(a) = ¢(ar) +ig(az),

we deduce ¢(a1) = ¢(az) = 0, since those are real numbers by Lemma 5.1. From
the self-adjoint case, we get a1 = ag = 0. Hence a = 0.

Now assume a,b € A, such that ¢(a) = ¢(b) for all ¢ € P(A). Then ¢(b—a) =0
for all ¢ € P(A) by linearity. Therefore, a — b = 0. Hence a = b. The other
implication is trivial.
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(ii) [8, Remark 2.6] Let 7: A — B(H) be a faithful representation on a Hilbert space H.
To & € H we associate the positive linear functional ¢¢(a) = (7(a)¢, §).
For a € A with ¢(a) > 0 for all ¢ € P(A) we obtain 0 < ¢¢(a) = (7(a)¢, &)
for all £ € H. Hence 7(a) is a positive operator on H. Those are exactly the
positive elements of B(#). We have 7(a*) = 7(a)* = 7(a), so a is self-adjoint by
injectivity of 7. By spectral permanence we have o4(a) = op)(7(a)) € [0,00).
Therefore, a is positive. The other implication is true by definition of positive
linear functionals. O

Remark 5.4. In Lemma 5.3 we used the existence of ¢ € P(A) with |¢(a)| = ||a|| and
ll¢|] = 1 when a is self-adjoint. The norm of a general element is not detected by its
values on positive linear functionals in that way. For example, consider the element
a=(83) € My(C). We have ||al| =1, but for ¢ € P (Mz(C)) with [|¢|| = 1 we obtain

0@l = 3 o0 +i6 (05| = 3y le NP+ 1o (T ) < v <L

5.2 C*-Valued Integration

Let X be a locally compact Hausdorff space and p a locally finite and strictly positive
Borel measure on X. Locally finite means that p is finite on compact subsets of X.
Equivalently, every point z € X has a neighbourhood of finite measure. Strictly positive
means, that u(U) > 0 for every nonempty open set U C X.
We will first work in the more general setting of Banach space-valued functions. Let
V' be a Banach space. We denote the vector space of compactly supported continuous
functions X — V' by C.(X,V) and we write C.(X) for C.(X,C).
For f € C.(X,V), the function X — R>g given by = +— || f(z)|| is compactly supported
and continuous. Therefore, the Lebesgue integral [|f[|1: = [y |[f(2)| du(x) exists. It
is easy to verify that || - ||; defines a norm on C.(X, V).
For f € C.(X) and a € V we obtain f.a € C.(X,V) with (f.a)(z) = f(z)a for x € X.
Let

M =span{f.a: f € C.(X),a € V} CC.(X,V).

To define the integral, we are going to use the following lemma to approximate com-
pactly supported functions by elements of M.

Lemma 5.5. Let f € C.(X,V). For everye >0 and U C X open with supp(f) C U,
there is h € M with supp(h) C U and ||f(z) — h(x)| < € for all x € X.

Proof. Every x € supp(f) has an open neighbourhood U, C U with compact clo-
sure and || f(z) — f(y)|| < € for all y € U,. By the compactness of supp(f), we find
Z1,...,Tn € supp(f) such that U,,,...U,, cover supp(f). Put a; = f(x;) and let
hi,...,hp: X — [0,1] be a continuous partition of unity for supp(f) subordinate to the
Ugy’s. That is, 0 < 37  hi(z) < 1for all z € X, i | hi(x) = 1 for € supp(f)
and supp(h;) C U;. Since supp(h;) C U,, is compact, we have h; € C.(X). Therefore,
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h=>%"", hi.a; € M and supp(h) C supp(hi) U...Usupp(hy,) C U. We estimate

| f(z z)| = H( ) f@) = hi(z)a;
=1
< Z || hi (e — hi(x)a;|
_Zh A f (@) — f ()

<Zhi(:c)'ezs. O
i=1

Corollary 5.6. The subspace M is dense in C.(X, V) with respect to | - ||1.

Proof. Let f € C.(X,A) and € > 0. Since X locally compactness, there is an open
U C X with compact closure and supp(f) C U. Because p is locally finite and strictly
positive, we have 0 < p(U) < p (U) < 0.

By Lemma 5.5, there is h € M with supp(h) C U and

€
|f(z) = h(z)]| < m for all x € U.

Then

I - hul—/nf o) dula /Hf Dl dp(e) < p(U) -~ = <. O

The next proposition defines and characterises the integral. We write V' for the
topological dual space of V.

Proposition 5.7 (Banach space-valued integral).
For every f € C.(X,V), there is a unique I(f) € V, such that

615 = [ oof duforanoeV” (3)

The map I: Co(X, V) — V given by f v+ I(f) is linear and bounded with || I(f)|| < || fl1-
For f € Ce(X) and a € V, we obtain I(f.a) = [y f du-a.

Proof. Let f € C.(X,V). To prove that (3) determines I(f) uniquely if it exists, we
assume a,b € V, such that ¢ (a) = [y ¢ o f du = $(b) for all $ € V'. Then a = b, since

V' separates points of V.
Assume that we have fi, fo € C.(X,V) with I(f1),I(f2) € V, such that (3) holds for

both. For A, Ay € C, we obtain

6O I(h) + I (f2) D n /X b0 fi djths /X Gofy di= /X b0 (M fi+ dofs) du
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This shows the existence of I(A1f1 + Aafa) = AMI(f1) + Xel(f2
By the Hahn-Banach Theorem, there is ¢ € V'’ with |¢ (I(f))
We obtain

)-
|

() and [|o[] = 1.

11 =l I(H)) |2

/w NI dpu(a)

< /X 1@ duz) = If]].

For f € Co(X),a €V and ¢ € V',

¢<</Xf du) a) [ £ anota) = [ s@ota) antw) = [ 6(@a) aut
~ [ 6o (ra) an

showing that I(f.a) exists with I(f.a) = [ f dp-a.

This implies the existence of I(h) for all h € M and that I is linear and bounded on M.
Since M is dense in C.(X,V) (Corollary 5.6) and V is complete, the bounded map I
extends to a linear and bounded map I : C.(X,V) — V.

Now let f € C.(X,V) arbitrary. We find a sequence (hy,)nen € M converging to f. For
¢ € V', we obtain

’/Xqﬁof du—/ngohn du‘g/ 16 (f(2) — hn(2))| du(z)

<16 [ 170) = hala)] (o)
1611+ 1f = hallan > 000,

Hence

6(1(7)) = 6 (Jim (1) = lim &(7 (b)) = lim [ g by du= IR
X
This yields the existence of I(f). O

From now on, we write [y f duor [y f(x) du(x) for the element I(f) from Proposi-
tion 5.7. Next we collect some properties of the integral that we need later.

Lemma 5.8 (Bounded linear maps and integration).
Let W be another Banach space together with a bounded linear map T : V — W.
For f € C.(X,V) we obtain T o f € C.(X,W) and

| T d,u:T(/Xf du>.

76



Proof. 1t f(x) =0, then (T o f)(z) = 0. Hence supp(7T o f) C supp(f) is compact.
Let v € W/ then ¢ oT € V' and

w(:r(/xf du))-(on) (/Xf du>@/x(¢oT)0f du=[ voTer) i

By Proposition 5.7 this proves the claim. O

Lemma 5.9 (Iterated Integration).
Let Y be another locally compact Hausdorff space with a locally finite Borel measure v.
Let f € Co(X x Y, V). The functions

F:Y =V, yr—>/ f(z,y) du(z) and G: X = V; azr—>/ f(z,y) dv(y)
X Y

are continuous with compact support. fY F dv = fX G du, that is,

/}/(/Xf(:c,y) du(ax)) dv(y /</f$y ) du(y ) du().

Proof. First we show that F' is well-defined and continuous.

Let yo € Y. There are K1 C X and Ky C Y, such that supp(f) C K x Ky. The support
of the function = — f(z,yo) is a subset of K1, therefore, F(yo) = [ f(z,y0) du(X) e V
by Proposition 5.7. Hence F' is well-defined.

Let € > 0. For all x € K, there is a neighbourhood U, C X of x and a neighbourhood
V: of yg, such that

/ / € / /
— _ for all U. d V.
||f(l' ’y) f(‘rvyO)H < 2((K1) ¥ 1) orallz € Uy andy €V
Since K is compact, there are x1,...,x, € Ki, such that U,,...,U,, cover K;. Put

V=V,Nn...0V,, and let y € V. For x € K;, we obtain an ¢ = 1,...,n, such that
z € Ug;. We estimate

g

£z, y) — f(yo)ll < IF (@) — fivo)ll + 1 f (@ y0) — flz,y)| < UOESE

This leads to
17 = Pl = 1| [ fG@9) duta) = [ fe.m) au@)]
< [ W~ f )l duta) <
proving that F'is continuous. If y ¢ Ky, then f(z,y) = 0 for all € X. Hence F(y) = 0.
This shows supp(F') C Ka. Therefore, F' € C.(Y,V).

Using the same arguments we get G € C.(X,V).
Since u|k, and v|g, are finite, there is a unique product measure p|x, @v|x, on Ki x Ks.
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Since f € C.(X x Y,V), there is M > 0, such that || f(z,y)| < M for all x € X and
y€eY. Let ¢ € V', we have

/ (@0 £ )] d(ul ® vlrs) < llBIMu(K)w(Ks) < oo
Kix Ko

Therefore, we can apply Fubini’s theorem to get

gb(/dey):/ngode
(o) o
—/Kl<K2¢ofdu> dp

:/XqSoG dpy .

Hence [,, F dv = [ G dpu, by Proposition 5.7. O

Lemma 5.10 (Dominated Convergence Theorem).

Let (fr)nen € Ce(X, V) be a sequence and f € Co(G, V) with fp(x) — f(x) forn — oo
for all z € X. If there is g € L*(X), with || fo(2)|| < g(z) for all z € X, then [y fn du
converges weakly to [ <[ dup.

Proof. Let ¢ € V'. Then ¢ o f,, converges pointwise to ¢ o f and

(@0 fo) (@) < [l@ll|lfn() ]| < llphill - g().

Hence Lebesgue’s Dominated Convergence Theorem applies and we obtain
lim ¢</ fu du) 2 tim [ bofu du [ ooy duzcb(/ / du)-

Since a Haar measure p on a locally compact group G is locally finite and strictly
positive, we can use our integral for C.-functions G — V. The next lemma states the
translation invariance of the integral.

O]

Lemma 5.11 (Translation Invariance).
Let g € G and f € Ce(X,V). Then \y(f) € Ce(X,V), where (A\y(f))(z) = f(g7 ) for
r € X, and

/Xf d,u:/X/\g(f) du or /Xf(:c) dp(z) :/Xf(gla:) du(zx) in the other notation.
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Proof. Since v,: G — G, z — g 'z is continuous, so is A\y(f) = f o v, We have

gsupp(f) = supp(Ag(f)). Therefore, Ay(f) € Ce(G, V).
We assume the Haar measure p to be left invariant, that is, p(gA) = p(A) for a Borel
set A C G. We have

(), m)(A) = 1 ()™ (A4)) = 1 (94) = p(A)

for all Borel sets A C G, showing (v4)«pt = p. For ¢ € V' we obtain

/X¢O(Ag(f)) duz/xqbofoyg du=/}(¢ofd((yg)*ﬂ)@:)¢</)(f dﬂ>_

This proves the claim by Proposition 5.7. O

Remark 5.12. If G is unimodular, such that p is also right invariant. We obtain

/f du(z /fa:g ()

with the same arguments as in lemma 5.11. In this case we have u(A4) = u(A™1) for all
Borel sets A C GG, and a similar argument as above shows

/f 1) du(g /f dp(g

Next we collect properties of the integral with values in a C*- algebra A.

Lemma 5.13 (Properties of the C*-valued Integral).
Let f € C.(X, A).

i) (fy F@) dul@))’ = [y f@)° du(o).

(ii) If f(z) is self-adjoint for all x € X, then [y f du is self-adjoint.

(iil) If f(x) is positive for all x € X, then [y f du is positive.

(iv) If f(z) is positive for all z € X and [y f du =0, then f =0.
)

(v) Ifa€ A, then f-a € C.(X,A), where (f -a)(z) = f(x)a, and
/Xf-a du:/Xf du -a.

(vi) Ifa € A ,then a- f € C.(X, A), where (a- f)(x) = af(x) and

/Xa‘f du:a‘/Xf du .
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Proof. (i) Since the involution on A is isometric, (i) follows immediately from
Lemma 5.8.

(ii) Provided f(z) is self-adjoint for all x € X, we use (i) to obtain

(o) s = 0

(iii) Positive linear functionals are continuous by Lemma 5.2. Therefore, we can use
them in equation (3).
Let f(x) be positive for all z € X and ¢ € P(A). Then

¢(/Xf dﬂ>(3=)/x¢0f a0,

because ¢ (f(x)) > 0 for all z € X. Therefore, 5.3(ii) implies [ f dp > 0.

(iv) If f(x) is positive for all 2 € X and [, f du =0, then

O:¢</Xf d,u,>(3:)/X¢)Of dp for all ¢ € P(A).

Since ¢ o f > 0 and p is strictly positive, this implies ¢ o f = 0. Hence for x € X,
we obtain ¢ (f(x)) =0 for all ¢ € P. Using 5.3(i), we conclude that f(x) = 0.

(v) The left multiplication map m,: A — A given by b — ab is bounded. Therefore,
Lemma 5.8 applies and yields

/Xf-aduzma</Xf du>=/Xmaof du:/Xf dia.

(vi) One could argue as in (v) or use (i) to get

[ @) aute) = ([ (@ e auto))
O ([ e awar) <o [ ) duo). O

5.3 Equivariant Hilbert Modules

Let G be a locally compact group with Haar measure pu.

The Hilbert space L?(G) carries a natural action by left translation of G. We want to
define an action of G on L?(G, A) that is compatible with the Hilbert module structure
and with a given action of G on A.

An action (ag)geq of G on A by *-automorphisms is called continuous if for all a € A
the map G — A given by g — «g4(a) is norm continuous.

Let A be a C*-algebra with a continuous G-action or briefly, a G-C*-algebra.
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Definition 5.14 (Equivariant Hilbert Module). A linear action (74)4ec on a Hilbert
A-module £ is called Hilbert module action if it satisfies the following conditions.

(i) The action is strongly continous, that is, for every £ € £ the map G — £ given by
g — 74(&) is norm continuous.

(i) v4(&-a) =7v4(&) - agla) for § € E,a € Aand g € G.

(i) (5(€),79(n) = ag((€,m)) for all &,y € € and g € G

A Hilbert A-module &€ equipped with a Hilbert module action (v,)4ec is called a G-
equivariant Hilbert A-module or briefly, a Hilbert G-A-module.
We write B(E) for the set of of G-equivariant adjointable maps £ — .

It is easy to see, that BE(E) is a C*-subalgebra of B(E).

Example 5.15. (i) If we consider A as a Hilbert A-module the action (ay)sec turns
it into a Hilbert G-A-module. The first condition is just the continuity, and the
second condition is the multiplicativity of the C*-algebra action (ayg)gec-

The third condition is satisfied, since for a,b € A, we have

(ag(a), ag(b)) = aga)*ay(b) = ag(a’d) = ag ({(a, b)) -

(ii) For A = C with the trivial G-action, Hilbert module actions are just strongly
continuous actions by unitaries on Hilbert spaces.

For a Hilbert module action (v4)geq, it follows that

eI = 1€, 3 @M 2 ey (€, 172 = 1€, )72 = ).

Therefore, every v, is an isometry.
To construct a tensor product of Hilbert G-A-modules we need to extend actions on
dense submodules.

Lemma 5.16 (Extension of G-actions). Let D C & be a dense submodule of a Hilbert
A-module £, such that there is a linear action (v4)geq on D satisfying (i), (ii) and (iii)
from Definition 5.14. Then (vq4)gec extends uniquely to a Hilbert module action on &,
so that € becomes a Hilbert G-A-module.

Proof. Let g € G. As above, we see that v, is an isometry on D. Since £ is complete,
the map v4: D — D C &£ extends to a linear and isometric map 7,: £ — €. Since this
extension is the only isometric one, this shows the uniqueness part.

We still have v, 0 75 = g1, since these maps agree on the dense subset D. Therefore,
(V9) ye is @ linear action on €. It remains to verify (i), (i) and (iii) from definition 5.14.
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(i) Let & € £. Choose {p € D with || —&p| < 3.
Let go € G. Since g — v4(£p) is continuous, we find a neighbourhood U of gg such
that

170 (60) = Fa(€0)1 = 170 (60) = 4(€D)| < 5 for all g € U.

For g € U, we obtain

1720 (6) = Ta(©)ll < 190 (6) = Tao (€0) | + 190 60) = TaE0) | + I (En) = 7u(©)]
< llg = éoll + 5+ llép — &l <=

This shows that g — ¥4(§) is continuous.

(ii) Let € € £ and a € A. Choose (&,)nen C D with &, — &. Then &, - a € D for all
ne€Nand &, -a — £-a. Thus

Yg(§ - a) = }lingg(én a) = Tllig@g(i)ag(a) = 74(&) - ag(a).

(iii) Let &, n € &. There are (§,)neN, (Mn)neny C D with &, — £ and 1, — 1. Then

(T, T(m) = Tim (9(€0), 7(n)) = T ag ({En ) = 0 (Em) . O

n—oo

Let € be a Hibert G-A-module. The G-action (v4)4ec on € induces an action on B(&)
by *-automorphisms in the following way.
For T € B(E), we obtain

(g0 T ong-1) (€):m) = ag ({(T 0 74-1)(€),74-1(n)))
= ag ((1g-1(€), (T* 0 y-1) (1))
= (&, (ygoT* oyy-1) (n))

This shows that v, 0 T'o 7,1 is adjointable with adjoint v, o T™ 0 y4-1.
Hence we have a well defined map p,: B(E) — B(E) given by T+ 75 0T 0 y,-1.
We have

Pg © pr(T) = pg(yno T oyp-1) =90 (Yo T oyp-1) 0 Yg-1 = Ygn © T 0 Y(gn)-1 = Pgn(T).

Furthermore, 71 = idg implies p; = idpg), hence every p, is invertible.

Obviously, p, is multiplicative, and above we proved py(T™*) = py(T)*. Therefore,
(pg)gec is an action by x-automorphisms. We always endow B(&) with this canoni-
cal action.

Now let B be another G-C*-algebra with action (8,)4ec and F a Hilbert G-B-module
with action (d4)gec together with a G-equivariant *-homomorphism p: B — B(&).

Lemma 5.17 (Induced Action on Tensor Products).
The Hilbert A- module F ®p £ is a Hilbert G-A module with the unique action (74)gec

satisfying mg(§ @ n) = 04(&) @ v4(n).
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Proof. For g € G, we have a bilinear map
Fx €= FRREE (€m) = 54(€) @ 7,(n).

Since

it induces a linear map m,: F ®a1g E—F ®2§g E. Now

Tgn(§ @ 1) = 0gn(£) @ Ygn(n) = g (61(§)) @ 7 (49(n)) = 7g © TH(§ @ 7).

Linearity yields mg;, = 74 o 7. And since 7 = id every my is invertible. Hence

FRyee
(mg)geq is a linear action of G on F ®aBlg £.
Now we verify properties (i), (ii) and (iii) from Definition 5.14.

(i) Since [[E@n] < ||&] - [Inl|, the canonical map F x & — .7-"®8§g € is continuous with
respect to the product topology on F x &.
Now let ¢ € G. The map g — (64(&),74(n)) is continuous, since both entries
are continuous by the strong continuity of (74)geq and (dg)geq. Thus the map
g— mg(§®@n) =04(§) ®74(n) is continuous. An arbitrary element ¢ € f®§g is a
linear combination of elementary tensors. Therefore, g — 7,4({) is continuous as a

sum of continuous functions.

(ii) Let a € A. We have

mg (E@n)-a) =mg (@ (1 a))

= 04(§) ®4(n - a)

= 04(8) ® (79(n) - g(a))

=mg(§®n) - ag(a).

By linearity, (ii) holds for every ¢ € F ®a1g E.
(iii) Let &1,& € F and n1,m2 € £. Then
(mg(§1 @ m), mg(&2 @ m2)) = (0g(E1) © dg(m1), 09 (€2) ® 74(12))

= (19(m) ¢ ((84(£1), 04(€2))) Y9 (112))
= (19(m), pg (¢({€1,€2))) 79(n2))

= (Y9 (m), vg (({&1,€2))72))

=ay (&L @M, @ n)).

Linearity yields (iii) for arbitrary elements of F ®%% &.

By Lemma 5.16, the action (74)geq on .7-"®a1g5 extends uniquely to an action on F®pg¢&,
such that F ® g £ becomes a Hilbert G-A- module. O
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5.4 The Twisted Convolution Algebra C.(G, A)

To define a the x-algebra structure on C.(G, A) we need the following lemma.

Lemma 5.18. If m: G x G — A is a continuous function, then the function
f: G xG— A given by (g,x) — az (m(g,x)) is continuous.

Proof. Let (x9,90) € G x G and € > 0. Since (ag)geq is continuous, there is a neigh-
bourhood U if xg € G, such that

€

|l (m(g0,0)) — e (M(go, x0)) || < 2 for all x € Uj.

By continuity of m, there are neighbourhoods Us of zg and V' of g¢ in G, such that
lm(g, z) — m(go,x0)|| < % forallz € Upandy € V
For (g,z) € (U1 NUz) x V we obtain
1/ (g %) = f(g0,z0)|| < llaa (m(g,2)) — oz (m(go, o)) ||
+ [lo, (m(g0, o)) — aa (M(go, 20)) || < e O
Let f1, fo € C.(G, A). The function
h: G x G — A given by (9,2) = fi(z)az(fa(z™'g))

is continuous by Lemma 5.18. If x € supp(fi) and 27 'g € supp(fz), then
g € xsupp(f2) C supp(f1)supp(f2). Hence

supp(h) C supp(f1) x (supp(f1) supp(f2))
is compact. Therefore, h € C.(G x G, A). We define
(hr o) = [ Bo.a) dp(e) = [ fi@)-aulfala™0)) du(o)

Lemma 5.9 yields f1 * fo € C.(G, A).
If f € C.(G,A) we define f*(g) = ay(f(g71))*. Since supp(f*) = supp(f) is compact,
we obtain f* € C.(G, A).

Proposition 5.19. The above structures turn C.(G, A) into a x-algebra. The norm ||-||1
is submultiplicative and || f*||1 = || f|l1 for all f € C.(G, A).

Proof. Tt is easy to see, that (f1, f2) — f1 * fo is bilinear. For f, f1, fo, f3 € C.(G, A) we
obtain

e e 06 = [ ([ Aane) 4w ) el o) o)
2 [ ) ([ anlBt et ) auty
5i8/ Ay ( Foly™ @)y 1, (fa(z"g)) du(iﬁ)) du(y)
2 [ oy (2= B0 dhs) = (1 2+ ) 0)
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Hence * is associative. It is easy to see (fi + f2)* = fi — f3 and (A\f)* = Af* for X € C.
Furthermore we have

(f)"(9) = ag(f*(g7")" = agoag1(f((g7") ™) = f(9)
and

(F1+ fo)"(9) "2 ( /G an(folz g )" - fi(2)" du(sc))

5.8

L /G e (Fa(a g™ g (f1(2)) dia(a)
= / aa(Faa™1))" - (0 0 6e1,) (fi(g™12))" ()
/ f3(2) - on(f: (2 g)) dulz) = (£5 * £1)(9)-

Hence C.(G, A) is a x-algebra.
Using Fubini’s theorem, we obtain

/1% f2ll1 _/ (/ 1£1(@)] - lew (folz™ )| dp(z )> dp(z)

= [1a@l- ([ 1269l duiw ) dnto
2 1@ du@)- [ 1861 o) = 1Al -1l

Finally, Remark 5.12 implies

1 H1—/ log (£ (g™ )"l dpalg /Hf “HIF dulg) = 1f1- O

The following lemma shows the existence of approximate identities in C.(G, A).

Lemma 5.20 (Approximate Identities).
There is a net (u;)icr € Co(G, A) with ||u;|| <1 and u} = wu; for alli € I, such that

lf—f*xull1 — 0 and ||f —wui* f]1 — 0 forall f € C.(G, A).

Proof. Let (aj)je; be an approximate identity of A. Let I be the set of compact
neighbourhoods of the identity in G. For every U € K, there is a continuous function
Yu: G — [0,00), such that supp(¢y) € U and [,y dp = 1. We define I = J x K.

Then I is directed by
(jl, Ul) S (jg, Ug) if and only if jl S jgandUg g Ul.

For (j,U) € I, we define u(; ) = Yu.a;. Then (u¢py)(oer is a net in Ce(G, A) with
ugoll < 1.
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Let f € C.(G) and a € A, with f # 0 and a # 0. The proof of Lemma 1.21 shows, that
there is U; € K and K C G compact, such that U supp(f) € K and

1f(z) = flg "

€

)| < =————= forall z € G and g € Uj.
3llall - u(K)

There is Uy € K, such that
€
la —ag(a)]| < =——= for all g € Us.
! 3|1 f111

Define Uy = Uy N Us.

There is jo € J, such that ||a — ajal| < ﬁ For (7,U) > (jo,Up), we estimate

| (@)aa— (ulj) * fa)(@)] < H [ vo@r@ita - ag(a) du(g)H

; \ [ v s - (o) du(g)H

Therefore

If-a =gy * fally < ||f.a = flaja)lls + [ f-(aja) —uU,5) * f.ally

2
< [Iflhlla = aial + ge <e

This implies ||f — u; * f|j1 — 0 for all f € M. By Corollary 5.6 M is dense in C.(G, A).
Therefore we obtain [|f — u; * f||1 — 0 for all f € C.(G, A) by an §-argument.

Using ||f]l1 = ||f*|l1, we obtain || f — f % w;||s — 0 for all f € C.(G, A).

We can arrange u; = u; by taking %(u, + u}) instead of u;. O
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