
Georg-August-Universität Göttingen

master thesis

The Generalized Fixed Point Algebra for
the Scaling Action on the Tangent

Groupoid

Philip Miller

supervised by
Prof. Dr. Ralf Meyer

cosupervided by
Prof. Dr. Dorothea Bahns

March 23, 2017



Abstract

The (reduced) C∗-algebra of the tangent groupoid of Rn is a continuous field of C∗-
algebras over the interval [0,∞), such that the fibre at zero is isomorphic to C0(Rn×Rn)
and all the other fibres are isomorphic to K(L2(Rn)). This is called a deformation of the
noncommutative C∗-algebra K(L2(Rn)) to the commutative algebra C0(Rn × Rn).
There is scaling action of R∗+ on the reduced C∗-algebra of the tangent groupoid. We
prove that this scaling action is continuously square-integrable in the sense of Meyer [1]
when restricted to an ideal. The generalised fixed point algebra for this action is an
extension of C0(Rn × Sn−1) by K(L2(Rn)). It is isomorphic to the so-called pseudodif-
ferential extension as described by Higson and Roe.
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Introduction

In the first chapter we present Meyers theory of square-integrable group actions on C∗-
algebras[1]. For a G-C∗-algebra A with action (αg)g∈G, we define the G-equivariant
Hilbert A-module L2(G,A) and square-integrable functions G→ A. An element of A is
called square-integrable if the function g 7→ αg(a)∗b is square-integrable for all b ∈ B. If
the square-integrable elements are dense in A, then A is called square-integrable.
To define the generalised fixed point algebra one needs further requirements invoking the
crossed product of the action. We represent the twisted convolution algebra Cc(G,A)
on L2(G,A) to obtain the reduced crossed product C∗r (G,A).
We define continuously square-integrable group actions. For these actios a C∗r (G,A)-
module is constructed and the generalised fixed point algebra is defined, such that this
Hilbert module gets a bimodule over it and the crossed product.
The second chapter deals with Locally Compact Hausdorff Groupoids and their reduced
C∗-algebras . We discuss the tangent bundle TRn and the pair groupoid PRn and
prove that C∗r (TRn) ∼= C0(Rn) and C∗(PRn) ∼= K(L2(Rn)). We introduce the tangent
groupoid of Rn with its fibre epimorphisms.
In the third chapter We define the scaling action on the reduced C∗-algebra of the tangent
groupoid and prove that it is continuously square integrable on an appropriate ideal. The
generalised fixed point algebra is an extension of C0(Rn × Sn−1) by K(L2(Rn)).
In the fourth chapter we consider the C∗-algebra P generated by pseudodifferential
operators on Rn of the form Dgf := Mg ◦ F−1 ◦Mf ◦ F , where Mg is a multiplication
operator by a C0-function, F is the Fourir transform and Mf is a multiplication operator
by a function on Rn that extends to the compactification of Rn to a closed n-dimensional
ball. We prove that that P is isomorphic to the generalised fixed point algebra. We
obtain a short exact sequence K(L2(Rn)) ⊂ P π−→ C0(Rn × Sn−1) with

π(Dgf )(x, ξ) = g(x) · lim
λ→∞

f(λξ).

Finally we prove that P is the C∗-algebra mentioned in Higson and Roe’s Analytic
K-homology [2, pages 46-48] generated by pseudodifferential operators.

1 Square-Integrable Group Actions and The Generalized
Fixed Point Algebra

1.1 The Hilbert Module L2(G,A) and Square-Integrable Functions

We define and characterise the G-equivariant Hilbert module L2(G,A) for a locally
compact group G acting continuously on a C∗-algebra A. This Hilbert A-module should
generalise the Hilbert space L2(G) of square integrable functions G→ C with the action
by left translation. We will define L2(G,A) as a completion of the space Cc(G,A) of
compactly supported functions G→ A with respect to the A-valued inner product

〈f1, f2〉 =

∫
G
f1(g)∗f2(g) dµ(g).
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We show that there is a natural isomorphism between L2(G,A) and L2(G)⊗A.

The Hilbert Module L2(X,A)

Let us first review some facts about Hilbert modules and fix the notation.
Let E be a Hilbert A-module. We write B(E) for the C∗-algebra of adjointable operators
on E . For ξ, η ∈ E , we define a so-called rank-one operator θξη ∈ B(E) by θξη(ζ) = ξ·〈η, ζ〉.
The closed linear span of all rank-one operators is denoted by K(E). It is a closed two-
sided ideal in B(E) and its elements are called compact operators on E .
Let B be another C∗-algebra and F a Hilbert module over B. Given a ∗-homomorphism
f : B → B(E) we form the A-module F ⊗B E . It is the completion of the algebraic

B-balanced tensor product F ⊗alg
B E with respect to the A-module structure defined by

(η ⊗ ξ) · a = η ⊗ (ξ · a) and the A-valued the inner product

〈η1 ⊗ ξ1, η2 ⊗ ξ2〉 = 〈ξ1, f (〈η1, η2〉) ξ2〉 .

If B = C we use the canonical map C → B(E). In this case, we omit the subscript and
just write F ⊗ E .
Let X be a locally compact Hausdorff space and µ a locally finite, strictly positive Borel
measure on X. Before we turn to the G-equivariant case, we define the Hilbert A-module
L2(X,A) and show that it is isomorphic to L2(X)⊗A.
If f ∈ Cc(X,A) and a ∈ A, then we define (f ·a)(x) = f(x)·a and obtain f ·a ∈ Cc(X,A).
Obviously, Cc(X,A) is a right A- module with this multiplication. For f1, f2 ∈ Cc(X,A)
the map x 7→ f1(x)∗f2(x) is continuous and compactly supported. Hence the pairing

〈f1, f2〉 =

∫
X
f1(x)∗f2(x) dµ(x) ∈ A

is well-defined by Proposition 5.7.

Proposition 1.1 (Cc(X,A) is a pre-Hilbert A-module).
The above multiplication and inner product turn Cc(X,A) into a pre-Hilbert A-module.

Proof. For f ∈ Cc(X,A) we have f(x)∗f(x) ≥ 0 for all x ∈ X. Therefore, 5.13(iii)
yields 〈f, f〉 ≥ 0.
If 〈f, f〉 = 0 we have f(x)∗f(x) = 0 for all x ∈ X by 5.13(iv). Hence f = 0 by the
C∗-condition. If f1, f2 ∈ Cc(X,A) and a ∈ A, then

〈f1, f2〉∗ =

(∫
X
f1(x)∗f2(x) dµ(x)

)∗
5.13(i)

=

∫
X

(f1(x)∗f2(x))∗ dµ(x)

=

∫
X
f2(x)∗f1(x) dµ(x) = 〈f2, f1〉

and

〈f1, f2 · a〉 =

∫
X
f1(x)∗f2(x)a dµ(x)

5.13(v)
=

∫
X
f1(x)∗f2(x) dµ(x) · a = 〈f1, f2〉a.
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Definition 1.2 (The Hilbert A-module L2(X,A)).
The Hilbert A-module L2(X,A) is the completion of the pre-Hilbert A-module Cc(X,A).

We view Cc(X,A) as a dense submodule of L2(X,A) and write ‖ · ‖2 for the norm
induced by the inner product. For A = C, we obtain the Hilbert space L2(X) of
square-integrable functions on X. Considering A as a Hilbert A-module with right
multiplication and 〈a1, a2〉 = a∗1a2, we obtain the Hilbert A-Module L2(X) ⊗ A, where
the inner product simplifies to

〈f1 ⊗ a1, f2 ⊗ a2〉 = 〈a1, 〈f1, f2〉a2〉 = 〈f1, f2〉a∗1a2.

Hence we have ‖f ⊗ a‖ = ‖〈f, f〉a∗a‖1/2 = ‖f‖2 · ‖a‖ by the C∗-condition. If f ∈ Cc(X)
and a ∈ A , then we write (f.a)(x) = f(x) · a for and get f.a ∈ Cc(X,A) ⊆ L2(X,A).
The next proposition shows that the elements of the form f.a span a dense subspace of
L2(X,A).

Proposition 1.3. The subspace

M := span {f.a : f ∈ Cc(X), a ∈ A}

is dense in L2(X,A).

Proof. Let f ∈ Cc(X,A) and ε > 0. Let U ⊆ X be open with compact closure and
supp(f) ⊆ U . We have 0 < µ(U) ≤ µ

(
U
)
< ∞. By Lemma 5.5, there is h ∈ M such

that
supp(h) ⊆ U and ‖f(x)− h(x)‖ < ε√

µ(U)
for all x ∈ X.

We estimate

‖f − h‖22 =

∥∥∥∥∫
X

(f(x)− h(x))∗(f(x)− h(x)) dµ(x)

∥∥∥∥
≤
∫
X
‖f(x)− h(x)‖2 dµ(x) =

∫
U
‖f(x)− h(x)‖2 dµ(x)

< µ(U) · ε2

µ(U)
= ε2.

Hence ‖f − h‖2 < ε. This shows Cc(X,A) ⊆ M . So that L2(X,A) = Cc(X,A) ⊆ M .
Therefore, M is dense in L2(X,A).

Theorem 1.4. There is a unique isomorphism of Hilbert A-modules

Φ: L2(X)⊗A ∼−→ L2(X,A) with Φ(f ⊗ a) = f.a for f ∈ Cc(X) and a ∈ A.

Proof. Let f ∈ L2(X) and a ∈ A. There is a sequence (hn)n∈N ⊆ Cc(X,A) converging
to f in the L2-norm. We obtain

‖f ⊗ a− hn ⊗ a‖ = ‖f − hn‖2 · ‖a‖
n→∞−−−→ 0.
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Hence Φ(f ⊗ a) = f.a for all f ∈ Cc(X,A) determines Φ uniquely on all elementary
tensors of L2(X)⊗A. Since these span a dense subspace of L2(X)⊗A, this shows, that
Φ is unique, if it exits.
The bilinear map

Cc(X)×A→ L2(X,A) given by (f, a) 7→ f.a.

gives rise to a linear map

φ1 : Cc(X)⊗alg A→ L2(X,A) with f ⊗ a 7→ f.a.

If b ∈ A, then
φ1(f ⊗ a) · b = (f.a) · b = f.(ab) = φ1(f ⊗ ab).

Therefore, φ1 is an A-module homomorphism. The range of φ1 is dense by Proposi-
tion 1.3.
There is also an A-module homomorphism

φ2 : Cc(X)⊗alg A→ L2(X)⊗A given by f ⊗ a 7→ f ⊗ a.

The range of φ2 is dense by the approximation argument above. If f1, f2 ∈ Cc(X) and
a1, a2 ∈ A, then

〈φ1(f1 ⊗ a1), φ1(f2 ⊗ a2)〉 = 〈f1.a1, f2.a2〉 =

∫
X

(f1(x)a1)∗ (f2(x)a2) dµ(x)

5.7
=

∫
X
f1(x)f2(x) dµ(x) · a∗1a2

= 〈f1 ⊗ a1, f2 ⊗ a2〉
= 〈φ2(f1 ⊗ a1), φ2(f2 ⊗ a2)〉.

Therefore, φ1 and φ2 induce the same inner product on the A-module Cc(X)⊗alg A.
Both, φ1 and φ2, extend to unitaries Φ1 and Φ2 from the completion of Cc(X)⊗alg A in
this inner product to L2(X,A) and L2(X)⊗ A respectively. Therefore, Φ: = Φ1 ◦ Φ−1

2

is a unitary L2(X)⊗A→ L2(X,A). If f ∈ Cc(X) and a ∈ A, then

Φ(f ⊗ a) = Φ (Φ2(f ⊗ a)) = Φ1(f ⊗ a) = f.a.

Let E be a right Hilbert A-module and ICA an ideal with quotient map π : A→ A/I.
By Cohen’s factorisation theorem we have

E · I := span{ξ · i : ξ ∈ E , i ∈ I} = {ξ · i : ξ ∈ E , i ∈ I}.

E · I is a submodule of E . Using an approximate identity of I Cohen’s factorisation
theorem yields, that ξ ∈ E · I if and only if 〈ξ, ξ〉 ∈ I.
Let q : E → E/(E · I) be the quotient map. E/(E · I) becomes a right Hilbert A/I-
module, when equipped with the well-defined multiplication q(ξ) · π(a) := q(ξ · a) and
inner product 〈q(ξ), q(η)〉 := π(〈ξ, η〉). The bilinear map

E × (A/I)→ E/(E · I) given by (ξ, b) 7→ q(ξ) · b
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induces an isomorphism φ : E ⊗A (A/I) → E/(E · I). Here A acts on A/I by
a · π(b) := π(ab). Therefore we get a ∗-isomorphism

B(E/(E · I))→ B(E ⊗A A/I) by T 7→ φ−1 ◦ T ◦ φ.

Moreover we define

Q1 : B(E)→ B(E/(E · I)) by Q1(T )(q(ξ)) = q(Tξ) for all T ∈ E .

We have T (E · I) = T (E) · I ⊆ E · I for all T ∈ E. Therefore, Q1 is a well defined
∗-homomorphism. Finally we define a ∗-homomorphism

Q2 : B(E)→ B(E ⊗ (A/I)) by T 7→ T ⊗ idA/I .

Then we obtain a commutative diagram

B(E)

B(E/(E · I)) B(E ⊗A (A/I))

Q1 Q2

We have
ker(Q1) = ker(Q2) = {T ∈ E : T (E) ⊆ E · I}.

Let (uj)j∈J be an approximate identity of I and T ∈ ker(Q1). Then

T (ξ) = lim
j
T (ξ) · uj = lim

j
T (ξ · uj) for all ξ ∈ E .

Therefore, ‖T‖ = ‖T |E·I‖.

Lemma 1.5 (Short Exact Sequences lift to L2(X, ·)).
Let I C A be an ideal. The inclusion map Cc(X, I) → Cc(X,A) extends to an isometry
i : L2(X, I)→ L2(X,A). The image of i is L2(X,A) · I.
The pointwise quotient map Cc(X,A) → Cc(X,A/I) extends to a surjective map
π : L2(X,A)→ L2(X,A/I).
There is an isomorphism L2(X,A/I) ∼= L2(X,A)/(L2(X,A) · I) of right Hilbert A/I-
modules, such that the following diagram commutes

L2(X,A)

L2(X,A/I) L2(X,A)/(L2(X,A) · I)

π

∼

Proof. The inclusion map Cc(X, I)→ Cc(X,A) is isometric. Therefore, its extension to
L2(X, I) → L2(X,A) is isometric. Let f ∈ Cc(X, I). Then 〈i(f), i(f)〉 = 〈f, f〉 ∈ I.
Therefore i(f) ∈ L2(X,A) · I.
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Since L2(X,A) · I is closed, this implies i(L2(X, I)) ⊆ L2(X,A) · I.
If f ∈ Cc(X,A) and i ∈ I, then f · i ∈ Cc(X, I), hence

Cc(X,A) · I ⊆ i(Cc(X, I)) ⊆ i(L2(X, I)).

Since i(L2(X, I)) is closed, this implies that i(L2(X, I)) = L2(X,A) · I.
The commutative diagram

A

A/I A⊗A (A/I)∼

gives rise to a a commutative diagram

L2(X)⊗A

L2(X)⊗ (A/I) L2(X)⊗A⊗A (A/I).∼

By Theorem 1.4 this yields the diagram

L2(X,A)

L2(X,A/I) L2(X,A)⊗A (A/I) L2(X,A)/(L2(X,A) · I).∼ ∼

Square-Integrable Functions

To define square-integrable group actions, we need a notion of square-integrable func-
tions. We want to identify a square integrable function with an element of L2(X,A). As
above, let X be a locally compact space and µ a locally finite and strictly positive Borel
measure on X. This time, we also need to require that µ is inner regular on open sets.
That is, for U ⊆ X open, we have

µ(U) = sup {µ(K) : K is compact with K ⊆ U} .

We write T (X) for the set of all h ∈ Cc(X) with 0 ≤ h ≤ 1. For f : X → A continuous
and h ∈ T (X), we obtain h · f ∈ Cc(X,A). If h1, h2 ∈ T (X) with h1 ≤ h2, then

0 ≤ h2
2(x)f(x)∗f(x)− h2

1(x)f(x)∗f(x) for all x ∈ X.

Therefore, ∫
X
h2

1(x)f(x)∗f(x) dµ(x) ≤
∫
X
h2

2(x)f(x)∗f(x) dµ(x)

9



by 5.13(iii) and hence

‖h1 · f‖22 =

∥∥∥∥∫
X
h2

1(x)f(x)∗f(x) dµ(x)

∥∥∥∥ ≤ ∥∥∥∥∫
X
h2

2(x)f(x)∗f(x) dµ(x)

∥∥∥∥ = ‖h2 · f‖22 .

For h ∈ T (X) we define a linear map Cc(X,A) → Cc(X,A) by f 7→ h · f . Since
0 ≤ f(x)∗f(x) − h2(x)f(x)∗f(x) for all x ∈ X, we obtain ‖f · h‖2 ≤ ‖f‖2 by the same
computation as above. Therefore, the map extends to a self-adjoint operator

Mh : L2(X,A)→ L2(X,A) with ‖Mh(f)‖2 ≤ ‖f‖2.

Lemma 1.6 (The Multiplication Operators Mh).
Let (χi)i∈I ⊆ T (X) be a net with χi −→ 1 uniformly on compact subsets.
For f ∈ L2(X,A), we have

lim
i
Mχif = f.

Proof. Let f ∈ L2(X,A) and ε > 0. There is h ∈ Cc(X,A), such that h 6= 0 and
‖f − h‖2 <

ε
3 . There is i0 ∈ I, such that |1 − χi(x)| ≤ ε

3‖h‖2 for all x ∈ supp(h) and
i ≥ i0. We obtain

‖h− h · χi‖2 =

∥∥∥∥∫
X
h(x)∗h(x) (1− χi(x))2 dµ(x)

∥∥∥∥1/2

5.13(iii)

≤ ε

3‖h‖2

∥∥∥∥∫
X
h(x)∗h(x) dµ(x)

∥∥∥∥1/2

=
ε

3
.

Therefore,

‖f −Mχif‖2 ≤ ‖f − h‖2 + ‖h−Mχih‖2 + ‖Mχih−Mχif‖2
≤ 2 ‖f − h‖2 + ‖h−Mχih‖2 < ε

for all i ≥ i0. This shows limiMχif = f.

The set T (X) is a directed set with the pointwise order. max {h1, h2} ∈ T (X) is
an upper bound for h1, h2 ∈ T (X). For K ⊆ X compact, there is h ∈ T (X) with
h(K) = {1}. Hence the net (h)h∈T (X) converges to 1 uniformly on compact subsets.
This shows that there always exists a net as in Lemma 1.6.
The following corollary motivates the definition of a square-integrable function.

Corollary 1.7. For f ∈ L2(X,A), we have

‖f‖2 = sup {‖Mhf‖2 : h ∈ T (X)} .

Proof. If h ∈ T (X), then ‖Mhf‖2 ≤ ‖f‖2. Therefore,

sup {‖Mhf‖2 : h ∈ T (X)} ≤ ‖f‖2.

Pick a net (χi)i∈I in T (X) with χi −→ 1 uniformly on compact subsets.
Then Lemma 1.6 implies limi ‖Mχif‖2 = ‖f‖2, proving the assertion.
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Definition 1.8 (Square-Integrable Function).
A continuous function f : X → A is called square-integrable if there is M ∈ [0,∞), such
that

‖h · f‖2 ≤M for all h ∈ T (X).

We write S2(X,A) for the set of all continuous and square-integrable functions.

Proposition 1.9 (The Normed Space S2(X,A)).
S2(X,A) is a vector space and

f 7→ ‖f‖S2 = sup {‖h · f‖2 ≤M for all h ∈ T (X)}

defines a norm on S2(X,A).

Proof. Let f1, f2 ∈ S2(X,A) and λ1, λ2 ∈ C. By definition, there are M1,M2 ∈ [0,∞),
such that

‖h · f1‖2 ≤M1 and ‖h · f2‖2 ≤M2 for all h ∈ T (X).

Put M = |λ1|M1 + |λ2|M2. Then M ∈ [0,∞) and

(hλf1 + λf2) ‖2 ≤ |λ1|‖h · f1‖2 + |λ2|‖h · f2‖2 ≤M.

Therefore, λ1f1 + λ2f2 ∈ S2(X,A), so S2(X,A) is a subspace of the vector space of
continuous functions X → A.
It is easy to see that the map f 7→ ‖h · f‖2 for h ∈ T (X) is a seminorm on S2(X,A).
Therefore, f 7→ ‖f‖S2 is a seminorm. It remains to check that it is positive definite.
Let f ∈ S2(X,A) with ‖f‖S2 = 0. For x ∈ X there is h ∈ T (X) with h(x) = 1. Since
‖h · f‖ = 0, we obtain f(x) = (h · f) (x) = 0. Hence f = 0.

Lemma 1.10. Let f : X → A be continuous. If
∫
X ‖f(x)‖2 dµ(x) < ∞ then f is

square-integrable.

Proof. If h ∈ T (X), then

‖f · h‖2 =

∥∥∥∥∫
X
f(x)∗f(x)h2(x) dµ(x)

∥∥∥∥1/2

5.7
≤
(∫

X
‖f(x)∗f(x)‖ · h2(x) dµ(x)

)1/2

≤
(∫

X
‖f(x)‖2 dµ(x)

)1/2

.

Therefore, f is square-integrable.

The next lemma states the converse of Lemma 1.10 for A = C. So in this case
continuous and square-integrable functions are exactly continuous L2-functions.

Lemma 1.11 (Square-Integrable Functions to C).
A continuous function f : X → C is square-integrable in the sense of Definition 1.8 if
and only if

∫
X |f |

2 dµ <∞.
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Proof. The reverse implication is Lemma 1.10, so we suppose f : X → C continuous and
square-integrable in the sense of Definition 1.8.
Let M ∈ [0,∞), such that

‖h · f‖2 ≤M for all h ∈ T (X).

For a Borel set B ⊆ X put νf (B) =
∫
B |f |

2 dµ. Then νf is a Borel measure on X. Let
K ⊂ X be compact. Since there is h ∈ T (X) with h(K) = {1}, we obtain

νf (K) =

∫
K
|f |2 dµ ≤

∫
X
|f |2h2 dµ = ‖h · f‖2 ≤M.

Let δ > 0 and put Uδ =
{
x ∈ X : |f(x)|2 > δ

}
. Supposing µ(Uδ) = ∞, we would find

K ⊆ Uδ compact with ν(K) > 1
δ . Then we would get

νf (K) =

∫
K
|f |2 dµ ≥

∫
K
δ dµ = µ(K) · δ > 1,

contradicting νf (K) ≤ 1.
Therefore, µ(Uδ) < ∞ and there is Ln ⊆ Uδ compact with µ (Uδ \ Ln) < 1

n . Then we
obtain

µ

(
Uδ \

∞⋃
n=1

Ln

)
≤ µ (Uδ \ Ln) <

1

n
for all n ∈ N.

Hence µ (Uδ \
⋃∞
n=1 Ln) = 0. This implies νf (Uδ \

⋃∞
n=1 Ln) = 0, and we obtain

νf (Uδ) = νf

( ∞⋃
n=1

Ln

)
= lim

n→N
νf (L1 ∪ . . . ∪ Ln) ≤M,

since L1 ∪ . . . ∪ Ln is compact for all n ∈ N.
Put U =

{
x ∈ X : |f(x)|2 > 0

}
. For δ = 1

n , we observe U 1
n
⊆ U 1

n+1
and U =

⋃∞
n=1 U 1

n
.

Therefore,

νf (U) = lim
n→∞

νf

(
U 1
n

)
≤M.

Finally, we get ∫
X
|f |2 dµ =

∫
U
|f |2 dµ = νf (U) ≤M <∞.

Example 1.12. The converse of Lemma 1.10 is false in general. Consider N with the
discrete topology and counting measure µ. It is easy to see that µ is locally finite,
strictly positive and inner regular on open sets.
Let V be a Banach space and f ∈ Cc(N, V ), then

φ

( ∞∑
n=1

f(n)

)
=
∞∑
n=1

φ (f(n)) =

∫
N
φ ◦ f dµ for all φ ∈ V ′.

Therefore,
∫
N f dµ =

∑∞
n=1 f(n) by Proposition 5.7.

Let A = B(`2(N)) and (en)n∈N, the standard orthonormal basis of `2(N). Consider

12



the projections (Pn)n∈N in A, where Pn(x) = 〈x, en〉en. Let f : N → A be given by
n 7→ 1√

n
Pn. Then

∫
N
‖f(n)‖2 dµ(n) =

∞∑
n=1

∥∥∥∥ 1√
n
Pn

∥∥∥∥2

=
∞∑
n=1

1

n
=∞.

But given h ∈ T (N), we have

∞∑
n=1

1

n
Pnh

2(k) ≤
∞∑
n=1

Pn = id`2(N) .

Hence

‖h · f‖ =

∥∥∥∥∫
N
f(k)∗f(k)g2(k) dµ(k)

∥∥∥∥1/2

=

∥∥∥∥∥
∞∑
k=1

1

k
Pkg(k)

∥∥∥∥∥
1/2

≤ 1.

Therefore, f is square-integrable.

Next we characterise square-integrability with nets. This characterisation is used as
a definition in [3, page 22] and [1, page 175]. From now on, let (χi)i∈I ⊆ T (X) with
χi −→ 1 uniformly on compact subsets.

Lemma 1.13 (Square-Integrability with Nets).
Let f : X → A be a continuous function. The following statements are equivalent:

(i) f is square-integrable.

(ii) The net (χi · f)i∈I converges in L2(X,A).

Proof.

(i)⇒(ii) Since L2(X,A) is complete, it suffices to show that (χi · f)i∈I is a Cauchy net.
Let ε > 0.

Claim: There is a compact K ⊆ X such that ‖h · f‖2 < ε
2 for all h ∈ T (X) with

supp(h) ⊆ X \K.
Proof of the claim: Since f is assumed to be square-integrable,

M = sup {‖h · f‖2 : h ∈ T (X)} <∞.

There is k ∈ T (X) such that ‖k ·f‖22 > M2− ε2

4 . We define K = supp(k). Let h ∈ T (X)
with supp(h) ⊆ X \K. Then h+ k ∈ T (X) and

〈h · f, k · f〉 =

∫
X
h(x)k(x)f(x)∗f(x) dµ(x) = 0.

Therefore, ‖h · f + k · f‖22 = ‖h · f‖22 + ‖k · f‖22. Hence

‖h · f‖2 =
(
‖f · (h+ k)‖22 − ‖f · k‖22

)1/2
<

(
M2 −

(
M2 − ε2

4

))1/2

=
ε

2
.

13



Now let V ⊆ X be open and L ⊆ X compact with K ⊆ V ⊆ L. Choose h1 ∈ T (X) such
that h1(L) = {1} and put h2 = 1 − h1. There is i0 such that |1 − χi(x)| < ε

4M for all
x ∈ supp(h1) and i ≥ i0. For i, j ≥ i0, we obtain

h1(x) · |χi(x)− χj(x)| ≤ h1(x) · (|χi(x)− 1|+ |1− χj(x)|) ≤ h1(x) · ε

2M
.

As above this implies

‖h1 (χi − χj) · f‖2 = ‖h1|χi − χj | · f‖2 ≤
ε

2M
· ‖h1 · f‖2 ≤

ε

2
.

If x ∈ V , then h1(x) = 1. Therefore, h2(x) = 0. Hence

supp (h2|χi − χj |) ⊆ supp(h2) ⊆ X \ V ⊆ X \K.

|χi − χj | ∈ Cc(X) implies h2|χi − χj | ∈ T (X). The above claim implies

‖h2 (χi − χj) · f‖2 = ‖h2|χi − χj | · f‖2 <
ε

2
.

All in all, we get

‖ (χi − χj)·f‖2 = ‖ (h1 + h2) (χi − χj)·f‖2 ≤ ‖h1 (χi − χj)·f‖2+‖h2 (χi − χj)·f‖2 < ε.

Hence (χi · f)i∈I is a Cauchy net.

(ii)⇒(i) Assume limi (χi · f) = F ∈ L2(X,A) and let h ∈ T (X). For i ∈ I, we have
χih ≤ χi. Hence ‖χih · f‖2 ≤ ‖χi · f‖2 as above. Since h · f ∈ Cc(X,A) we obtain

‖h · f‖2
1.6
= ‖ lim

i
χi · (h · f)‖2 = lim

i
‖χih · f‖2 ≤ lim

i
‖χi · f‖2 = ‖F‖2.

Therefore, f is square-integrable.

The next lemma and its corollary prove that the limit of 1.13(ii) is independent of the
chosen net (χi)i∈I .

Lemma 1.14. Let f ∈ S2(X,A) and F = limi (χi · f). Then

MhF = h · f for all h ∈ T (X).

Proof. Let h ∈ T (X). Since Mh is bounded,

MhF = Mh

(
lim
i

(χi · f)

)
= lim

i
Mh (χi · f) = lim

i
h (χi · f) = lim

i
χi (h · f)

1.6
= h · f.

As a corollary of 1.14 we show that the limit in 1.13(ii) is independent of the chosen
net (χi)i∈I :

Corollary 1.15. Let f ∈ S2(X,A) and (κj)j∈J ⊆ T (X) be another net with κj −→ 1
uniformly on compact subsets. Then

lim
i

(χif) = lim
j

(κif) .
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Proof. Let F1 = limi (χif) and F2 = limj (κif). If h ∈ T (X) ,then MhF1 = h·f = MhF2

by Lemma 1.14. Therefore, by Corollary 1.7,

‖F1 − F2‖2 = sup {‖Mh (F1 − F2) ‖2 : h ∈ T (X)} = 0.

Hence F1 = F2.

The next corollary allows us to view S2(X,A) as a subspace of L2(X,A).

Corollary 1.16 (The Embedding of S2(X,A) into L2(X,A)).
The linear map ι : S2(X,A)→ L2(X,A) given by f 7→ limi (χi · f) is isometric.

Proof. Let f ∈ S2(X,A). Corollary 1.7 and Lemma 1.14 imply

‖ι(f)‖2 = sup {‖Mh (ι(f)) ‖2 : h ∈ T (X)}
= sup {‖h · f‖2 : h ∈ T (X)} = ‖f‖S2 .

If f ∈ S2(X,A) we want to compute inner products of ι(f) and elements of Cc(G,A).

Lemma 1.17. If f1 ∈ S2(X,A) and f2 ∈ Cc(X.A), then

〈ι(f1), f2〉 =

∫
X
f1(x)∗f2(x) dµ(x).

Proof. Since the statement is trivial for f2 = 0, we assume f2 6= 0.
Let ε > 0. Since the net (h · f1)h∈T (X) converges to ι(f1), there is h0 ∈ T (X), such that

‖ι(f1)− h · f1‖2 <
ε

‖f2‖2
for all h ∈ T (X) with h ≥ h0.

Choose h1 ∈ T (X) with h1(supp(f2)) = {1}. Put h = min{h0 + h1, 1}. Then h ∈ T (X)
with h ≥ h0. We estimate∥∥∥∥〈ι(f1), f2〉 −

∫
X
f1(x)∗f2(x) dµ(x)

∥∥∥∥ =

∥∥∥∥〈ι(f1), f2〉 −
∫
X
h(x)f1(x)∗f2(x) dµ(x)

∥∥∥∥
= ‖〈ι(f1)− h · f1, f2〉‖
≤ ‖ι(f1)− h · f1‖2 · ‖f2‖2 < ε.

Corollary 1.18. Let I CA be an ideal of A.
If f ∈ S2(X,A) with f(x) ∈ I for all x ∈ X, then ι(f) ∈ L2(G,A) · I

Proof. Let f2 ∈ Cc(X,A). Then Lemma 1.17 yields

〈ι(f), f2〉 =

∫
X
f(x)∗f2(x) dµ(x)

Since I is an ideal, we gave f(x)∗f2(x) ∈ I for all x ∈ I. Therefore, we can view the
integral as an I-valued integral. Since the inclusion I ⊆ A is continuous, the integral
viewed as an A-valued gives the same element. Hence 〈ι(f), f2〉 ∈ I for all f2 ∈ Cc(X,A).
Since Cc(X,A) is dense in L2(X,A), we obtain 〈ι(f), f2〉 ∈ I for all f2 ∈ L2(X,A). In
particular 〈ι(f), ι(f)〉 ∈ I. So that ι(f) ∈ L2(G,A) · I.
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Another proof of the above Corollary is by approximating f with Cc(X, I)-functions.
The following lemma allows us to identify pointwise limits with L2-limits, if both exist.

Lemma 1.19 (Pointwise Convergence).
Let (fn)n∈N ⊆ Cc(X,A) be uniform bounded a sequence. That is, there is a constant
C > 0 with ‖fn‖∞ < C for all n ∈ N. Assume g ∈ Cb(X,A) and f ∈ L2(X,A), such
that ‖f − fn‖2 → 0 for n→∞ and fn(x)→ g(x) for n→∞ for all x ∈ X.
Then g ∈ S2(X,A) with ι(g) = f.

Proof. Since (fn)n∈N is convergent in ‖ · ‖2, there is M > 0 with ‖fn‖2 ≤ M . Let
h ∈ T (X). Since ‖fn‖∞ < C for all n ∈ N Lemma 5.10 applies and we obtain

weak
lim
n→∞

∫
X

(h · fn)(x)∗ · (h · fn)(x) dµ(x) =

∫
X
h(x)2 · g(x)∗ · g(x) dµ(x) = ‖h · g‖22,

where ∥∥∥∥∫
X

(h · fn)(x)∗ · (h · fn)(x) dµ(x)

∥∥∥∥ = ‖h · fn‖22 ≤ ‖fn‖22 ≤M2.

The Hahn-Banach theorem implies ‖h · g‖2 ≤M . Hence g ∈ S2(X,A).
Let k ∈ Cc(X,A). Then

〈ι(g), k〉 =

∫
X
g(x)∗k(x) dµ(x)

5.10
=

weak
lim
n→∞

∫
G
fn(x)∗k(x) dµ(x) = lim

n→∞
〈fn, k〉 = 〈f, h〉.

Since Cc(X,A) is dense in L2(X,A) this implies ι(g) = f.

Remark 1.20. Let A = B(`2(N)), (Pn)n∈N as in Example 1.12, X = [0, 1] and µ the
Lebesgue measure on X. Let (hn)n∈N be a sequence of continuous functions X → [0,∞),
such that for all x ∈ X the sequence (hn(x)) is unbounded while ‖hn‖2

n→∞−−−→ 0. Consider
the functions fn = hn.Pn : X → A given by fn(x) = hn(x)Pn. For N1 < N2 we have∥∥∥∥∥∥

N2∑
n=N1

fn

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
〈

N2∑
n=N1

hn.Pn,

N2∑
k=N1

hk.Pk

〉∥∥∥∥∥∥
1/2

=

∥∥∥∥∥∥
N2∑

n=N1

N2∑
k=N1

〈hn, hk〉P ∗kPn

∥∥∥∥∥∥
1/2

=

∥∥∥∥∥∥
N2∑

n=N1

‖hn‖22Pn

∥∥∥∥∥∥
1/2

= max
N1≤n≤N2

‖hn‖2.

Hence
∑∞

n=1 fn ∈ L2(X,A).
But for x ∈ X, we obtain∥∥∥∥∥

N∑
n=1

fn(x)

∥∥∥∥∥ =

∥∥∥∥∥
N∑
n=1

hn(x)Pn

∥∥∥∥∥ = max
1≤n≤N

hn(x)
N→∞−−−−→∞.
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Hence not even a subsequence of
(∑N

n=1 fn

)
N∈N

converges pointwise.

In this sense, there is no general possibility to view an element f ∈ L2(X,A) as a function
from X to A.

The Hilbert G-A-Module L2(G,A)

The Hilbert space L2(G) carries a natural action (λg)g∈G by left translation. We want
to endow L2(G,A) with a G-action in a way that it is compatible with the G-action on
A, so that the isomorphism of Theorem 1.4 gets G-equivariant.
If f ∈ L2(G) and g, x ∈ G, then (λg(f)) (x) = f

(
g−1x

)
. Hence for f1, f2 ∈ L2(G), we

compute

〈λg(f1), λg(f2)〉 =

∫
G
f1 (g−1x)f2

(
g−1x

)
dµ(x) =

∫
G
f1(x)f2(x) dµ(x) = 〈f1, f2〉,

using the translation invariance of the Haar measure. Since λg is invertible, this shows
that λg is unitary.
The next lemma proves the strong continuity of (λg)g∈G. Hence Example 5.15(ii) yields
that L2(G) is Hilbert G-C-module.

Lemma 1.21 (Strong Continuity of the Left Translation Action).
The action (λg)g∈G on L2(G) is strongly continuous.

Proof. Let 0 6= f ∈ Cc(G) and ε > 0. Let W be a compact neighbourhood of the identity
element 1 ∈ G. We put K = W supp(f). Then supp(f) ⊆ K. Hence µ(K) > 0. Since
the multiplication map is continuous, K is compact. For x /∈ K and h ∈ W , we have
h−1x /∈ supp(f), so that |f(x)− f

(
h−1x

)
| = 0.

Let ε > 0. The essential step is to show that there is a neighbourhood U of 1 ∈ G, such
that for all h ∈ U we have ‖f − λh(f)‖2 < ε.
Since f is continuous, every x ∈ K has a neighbourhood Ux such that

|f(x)− f(y)| < ε

2
√
µ(K)

for every y ∈ Ux.

The open set xU−1
x is a neighbourhood of 1. Since the multiplication is continuous, there

is an open neighbourhood Wx of 1 such that g1, g2 ∈Wx implies g1g2 ∈ xU−1
x .

Since K is compact and W−1
x x is an open neighbourhood of x ∈ K, we find

x1, . . . , xn ∈ K such that W−1
x1 x1, . . .W

−1
xn xn cover K.

Put U = W ∩W−1
x1 x1 ∩ . . . ∩W−1

xn xn. Then U is a neighbourhood of 1.
Now let x ∈ K and h ∈ U . There is 1 ≤ i ≤ n, such that x ∈ W−1

xi xi. We have

xix
−1 ∈ Wxi and h ∈ Wxi . Hence xix

−1h ∈ xiU−1
xi . Therefore, h−1x =

(
x−1h

)−1 ∈ Uxi .
Since Wxi ⊆ xiU−1

xi , we have x ∈W−1
xi xi ⊆ Uxi and we get

|f (x)− f(h−1x)| ≤ |f(x)− f(xi)|+ |f(xi)− f(h−1x)| < ε√
µ(K)

.
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All in all, we obtain

‖f − λh(f)‖2 =

(∫
K
|f(x)− f(h−1x)|2 dµ(x)

)1/2

<

(
µ(K)

ε2

µ(K)

)1/2

= ε.

Finally, let g0 ∈ G. Then g0U is a neighbourhood of g0 and for g ∈ goU , we have
g−1

0 g ∈ U . Hence
‖λg0(f)− λg(f)‖2 = ‖f − λg−1

0 g(f)‖2 < ε.

This shows that the map g 7→ λg(f) is continuous. Since Cc(G) is dense in L2(G)
Lemma 5.16 yields the strong continuity of (λg)g∈G.

For g ∈ G and f ∈ Cc(G,A) we define

γcg(f) : G→ A, x 7→ αg
(
f
(
g−1x

))
.

The map γcg(f) is continuous. Since supp
(
γcg(f)

)
= g supp(f) is compact, we obtain a

linear map
γg : Cc(X,A)→ Cc(X,A), f 7→ γcg(f).

We have

‖γcg(f)‖2 =

∥∥∥∥∫
G

(
γcg(f)

)
(x)∗

(
γcg(f)

)
(x) dµ(x)

∥∥∥∥1/2

=

∥∥∥∥∫
G
α
(
f
(
g−1x

)∗
f
(
g−1x

))
dµ(x)

∥∥∥∥1/2

5.8
=

∥∥∥∥∫
G
f
(
g−1x

)∗
f
(
g−1x

)
dµ(x)

∥∥∥∥1/2

5.11
=

∥∥∥∥∫
G
f(x)∗f(x) dµ(x)

∥∥∥∥1/2

= ‖f‖2

Therefore, γcg extends to a linear isometry γg : L2(G,A)→ L2(G,A).

Theorem 1.22. The collection (γg)g∈G is a Hilbert module action on L2(G,A). The
isomorphism Φ: L2(G) ⊗ A ∼−→ L2(G,A) of Theorem 1.4 is G-equivariant and thus an
isomorphism of Hilbert G-A-modules.

Proof. We denote (δg)g∈G for the G-action on L2(G)⊗A.
Let f ∈ Cc(G) and a ∈ A. We have

(γg(f.a)) (x) = αg
(
(f.a)

(
g−1x

))
= f

(
g−1x

)
αg(a)

= (λg(f), αg(a)) (x)

= (Φ (λg(f)⊗ αg(a))) (x)

= (Φ (δg (f ⊗ a))) (x)

=
(
Φ ◦ δg ◦ Φ−1 (f.a)

)
(x),

18



for all x ∈ G. By linearity, the continuous functions γg and Φ ◦ δg ◦ Φ−1 agree on the
subspace of L2(G,A) spanned by elements of the form f.a for f ∈ Cc(G) and a ∈ A.
This subspace is dense by Proposition 1.3. Therefore, γg = Φ ◦ δg ◦ Φ−1.
Because Φ is an isomorphism of Hilbert A-modules, it is clear that (γg)g∈G is a Hilbert
module action on L2(G,A).
We have γg ◦ Φ = Φ ◦ δg. Hence Φ is G-equivariant and an isomorphism of Hilbert
G-A-modules.

1.2 The Reduced Crossed Product

Let G be a unimodular1 locally compact 2 group and A be a G-C∗-algebra with action
(αg)g∈G. We want to define the reduced product C∗-algebra C∗r (G,A) as a completion
of the twisted convolution algebra Cc(G,A).

The Completion to C∗r (G,A)

We want to represent Cc(G,A) on L2(G,A) as G-equivariant adjointable operators. We
do this by defining representations of A and G on L2(G,A) separately and integrate to
a representation of Cc(G,A).
If g ∈ G and f ∈ Cc(G,A), then we define (δg(f))(x) = f(xg).
Since supp(δg(f)) = supp(f)g−1 is compact, we have δg(f) ∈ Cc(G,A). It is easy to see
that δg : Cc(G,A)→ Cc(G,A) is linear. If f1, f2 ∈ Cc(G,A), then

〈δg(f1), δg(f2)〉 =

∫
G
f1(xg)∗f2(xg) dµ(x)

5.12
= 〈f1, f2〉

Therefore ‖δg(f)‖2 = ‖f‖2, hence δg extends uniquely to δg : L2(G,A) → L2(G,A). If
g, h ∈ G, then δg ◦ δh = δgh and δ1 = idL2(G,A). Therefore, every δg is a unitary on
L2(G,A). We have

(δg(γh(f)))(x) = (γh(f))(xg) = αh(f(h−1xg)) = αh((δg(f))(h−1x)) = (γh(δg(f)))(x).

Therefore, δ : G → BG(L2(G,A)), g 7→ δg is an action on L2(G,A) by G-equivariant
unitaries.
Now let a ∈ A. We define (πa(f))(x) = αx(a) · f(x).
Since (αg)g∈G is continuous and supp(πa(f)) = supp(f) is compact, we obtain
πa(f) ∈ Cc(G,A). Obviously πa : Cc(G,A)→ Cc(G,A) is linear. We estimate

‖πa(f)‖2 =

∥∥∥∥∫
G
f(x)∗αx(a∗a)f(x) dµ(x)

∥∥∥∥1/2 5.13(iii)

≤ ‖a∗a‖1/2 · ‖f‖2 = ‖a‖ · ‖f‖2.

Therefore, πa extends to πa : L2(G,A)→ L2(G,A) with ‖πa‖ ≤ ‖a‖.
If f1, f2 ∈ Cc(G,A), then

〈πa(f1), f2〉 =

∫
G
f1(x)∗αg(a

∗)f2(g) dµ(g) = 〈f1, πa∗(f2)〉.

1We only assume G to be modular, to simplify the formulas. Everything we do works for general locally
compact groups by adding modular functions in the correct places.(see [1])

2We always assume, that locally compact groups are Hausdorff.
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This implies πa ∈ B(L2(G,A)) with π∗a = πa∗ . If b ∈ A, then

((πa ◦ πb)(f))(x) = αg(a) · αg(b) · f(x) = αg(ab) · f(x) = (πab(f))(x).

If g ∈ G, then

(πa ◦ γg)(f))(x) = αx(a)αg(f(g−1x)) = αg
(
αg−1x(a)f(g−1x)

)
= ((γg ◦ πa)(f))(x).

Therefore, π : A→ BG(L2(G,A)), a 7→ πa is a ∗-homomorphism.
We compute

((δg ◦ πa ◦ δ∗g)(f))(x) = αxg(a)(δg−1(f))(xg) = αxg(a)f(x) = (παg(a)(f))(x).

Hence π and δ fulfil the covariance condition δg ◦ πa ◦ δ∗g = παg(a).
If f ∈ Cc(G,A), then we define (inv(f))(x) = f(x−1). Then inv(f) ∈ Cc(G,A). Hence
inv: Cc(G,A) → Cc(G,A) is well defined and linear. We have inv2 = idCc(G,A). If
f1, f2 ∈ Cc(G,A), then

〈inv(f1), inv(f2)〉 =

∫
G
f1(x−1)∗f2(x−1) dµ(x)

5.12
= 〈f1, f2〉.

Therefore inv extends to a unitary L2(G,A)→ L2(G,A). To define the integrated repre-
sentation Cc(G,A)→ BG(L2(G,A)) we need the following lemma concerning continuity.

Lemma 1.23. If f ∈ Cc(G,A) and h ∈ L2(G,A), then the map G→ L2(G,A) given by
g 7→ (πf(g) ◦ δg)(h) is continuous.

Proof. Let Ã = A as a C∗-algebra and let G act trivially on Ã. The action (γ̃g)g∈G on
L2(G, Ã) is strongly continuous by 1.22.
If k ∈ Cc(G,A), then

((inv ◦ γ̃g ◦ inv)(k))(x) = (inv(k))(g−1x−1) = k(xg) = (δg(k))(x)

Therefore, δg = inv ◦ γ̃g ◦ inv. Hence the map g 7→ δg(h) is continuous.
Since f ∈ Cc(G,A), there is M > 0, such that ‖f(g)‖ ≤M for all g ∈ G. Let g0 ∈ G and
ε > 0. Since the lemma is trivial for h = 0, we suppose h 6= 0. There is a neighbourhood
U of g0 in G, such that

‖f(g)− f(g0)‖ < ε

2‖h‖2
and ‖δg(h)− δg0(h)‖2 <

ε

2M
for all x ∈ U

If g ∈ U , then

‖(πf(g) ◦ δg)(h)− (πf(g0) ◦ δg0)(h)‖2 ≤ ‖πf(g)(δg(h)− δg0(h))‖2
+ ‖(πf(g) − πf(g0))(δg0(h))‖2
≤M · ‖δg(h)− δg0(h)‖2 + ‖h‖2 · ‖f(g)− f(g0)‖ < ε

This shows that g 7→ (πf(g) ◦ δg)(h) is continuous.
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If f ∈ Cc(G,A), we define ρf : L2(G,A)→ L2(G,A) by h 7→
∫
G(πf(g) ◦ δg)(h) dµ(g).

The integrand is continuous by Lemma 1.23 and compactly supported. Hence the integral
is well-defined by Proposition 5.7. If h1, h2 ∈ L2(G,A), then we have

〈ρf (h1), h2〉 = 〈
∫
G

(πf(g) ◦ δg)(h1) dµ(g), h2〉

5.8
=

∫
G
〈(πf(g) ◦ δg)(h1), h2〉 dµ(g)

=

∫
G
〈h1, (δg−1 ◦ πf(g)∗)(h2)〉 dµ(g)

5.12
=

∫
G
〈h1, (δg ◦ πf(g−1)∗)(h2)〉 dµ(g)

=

∫
G
〈h1, (παg(f(g−1))∗ ◦ δg)(h2)〉 dµ(g)

= 〈h1, ρf∗(h2)〉.

Therefore, ρf ∈ BG(L2(G,A)) with ρ∗f = ρf∗ . If g ∈ G, then

ρf (γg(h)) =

∫
G

(πf(x) ◦ δx)(γg(h)) dµ(x) =

∫
G

(γg ◦ πf(x) ◦ δx)(g) dµ(x)
5.8
= γg(ρg(h)).

This shows that ρf is G-equivariant. Therefore, the map ρ : Cc(G,A) → BG(L2(G,A))
given by f 7→ ρf is well-defined. Obviously ρ is linear. If f1, f2 ∈ Cc(G,A), then we
obtain

π(f1∗f2)(g) ◦ δg = π

(∫
G
f1(x)αx(f2(x−1g)) dµ(x)

)
◦ δg

5.8
=

∫
G
πf1(x) ◦ δx ◦ πf2(x−1g) ◦ δx−1g dµ(x).

If h ∈ L2(G,A), this implies

ρf1∗f2(h) =

∫
G

(π(f1∗f2)(g) ◦ δg)(h) dµ(g)

5.8
=

∫
G

(∫
G

(πf1(x) ◦ δx ◦ πf2(x−1g) ◦ δx−1g)(h) dµ(x).

)
dµ(g)

5.9
=

∫
G

(πf1(x) ◦ δx)

(∫
G

(πf2(x−1g) ◦ δx−1g)(h) dµ(g)

)
dµ(x)

5.11
=

∫
G

(πf1(x) ◦ δx)(ρf2(h)) dµ(x)

= (ρf1 ◦ ρf2)(h).

Hence ρ is a ∗-homomorphism.
We have

‖ρf (h)‖2 ≤
∫
G
‖(πf(g) ◦ δg)(h)‖2 dµ(g) ≤

∫
G
‖πf(g)‖ · ‖h‖2 dµ(g) ≤ ‖f‖1 · ‖h‖2.
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Therefore ‖ρf‖ ≤ ‖f‖1.
The next lemma gives a more concrete formula for ρf (h) with h ∈ Cc(G,A).

Lemma 1.24. If f, h ∈ Cc(G,A), then

(ρf (h))(g) =

∫
G
αg(f(x))h(gx) dµ(x).

Therefore, ρf (h) ∈ Cc(G,A).

Proof. If x ∈ G, then (πf(x) ◦ δx)(h) ∈ Cc(G,A) and

((πf(x) ◦ δx)(h))(g) = αg(f(x)) · (δx(h))(g) = αg(f(x))h(gx).

The function (x, g) 7→ αg(f(x)) · h(gx) is continuous by Lemma 1.23 and compactly
supported. Therefore, k : G → A, g 7→

∫
G αg(f(x)) · h(gx) dµ(x) is continuous and

compactly supported by Lemma 5.9. We compute

〈ρf (h), h2〉
5.8
=

∫
G
〈(πf(x) ◦ δx)(h), h2〉 dµ(x)

=

∫
G

(∫
G

(αg(f(x)) · h(gx))∗h2(x) dµ(g)

)
dµ(x)

5.9
=

∫
G
k(g)∗ ◦ h2(g) dµ(g) = 〈k, h2〉

for all h2 ∈ Cc(G,A). This implies ρf (h) = k.

Corollary 1.25. The ∗-homomorphism ρ is injective.

Proof. Let f ∈ Cc(G,A), such that ρf = 0. Put h(x) = f(x)∗ for all x ∈ G. Then
h ∈ Cc(G,A). Lemma 1.24 implies

0 = (ρf (h))(1) =

∫
G
f(g) · h(g) dµ(g) =

∫
G
h(g)∗h(g) dµ(g) = 〈h, h〉.

Therefore, h = 0. Hence f = 0.

Definition 1.26 (The Reduced Crossed Product [1, page 173]).
The reduced crossed product C∗r (G,A) is the closure of ρ(Cc(G,A)) with respect to the
operator norm on BG(L2(G,A)).

Remark 1.27. Many authors define the reduced product slightly different. We want to
show that the crossed product defined above is isomorphic to the usual one.
First we modify our representation ρ to simplify the formulas. If a ∈ A, g ∈ G, then we
define

π′a = inv ◦ πa ◦ inv and δ′g = inv ◦ δg ◦ inv.

For h ∈ Cc(G,A) we get

(π′a(h))(x) = α−1
x (a)h(x) and (δ′g(h))(x) = h(g−1x).
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If f ∈ Cc(G,A) and h ∈ L2(G,A), then integration yields

ρ′f (h) :=

∫
G

(π′f(g) ◦ δ
′
G)(h) dµ(g) = (inv ◦ ρf ◦ inv)(h).

Since ρ is an injective ∗-homomorphism, so is ρ′. Since inv is unitary, we have

‖ρ′f‖ = ‖inv ◦ ρf ◦ inv‖ = ‖ρf‖.

Next we present the usual definition of the reduced crossed product. Let φ : A→ B(H) be
a non-degenerate faithful representation. We get a representation Φ: A→ B(L2(G,H))
and a strongly continuous group homomorphism λ : G→ U(L2(G,H)), where

(Φ(a)h)(x) = φ(α−1
x (a))h(x) and (λg(h))(x) = h(g−1x) for h ∈ Cc(G,H).

The covariant pair (Φ, λ) integrates to a ∗-homomorphism

θ : Cc(G,A)→ B(L2(G,H)) ,where θf (h) =

∫
G

(Φ(f(g)) ◦ λg)(h) dµ(g).

In this situation the crossed product is defined as the closure of θ(Cc(G,A)) in the
operator norm.
From the isomorphisms

L2(G,A)⊗A H ∼= L2(G)⊗A⊗A H ∼= L2(G)⊗H ∼= L2(G,H).

we obtain a isomorphism L : L2(G,A) ⊗A H → L2(G,H). If f ∈ Cc(G,A) and
ξ ∈ H, then (L(f ⊗ ξ))(x) = φ(f(x))ξ. Using the faithfulness of φ one can check
that Ψ : B(L2(G,A))→ B(L2(G,A)⊗H), T 7→ T ⊗ idH is an injective, hence isometric
∗-homomorphism.
Let f ∈ Cc(G,A). It is not hard to see that L ◦Ψ(ρ′f ) = θf ◦ L. This implies

‖ρf‖ = ‖ρ′f‖ = ‖L ◦Ψ(ρ′f )‖ = ‖θf‖.

Therefore the closure of θ(Cc(G,A)) is isomorphic to the crossed product C∗r (G,A)
defined in 1.26.

Lemma 1.28 (C∗r (G,A) has an approximate identity of Cc-functions).
There is a net (ui)i∈I ⊆ Cc(G,A) with ‖ui‖1 ≤ 1 and u∗i = ui for all i ∈ I, such that

‖ψ − ψ ◦ ρui‖ −→ 0 and ‖ψ − ρui ◦ ψ‖ −→ 0 for all ψ ∈ C∗r (G,A).

Proof. Let (ui)i∈I be a net as in Lemma 5.20.
For f ∈ Cc(G,A), we obtain

‖ρf − ρf ◦ ρui‖ = ‖ρf−f∗ui‖ ≤ ‖f − f ∗ ui‖1 −→ 0.

Likewise ‖ρf − ρui ◦ ρf‖ −→ 0.
Since ρ(Cc(G,A)) is dense in C∗r (G,A) this implies the assertion for all ψ ∈ C∗r (G,A).
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The following lemma allows us to identify continuous L1-functions with elements of
C∗r (G,A).

Lemma 1.29. Let f : G → A be continuous, such that
∫
G ‖f(x)‖ dµ(x) < ∞. For

h ∈ Cc(G,A), we define

(ρfh)(g) =

∫
G
αg(f(x))h(gx) dµ(x).

Then ρfh ∈ Cb(X,A). The image of the map ρf : Cc(G,A) → Cb(X,A) is contained in
S2(X,A) and ι ◦ ρf extends to an operator L2(G,A)→ L2(G,A).
We have ι ◦ ρf ∈ C∗r (G,A).

Proof. With similar arguments as in the proof of Lemma 1.11 we obtain a sequence
ωn : G→ [0, 1] of continuous, compactly supported functions, such that∫

G
ωn(x)‖f(x)‖ dµ(x) −→

∫
G
‖f(x)‖ dµ(x) for n→∞.

If h ∈ Cc(G,A), then Lemma 1.24 yields

‖(ρfh)(g)− (ρωn·fh)(g)‖ =

∥∥∥∥∫
G

(1− ωn(x)) · αg(f(x)) · h(gx) dµ(x)

∥∥∥∥
≤
∫
G

(1− ωn(x)) · ‖f(x)‖ · ‖h‖∞ dµ(x)
n→∞−−−→ 0.

Hence ‖ρf (h)− ρωn·f (h)‖∞ −→ 0 for n→∞. Therefore, ρf (h) is continuous.
We have ‖(ρfh)(g)‖ ≤

∫
G ‖f(x)‖ dµ(x) · ‖h‖∞. Therefore, ρf : Cc(G,A) → Cb(G,A)

is well defined. The sequence (ρωnf )n∈N ⊆ C∗r (G,A) is a Cauchy sequence. Let T be

the limit. Then T ∈ C∗r (G,A). If h ∈ Cc(G,A), then ‖ρωnf (h) − T (h)‖2
n→∞−−−→ 0 and

(ρωnfh)(x)→ (ρf (h))(x) for all x ∈ G. Hence Lemma 1.19 yields ρf (h) ∈ S2(G,A) with
ι(ρf (h)) = T (h). Therefore ι◦ρf extends to L2(G,A) and we have ι◦ρf = T ∈ C∗r (G,A).

G and A multiply C∗r (G,A)

The next two lemmas shows that G and A multiply C∗r (G,A).

Lemma 1.30 (A multiplies C∗r (G,A)).
Let a ∈ A and ψ ∈ C∗r (G,A). Then πa ◦ ψ ∈ C∗r (G,A).
If (ai)i∈I is an approximate identity of A, then ‖πai ◦ ψ − ψ‖ −→ 0.

Proof. Let f ∈ Cc(G,A). For h ∈ L2(G,A), we obtain

(πa ◦ ρf )(h) =

∫
G

(πa·f(g) ◦ δg)(h) dµ(g) = ρa·f .

Hence πa ◦ ρf ∈ C∗r (G,A). Since ρ(Cc(G,A)) is dense in C∗r (G,A), this implies
πa ◦ ψ ∈ C∗r (G,A) for all ψ ∈ C∗r (G,A).
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Now let (ai)i∈I is an approximate identity of A and ε > 0. Since f(G) = f(supp(f)) is
compact, a standard compactness argument shows that there is i0 ∈ I, such that

‖f(g)− aif(g)‖ < ε

µ(supp(f))
for all g ∈ G.

Therefore,

‖f − ai · f‖1 =

∫
G
‖f(g)− ui · f(g)‖ dµ(g) ≤ ε.

Hence
‖ρf − πai ◦ ρf‖ = ‖ρf − ρa·f‖ ≤ ‖f − ai · f‖1 −→ 0.

Using the density of ρ(Cc(G,A)) in C∗r (G,A) the assertion follows by an ε
3 -argument.

Lemma 1.31 (G multiplies C∗r (G,A)).
Let g ∈ G and ψ ∈ C∗r (G,A). Then δg ◦ ψ ∈ C∗r (G,A).
The function G→ C∗r (G,A) given by g 7→ δg ◦ ψ is continuous.

,

Proof. Let f ∈ Cc(G,A). For h ∈ L2(G,A), we have

(δg ◦ ρf )(h) = δg

(∫
G

(πf(x) ◦ δx)(h) dµ(x)

)
5.8
=

∫
G

(δg ◦ πf(x) ◦ δ∗g ◦ δgx)(h) dµ(x)

=

∫
G

(παg(f(x)) ◦ δgx)(h) dµ(x)

5.11
=

∫
G

(παg(f(g−1x)) ◦ δx)(h) dµ(x) = ργg(f)(h).

Hence δg ◦ ρf ∈ C∗r (G,A). Since ρ(Cc(G,A)) is dense in C∗r (G,A), this implies
δg ◦ ψ ∈ C∗r (G,A) for all ψ ∈ C∗r (G,A).
With similar arguments as in the proof of Lemma 1.21 we see, that the function
G→ Cc(G,A) given by g 7→ γg(f) is continuous with respect to ‖ · ‖1. Since ρ is contin-
uous, this implies that the function G→ C∗r (G,A), g 7→ ρ(γg(f)) = δg ◦ρf is continuous.
The continuity for an arbitrary element ψ ∈ C∗r (G,A) follows by an ε

3 -argument.

Exactness of the Reduced Crossed Product

Let I C A be a G-invariant ideal of A. We view Cc(G, I) as a subset of Cc(G,A).
Lemma 1.5 allows us to view L2(X, I) ∼= L2(X,A) · I as a submodule of L2(G,A).
If a ∈ I and f ∈ Cc(G,A), then

(πa(f))(x) = αx(a) · f(x) ∈ I for all x ∈ G.

Hence πa(f) ∈ L2(G,A) · I. Since Cc(G,A) is dense in L2(G,A) it follows

πa(L
2(G,A)) ⊆ L2(G,A) · I.
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We consider the representations

ρA : Cc(G,A)→ B(L2(G,A)) and ρI : Cc(G, I)→ BG(L2(G, I)).

Let f ∈ Cc(G, I) and h ∈ L2(G,A) then (πf(x) ◦ δg)(h) ∈ L2(G,A) · I for all x ∈ G.

Hence ρAf (h) ∈ L2(G,A) · I. This shows ρAf (L2(G,A)) ⊆ L2(G,A) · I. Therefore the

considerations in the first chapter yield ‖ρAf ‖ = ‖ρAf |L2(G,A)·I‖ = ‖ρIf‖.
Therefore C∗r (G, I) is isomorphic to the closure of ρA(Cc(G, I)) ⊆ C∗r (G,A). Thus we
may identify C∗r (G, I) with the closure of ρA(Cc(G, I)).
The formula for the convolution shows, that Cc(G, I) is a an ideal in Cc(G.A). Therefore,
C∗r (G, I) is a closed ideal in C∗r (G,A).
If a ∈ I and f ∈ Cc(G,A), then πa ◦ ρAf = ρa·f ∈ ρA(Cc(G, I)) ⊆ C∗r (G, I). Hence
πa ◦ ψ ∈ C∗r (G, I) for all ψ ∈ C∗r (G,A). Let (uj)j∈J be an approximate unit of I and
ψ ∈ C∗r (G,A). Using Lemma 1.30 and its proof we see, that ψ ∈ C∗r (G, I) if and only
if ‖ψ − πuj ◦ ψ‖ → 0. Since K := {T ∈ BG(L2(G,A)) : T (L2(G,A)) ⊆ L2(G,A) · I} is
closed in BG(L2(G,A)), we obtain C∗r (G, I) ⊆ C∗r (G,A) ∩ K.
Now consider A/I and the quotient map π : A → A/I. Since I is G-invariant, A/I is a
G-C∗-algebra and π is G-equivariant. Let q : Cc(G,A) → Cc(G,A/I) be the pointwise
quotient map. By Lemma 1.5 and the considerations above it, we obtain a commutative
diagram of C∗-algebras

BG(L2(G,A)) B(L2(G,A/I))

B(L2(G,A)/(L2(G,A) · I))

Q

Q1 ∼

Let πA/I be the action of A/I on L2(G,A/I) and ρA/I the representation of Cc(G,A/I)
on B(L2(G,A/I)). Since

π
A/I
q(a)(q(f)) = αg(q(a)) · q(f(x)) = q(πAa (f)) = Q(πa)(q(f))

the ∗-homomorphism Q is compatible with the representations ρA and ρA/I . That is we
obtain a commutative diagram

Cc(G,A) Cc(G,A/I)

BG(L2(G,A)) B(L2(G,A/I))

B(L2(G,A)/(L2(G,A) · I))

ρA

q

ρA/I

Q

Q1 ∼

From
Q(ρA(Cc(G,A))) ⊆ ρA/I(q(Cc(G,A))) ⊆ C∗r (G,A/I),
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we deduce Q(C∗r (G,A)) ⊆ C∗r (G,A/I).
Let f ∈ Cc(G) and a ∈ A, then q(f.a) = f.(π(a)), therefore Q(C∗r (G,A)) contains all

elements of the form ρ
A/I
f.π(a). The elements of this form generate C∗r (G,A/I). There-

fore, Q(C∗r (G,A)) = C∗r (G,A/I). Hence Q|C∗r (G,A) is a surjective ∗-homomorphism
C∗r (G,A) → C∗r (G,A/I). K is the kernel of the map Q1 of the diagram above. There-
fore the kernel of Q|C∗r (G,A) is C∗r (G,A) ∩ K.
All in all we obtain a sequence

0→ C∗r (G, I)→ C∗r (G,A)→ C∗r (G,A/I)→ 0.

This sequence is in general not exact in the middle. If we fix the group G and obtain
an exact sequence for all G-C∗-algebras A and G-invariant ideals, then the group G is
called exact.
Our considerations show that the sequence is exact if and only if

ρA(Cc(G, I)) = {ψ ∈ C∗r (G,A) : ψ(L2(G,A)) ⊆ L2(G,A) · I}.

1.3 Square-Integrable Group Actions

Let G be a unimodular locally compact group and A be a G-C∗-algebra with action
(αg)g∈G. We view A as a Hilbert G-A-module.
The C∗-algebra A acts on itself by left multiplication. This action yields an embedding
A ↪→ B(A). M(A) = B(A) is called the multiplier algebra of A. It carries the strict
topology, where a net (Ti)i∈I ⊆M(A) converges to T ∈M(A), if and only if

Ti(a) −→ T (a) and T ∗i (a) −→ T ∗(x) for all a ∈ A.

In this case, we write T = lims
i Ti.

Let B be a C∗-algebra. A ∗-homomorphism f : A → B is called nondegenerate if
f(A) · B = B. A nondegenerate ∗-homomorphism A → B extends uniquely to a
strictly continuous ∗-homomorphism f̃ : M(A) → M(B). If T ∈ M(A) and a ∈ A,
then f̃(F )f(a) = f(Fa). If g ∈ G, then the ∗-automorphism αg extends to M(A), by
T 7→ αg ◦ T ◦ αg−1 . We obtain an action of G on M(A) as in Section 5.3. The fixed
points of this action are exactly the G-equivariant adjointable operators (or multipliers)
A→ A. We write MG(A) := BG(A).
Let a, b ∈ A. We define the coefficient function cab : G → A by x 7→ αx(a)∗b. Moreover
we define two linear maps

Λa : Cc(G,A)→ A by f 7−→
∫
G
αx(a)f(x) dµ(x).

and
Γa : A→ Cb(G,A) by b 7−→ cab.

We collect some properties of Λa:

Proposition 1.32 (Properties of Λa).
Let a ∈ A.
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(i) Λa is G-equivariant.

(ii) If g ∈ G, then Λαg(a) = Λa ◦ δg−1.

(iii) If b ∈ A, then Λab = Λa ◦ πb.

(iv) If T ∈MG(A), then ΛT (a) = T ◦ Λa

(v) If Λa = 0, then a = 0.

Proof. (i)

Λa(γg(f)) =

∫
G
αx(a)αg(f(g−1x)) dµ(x)

5.8
= αg

(∫
G
αg−1x(a)f(g−1x) dµ(x)

)
5.11
= αg(Λa(f)).

This shows, that Λa is G-equivariant.

(ii)

Λαg(a)(f) =

∫
G
αxg(a)f(x) dµ(x)

5.12
=

∫
G
αx(a)f(xg−1) dµ(x)

=

∫
G
αx(a)(δg−1(f))(x) dµ(x)

= (Λa ◦ δg−1)(f).

(iii)

Λab(f) =

∫
G
αx(ab)f(x) dµx

=

∫
G
αx(a)(πb(f))(x) dµx

= (Λa ◦ πb)(f).

(iv)

ΛT (a)(f) =

∫
G
αx(T (a))f(x) dµ(x)

= T

(∫
G
αx(a)f(x) dµ(x)

)
= (T ◦ Λa)(f).
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(v) Assume Λa = 0. Choose h ∈ T (G), with h(1) = 1. Define f(x) = αx(a∗)h(x).
Then f ∈ Cc(G,A). We have

0 = Λa(f) =

∫
G
αx(aa∗)h(x) dµ(x).

Since αx(aa∗)h(x) ≥ 0 for all x ∈ G, we obtain

aa∗ = α1(aa∗)h(1) = 0

by Lemma 5.13(iv). Hence the C∗-condition yields a = 0.

Definition 1.33 (Square-Integrable Elements[3, page 222]).
An element a ∈ A is called square-integrable if the function cab is square-integrable for
all b ∈ A.

Theorem 1.34 (Characterisation of Square-Integrability).
An element a ∈ A is square-integrable if and only if Λa extends to a G-equivariant
adjointable operator L2(G,A)→ A.

Proof.

”⇒” If a ∈ A is square-integrable, then the image of Γa is contained in S2(G,A). Using
the canonical embedding ι : S2(G,A)→ L2(G,A), we obtain a linear map

Γ′a := ι ◦ Γa : A→ L2(G,A).

As a first step, we show that Γ′a is bounded.
If h ∈ T (G), then we define Th : A → L2(G,A) by b 7→ h · cab. Then Th is linear. Let
b ∈ A. We estimate

‖Th(b)‖2 =

∥∥∥∥∫
G
h(x)2b∗αx(aa∗)b dµ(x)

∥∥∥∥1/2

≤ ‖a‖ · ‖b‖ · ‖h‖2.

Since h ∈ Cc(G), we have ‖h‖2 <∞. Hence Th is bounded.
Since cab is square integrable, there is Mb > 0, such that

‖Th(b)‖2 = ‖h · cab‖2 ≤Mb for all h ∈ T (G).

The uniform boundedness principal implies, that there is a constant C > 0, such that
‖Th‖ ≤ C for all h ∈ T (G). Using Corollary 1.16 we conclude

‖Γ′a(b)‖2 = ‖cab‖S2(G,A) = sup{‖Th(b)‖2 : h ∈ T (G)} ≤ C‖b‖.

Therefore Γ′a is bounded.
Let f ∈ Cc(G,A) and b ∈ A. We calculate

Λa(f)∗b =

∫
G
f(x)∗αx(a)∗ dµ(x)b

5.13(v)
=

∫
G
f(x)∗cab(x) dµ(x)

1.17
= 〈f,Γ′a(b)〉. (1)
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This implies

‖Λa(f)‖2 = ‖Λa(f)∗Λa(f)‖ = ‖〈f,Γ′a(Λa(f))〉‖ ≤ ‖f‖2‖Γ′a‖ · ‖Λa(f)‖.

Therefore, ‖Λa‖ ≤ ‖Γ′a‖. Hence Λa extends to a G-equivariant bounded linear operator
L2(G,A) → A. Since Cc(G,A) is dense in L2(G,A). Equation (1) shows that Λa is
adjointable with Λ∗a = Γ′a.

”⇐” Assume Λa extends to an adjointable operator L2(G,A) → A. Let b ∈ A. If
h ∈ T (G) and f ∈ Cc(G,A), then

〈f,Mh(Λ∗(b))〉 = 〈Mh(f),Λ∗ab〉
= Λa(Mh(f))∗ · b

=

∫
G
f(x)∗ · h(x) · cab(x) dµ(x)

= 〈f, h · cab〉.

Since Cc(G,A) is dense in L2(G,A), this implies h · cab = Mh(Λ∗a(b)). Therefore,

‖h · cab‖2 = ‖Mh(Λ∗a(b))‖2 ≤ ‖Λ∗a(b)‖2 for all h ∈ T (G).

Hence cab is square-integrable for all b ∈ A. That is, a is square-integrable.

Remark 1.35. In the above proof, we showed that if a ∈ A is square-integrable, then
Λ∗a = ι ◦ Γa.

The next computation motivates the definition of the generalised fixed point algebra.

Lemma 1.36. Let (χi)i∈I ⊆ T (X) be a net with χi −→ 1 uniformly on compact subsets.
If a, b ∈ A are square integrable elements, then

Λa ◦ Λ∗b =
s

lim
i

∫
G
χi(x)αx(ab∗) dµ(x).

Proof. If i ∈ I, then we define

Ti =

∫
G
χi(x)αx(ab∗) dµ(x) ∈ A.

We have

T ∗i
5.13(i)

=

∫
G
χi(x)αx(ba∗) dµ(x)

Let d ∈ A. Then
Λ∗b(b)

1.35
= (ι ◦ Γb)(d) = ι(cbd) = lim

i
(χi · cbd).
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Hence

(Λa ◦ Λ∗b)(d) = lim
i

Λa(χi · cbd)

= lim
i

(∫
G
χi(g)αx(a) · cbd(x) dµ(x)

)
= lim

i

(∫
G
χi(g)αx(ab∗) dµ(x) · d

)
= lim

i
(Ti · d)

By changing the roles of a and b we obtain

(Λa ◦ Λ∗b)
∗ = Λb ◦ Λ∗a = lim

i
(T ∗i · d).

This shows that left multiplication with (Ti)i∈I converges strictly to Λa ◦ Λ∗b .

Let Asi be the subset of square-integrable elements of A. Since a 7−→ cab is anti-linear,
Asi is a linear subspace of A.

Proposition 1.37. Asi is a G-invariant right ideal of A. We have MG(A) ◦Asi ⊆ Asi.

Proof. Let a ∈ Asi and b ∈ A. Then Λab = Λa ◦ πb by Proposition 1.32(iii). By Theo-
rem 1.34 Λa extends to an adjointable operator L2(G,A)→ A. Since πb ∈ BG(L2(G,A)),
this implies, that Λab extends to an adjointable operator L2(G,A) → A. Therefore,
ab ∈ Asi by Theorem 1.34. This proves, that Asi is a right ideal.
We use the same argument to prove that Asi is G-invariant and thatMG(A)◦Asi ⊆ Asi..

Definition 1.38 (Square-Integrable G-C∗-algebra).
A is called square-integrable if Asi is dense in A.

For a ∈ Asi, we define ‖a‖si = ‖a‖+ ‖Λa‖. It is easy to see, that ‖ · ‖si defines a norm
on Asi.

Proposition 1.39. Asi is complete with respect to ‖ · ‖si.
Let a ∈ Asi. We have the following estimations:

(i) If b ∈ A, then ‖a · b‖si ≤ ‖a‖si · ‖b‖.

(ii) If g ∈ G, then ‖αg(a)‖si = ‖a‖si.

(iii) If T ∈MG(A), then ‖T (a)‖si ≤ ‖T‖ · ‖a‖si.

Proof. Let (an)n∈N be a Cauchy sequence in A with respect to ‖ · ‖si. Since ‖ · ‖ ≤ ‖ · ‖si,
(an)n∈N is a norm Cauchy-sequence in A. Since A is complete, there is a ∈ A, such that
‖an − a‖ → 0 for n→∞.
Likewise ‖Λan − Λam‖ ≤ ‖an − am‖si. So that (Λan)n∈N is a Cauchy sequence in
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B(L2(G,A), A). Hence there is Λ ∈ B(L2(G,A), A), such that Λn → Λ in the oper-
ator norm. For f ∈ Cc(G,A), we have

‖Λan(f)− Λa(f)‖ ≤
∫
G
‖an − a‖ · ‖f(x)‖ dµ(x) = ‖an − a‖ · ‖f‖1

n→∞−−−→ 0.

Therefore, Λa(f) = limn→∞ Λan(f) = Λ(f). Hence Λa extends to an adjointable opera-
tor L2(G,A)→ A with Λa = Λ. Theorem 1.34 implies a ∈ Asi. Since

‖Λan − Λa‖ = ‖Λan − Λ‖ → 0 for n→∞,

we obtain ‖an − a‖si → 0 for n→∞. This shows that Asi is complete. The estimations
follow from Proposition 1.32 by elementary computations.

Lemma 1.40. Let a ∈ Asi. If Λ∗aΛa ∈ C∗r (G,A), then the function G→ A, g 7−→ αg(a)
is continuous with respect to ‖ · ‖si.

Proof. Let g ∈ G and ε > 0. By Lemma 1.31 the function g 7−→ δg◦(Λ∗aΛa) is continuous.
Therefore, there is a neighbourhood U1 of g in G, such that

‖δg ◦ (Λ∗aΛa)− δx ◦ (Λ∗aΛa)‖ <
1

8
ε2. for all x ∈ U.

If x ∈ U, then

‖Λαg(a) − Λαx(a)‖2
1.32(ii)

= ‖Λa ◦ (δg−1 − δx−1)‖2

= ‖(δg − δx)Λ∗aΛa(δg−1 − δx−1)‖

≤ 2‖(δg − δx)Λ∗aΛa‖ ≤
1

4
ε2.

Since G → A, g 7−→ αg(a) is continuous with respect to ‖ · ‖, there is a neighbourhood
U2 ⊆ G of g, such that

‖αg(a)− αx(a)‖ ≤ ε

2
for all x ∈ U2.

If x ∈ U1 ∩ U2, then we obtain

‖αg(a)− αx(a)‖si = ‖αg(a)− αx(a)‖+ ‖Λαg(a) − Λαx(a)‖ < ε.

The Right Module Structure over Cc(G,A)

In the following we turn A into a right module over the convolution algebra Cc(G,A).
Let f ∈ Cc(G,A). We define f̆(x) = αx(f(x−1)). Then f̆ ∈ Cc(G,A). If a ∈ A, then we
define

a ∗ f :=

∫
G
αx(a · f(x−1)) dµ(x) = Λa(f̆).
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Since f 7→ f̆ and a 7→ Λa are linear the map (a, f) 7→ a ∗ f is bilinear.
If h ∈ Cc(G,A), then

Λa∗f (h) =

∫
G
αg

(∫
G
αx(af(x−1)) dµ(x)

)
· h(g) dµ(g)

5.9
=

∫
G

(∫
G
αg(αx(af(x−1))) · h(g) dµ(g)

)
dµ(x)

=

∫
G

Λαx(af(x−1))(h) dµ(x)

=

∫
G

(Λa ◦ πf(x−1) ◦ δx−1)(h) dµ(x)

5.12
= (Λa ◦ ρf )(h).

Therefore, Λa∗f = Λa ◦ ρf . If f1, f2 ∈ Cc(G,A), then this implies

Λa∗(f1∗f2) = Λa ◦ ρf1∗f2 = Λa ◦ ρf1 ◦ ρf2 = Λa∗f1 ◦ ρf2 = Λ(a∗f1)∗f2 .

By Proposition 1.32(v) a 7→ Λa is injective. Hence a∗ (f1 ∗f2) = (a∗f1)∗f2. This shows
that A is a right module over Cc(G,A). If F ∈MG(A), then

F (a) ∗ f = ΛF (a)(f̆) = (F ◦ Λa)(f̆) = F (a ∗ f).

If a ∈ Asi, then Λa∗f = Λ◦ρf extends to an adjointable operator L2(G,A)→ A therefore
a ∗ f ∈ Asi by Theorem 1.34.
The following lemma collects three norm estimates for this module structure.

Lemma 1.41 (Norm Estimations for Cc(G,A) module structure).
Let f ∈ Cc(G,A).

(i) If a ∈ A, then ‖a ∗ f‖ ≤ ‖a‖ · ‖f‖1.

(ii) If a ∈ Asi, then ‖a ∗ f‖si ≤ ‖a‖si · ‖f‖1 and ‖a ∗ f‖si ≤ ‖Λa‖ · (‖f̆‖2 + ‖ρf‖).

Proof.

From the definition of a ∗ f , we obtain

‖a ∗ f‖ ≤
∫
G
‖αx(a · f(x−1))‖ dµ(x) ≤ ‖a‖ · ‖f‖1

If a ∈ Asi, then

‖a ∗ f‖si = ‖a ∗ f‖+ ‖Λa∗f‖
= ‖a ∗ f‖+ ‖Λa ◦ ρf‖
= ‖a‖ · ‖f‖1 + ‖Λa‖ · ‖f‖1
= ‖a‖si · ‖f‖1.

Using a ∗ f = Λa(f̆), we obtain

‖a ∗ f‖si = ‖Λa(f̆)‖+ ‖Λa ◦ ρf‖ ≤ ‖Λa‖ · (‖f̆‖2 + ‖ρf‖).
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Lemma 1.42. A ∗ Cc(G,A) is dense in A.

Proof. Let a ∈ A. There is a u ∈ A, with ‖u‖ ≤ 1 and ‖au− u‖ < ε
2 .

Since (αg)g∈G is continuous, there is a compact neighbourhood U of 1 in G, such that
‖αx(a) − a‖ ≤ ε

2 for all x ∈ U. Let h : G → [0,∞) be a continuous function with∫
G h dµ = 1 and supp(h) ⊆ U. Define f(x) = h(x−1) · αx(u). Then f ∈ Cc(G,A) with

f̆ = h.u. We estimate

‖a ∗ f − a‖ = ‖Λa(h.u)− a‖

= ‖
∫
G
h(x)(αx(a)u− a) dµ(x)‖

≤
∫
G
h(x) · (‖(αx(a)u− au‖+ ‖au− a‖) dµ(x)

< ε ·
∫
G
h dµ = ε.

Corollary 1.43. Let (ui)i∈I be an approximate identity as in Lemma 5.20. Then

‖a− a ∗ ui‖ −→ 0 for all a ∈ A.

Proof. Let a ∈ A and ε > 0. By the previous lemma, there is b ∈ A and f ∈ Cc(G,A),
such that ‖a− b ∗ f‖ ≤ ε

3 .
There is i0, such that

‖f − f ∗ ui‖ ≤
ε

3
for all i ≥ i0.

If i ≥ i0, we estimate

‖a− a ∗ ui‖ ≤ ‖a− b ∗ f‖+ ‖b ∗ f − b ∗ (f ∗ ui)‖+ ‖(b ∗ f) ∗ ui − a ∗ ui‖
1.41(i)

≤ ε

3
+ ‖b‖ · ‖f − f ∗ ui‖1 + ‖b ∗ f − a‖‖ui‖1 < ε.

Continuously Square-Integrable Subsets and the Generalized Fixed Point
Algebra

We want to extend the module structure over Cc(G,A) to a Hilbert module structure
over the reduced crossed product C∗r (G,A). To get an inner product with values in
C∗r (G,A), we define relatively continuous subsets.

Definition 1.44 (Relatively Continuous Subset and Complete Subspaces).
Let R ⊆ Asi be a subset.

(i) R is called relatively continuous if

Λ∗a ◦ Λb ∈ C∗r (G,A) for all a, b ∈ R.
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(ii) R is called complete if R is a linear subspace of Asi, closed with respect to ‖ · ‖si
and R ∗ Cc(G,A) ⊆ R.

Definition 1.45 (Continuously Square-Integrable G-C∗-algebra).
A continuously square-integrable G-C∗-algebra (A,R) is a G-C∗-algebra A together with
a dense, complete and relatively continuous subspace R.

Let R be a relatively continuous and complete subspace of A. We define ER as the
closure of E0

R = {Λa : a ∈ R} ⊆ BG(L2(G,A), A) in the operator norm.

Proposition 1.46 (ER is a right Hilbert C∗r (G,A)-module).
Let ξ, η ∈ ER and ψ ∈ C∗r (G,A). Then ξ ◦ ψ ∈ ER and ξ∗ ◦ η ∈ C∗r (G,A).
ER becomes a right Hilbert C∗r (G,A)-module, when equipped with the right module struc-
ture ξ · ψ := ξ ◦ ψ and the C∗r (G,A)-valued inner product 〈ξ, η〉 := ξ∗ ◦ η.

Proof. There are sequences (fn)n∈N ⊆ Cc(G,A) and (an)n∈N ⊆ R, such that ρfn → ψ
and Λan → ξ in the operator norms. Since R is complete Λan ◦ ρfn = Λan∗f ∈ E0

R for all
n ∈ N. Therefore

ξ ◦ ψ = lim
n→∞

Λan ◦ ρfn ∈ ER.

To prove, that ξ∗ ◦ η ∈ C∗r (G,A), let (bn)n∈N be a sequence, such that Λbn → η. Since
R is relatively continuous Λ∗an ◦ Λbn ∈ C∗r (G,A) for all n ∈ N. Therefore,

ξ∗ ◦ η = lim
n→∞

Λ∗an ◦ Λbn ∈ C∗r (G,A).

Hence the module structure is well-defined. The conditions 〈ξ, η · ψ〉 = 〈ξ, η〉 ◦ ψ and
〈ξ, η〉∗ = 〈η, ξ〉 are obviously satisfied.
Also 〈ξ, ξ〉 = ξ∗ ◦ ξ ≥ 0 for all ξ ∈ ER. Since

‖ξ‖ = ‖ξ∗ ◦ ξ‖1/2 = ‖〈ξ, ξ〉‖1/2.

the norm induced by the inner product equals the operator norm.
This shows, that ER is a right Hilbert C∗r (G,A)-module.

Definition 1.47 (The Generalised Fixed Point Algebra).
LetR ⊆ Asi be a relatively continuous and complete subspace of A. The generalised fixed
point algebra FixR is defined to be the norm-closed linear span of {Λa ◦Λ∗b : a, b ∈ R} in
MG(A).

Proposition 1.48 (FixR is a C∗-algebra).
FixR is a C∗-subalgebra of MG(A). Therefore, FixR is a C∗-algebra.

Proof. Let a1, a2, b1, b2 ∈ R. Since R is relatively continuous Λ∗b1 ◦ Λa2 ∈ C∗r (G,A).
Therefore, there is a sequence (fn)n∈N ⊆ Cc(G,A), such that ρfn → Λ∗b1 ◦ Λa2 . We
obtain

(Λa1 ◦ Λ∗b1) ◦ (Λa2 ◦ Λ∗b2) = lim
n→∞

Λa1∗fn ◦ Λ∗b2 ∈ FixR .

Obviously FixR
∗ = FixR and FixR is closed by definition. Therefore FixR is a C∗-

subalgebra of MG(A).
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Proposition 1.49 (ER is a Hilbert FixR-C∗r (G,A)-bimodule).
Let ξ, η ∈ ER and F ∈ FixR. Then F ◦ ξ ∈ ER and ξ ◦ η∗ ∈ FixR .
ER becomes a Hilbert FixR-C∗r (G,A)-bimodule, when equipped with right Hilbert module
structure from above and the left module structure defined by F · ξ := F ◦ ξ and the
FixR-valued inner product 〈〈ξ, η〉〉 := ξ ◦ η∗.

Proof. Let a, b, c ∈ R. Then

(Λa ◦ Λ∗b) ◦ Λc = Λa ◦ (Λ∗b ◦ Λc) ∈ ER ◦C∗r (G,A) ⊆ ER .

Since ER0 is dense in ER, this implies (Λa ◦ Λ∗b) · ξ ∈ ER for all ξ ∈ ER . Therefore
FixR · ER ⊆ ER .
Similarly Λa ◦ Λ∗b ∈ FixR by definition and hence ξ ◦ η∗ ∈ FixR for all ξ, η ∈ ER.
Similar arguments as in the proof of Proposition 1.46 show, that ER is a left Hilbert
FixR-module. Since the module structures are defined by composition of maps the
conditions (F · ξ) · ψ = F · (ξ · ψ) and 〈〈ξ, η〉〉 · θ = ξ · 〈η, θ〉 for F ∈ FixR, ψ ∈ C∗r (G,A)
and ξ, η, θ ∈ ER are obviously satisfied.

Remark 1.50. The bimodule ER is full on the left by definition of FixR . Therefore FixR
is Morita-Rieffel equivalent to the ideal 〈ER, ER〉 of C∗r (G,A).

Lemma 1.51 (ER detects elements of R).
Let R be a relatively continuous and complete subspace of A and a ∈ Asi.
If Λa ∈ ER, then a ∈ R.

Proof. Let u ∈ Cc(G,A) and ε > 0. Assume u 6= 0. Define C = ‖ŭ‖2 + ‖ρu‖. Since
Λa ∈ ER, there is r ∈ R, such that ‖Λa − Λr‖ < ε

C . Therefore, Lemma 1.41(ii) yields
‖a ∗ u− r ∗ u‖si < ε. Since R is complete, we have r ∗ u ∈ R. Hence a ∗ u ∈ R, since R
is ‖ · ‖si- closed.
Let (ui)i∈I be the approximate identity of 5.20. Corollary 1.43 yields ‖a− a ∗ ui‖ → 0.
By Lemma 1.28 (ρui)i∈I is an approximate identity of C∗r (G,A). Since ER is a right
Hilbert C∗r (G,A)-module, this implies ‖Λa − Λa ◦ ρui‖ → 0.
Therefore,

‖a− a ∗ ui‖si = ‖a− a ∗ ui‖+ ‖Λa − Λa ◦ ρui‖ −→ 0.

Since a ∗ ui ∈ R for all i ∈ I and R is ‖ · ‖si closed, this leads to a ∈ R.

Theorem 1.52 (Properties of a Complete, Relatively Continuous Subspace).
Let R ⊆ A be a complete, relatively continuous subspace.

(i) R is G-invariant and the action of G on R is continuous with respect to ‖ · ‖si.

(ii) R ·A = R.

(iii) If a ∈ R and F ∈ FR, then F (a) ∈ R.

(iv) If G is exact and I ⊆ A is a G-invariant closed ideal, then R · I = R∩ I
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Proof. (i) Let r ∈ R and g ∈ G. Proposition 1.37 yields αg(r) ∈ Asi.
Since Λr ∈ ER and ER is a right Hilbert C∗r (G,A)-module, there is ξ ∈ ER and
ψ ∈ C∗r (G,A), such that Λr = ξ · ψ. By Lemma 1.31, we have

ψ ◦ δg−1 = (δg ◦ ψ∗)∗ ∈ C∗r (G,A).

Hence

Λαg(r)
1.32(i)

= Λr ◦ δg−1 = ξ ◦ ψ ◦ δg−1 = ER ·C∗r (G,A) ⊆ ER .
Lemma 1.51 implies αg(r) ∈ R. Since Λ∗r ◦ Λr ∈ C∗r (G,A) the map G → R given
by g 7→ αg(r) is continuous with respect to ‖ · ‖si by Lemma 1.40.

(ii) Let r ∈ R and a ∈ A. Proposition 1.37 yields r ·a ∈ Asi. As above, there is ξ ∈ ER
and ψ ∈ C∗r (G,A) with Λr = ξ · ψ. Hence Lemma 1.30 implies

Λra
1.32(iii)

= Λr ◦ πa = ξ ◦ ψ ◦ πa ∈ ER ·C∗r (G,A) ⊆ ER .

This shows R ·A ⊆ R.
Let (ai)i∈I be an approximate identity of A. Then ‖r − r · ai‖ → 0. Since
Λ∗r ◦ Λr ∈ C∗r (G,A) Lemma 1.30 yields

‖Λr − Λrai‖2 = ‖Λr − Λrπai‖2

= ‖(Λ∗r − πaiΛ∗r)(Λr − Λrπai)‖
≤ 2 · ‖Λ∗rΛr − πaiΛ∗rΛr‖ −→ 0.

Therefore,
‖r − r · ai‖si = ‖r − r · ai‖+ ‖Λr − Λr·ai‖ −→ 0.

Cohen’s factorisation theorem implies r ∈ R ·A. Therefore R ⊆ R ·A.

(iii) Let r ∈ R and F ∈ FixR. Since FixR ⊆ MG(A) we obtain F (r) ∈ Asi from
Proposition 1.37. Proposition 1.32(iv) yields

ΛF (r) = F ◦ Λr ∈ FixR · ER ⊆ ER .

Therefore, F (r) ∈ R by Lemma 1.51.

(iv) Part (ii) yields R · I ⊆ R · A ⊆ R. Also R · I ⊆ I, since I is an ideal of A. Hence
R · I ⊆ R ∩ I.
To prove the other inclusion, we will use Cohen’s Factorisation Theorem. Let
r ∈ R∩ I. If b ∈ A, then crb(g) = αx(r)∗b ∈ I for all g ∈ G. Since r ∈ R ⊆ Asi, we
have crb ∈ S2(G,A). Corollary 1.18 yields ι(crb) ∈ L2(G,A)·I. Hence Remark 1.35
implies

Λ∗r(b) = ι ◦ Γr(b) = ι(crb) ∈ L2(G,A) · I
Hence (Λ∗r ◦ Λr)(L

2(G,A)) ⊆ L2(G,A) · I.
Since G is assumed to be exact, this yields Λ∗r ◦Λr ∈ C∗r (G, I) by the considerations
in Section 1.2. Let (uj)j∈J be an approximate identity of I. Then

‖Λ∗r ◦ Λr − Λ∗r ◦ Λr ◦ πuj‖ −→ 0.
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The same computations as in Part (ii) show ‖r− r · uj‖si → 0. Hence the Factori-
sation Theorem yields r ∈ R · I.

The following lemma and its corollary give a more explicit criteria weather a given
subset R is relatively continuous.

Lemma 1.53. Let R be a dense subset of A, such that for all a, b ∈ R the image of
the map Γa ◦Λb : Cc(G,A)→ Cb(G,A) is contained in S2(G,A) and the map ι ◦ Γa ◦Λb
extends to a bounded operator L2(G,A)→ L2(G,A) with ι ◦ Γa ◦ Λb ∈ C∗r (G,A).
Then R ⊆ Asi and R is relatively continuous.

Proof. Fix a ∈ R.
If b ∈ R and f1, f2 ∈ Cc(G,A), then

〈(ι ◦ Γa ◦ Λb)(f1), f2〉
1.17
=

∫
G

((Γa ◦ Λb)(f1)(g)∗f2(g) dµ(g)

=

∫
G

(αg(a)∗Λb(f1))∗f2(g) dµ(g)

= Λb(f1)∗ ◦ Λa(f2)

If f ∈ Cc(G,A), this implies This implies

‖Λa(f)‖2 = ‖Λa(f)∗Λa(f)‖
= ‖〈(ι ◦ Γa ◦ Λb)(f), f〉‖
≤ ‖ι ◦ Γa ◦ Λa‖‖f‖22.

Hence Λa extends to a bounded operator L2(G,A) → A. In view of Theorem 1.34 it
remains to prove, that Λa is adjointable.
Let A0 be the domain of Λ∗a. That is x ∈ A0 if and only if there is fx ∈ L2(G,A), such
that

x∗Λa(h) = 〈fx, h〉 for all h ∈ L2(G,A).

Since Λa is bounded it suffices to look at h ∈ Cc(G,A). The computation at the beginning
of this proof shows b ∗ k = Λb(k̆) ∈ A0 for all b ∈ R and k ∈ Cc(G,A). Since R is dense
1.41(i) yields A ∗Cc(G,A) ⊂ A0. By Lemma 1.42 A ∗Cc(G,A) is dense in A. Hence A0

is dense in A. Since Λa is bounded A0 is closed. Therefore, A0 = A and the map x 7→ fx
serves as an adjoint for Λa.
Theorem 1.34 yields R ⊆ Asi. By Remark 1.35 we obtain

Λ∗a ◦ Λb = ι ◦ Γa ◦ Λb ∈ C∗r (G,A).

Therefore R is relatively continuous.

If a, b ∈ A we define a function fab ∈ Cb(G,A) by fab(g) = a∗αg(b).

38



Corollary 1.54. Let R be a dense subset of A, such that∫
G
‖fab(g)‖ dµ(g) <∞ for all a, b ∈ R.

Then R ⊆ Asi and R is relatively continuous.

Proof. Let a, b ∈ R and k ∈ Cc(G,A) We compute

((Γa ◦ Λb)(k))(g) = αg(a)∗Λb(k)

= α(a)∗ ·
∫
G
αx(b) · f(x) dµ(x)

5.11
=

∫
G
αg(a

∗αx(f)) · k(gx) dµ(x)∫
G
αg(fab(x)) · k(gx) dµ(x) = (ρfab)h)(g).

By Lemma 1.29 the image of Γa◦Λb = ρfab is contained in S2(G,A) and ι◦Γa◦Λb = ι◦ρfab
extends to an operator L2(G,A)→ L2(G,A) with ι ◦ Γa ◦ Λb = ι ◦ ρfab ∈ C∗r (G,A).
Therefore, R ⊆ Asi and R is relatively continuous by Lemma 1.53.

The last of this section is customized for our application to the scaling action of the
tangent groupoid.

Lemma 1.55. Let R0 ⊆ Asi be a dense, relatively continuous, G-invariant subspace,
such that R0 · R0 ⊆ R0.
Then the closure R of R0 with respect to ‖ · ‖si is dense, complete and relatively contin-
uous. Therefore (A,R) is a continuously square-integrable G-C∗-algebra.

Proof. Clearly R ⊂ Asi is a closed linear subspace of the Banach space Asi. Since
‖Λa‖ ≤ ‖a‖si for all a ∈ Asi we get Λ∗a ◦Λb ∈ C∗r (G,A) for all a, b ∈ R by approximation
with elements of R0. Therefore, R is relatively continuous.
It remains to prove R ∗ Cc(G,A) ⊆ R.

Claim: R ·A ⊆ R.

Proof of the claim: Let r ∈ R and a ∈ A. There is a sequence (rn)n∈N ⊆ R0 such
that ‖r − rn‖si → 0. Since R0 is dense, there is a sequence (an)n∈N ⊆ R0, such that
‖a − an‖ → 0. since every convergent sequence is bounded and by Lemma 1.41(ii) we
obtain

‖ra− rnan‖si ≤ ‖r‖si · ‖a− an‖+ ‖r − rn‖si · ‖an‖
n→∞−−−→ 0

As rnan ∈ R0 · R0 ⊆ R for all n ∈ N, we get ra ∈ R. This proves the Claim.
Since R0 is G-invariant R is G-invariant by Proposition 1.39(ii).
If r ∈ R and f ∈ Cc(G,A), then

r ∗ f = Λr(f̆) =

∫
G
αx(r) · f̆(x) dµ(x).
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By the above claim and since R is G-invariant αx(r) · f̆(x) ∈ R for all x ∈ G. By
Lemma 1.40 the map G → R given by x 7→ αx(r) is continuous with respect to ‖ · ‖si.
The estimation 1.39(i) shows that the multiplication map R×A→ R is continuous with
respect to ‖ · ‖si on R. Hence the map x 7→ αx(r) · f̆(x) is continuous with respect to
‖ · ‖si. Hence the integral above makes sense as an integral with values in (R, ‖ · ‖si).
Since the inclusion (R, ‖ · ‖si)→ (A, ‖ · ‖) is continuous, we obtain r ∗ f ∈ R.

2 The Tangent Groupoid of Rn

2.1 Locally Compact Hausdorff Groupoids and their reduced
C∗-Algebras

Notation and Definitions

Definition 2.1 (Locally Compact Hausdorff Groupoid).
A locally compact Hausdorff groupoid is a groupoid G with object set G(0) together with
locally compact Hausdorff topologies on G and on G(0), such that the structure maps

r : G → G(0),

s : G → G(0),

inv : G → G,
mult : G(2) → G,

are continuous. Here the set G(2) ⊆ G × G of composable arrows carries the induced
topology from G × G.

For x ∈ G(0), we define

Gx = {γ ∈ G : r(γ) = x} and Gx = {γ ∈ G : s(γ) = x}.

To construct a C∗-algebra associated to a locally compact Hausdorff groupoid, we need
our groupoid to provide a Haar system.

Definition 2.2 (Left Haar System).
Let G be a locally compact Hausdorff groupoid. A family (µx)x∈G(0) of positive Radon
measures µx on Gx is called a right Haar system G if satisfies the following conditions
for all f ∈ Cc(G).

(i) The function G(0) → C, x 7→
∫
Gx f dµx is continuous.

(ii) If γ ∈ G, then ∫
Gr(γ)

f(γ2) dµr(γ)(γ2) =

∫
Gs(γ)

f(γγ2) dµs(γ)(γ2).
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The definition for a right Haar system is analogously. Every left Haar system (µx)x∈G(0)
gives rise to a right Haar system (µx)x∈G(0) defined by∫

Gx
f(γ) dµx(γ) =

∫
Gx
f(γ−1) dµx(γ) for f ∈ Cc(G).

The Reduced C∗- Algebra of a Locally Compact Hausdorff Groupoid

For f1, f2 ∈ Cc(G) the convolution is defined by

(f1 ∗ f2)(γ) =

∫
Gs(γ)

f1(γγ2) · f2(γ−1
2 ) dµs(γ)(γ2)

=

∫
Gr(γ)

f1(γ2) · f2(γ−1
2 γ) dµr(γ)(γ2)

If f ∈ Cc(G) the involution is defined by f∗(γ) = f(γ−1). With this operators Cc(G)
becomes a ∗-algebra.
We define a norm ‖f‖I as the maximum of

‖f‖I,r := sup
x∈G(0)

∫
Gx
|f(γ)| dµx(γ) and ‖f‖I,s = sup

x∈G(0)

∫
Gx
|f(γ)| dµx(γ)

Then ‖ · ‖I is a submultiplicative norm on Cc(G). We have ‖f‖I,r = ‖f∗‖I,s. Therefore,
‖f∗‖I = ‖f‖I .
Let x ∈ G(0). There is a representation

λx : Cc(G)→ B(L2(Gx), µx))

defined by the formula

(λx(f)h)(γ) =

∫
Gx
f(γγ2)h(γ−1

2 ) dµx(γ2).

We call these representations the regular representations of G.
The reduced C∗-algebra C∗r (G) is defined as the completion of Cc(G) in the norm

‖f‖r = sup
x∈G(0)

‖λx(f)‖.

We have ‖f‖r ≤ ‖f‖I for all f ∈ Cc(G).

2.2 The Tangent Bundle of Rn

Let TRn = Rn × Rn be the tangent bundle of Rn. We view TRn as a locally compact
Hausdorff groupoid with object set Rn and arrow set Rn × Rn. The structure maps are
given by

s(y, x) = r(y, x) = y,

(y, x1)(y, x2) = (y, x1 + x2),

(y, x)−1 = (y,−x).
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If y ∈ Rn, then
(TRn)y = (TRn)y = {(y, x) : x ∈ Rn}.

The Lebesgue measure on Rn gives a left Haar-system (µy)y∈Rn for TRn with∫
(TRn)y

f(y, x) dµy(y, x) =

∫
Rn
f(y, x) dx for all f ∈ Cc(TRn).

Let F : Cc(Rn)→ C0(Rn) be the Fourier-transformation. That is

(F(f))(ξ) =

∫
Rn
f(x) · e−2πi〈x,ξ〉dx for all ξ ∈ Rn.

If f ∈ Cc(TRn) and y ∈ Rn, then we define fy ∈ Cc(Rn) by fy(x) = f(y, x) for all
x ∈ Rn. The function Rn × Rn → C given by (y, ξ) 7→ F(fy)(ξ) is continuous and
vanishes at ∞. Therefore, we obtain a linear map F1 : Cc(TRn)→ C0(Rn × Rn) with

(F1(f))(y, ξ) = F(fy)(ξ) =

∫
Rn
f(y, x) · e−2πi〈x,ξ〉 dx.

Theorem 2.3. The map F1 lifts to a ∗-isomorphism of C∗-algebras

F1 : C∗r (TRn)→ C0(Rn × Rn).

Proof. First we prove that F1 is a ∗-homomorphism on the Cc-level. If f1, f2 ∈ Cc(TRn),
then

(f1 ∗ f2)y(x) = (f1 ∗ f2)(y, x) =

∫
Rn
f1(y, z) · f2((y,−z) · (y, x)) dz

=

∫
Rn
f1y(z) · f2y(x− z) dz = (f1y ∗ f2y)(x).

Since F is a ∗-homomorphism, this implies

F1(f1 ∗ f2)(y, ξ) = F((f1 ∗ f2)y)(ξ)

= F(f1y ∗ f2y)(ξ)

= F(fy1 )(ξ) · F(fy2 )(ξ)

= (F1(f1) · F1(f2))(y, ξ).

If f ∈ Cc(TRn), then

(fy)
∗(x) = fy(−x) = f((y, x)−1) = f∗(y, x) = (f∗)y(x).

Therefore,

(F1(f)∗)(y, ξ) = (F1(f))(y, ξ) = (F(fy))(ξ) = (F(fy))
∗(ξ)

= (F(fy)
∗)(ξ) = F((f∗)y)(ξ) = F1(f∗)(y, ξ).
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This proves, that F1 is a ∗-homomorphism.
Let α : Cc(Rn) → B(L2(Rn)) be given by α(f)(h) = f ∗ h for h ∈ Cc(R

n). The
Pancharel theorem yields ‖α(f)‖ = ‖F(f)‖∞. Hence F extends to an isomorphism
C∗r (Rn)→ C0(Rn).
Let y ∈ Rn = (TRn)(0). The regular representation αy of Cc(TRn) on L2(TRny ) ∼= L2(Rn)
identifies with

(αy(f))h)(x) =

∫
Rn
f(y, x− z) · h(z) dz = (fy ∗ h)(x) = (α(fy)h)(x).

Therefore,

|F1(f)(y, ξ)| = |F(fy)(ξ)| ≤ ‖F(fy)‖∞ = ‖α(fy)‖ ≤ sup
y∈Rn

‖αy(f)‖ = ‖f‖r. (2)

This implies ‖ψ(f)‖∞ ≤ ‖f‖r. Choosing appropriate y, ξ ∈ Rn, we see that (2) implies
‖F1(f)‖∞ = ‖f‖r. Hence F1 extends to a isometric ∗-homomorphism

F1 : C∗r (TRn)→ C0(Rn × Rn).

Let h, k ∈ C0(Rn). We define f ∈ C0(Rn × Rn) by f(y, ξ) = h(y) · k(ξ). There are
sequences (gn)n∈N, (hn)n∈N,⊆ Cc(Rn), such that

‖hn − h‖∞
n→∞−−−→ 0 and ‖F(gn)− k‖∞

n→∞−−−→ 0.

We define fn ∈ Cc(TRn) by fn(y, x) = hn(y)·gn(x). Then F1(fn)(y, ξ) = hn(y)·F(gn)(ξ).
Therefore, ‖F1(fn)− f‖∞

n→∞−−−→ 0.
Since the range of F1 is closed, this shows that f is in the range of F1.
By the Stone-Weierstrass theorem elements of the form h(y) ·k(ξ) generate C0(Rn×Rn).
Hence F1 is surjective.
Therefore, F1 is a ∗-isomorphism of C∗-algebras.

2.3 The Pair Groupoid of Rn

The locally compact space PRn := Rn × Rn becomes a is a locally compact Hausdorff
groupoid with object set Rn and arrow set Rn × Rn together with the structure maps

s(x, y) = y,

r(x, y) = x,

(x, y)(y, z) = (x, z)

(x, y)−1 = (y, x).

PRn is called the pair groupoid of Rn. If x ∈ Rn, then

(PRn)x = {(x, y) : y ∈ Rn} and (PRn)x = {(y, x) : y ∈ Rn}.

As above the Lebesgue measure gives a left Haar system (µx)x∈Rn for PRn with∫
(PRn)x

f(x, y) dµx(x, y) =

∫
Rn
f(x, y) dy for all f ∈ Cc(PRn).

For f ∈ Cc(PRn) and h ∈ Cc(Rn), we define (Kfh)(x) =
∫
Rn f(x, y) · h(y) dy.
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Theorem 2.4 (Cc(PRn)-functions as Integral Kernels).
The linear map Kf : Cc(Rn)→ Cc(Rn) extends to a bounded operator on L2(Rn).
The map Cc(PRn)→ B(L2(Rn)) given by f 7→ Kf extends to a ∗-isomorphism

K : C∗r (PRn)→ K(L2(Rn)).

Proof. Let y ∈ Rn and h ∈ Cc(Rn). The regular representation αy of Cc(PRn) on
L2(PRny ) ∼= L2(Rn) identifies with

(αy(f)h)(x) =

∫
Rn
f((x, y) · (y, z)) · h(z) dz

=

∫
Rn
f(x, z) · h(z) dz

= (Kfh)(x).

Hence αy(f) = Kf . The theory of regular representations of groupoids implies, that Kf

extends to a bounded operator on L2(Rn) and that Cc(PRn) → B(L2(Rn)), f 7→ Kf is
a ∗-homomorphism.
If f ∈ Cc(RRn) is of the form f(x, y) = f1(x) · f2(y) for f1, f2 ∈ Cc(Rn), then Kf

is a rank-one operator. Using the Stone-Weierstraß theorem, we see that the linear
span of elements of the form f1(x) · f2(y) is dense in Cc(PRn) in the I-norm. Hence
C∗r (PRn) is generated by elements of this form. Therefore, K(C∗r (PRn)) ⊆ K(L2(Rn)).
Since K(L2(Rn)) is generated by rank-one operators and every rank-one operator is
in the image of K, we obtain K(C∗r (PRn)) ⊇ K(L2(Rn)). This shows, that K is a
∗-isomorphism.

2.4 The Transformation Groupoid of a Group Action

Let G be a locally compact group with left Haar measure µ and X a locally compact
space together with a continuous action

G×X → X, (g, x) 7→ gx.

The transformation groupoid XoG has arrow set X×G and object set X. The structure
maps are given by

s(x, g) = x,

r(x, g) = gx,

(hx, g)(x, h) = (x, gh)

(x, g)−1 = (gx, g−1).

If x ∈ X, then

(X oG)x = {(g−1x, g) : g ∈ G} and (X oG)x = {(x, g) : g ∈ G}.
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We define a measure µx on (X oG)x by∫
(XoG)x

f(g−1x, g) dµx(g−1x, g) =

∫
G
f(g−1x, g) dµ(g) for all f ∈ Cc(X oG)

The family (µx)x∈X provides a left Haar system for X oG.

Example 2.5. The tangent bundle TRn is RnoRn, where the group Rn acts trivially on
the space Rn.

The action of G on X induces a continuous action on the C∗-algebra C0(X) by

(g · f)(x) = f(g−1x) for all f ∈ C0(X).

We define a map

Φ: Cc(GnX)→ Cc(G,C0(X)) by (Φ(f)(g))(x) = f(g−1x, g).

If f ∈ Cc(X oG), then

(Φ(f∗)(g))(x) = f∗(g−1x, g)

= f(x, g−1)

= (Φ(f)(g−1))(g−1x)

= (g · (Φ(f)(g−1)))∗(x)

= (Φ(f)∗(g))(x)

If f1, f2 ∈ Cc(GnX), then

(Φ(f1 ∗ f2)(g))(x) = (f1 ∗ f2)(g−1x, g)

=

∫
G
f1(h−1x, h) · f2(g−1x, h−1g) dµ(h)

=

(∫
G

Φ(f1)(h) · (h · (Φ(f2)(h−1g))) dµ(h)

)
(x)

= ((Φ(f1) ∗ Φ(f2))(g))(x)

This shows that Φ is a ∗-homomorphism. By merging the regular representations of
X oG together to a representation on a Hilbert bundle and comparing to the represen-
tation of Cc(G,C0(X)) one proves, that Φ extends to an isomorphism of C∗-algebras

C∗r (GnX)→ C∗r (G.C0(X)).

2.5 The Tangent Groupoid of Rn

Before we define the tangent groupoid of Rn we give the definition of a continuous bundle
of C∗-algebras.
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Definition 2.6 (Continuous Bundle of C∗-algebras).
A continuous bundle of C∗-algebras is a triple (X, (πt : A→ At)t∈X , A), where A is a C∗-
algebra, and for each t ∈ X, At is a C∗-algebra (called the fibre at t ∈ X) and πt : A→ Ax
a surjective ∗-homomorphism, such that the following conditions are satisfied.

(i) ‖a‖ = supt∈X ‖πt(a)‖.

(ii) For f ∈ C0(X) and a ∈ A, there is an element f · a ∈ A, such that

πt(f · a) = f(t) · πt(a) for all t ∈ X

.

(iii) The function X → [0,∞) given by t 7→ ‖πt(a)‖ belongs to C0(X) for all a ∈ A.

The group Rn acts continuously on Rn × [0,∞)) by x · (y, t) = (y + tx, t). We obtain
a continuous action of Rn on C0(Rn × [0,∞) given by

x · f(y, t) = f(y − tx, t) for f ∈ C0(Rn × [0,∞)).

Let t ∈ [0,∞). We define Rnt = Rn × {t} ⊂ Rn × [0,∞). Then Rnt is an Rn-invariant
closed subset. Thus the restriction st : C0(Rn × [0,∞)) → C0(Rnt ) to Rnt is a surjective
Rn-equivariant ∗-homomorphism.
As in the consideration of 1.2 we obtain a surjective ∗-homomorphism

s̃t : C
∗
r (Rn, C0(Rn × [0,∞)))→ C∗r (Rn, C0(Rnt )) for t ∈ R.

The triple ([0,∞), (st)t∈R, C0(Rn× [0,∞))) is a continuous bundle of C∗- algebras. The
group Rn is exact. Therefore, [4, Theorem 4.2] implies, that

([0,∞), (s̃)t∈R, C
∗
r (Rn, C0(Rn × [0,∞)))

is again a continuous field of C∗-algebras.

Definition 2.7 (The Tangent Groupoid of Rn).
The transformation groupoid GRn : = (Rn × [0,∞))oRn is called the tangent groupoid
of Rn. It has the set of objects Rn× [0,∞) and the set of arrows Rn× [0,∞)×Rn. The
structure maps of GRn are given by

s(y, t, x) = (y, t),

r(y, t, x) = (y + tx, t),

(y + tx, t, z) · (y, t, x) = (y, t, z + x),

(y, t, x)−1 = (y + tx, t,−x).

Let t ∈ [0,∞). We define the subgroupoid

GRnt := Rnt oRn = {(y, t, x) : y, x ∈ Rn} ⊂ GRn.
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We use the isomorphisms

C∗r (GRn) ∼= C∗r (Rn, C0(Rn × [0,∞))) and C∗r (GRnt ) ∼= (Rn, C0(Rnt ))

to define a surjective ∗-homomorphism τt : C
∗
r (GRn)→ C∗r (GRnt ), such that the following

diagram commutes

C∗r (GRn) C∗r (GRnt )

C∗r (Rn, C0(Rn × [0,∞))) C∗r (Rn, C0(Rnt ))

τt

∼ ∼

s̃t

Since the vertical arrows are isomorphisms ([0,∞), (τt)t∈R, C
∗
r (GRn)) is a continuous field

of C∗-algebras.
If f ∈ Cc(GRn), then τt(f) is just the restriction of f to GRnt .
The map TRn → GRn0 given by (y, x) 7→ (y, 0, x) is a groupoid isomorphism compatible
with the Haar-measures. By Theorem 2.3 we get isomorphisms

C∗r (GRn0 ) −→ C∗r (TRn)
F1−−→ C0(Rn × Rn)

of C∗-algebras.
We define π0 : C∗r (GRn) → C0(Rn × Rn) as the isomorphism C∗r (GRn0 ) → C0(Rn × Rn)
composed with τ0. Therefore, π0 is a surjective ∗-homomorphism. For f ∈ Cc(GRn) we
have

(π0(f))(y, ξ) =

∫
Rn
f(y, 0, x) · e−2πi〈x,ξ〉 dx.

Let t > 0. The map PRn → GRnt given by (x, y) 7→ (ty, t, x−y) is a groupoid isomorphism
compatible with the Haar measures. By Theorem 2.4 we get isomorphisms

C∗r (GRnt ) −→ C∗r (PRn)
K−−→ K(L2(Rn))

of C∗-algebras.
We define πt : C

∗
r (GRn)→ K(L2(Rn)) as the isomorphism C∗r (GRnt )→ K(L2(Rn)) com-

posed with τt. Therefore, πt is a surjective ∗-homomorphism. For f ∈ Cc(GRn) we
obtain

(πt(f)h)(x) =

∫
Rn
f(ty, t, x− y) · h(y) dy for all h ∈ Cc(Rn).

We changed the fibres of ([0,∞), (τt)t∈R, C
∗
r (GRn)) in an isomorphic way, that is com-

patible with the τt. Therefore, ([0,∞), (πt)t∈R, C
∗
r (GRn)) is still a continuous bundle.

Before we introduce the scaling action on the tangent groupoid, we will prove a lemma
about continuous bundles of C∗-algebras, that will be useful later.

Lemma 2.8 (The Kernels of the Fibre Epimorphisms are Essential).
Let (X, (πt : A → At)t∈X , A) be a continuous bundle of C∗-algebras. If t ∈ X is not
isolated, then ker(πt) is an essential ideal of A.
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Proof. Let a ∈ A, such that a · k = 0 for all k ∈ ker(πt). Let s ∈ X with s 6= t. There
is f ∈ C0(X), such that f(t) = 0 and f(s) = 1. We have πt(f · a∗) = f(t)πt(a

∗) = 0.
Hence f · a∗ ∈ ker(πt), so that a · (f · a∗) = 0. Hence

0 = πs(a · (f · a∗)) = πs(a) · f(s)πs(a
∗) = πs(a) · πs(a∗).

Using the C∗-condition in As, we obtain πs(a) = 0.
Since t is not isolated and the function s 7→ ‖πs(a)‖ is continuous, this implies πt(a) = 0.
Therefore a ∈ ker(πt). Using the C∗-condition in A, we achieve a = 0.

Since [0,∞) has no isolated points ker(πt) is essential in C∗r (GRn) for all t ∈ [0.∞).

3 The Scaling Action on the Tangent Groupoid and its
Generalized Fixed Point Algebra

3.1 The Scaling Action

The multiplicative group R∗+ of positive real numbers is a locally compact group with
Haar measure A 7→

∫
A

dλ
λ for all Borel sets A ⊆ R∗+. If λ ∈ R∗+ and f ∈ Cc(GRn), then

we define
(σλ(f))(y, t, x) = λn · f(y, λ−1t, λx).

We obtain σλ(f) ∈ Cc(GRn). It is easy to check, that (σλ)λ∈R∗+ is a linear action of R∗+
on Cc(GRn). If f1, f2 ∈ Cc(GRn), then

(σλ(f1 ∗ f2))(y, t, x) = λn · (f1 ∗ f2)(y, λ−1t, λx)

= λn
∫
Rn
f1(y − λ−1tz, λ−1t, λx+ z) · f2(y, λ−1t,−z) dz

=

∫
Rn
λnf1(y − tz, λ−1t, λx− λz) · λnf2(y, λ−1t,−λz) dz

=

∫
Rn
σλ(f1)(y − tz, t, x+ z) · σλ(f2)(y, t,−z) dz

= (σλ(f1) ∗ σλ(f2))(x, y, t).

Furthermore,

σλ(f∗)(y, t, x) = λnf∗(y, λ−1t, λx)

= λnf(y + tx, λ−1t,−λx)

= (σλf)(y + tx, t,−x
= (σλ(f))∗(y, t, x).

The function R∗+ → Cc(GRn), λ 7→ σλ(f) is continuous with respect to the I-norm on
Cc(GRn). Since the I-norm dominates the reduced norm the action (σλ)λ∈R∗+ extends
uniquely to a continuous action on C∗r (GRn). We denote this extended action again by
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(σλ)λ∈R∗+ . At this point we also prove that σλ is isometric with respect to the I-norm,
because we need this later. Let f ∈ Cc(GRn). For ‖ · ‖I,s we compute

‖σλ(f)‖I,s = sup
(y,t)

∫
Rn
|(σλ(f))(y, t, x)| dx

= sup
(y,t)

∫
Rn
λn|f(y, λ−1t, λx)| dx

= sup
(y,t)

∫
Rn
|f(y, λ−1t, x)| dx

= ‖f‖I,s.

This implies
‖σλ(f)‖I,r = ‖σλ(f∗)‖I,s = ‖f∗‖I,s = ‖f‖I,r.

Hence ‖σλ(f)‖I = ‖f‖I .

The Scaling Action and the Fibre Epimorphisms

We define a continuous action of R∗+ on Rn × Rn by σλ(y, ξ) = (y, λξ). This action
induces a continuous action of R∗+ on C0(Rn × Rn) by (σλ(f))(y, ξ) = f(y, λ−1ξ).

Proposition 3.1 (π0 is R∗+-equivariant).
The ∗-homomorphism π0 : C∗r (GRn)→ C0(Rn × Rn) is R∗+-equivariant.

Proof. Let f ∈ Cc(GRn) and λ ∈ R∗+. We compute

(π0(σλ(f)))(y, ξ) =

∫
Rn

(σλ(f))(y, 0, x) · e−2πi〈x,ξ〉 dx

=

∫
Rn
λnf(y, 0, λx) · e−2πi〈x,ξ〉 dz

=

∫
Rn
f(y, x) · e−2πi〈x,λ−1ξ〉 dz

= π0(f)(y, λ−1ξ) = (σλ(π0(f)))(y, ξ).

Since Cc(GRn) is dense in C∗r (GRn) this implies that π0 is R∗+-equivariant.

Let λ ∈ R∗+ and h ∈ Cc(Rn). We define (Uλh)(x) = λ−n/2h(λ−1x). Then Uλh ∈ Cc(Rn).
We have

〈Uλh1, Uλh2〉 =

∫
Rn
λ−n · h1(λ−1x) · h2(λ−1x) dx = 〈h1, h2〉.

The family (Uλ)λ∈R∗+ fulfils Uλ1 ◦ Uλ2 = Uλ1λ2 . Therefore Uλ extends to a unitary

operator L2(Rn)→ L2(Rn). Hence (Uλ)λ∈R∗+ defines a unitary action of R∗+ on L2(Rn).

Let U ∈ B(L2(Rn)) be a unitary. If T ∈ K(L2(Rn)), we define AdU (T ) = U∗ ◦ T ◦ U .
Then AdU : B(L2(Rn))→ B(L2(Rn)) is a ∗-automorphism.
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Proposition 3.2. Let t > 0. If λ ∈ R∗+, then

πt(σλf) = U∗λ ◦ πt/λ(f) ◦ Uλ for all f ∈ C∗r (GRn).

Hence πt ◦ σλ = AdUλ ◦ πt/λ.

Proof. Let f ∈ CcGRn. We compute

((πt(σλf))h)(x) =

∫
Rn

(σλf)(ty, t, x− y) · h(y) dy

=

∫
Rn
λn · f(ty, λ−1t, λx− λy) · h(y) dy

=

∫
Rn
λ
n/2 · f(λ−1ty, λ−1t, λx− y) · (Uλh)(y) dy

= λ
n/2 · ((πt/λ(f) ◦ Uλ)h)(λ · x)

= ((U∗λ ◦ πt/λ(f) ◦ Uλ)h)(x)

Since Cc(GRn) is dense in C∗r (GRn) this implies the assertion for all f ∈ C∗r (GRn).

The R∗+-invariant Ideal J C C∗r (GRn)

Since Rn × (Rn \ {0}) is open in Rn × Rn, we may view

C0(Rn × (Rn \ {0})) = {f ∈ C0(Rn × Rn) : f(y, 0) = 0 for all y ∈ Rn} ⊆ C0(Rn × Rn).

Then C0(Rn × (Rn \ {0})) is a closed R∗+-invariant ideal in C0(Rn × Rn). Therefore
J := π−1

0 (C0(Rn × (Rn \ {0})) is a closed R∗+-invariant ideal in C∗r (GRn). In particular
J is a R∗+-C∗-algebra. Our aim is to prove that J is continuously square-integrable.
Let f ∈ Cc(GRn). If y ∈ Rn, then

π0(f)(y, 0) =

∫
Rn

f(y, 0, x) dx.

Hence f ∈ J if and only if∫
Rn
f(y, 0, x) dx = 0 for all y ∈ Rn.

Let R0 be the set of smooth functions f : GRn → C with compact support and∫
Rn
f(y, 0, x) dx = 0 for all y ∈ Rn.

Then R0 is a R∗+-invariant linear subspace of J . The Leibniz integral rule yields
R0 ∗ R0 ⊆ R0. Moreover, we have R∗0 = R0.

Proposition 3.3 (R0 is dense).
R0 is a dense subspace of J .
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Proof. Let f ∈ J and ε > 0. Then f ∈ C∗r (GRn). There is f1 ∈ Cc(GRn) with
‖f −f1‖r < ε

4 . There is R > 0, such that f1(y, t, x) = 0, if ‖y‖ ≥ R or t ≥ R or ‖x‖ ≥ R.
We write vol for the Lebesgue measure on Rn. By the Stone-Weierstrass theorem, there
is a smooth function h ∈ C0(Rn × Rn × [0,∞)), such that

‖f1 − h‖∞ <
ε

4 · vol({‖x‖ < R+ 1})
.

Let θ : Rn × Rn × [0,∞)→ [0, 1] be smooth, such that

θ(x, y, t) = 1 if ‖y‖, t, ‖x‖ ≤ R and

θ(x, y, t) = 0 if ‖y‖ ≥ R+ 1 or t ≥ R+ 1 or ‖x‖ ≥ R+ 1.

Then f2 : = θ · h is smooth and compactly supported.
Let (y, t) ∈ Rn × [0,∞). We estimate∫

Rn
|f1(y, t, x)− f2(y, t, x)| dx ≤ ε

4 · vol({‖x‖ < R+ 1})
·
∫
‖x‖≤R+1

1 dx =
ε

4
.

Therefore, ‖f1 − f2‖I,s ≤ ε
4 . Likewise∫

Rn
|f1(y − tx, t, x)− f2(y − tx, t, x)| dx ≤ ε

4
.

Hence ‖f1 − f2‖I,r ≤ ε
4 . This implies

‖f − f2‖r ≤ ‖f − f1‖r + ‖f1 − f2‖r <
ε

4
+ ‖f1 − f2‖I ≤

ε

2
.

We define g(y) = (π0(f2))(y, 0) =
∫
Rn f2(y, 0, x) dx. Then g is smooth and compactly

supported. Since f ∈ J , we have

|g(y)| = |((π0(f))(y, 0)− (π0(f2))(y, 0)| ≤ ‖π0(f)− π0(f2)‖∞ ≤ ‖f − f2‖r <
ε

2
.

Let h ∈ Cc(Rn) be smooth, such that
∫
Rn h(x) dx = 1 and h ≥ 0. Let ω ∈ Cc([0,∞))

be smooth, such that ω(0) = 1 and ‖ω‖∞ = 1. We define k(x, y, t) = g(y) · ω(t) · h(x).
Then k is smooth and k ∈ Cc(GRn).
Therefore, f3 : = f2 − k ∈ Cc(GRn) is smooth. If (y, t) ∈ Rn × [0,∞), then∫

Rn
|k(y, t, x)| dx = |g(y)| · |ω(t)| ·

∫
Rn
h(x) dx ≤ ε

2

and ∫
Rn
|k(y − tx, t, x)| dx = |ω(t)| ·

∫
Rn
|g(y + tx)| · h(x) dx ≤ ε

2

∫
Rn
h(x) dx =

ε

2
.

Hence ‖k‖I ≤ ε
2 .

If y ∈ Rn, then∫
Rn
f3(y, 0, x) dx =

∫
Rn
f2(y, 0, x) dx− g(y) · ω(0) ·

∫
Rn
ξ(x) dx = 0.
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Therefore, f3 ∈ R0. Finally we estimate

‖f − f3‖r ≤ ‖f − f2‖r + ‖f2 − f3‖r <
ε

2
+ ‖k‖I ≤ ε.

This proves that R0 is dense in J .

The following lemma is the main ingredient to prove, that J is a continuously square-
integrable R∗+-C∗-algebra.

Lemma 3.4 (Main Estimation).
If f1, f2 ∈ R, then ∫

R∗+
‖f∗1 ∗ σλ(f2)‖I

dλ

λ
<∞.

Proof. If (y, t, x) ∈ GRn, then

(f∗1 ∗ σλ(f2))(y, t, x) =

∫
Rn
f∗1 (y − tz, t, x+ z) · (σλ(f2))(y, t,−z) dz

= λn
∫
Rn
f1(y + tx, t,−x− z) · f2(y, λ−1t,−λz) dz

= λn
∫
Rn
f1(y + tx, t, z − x) · f2(y, λ−1t, λz) dz

Since f1 and f2 are compactly supported and continuous, there is R > 0, such that
f1(y, t, x) = f2(y, t, x) = 0 whenever ‖y‖ ≥ R or t ≥ R or ‖x‖ ≥ R. There is M > 0,
such that |f1(y, t, x)| ≤M and f2(y, t, x) ≤M for all (y, t, x) ∈ GRn.
If t ≥ R, then (f∗1 ∗ σλ(f2))(y, t, x) = 0 for all λ ∈ R∗+ and y, x ∈ Rn.
Fix λ ≥ 1. If ‖x‖ ≥ 2R, then ‖z − x‖ ≥ ‖x‖ − ‖z‖ ≥ 2R − R

λ ≥ R for all z ∈ Rn with
‖λz‖ < R. Hence (f∗1 ∗ σλ(f2))(y, t, x) = 0 for all y ∈ Rn and t ∈ [0,∞).
Using the Mean value theorem for real and imaginary part separately we obtain
r2 : Rn × [0,∞)× Rn → C and C2 > 0 such that

f2(y, t, x) = f2(y, 0, x) + r2(y, t, x) with |r2(y, t, x)| ≤ C2 · t

for all (y, t, x) ∈ GRn. If ‖x‖ ≥ R, then r2(y, t, x) = 0.
By the Mean value theorem in multiple variables there are r1 : Rn×[0,∞)×Rn×Rn → C
and C1 > 0, such that

f1(y, t, x+ h) = f1(y, t, x) + r1(y, t, x, h) with |r1(y, t, x, h)| ≤ C1‖h‖

for all (y, t, x, h) ∈ Rn × [0,∞)× Rn × Rn.
Since f2 ∈ R0 we have

λn
∫
Rn
f1(y + tx, t,−x) · f2(y, 0, λz, ) dz = f1(y + tx, t,−x) ·

∫
Rn
f2(y, 0, z) dz = 0.
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Therefore,

(f∗1 ∗ σλ(f2)) (y, t, x) = λn
∫
Rn
f1(y + tx, t, z − x) · f2(y, 0, λz) dz

+ λn
∫
Rn
f1(y + tx, t, z − x) · r2(y, λ−1t, λz) dz

= λn
∫
‖z‖≤R

λ

r1(y, t,−x, z) · f2(y, 0, λz) dz

+ λn
∫
‖z‖≤R

λ

f1(y + tx, t, z − x) · r2(y, λ−1t, λz) dz

Let (y, t, x) ∈ GRn. We estimate

|(f∗1 ∗ σλ(f2)) (y, t, x)| = |(f∗1 ∗ σλ(f2)) (y, t, x)| · χ{x∈Rn : ‖x‖≤2R}(x)

≤ λnM

(∫
‖z‖≤R

λ

C1 · ‖z‖+ C2λ
−1t dz

)
· χ{x∈Rn : ‖x‖≤2R}(x)

≤ λn−1MR(C1 + C2) · vol
(
{‖z‖ ≤ λ−1R}

)
· χ{x∈Rn : ‖x‖≤2R}(x)

≤ C3λ
−1 · χ{x∈Rn : ‖x‖≤2R}(x),

where C3 = MR(C1 + C2) · vol ({‖z‖ ≤ R}).
Hence

‖f∗1 ∗ σλ(f2)‖I,s = sup
(y,t)

(∫
Rn
|(f∗1 ∗ σλ(f2))(y, t, x)| dx

)
≤ C3λ

−1 · vol ({‖x‖ ≤ 2R})

and likewise

‖f∗1 ∗ σλ(f2)‖I,r = sup
(y,t)

(∫
Rn
|(f∗1 ∗ σλ(f2))(y − tx, t, x)| dx

)
≤ C3λ

−1 · vol ({‖x‖ ≤ 2R})

Therefore,∫
[1,∞)

‖f∗1 ∗ σλ(f2)‖I
dλ

λ
≤ C3 · vol ({‖x‖ ≤ 2R}) ·

∫
[1,∞)

λ−2 dλ <∞.

We analyse λ ∈ (0, 1) using the following trick:∫
(0,1)
‖f∗1 ∗ σλ(f2)‖I

dλ

λ
=

∫
(1,∞)

‖f∗1 ∗ σλ−1(f2)‖I
dλ

λ

=

∫
(1,∞)

‖σλ(f∗1 ) ∗ f2‖I
dλ

λ

=

∫
(1,∞)

‖f∗2 ∗ σλ(f1)‖I
dλ

λ
<∞
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Finally,∫
R∗+
‖f∗1 ∗ σλ(f2)‖I

dλ

λ
=

∫
(0,1)
‖f∗1 ∗ σλ(f2)‖I

dλ

λ
+

∫
[1,∞)

‖f∗1 ∗ σλ(f2)‖I
dλ

λ
<∞.

Theorem 3.5 (J is a Continuously Square-Integrable R∗+-C∗-Algebra).
The ‖ · ‖si-closure R of R0 ⊂ Jsi is a dense, complete and relatively continuous subspace
of J . Therefore, (J,R) is a continuously square-integrable R∗+-C∗-algebra.

Proof. By Lemma 3.4 we obtain∫
R∗+
‖f∗1 ∗ σλ(f2)‖ dλ

λ
≤
∫
R∗+
‖f∗1 ∗ σλ(f2)‖I

dλ

λ
<∞

for all f1, f2 ∈ R0.
By Proposition 3.3 R0 is dense in J . Therefore, Corollary 1.54 yields R0 ⊆ Jsi and R0 is
relatively continuous. By Lemma 1.55 R is a dense, complete and relatively continuous
subspace of J .

3.2 The Generalized Fixed Point Algebra

Since (J,R) is continuously square-integrable we obtain the generalized fixed point alge-
bra FixR and the Hilbert FixR-C∗r (R∗+, J) bimodule ER as in Section 1.3. The following
technical lemma provides functions of the form f1 ∗ f∗2 with separated variables. We
write C∞c (Rn) and C∞c ([0,∞)) for the vector spaces of smooth, compactly supported
C-valued functions on [0,∞) and Rn respectively.

Lemma 3.6 (Functions of a Spezial Form).
Let ω ∈ C∞c ([0,∞)) and k1, k2, h ∈ C∞c (Rn) with

∫
Rn k1(x) dx =

∫
Rn k2(x) dx = 0.

Then there are f1, f2 ∈ R0, such that

(f1 ∗ f∗2 )(y, t, x) = h(y + tx) · ω(t) · (k1 ∗ k∗2)(x).

Proof. Define f1(y, t, x) = h(y+tx)·ω(t)·k1(x). Then f1 is smooth, compactly supported
and ∫

Rn
f1(y, 0, x) dx = h(y) · ω(t) ·

∫
Rn
k1(x) dx = 0.

Therefore, f1 ∈ R0.
There is R > 0, such that

ω(t) = 0 for t > R and

h(y) = 0 for ‖y‖ > R and

(k1 ∗ k∗2)(x) = 0 for ‖x‖ > R.
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Let h2 ∈ C∞c (Rn), such that h2(y) = 1 for all y ∈ Rn with ‖y‖ ≤ R+R2.
Let ω2 ∈ C∞c ([0,∞)), such that ω2|supp(ω) = 1. Define f2(y, t, x) = h2(y+tx)·ω2(t)·k2(x).
Then f2 ∈ R0 as above. We compute

(f1 ∗ f∗2 )(y, t, x) =

∫
Rn
f1(y − tz, t, x+ z) · f2(y − tz, t, z) dz

= h(y + tx) · h2(y) · ω(t) · ω2(t) ·
∫
Rn
k1(x+ z) · k2(z) dz

= h(y) · ω(t) ·
∫
Rn
k1(x+ z) · k∗2(−z) dz

= h(y) · ω(t) · (k1 ∗ k∗2)(x).

The second last equation holds, because ω(t) · ω2(t) = ω(t) for all t ∈ [0,∞). If
‖y + tx‖ ≤ R, t ≤ R and ‖x‖ ≤ R, then ‖y‖ ≤ R+R2, hence h2(y + tx) = 1.

The Epimorphism πr
0 : FixR → C0(Rn × Sn−1)

The R∗+-invariant surjective ∗-homomorphism π0 : J → C0(Rn × (Rn \ {0})) extends
uniquely to a strictly continuous ∗-homomorphism

M(J)→M(C0(Rn × (Rn \ {0}))) = Cb(Rn × (Rn \ {0})).

This ∗-homomorphism restricts to a ∗-homomorphism π0 : FixR → Cb(Rn×(Rn\{0})).3
Let Sn−1 = {x ∈ Rn : ‖x‖ = 1} be the unit sphere. By restriction to the closed subset
Rn × Sn−1 ⊂ Rn × (Rn \ {0}), we obtain a ∗−homomorphism

res : Cb(Rn × (Rn \ {0}))→ Cb(Rn × Sn−1) given by f 7→ f |Rn×Sn−1 .

We define πr0 := res ◦ π0 : FixR → Cb(Rn × Sn−1).
Let (χk)k∈N ⊆ Cc(R∗+) be a sequence, such that 0 ≤ χk ≤ 1 and χk ≤ χk+1 for all k ∈ N
and χk −→ 1 uniformly on compact subsets.

Theorem 3.7 (The ∗-Homomorphism πr0).
If F ∈ FixR, then πr0 ∈ C0(Rn×Sn−1). The ∗-homomorphism πr0 : FixR → C0(Rn×Sn−1)
is surjective.

Proof. Let f1, f2 ∈ R0. By the definition of π0 there is R > 0, such that R > 0, such
that π0(f1)(y, ξ) = 0 for all (y, ξ) ∈ Rn × (Rn \ {0}) with ‖y‖ ≥ R.
In view of Lemma 1.36, we define

Tk =

∫
R∗+
χk(λ)σλ(f1 ∗ f∗2 )

dλ

λ
∈ J.

3This is a slight abuse of notion. It will be clear from context if we talk about

π0 : J → C0(Rn × (Rn \ {0})) or π0 : FixR → Cb(Rn × (Rn \ {0})).
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Since the evaluation homomorphisms are continuous, we can compute

π0(Tk)(y, ξ) =

∫
R∗+
χk(λ) · π0(f1 ∗ f∗2 )(y, λ−1ξ)

dλ

λ

=

∫
R∗+
χk(λ) · π0(f1)(y, λ−1ξ) · π0(f2)(y, λ−1ξ)

dλ

λ

If (y, ξ) ∈ Rn × (Rn \ {0}) with ‖y‖ ≥ R, then π0(Tk)(y, ξ) = 0 for all k ∈ N. By
Lemma 1.36 the sequence (Tk)k∈N converges strictly to Λf1 ◦ Λ∗f2 . Since the extension
of π0 to the multiplier algebras is strictly continuous, we obtain

π0(Λf1 ◦ Λ∗f2) =
s

lim
k→∞

π0(Tk).

Since the strict topology on Cb(Rn × (Rn \ {0})) is the topology of uniform convergence
on compact subsets, this implies

πr0(Λf1 ◦ Λ∗f2)(y, ξ) = lim
k→∞

π0(Tk)(y, ξ) = 0

for all (y, ξ) ∈ Rn × Sn−1 with ‖y‖ ≥ R. Therefore

πr0(Λf1 ◦ Λ∗f2) ∈ Cc(Rn × Sn−1) ⊂ C0(Rn × Sn−1).

Since FixR is spanned by elements of the form Λf1◦Λ∗f2 this shows πr0(F ) ∈ C0(Rn×Sn−1)
for all F ∈ FixR .
To prove that πr0 is surjective, we use the Stone-Weierstraß theorem.
Let A := πr0(FixR) ⊆ C0(Rn×Sn−1). Let h1 ∈ Cc(Rn). Then h(y, ξ) := h1(y) defines an
element of C0(Rn × Sn−1). We want to show h ∈ A.
Let g ∈ C∞c ([0,∞)), such that g 6= 0 and

∫∞
0 g(r)rn−1 dr = 0. Put f(x) = g(‖x‖). Then

f ∈ C∞c (Rn) and ∫
Rn
f(x) dx =

∫ ∞
0

g(r)rn−1 dr · area(Sn−1) = 0.

If R ∈ SOn, then

(Ff)(Rξ) =

∫
Rn
f(x)e−2πi〈x,Rξ〉 dx

=

∫
Rn
f(Rx)e−2πi〈Rx,Rξ〉 dx

= (Ff)(ξ).

Therefore (Ff)(ξ) = g̃(‖ξ‖) for g̃(λ) = (Ff)(λξ0) independent of ξ0 ∈ Sn−1. The
function g̃ : [0,∞) is smooth. Since g̃(0) = (Ff)(0) =

∫
Rn f(x) dx = 0 and g̃ has rapid

decay λ→∞, the integral
∫
R∗+
|g̃(λ)|2 dλ

λ is finite. The integral is not zero, since Ff is
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not zero. By a normalisation of g, we assume
∫
R∗+
|g̃(λ)|2 dλ

λ = 1.

Now fix ω ∈ Cc(R) with ω(0) = 1. By Lemma 3.6 there are f1, f2 ∈ R0, such that

(f1 ∗ f∗2 )(y, t, x) = h(y + tx) · ω(t) · (f ∗ f∗)(x).

We compute
π0(f1 ∗ f∗2 )(ξ, y) = ω(0) · h(y) · |F(f)(ξ)|2.

If (y, ξ0) ∈ Rn × Sn−1, then the Monotone Convergence Theorem yields

πr0(Λf1 ◦ Λ∗f2)(y, ξ0) = lim
k→∞

∫
R∗+
χk(λ) · π0(f1 ∗ f∗2 )(y, λ−1ξ0)

dλ

λ

= h1(y) · lim
k→∞

∫
R∗+
χk(λ) · |(Ff)(λ−1ξ0)|2 dλ

λ

= h1(y) ·
∫
R∗+
|g̃(λ−1)|2 dλ

λ

= h1(y) = h(y, ξ0)

Hence h ∈ A. This shows that for every (y, ξ) ∈ Rn × Sn−1, there is h ∈ A, such that
h(y, ξ) 6= 0. It remains the show that A separates points.
Let (y1, ξ1), (y2, ξ2) ∈ Rn × Sn−1 with (y1, ξ1) 6= (y2, ξ2). If y1 6= y2, then there is
h ∈ C∞c (Rn), with h(y1) 6= h(y2). Therefore A separates (y1, ξ1) and (y2, ξ2) by the
above computations.
If y1 = y2, so that ξ1 6= ξ2, then there is 1 ≤ j ≤ n, such that ξ1 and ξ2 differ in the
j’th component. Take h1 ∈ Cc(Rn) with h(y1) = h(y2) = 1. Let k(x) = (∂xjf)(x), then
k ∈ C∞c (Rn) with (Fk)(ξ) = 2πi · ξj · (Ff)(ξ). Hence

∫
Rn k(x) dx = (Ff)(0) = 0.

Take f and ω as above. Again by Lemma 3.6 there are g1, g2 ∈ R0, such that

(g1 ∗ g∗2)(y, t, x) = h(y + tx) · ω(t) · (k ∗ f∗)(x).

We compute

π0(g1 ∗ g∗2)(ξ, y1) = h(y1) · ω(0) · (Fk)(ξ) · (Ff)(ξ)

= 2πi · ξj |(Ff)(ξ)|.

If ξ0 ∈ Sn−1, then the Monotone Convergence Theorem yields

πr0(Λg1 ◦ Λ∗g2)(y1, ξ0) = lim
k→∞

∫
R∗+
χ(λ)π0(f1 ∗ f∗2 )(y1, λ

−1ξ0)
dλ

λ

= 2πi · ξ0j ·
∫
R∗+
λ−1|(Ff)(λ−1ξ0)|2 dλ

λ

= 2πi · ξ0j ·
∫
R∗+
|g̃(λ)|2 dλ
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Since g̃ 6= 0, we have
∫
R∗+
|g̃(λ)|2 dλ 6= 0. Therefore,

πr0(Λg1 · Λ∗g2)(y1, ξ1) 6= πr0(Λg1 · Λ∗g2)(y2, ξ2).

This proves that A separates the points of Rn × Sn−1.
A is the image of the ∗-homomorphism πr0. Therefore A is closed and A∗ = A. The
Stone-Weierstraß theorem implies that A is dense in C0(Rn × Sn−1).
Therefore, A = C0(Rn × Sn−1), so that πr0 is surjective.

π1 as a Faithful Representation of FixR on L2(Rn)

Let t > 0. The restriction of the ∗-homomorphism πt : C
∗
r (GRn) → K(L2(Rn)) is still

surjective. To see this, let K ∈ K(L2(Rn)). There is f ∈ C∗r (GRn), such that πt(f) = K.
Let ω ∈ C0(R), such that ω(0) = 0 and ω(t) = 1. Since (R, (πt)t∈R, C∗r (GRn)) is a
continuous bundle, there is f · ω ∈ C∗r (GRn), such that πs(f · ω) = ω(t) · πs(f) for all
s ∈ R. In particular πt(ω · f) = πt(f) = K and π0(ω · f) = 0. Therefore even the
restriction of πt to ker(π0) ⊆ J is surjective.
As is the case t = 0 the ∗-homomorphism πt extends uniquely to a strictly continuous
∗-homomorphism

M(J)→M(K(L2(Rn))) = B(L2(Rn))

This ∗-homomorphism restricts to a ∗-homomorphism πt : FixR → B(L2(Rn)). By
Proposition 3.2 we have πt ◦ σλ = AdUλ ◦ πt/λ. The same formula still holds for the

extensions to FixR . Since FixR ⊆MG(A), we obtain

πt(F ) = πt(σt(F )) = U∗t ◦ π1(F ) ◦ Ut for all T ∈ FixR .

Therefore, the representations πt : FixR → B(L2(Rn)) are unitary equivalent.

Theorem 3.8 (π1 is a Faithful Representation of FixR in L2(Rn)).
The ∗-homomorphism π1 : FixR → B(L2(Rn)) is injective.

Proof. Let F ∈ FixR with π1(F ) = 0. Then πt(F ) = U∗t ◦ π1(F ) ◦ Ut = 0 for all
t > 0. If g ∈ ker(π0), then πt(F (g)) = πt(F ) · πt(g) = 0 for all t ∈ [0,∞). Hence
‖F (g)‖r = supt∈[0,∞) ‖πt(F (g))‖ = 0. Now let f ∈ J , then F (f) ∗ g = F (f ∗ g) = 0 for
all g ∈ ker(π0). Lemma 2.8 yields F (f) = 0. Therefore F = 0.

3.3 Pseudodifferential Operator Extension

Our aim is to prove, that π1 restricts to a ∗-isomorphism ker(πr0) ∼= K(L2(Rn)). Since π1

is injective, it suffices to prove K(L2(Rn)) = π1(ker(πr0)). We use the following lemma
to prove K(L2(Rn)) ⊆ π1(ker(πr0)).

Lemma 3.9. Let ω : [0,∞) → [0,∞) be smooth and compactly supported with
supp(ω) ⊂ (0,∞). If h1, h2 ∈ C∞c (Rn), then there are f1, f2 ∈ R0 with

(f1 ∗ f∗2 )(y, t, x) = h1(y + tx) · h2(y) · ω(t) for all (y, t, x) ∈ GRn.
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Proof. There is R > 0 and ε > 0, such that

h1(x) = h2(x) = 0 for ‖x‖ > R

ω(t) = 0 for t < ε or t > R.

There is ω1 : [0,∞)→ [0,∞) smooth and compactly supported with supp(ω1) ⊂ (0,∞),
such that ω1(t) = 1 for all ε ≤ t ≤ R. Then ω(t) = ω(t) · ω1(t) for all t ∈ [0,∞).
Let k1 ∈ C∞c (Rn) with

∫
Rn k1(x) dx = 1 and k1(x) = 0 for ‖x‖ > 1. There is k2 ∈ Cc(Rn),

such that k2(x) = 1 for ‖x‖ ≤ 2R
ε + 1. We define f1(y, t, x) = h1(y + tx) · ω1(t) · k1(x)

and f2(y, t, x) = h2(y + tx) · ω(t) · k2(x). Since ω1(0) = ω(0) = 0 we obtain f1, f2 ∈ R0.
We compute

(f1 ∗ f∗2 )(y, t, x) =

∫
Rn
f1(y − tz, t, x+ z) · f2(y − tz, t, z) dz

= h1(y + tx) · h2(y) · ω(t) ·
∫
Rn
k1(x+ z) · k2(z) dz

= h1(y + tx) · h2(y) · ω(t) ·
∫
Rn
k1(z) dz

= h1(y + tx) · h2(y) · ω(t).

Proposition 3.10.
K(L2(Rn)) ⊆ π1(ker(πr0)).

Proof. For h1, h2 ∈ L2(Rn), we write θh1,h2 for the rank-one operator given by

θh1,h2(g) = 〈h2, g〉h1 for g ∈ L2(Rn).

C∞c (Rn) is dense in L2(Rn) and ‖θh1,h2‖ = ‖h1‖2 · ‖h2‖2. Therefore K(L2(Rn)) is gener-
ated by the set of θh1,h2 for h1, h2 ∈ C∞c (Rn).
Let h1, h2 ∈ C∞c (Rn). There is ω : [0,∞) → [0,∞) compactly supported and smooth,
such that supp(ω) ⊂ (0,∞) and

∫
R∗+
λnω(λ−1) dλ

λ = 1.

By the previous lemma, there is f1, f2 ∈ R0, such that

(f1 ∗ f∗2 )(y, t, x) = h1(y + tx) · h2(y) · ω(t) for all (y, t, x) ∈ GRn.

If λ ∈ R∗+ and g ∈ Cc(Rn), then we compute

(π1(σλ(f1 ∗ f∗2 ))g)(x) =

∫
Rn
λn(f1 ∗ f∗2 )(y, λ−1, λ(x− y)) · h(y) dy

= λnω(λ−1) · h1(x) ·
∫
Rn
h2(y) · g(y) dy

= ((λnω(λ−1) · θh1,h2)g)(x)
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Using Lemma 1.36 and the Monotone convergence theorem, we archive

π1(Λf1 ◦ Λ∗f2) = π1

(
s

lim
k→∞

∫
R∗+
χk(λ) · σλ(f1 ∗ f∗2 )

dλ

λ

)

=
s

lim
k→∞

∫
R∗+
χk(λ) · π1(σλ(f1 ∗ f∗2 ))

dλ

λ

=

(
lim
k→∞

∫
R∗+
χk(λ) · λnω(λ−1)

dλ

λ

)
θh1,h2

=

(∫
R∗+
λnω(λ−1)

dλ

λ

)
θh1,h2 = θh1,h2 .

Since ω(0) = 0, we have π0(f1 ∗ f∗2 ) = 0. Therefore,

π0(Λf1 ◦ Λf2) =
s

lim
k→∞

∫
R∗+
χk(λ) · σλ(π0(f1 ∗ f∗2 ))

dλ

λ
= 0.

Hence πr0(Λf1 ◦ Λf2) = 0. This shows θh1,h2 ∈ π1(ker(πr0)).
Since π1(ker(πr0)) is a C∗-algebra we conclude K(L2(Rn)) ⊆ π1(ker(πr0)).

Corollary 3.11 (π1 is nondegenerate).
The representation π1 : FixR → B(L2(Rn)) is nondegenerate. That is

π1(FixR)L2(Rn) = L2(Rn).

Proof. L2(Rn) = K(L2(Rn))L2(Rn) ⊆ π1(ker(πr0))L2(Rn) ⊆ π1(FixR)L2(Rn) ⊆ L2(Rn).

The following lemmas and their corollaries are the key ingredients for the proof of the
remaining inclusion π1(ker(πr0)) ⊆ K(L2(Rn)).

Lemma 3.12. Let f ∈ Cc(GRn) be smooth, such that π0(f) = 0. The sequence
(Tk)k∈N ⊆ K(L2(Rn)) , with

Tn =

∫
R∗+
χk(λ) · π1(σλ(f))

dλ

λ

converges in the operator-norm. The limit is a compact operator.

Proof. Since π0 is defined as an isomorphism composed with τ0 we obtain τ0(f) = 0. As
τ0(f) is the restriction to GRn0 , this implies f(y, 0, x) = 0 for all y, x ∈ Rn.
We define

g(y, t, x) =


f(y, t, y)

t
if t > 0

(∂tf)(y, 0, x) if t = 0

.
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Using the Mean Value Theorem for the real and imaginary part of f separately, we
obtain g ∈ Cc(GRn). We have f(y, t, x) = t · g(y, t, x) for all (y, t, x) ∈ G. Let t > 0 and
h ∈ Cc(Rn). Then

(πt(f)h)(x) =

∫
Rn
f(ty, t, x− y) · h(y) dy

= t ·
∫
Rn
g(ty, t, x− y) · h(y) dy

= ((t · πt(g))h)(x)

Hence πt(f) = t · πt(g). Therefore,

‖πt(f)‖ ≤ t · ‖πt(g)‖ ≤ t · ‖g‖r for all t > 0.

Since f is compactly supported, there is R > 0, such that πt(f) = 0 for all t > R. Let
k,m ∈ N with k < m. We estimate

‖Tm − Tk‖ =

∥∥∥∥∥
∫
R∗+

(χm(λ)− χk(λ)) · π1(σλ(f))
dλ

λ

∥∥∥∥∥
3.2
≤
∫
R∗+

(χm(λ)− χk(λ)) · ‖U∗λ ◦ πλ−1(f) ◦ Uλ‖
dλ

λ

≤
∫

[ 1
R
,∞)

(1− χk(λ))‖πλ−1(f)‖ dλ

λ

≤ ‖g‖ ·
∫

[ 1
R
,∞)

(1− χk(λ)) · 1

λ2
dλ.

The Dominated Convergence Theorem yields∫
[ 1
R
,∞)

(1− χk(λ)) · 1

λ2
dλ −→ 0 for k →∞.

Hence (Tk)k∈N ⊆ K(L2(Rn)) is a Cauchy-sequence in the operator-norm. Therefore,
(Tk)k∈N ⊆ K(L2(Rn)) converges. Since π1(σλ(f)) ∈ K(L2(Rn)) for all λ ∈ R∗+ and
K(L2(Rn)) is closed in B(L2(Rn)), we obtain Tk ∈ K(L2(Rn)) for all k ∈ N. This implies
limk Tk ∈ K(L2(Rn)).

Corollary 3.13. If f ∈ R0, with π0(f) = 0, then π1(Λf ◦ Λ∗g) ∈ K(L2(Rn)) for all
g ∈ R.

Proof. Let first g ∈ R0. Then π0(f ∗ g∗) = π0(f)∗π0(g)∗ = 0. Hence Lemma 3.12 shows

π1(〈〈Λf ,Λg〉〉) = π1(Λf ◦ Λ∗g)

1.36
=

s
lim
k→∞

∫
R∗+
χk(λ) · π1(σλ(f ∗ g∗)) dλ

λ

= lim
k→∞

∫
R∗+
χk(λ) · π1(σλ(f ∗ g∗)) dλ

λ
∈ K(L2(Rn)).
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If g ∈ R arbitrary, then there is a sequence (gk)k∈N ⊆ R0 with

‖Λg − Λgk‖ ≤ ‖g − gk‖si −→ 0 for k →∞.

Therefore
π1(Λf ◦ Λ∗g) = lim

k→∞
π1(Λf ◦ Λ∗gk) ∈ K(L2(Rn)).

To generalise the statement of the previous corollary to f ∈ R arbitrary, we need
another lemma.

Lemma 3.14. R0 ∩ ker(π0) is ‖ · ‖si-dense in R∩ ker(π0).

Proof. First we prove, that R0 ∩ ker(π0) is ‖ · ‖r-dense in ker(π0).
Let f ∈ C∗r (GRn) with π0(f) = 0. Since the function t 7→ ‖πt(f)‖ is continuous, there is
a δ > 0, such that ‖πt(f)‖ < ε

3 for all 0 ≤ t < δ. By the argument in the beginning of
the proof of Proposition 3.3 there is a smooth f1 ∈ Cc(GRn), with ‖f − f1‖r < ε

3 .
Let ω ∈ C∞c ([0,∞)), such that 0 ≤ ω ≤ 1, ω(0) = 1 and ω(t) = 0 for t ≥ δ. Let
k(y, t, x) = f1(y, t, x) · ω(t). Then k is compactly supported and smooth. If t ∈ [0,∞),
then

‖πt(k)‖ = ω(t) · ‖πt(f1)‖ = ω(t) · (‖πt(f1 − f)‖+ ‖πt(f)‖) ≤ 2ε

3
.

Therefore

‖k‖r = sup
t∈[0,∞)

‖πt(k)‖ ≤ 2ε

3
.

We define f2 := f1 − k. Then f2 is smooth and compactly supported. We have
f2(y, 0, x) = 0 for all y, x ∈ Rn. Therefore f2 ∈ R0 ∩ ker(π0). We estimate

‖f − f2‖r ≤ ‖f − f1‖r + ‖k‖r < ε.

This shows, that R0 ∩ ker(π0) is ‖ · ‖r-dense in ker(π0).
Now let f ∈ R ∩ ker(π0) and ε > 0. The group R∗+ is exact. Theorem 1.52(iv) yields
R∩ ker(π0) = R ∗ ker(π0). Hence there is r ∈ R and k ∈ ker(π0), such that f = r ∗ k.
There is k1 ∈ R0 ∩ ker(π0), such that ‖k− k1‖r ≤ ε

2‖r‖si . Since R is the ‖ · ‖si closure of

R0 there is r1 ∈ R0, such that ‖r − r1‖si ≤ ε
2‖k1‖r . Then r1 ∗ k1 ∈ R0 ∩ ker(π0). Using

Proposition 1.39(i) we obtain

‖f − r1 ∗ k1‖si = ‖r ∗ k − r1 ∗ k1‖si
≤ ‖r‖si · ‖k − k1‖r + ‖r − r1‖si · ‖k1‖r < ε

This shows that R0 ∩ ker(π0) is ‖ · ‖si-dense in R∩ ker(π0).

Corollary 3.15. Let f ∈ R. If π0(f) = 0, then π1(Λf ◦Λ∗g) ∈ K(L2(Rn)) for all g ∈ R.

Proof. By the previous lemma there is a sequence (fk)k∈N ⊆ R0 ∩ ker(π0), such that

‖Λf − Λfk‖ ≤ ‖f − fk‖si −→ 0 for k →∞.

Corollary 3.13 yields π1

(
Λfk ◦ Λ∗g

)
∈ K(L2(Rn)) for all k ∈ N. Therefore,

π1(Λf ◦ Λ∗g) = lim
k→∞

π1(Λfk ◦ Λ∗g) ∈ K(L2(Rn)).
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Theorem 3.16 (ker(π0) is isomorph to K(L2(Rn))).
The ∗-homomorphism π1 : FixR → B(L2(Rn)) restricts to a ∗-isomorphism

π1|ker(πr0) : ker(πr0)→ K(L2(Rn)).

Proof. By Theorem 3.8 π1 : FixR → B(L2(Rn)) is injective. Therefore, π1|ker(πr0) is
injective. Let F ∈ FixR with πr0(F ) = 0. We have to show π1(F ) ∈ K.
Let (y, ξ) ∈ Rn × (Rn \ {0}). Then

π0(F )(y, ξ) = (σ‖ξ‖−1(π0(F ))

(
y,

ξ

‖ξ‖

)
= (π0(σ‖ξ‖−1F ))

(
y,

ξ

‖ξ‖

)
= πr0(F )

(
y,

ξ

‖ξ‖

)
= 0

Let f, g ∈ R. Then F (f) ∈ R by Theorem 1.52(iii). Furthermore,

π0(F (f)) = π0(F )(π0(f)) = 0.

Corollary 3.15 yields

π1(F ) ◦ π1(Λf ◦ Λ∗g) = π1(F ◦ (Λf ◦ Λ∗g)) = π1(ΛF (f) ◦ Λ∗g) ∈ K(L2(Rn)).

Since FixR is the closed linear span of {Λa ◦ Λ∗b : a, b ∈ R}, we conclude

π1(X) ◦ π1(X)∗ ∈ K(L2(Rn)).

Let q : B(L2(Rn))→ B(L2(Rn))/K(L2(Rn)) be the quotient map onto the Calkin algebra.
Then

‖q(π1(X))‖2 = ‖q(π1(X))q(π1(X))∗‖ = ‖q(π1(X) ◦ π1(X)∗)‖ = 0.

Therefore π1(X) ∈ ker(q) = K(L2(Rn)).
Hence π1|ker(πr0) : ker(πr0) → K(L2(Rn)) is well-defined. By Proposition 3.10 we have

K(L2(Rn)) ⊆ π1(ker(πr0)). Therefore, π1|ker(πr0) maps onto K(L2(Rn)).

Corollary 3.17 (Pseudodifferential Operator Extension).
The map sym := πr0 ◦ π

−1
1 : π1(FixR)→ C0(Rn × Sn−1) yields a short exact sequence

0→ K(L2(Rn)) −→ π1(FixR)
sym−−→ C0(Rn × Sn−1)→ 0.

Proof. Consider the diagram

0 ker(πr0) FixR C0(Rn × Sn−1) 0

0 K(L2(Rn)) π1(FixR) C0(Rn × Sn−1) 0.

π1|ker(πr0)

πr0

π1 id

sym

The upper sequence is exact and all vertical arrows are isomorphisms. Therefore, the
lower sequence is exact.
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4 Connection to Pseudo-Differential Operators

Let H ⊆ Cb(Rn) be the set of bounded continuous complex-valued function on Rn
satisfying the condition h(λξ) = h(ξ) for all ‖ξ‖ ≥ 1 and λ ≥ 1.
LetB = {ξ ∈ Rn : ‖x‖ < 1} be the open unit ball. Then φ : B → Rn, x 7→ x

‖x‖ ·tan
(
π
2 ‖x‖

)
is a homeomorphism. For f ∈ Cb(Rn), λ > 0 and ξ ∈ Sn−1 we define fλ(ξ) = f(λξ) and
obtain fλ ∈ C(Sn−1).
We define f∞(ξ) = limλ→∞ f(λξ) if the limit exists for all ξ ∈ Sn−1. The function
f∞ : Sn−1 → C need not to be continuous even if the limit exists for all ξ ∈ Sn−1.
The following proposition describes functions f ∈ Cb(Rn), where f∞ exists and gives a
continuous function on Sn−1.

Proposition 4.1. For f ∈ Cb(Rn) the following statements are equivalent:

(i) f = h+ k for h ∈ H and k ∈ C0(Rn).

(ii) f∞ ∈ C(Sn−1) and the net (fλ)λ>0 converges uniformly to f∞.

(iii) f ◦ φ extends to a continuous function B → C.

Proof.

(i)⇒ (ii): If ξ ∈ Sn−1, then

lim
λ→∞

f(λξ) = lim
λ→∞

h(λξ) + k(λξ) = h

(
ξ

‖ξ‖

)
.

Let ε > 0, There is R > 0, such that |k(ξ)| < ε for ‖ξ‖ > R. For ξ ∈ Sn−1 and λ > R,
we obtain

|f∞(ξ)− fλ(ξ)| = |h(ξ)− h(λξ) + k(λξ)| < ε.

Hence ‖f∞ − fλ‖∞ ≤ ε. Therefore, f∞ ∈ C(Sn−1) with fλ −→ f∞0 uniformly.

(ii)⇒ (iii): Let

u(ξ) =

(f ◦ φ)(ξ) if ‖ξ‖ < 1

f∞(ξ) if ‖ξ‖ = 1
.

Then u : B → C. Obviously u is continuous in all ξ ∈ B and extends f ◦ φ. Let ε > 0
and ξ0 ∈ Sn−1. There is a δ1, such that

|f∞(ξ0)− f∞(ξ1)| < ε

2
for all ξ1 ∈ Sn−1 with ‖ξ0 − ξ1‖ < δ1.

There is λ0 > 0, such that ‖f∞ − fλ‖∞ < ε
2 for all λ > λ0.

We define δ = 1
2 min{δ1, 1− 2

π tan−1(λ0)}. Let ξ ∈ B with ‖ξ0 − ξ‖ < δ. We estimate∥∥∥∥ξ0 −
ξ

‖ξ‖

∥∥∥∥ ≤ ‖ξ0 − ξ‖+

∥∥∥∥ξ − ξ

‖ξ‖

∥∥∥∥ < δ + (1− ‖ξ‖) ≤ 2δ ≤ δ1.
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We have

(f ◦ φ)(ξ) = f

(
ξ

‖ξ‖
· tan

(π
2
‖ξ‖
))

= f tan(π2 ‖ξ‖)
(

ξ

‖ξ‖

)
.

Since tan
(
π
2 ‖ξ‖

)
≥ λ0, we obtain

|f∞(ξ0)− (f ◦ φ)(ξ)| ≤
∣∣∣∣f∞(ξ0)− f∞

(
ξ

‖ξ‖

)∣∣∣∣+

∣∣∣∣f∞( ξ

‖ξ‖

)∣∣∣∣ ≤ ε.
Hence |u(ξ0)− u(ξ)| ≤ ε for all ξ ∈ B with ‖ξ0 − ξ‖ < δ.

(iii)⇒ (i): Let u be the extension of f ◦ φ to B. Let ω : B → [0, 1] be continuous, such

that ω(0) and ω(ξ) = 1 for ‖ξ‖ ≥ 1
2 . Define hB(ξ) = ω(ξ) · u

(
ξ
‖ξ‖

)
. Then hb ∈ C(B).

Put kB = u − hB. Then kB|Sn−1 = 0. Hence kB ∈ C0(B). Define k = kB ◦ φ−1 and
h = hB ◦ φ−1. Then k ∈ C0(Rn). If ‖ξ‖ ≥ 1 and λ ≥ 1, then

h(λξ) = (hB ◦ φ−1)(λξ)

= ω(φ−1(λξ))u

(
ξ

‖ξ‖

)
= ω(φ−1(ξ))u

(
ξ

‖ξ‖

)
= h(ξ).

Finally h+ k = (hB + kB) ◦ φ−1 = f.

Let S ⊂ Cb(Rn) be the set of functions satisfying one and therefore all conditions of
the previous proposition. We have a map s : S → C(Sn−1) , f 7→ f∞.

Proposition 4.2. S is a C∗-subalgebra of Cb(Rn). The sequence

0→ C0(Rn) −→ S −→ C(Sn−1)→ 0

is exact.

Proof. By Proposition 4.1 the map α : C(B) → S given by α(u) = u|B ◦ φ−1 is a well
defined, surjective ∗-homomorphism. Since B ⊂ B is dense α is injective. If u ∈ C(B),
then

s(α(u))(ξ) = lim
λ→∞

(α(u))(λξ)

= lim
λ→∞

u|B(φ−1(λξ)) = u(ξ)

for all ξ ∈ Sn−1. Let φ∗ : C0(Rn)→ C0(B), f 7→ f ◦φ. we obtain a commutative diagram

0 C0(B) C(B) C(Sn−1) 0

0 C0(Rn) S C(Sn−1) 0.

α idφ∗

s

The upper sequence is exact and all vertical arrows are isomorphisms. Hence the upper
sequence is exact.
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Since S ∼= C(B) the spectrum of S is homeomorph to B. Thus S corresponds to the
compactification of Rn to a closed ball.
If f ∈ Cb(Rn) we define Mf : L2(Rn) → L2(Rn) by (Mfg)(x) = f(x) · g(x). Then
M : Cb(Rn) → B(L2(Rn)) is a ∗-homomorphism. M is the unique strictly continuous
extension of M : C0(Rn)→ B(L2(Rn)) toM(C0(Rn)) = Cb(Rn). The strict topology on
Cb(Rn) is the topology of uniform convergence on compact subsets.
For g ∈ C0(Rn) and f ∈ S, we define Dgf = Mg ◦ F−1 ◦Mf ◦ F ∈ B(L2(Rn)). Then
‖Dgf‖ ≤ ‖g‖∞ ·‖f‖∞. Let P be the C∗-algebra generated by {Dgf : g ∈ C0(Rn), f ∈ S}.
Our aim is to prove R = π1(FixR).
If h ∈ Cc(Rn), then

(Dgfh)(x) = g(x) · ((F−1 ◦Mf ◦ F)h)(x)

=

∫
Rn
g(x) · f(ξ) · (Fh)(ξ) · e2π〈x,ξ〉 dξ.

Therefore, Dgf is an order zero pseudo-differential operator.

Proposition 4.3. If g, f ∈ C0(Rn), then Dgf ∈ K(L2(Rn)).

Proof. Let first g, f ∈ Cc(Rn). Then the computation above shows

((Mg ◦ F−1 ◦Mf )h)(x) =

∫
Rn
g(x) · f(ξ) · e2π〈x,ξ〉 · h(ξ) dξ.

Hence Mg ◦ F−1 ◦Mf is an operator with compactly supported integral kernel. Theo-
rem 2.4 shows Mg ◦ F−1 ◦Mf ∈ K(L2(Rn)). Since K(L2(Rn)) is an ideal in B(L2(Rn)),
we obtain Dgf ∈ K(L2(Rn))
The assertion follows for f, g ∈ C0(Rn), since Cc(Rn) is dense in C0(Rn).

The following lemma is helpful to prove the inclusion R ⊆ π1(FixR).

Lemma 4.4. Let A ⊆ B(L2(Rn)) be a C∗-algebra with a ∗-homomorphism

π : A→ C0(Rn × Sn−1) such that K(L2(Rn)) ⊆ ker(π).

Let D1 ⊆ C0(Rn) be a dense set and D2 ⊆ C(Sn−1) a set, such that the linear span of
D2 is dense in C(Sn−1).
Assume that for every f̃ ∈ D2, there is f ∈ S with f∞ = f̃ , such that Dgf ∈ A and

π(Dgf )(y, ξ) = g(y) · f∞(ξ) for all g ∈ D1.

Then P ⊆ A and

π(Dgf )(y, ξ) = g(y) · f∞(ξ) for all g ∈ C0(Rn) and f ∈ S.

Proof. Let f0 ∈ S with f∞0 ∈ span(D2). Then there are m ∈ N, µ1, . . . , µm ∈ C and
f̃1, . . . , f̃m ∈ D2, such that f∞0 =

∑m
i=1 µif̃1. By assumption there are fi ∈ S, such that

f∞i = f̃i with

Dgfi ∈ A and π(Dgfi)(y, ξ) = g(y) · f∞i (ξ) for all g ∈ D1.
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We define f =
∑m

i=1 µifi. Then f ∈ S with f∞ = f∞0 . We have Dgf =
∑m

i=1 µiDgfi ∈ A
and

π(Dgf )(y, ξ) =
m∑
i=1

π(Dgfi)(y, ξ) =
m∑
k=1

g(y) · f∞i (ξ) = g(y) · f∞(ξ) for all g ∈ D1.

Since (f0−f)∞ = 0 we have f0−f ∈ C0(Rn) by Proposition 4.2. The previous proposition
yields

Dg(f0−f) ∈ K(L2(Rn)) ⊆ A with π(Dg(f0−f)) = 0 for all g ∈ D1.

Hence Dgf0 = Dgf +Dg(f0−f) ∈ A with

π(Dgf0)(y, ξ) = g(y) · f∞(ξ) = g(y) · f∞0 (ξ) for all g ∈ D1.

If g ∈ C0(Rn), then there is a sequence (gk)k∈N ⊆ D1 with ‖g − gk‖∞ → 0 for k → ∞.
We obtain Dgf0 = limk→∞Dgkf0 ∈ A with

π(Dgf0)(y, ξ) = lim
k→∞

π(Dgkf0)(y, ξ) = lim
k→∞

gk(y) · f∞0 (ξ) = g(y) · f∞0 (ξ).

Now let g ∈ C0(Rn) and f ∈ S arbitrary. The ∗-homomorphism s : S → C(Sn−1) is
surjective and continuous. Hence it is open by the Open Mapping Theorem. Therefore,
the density of span(D2) ⊆ C(Sn−1) implies that s−1(D2) = {f ∈ S : f∞ ∈ span(D2)} is
dense in S. Hence there is a sequence (fk)k∈N ⊆ s−1(D2), such that ‖f − fk‖ → 0 for
k →∞. We obtain Dgf = limk→∞Dgfk ∈ A with

π(Dgf )(y, ξ) = lim
k→∞

π(Dgfk)(y, ξ) = lim
k→∞

g(y) · f∞k (ξ) = g(y) · f∞(ξ).

Since all the generators Dgf of P are in A. We conclude P ⊆ A.

Proposition 4.5. K(L2(Rn)) ⊆ P.

Proof. Let k ∈ L2(Rn × Rn). If h ∈ L2(Rn), we define (Tkh)(x) =
∫
Rn k(x, y)h(y) dy.

Using the Cauchy–Schwarz inequality we obtain ‖Tk‖ ≤ ‖k‖2 · ‖h‖2. Hence Tk extends
to a bounded operator L2(Rn) → L2(Rn) with ‖Tk‖ ≤ ‖k‖2. We obtain a bounded
operator T : L2(Rn × Rn) → B(L2(Rn)), k 7→ Tk. For g, f ∈ Cc(Rn), we define
(g⊗f)(x, ξ) = g(x) ·f(ξ). Then g⊗f ∈ L2(Rn×Rn). Using Lemma 5.5 we see, that the
linear span of D = {g⊗f : g, f ∈ Cc(Rn)} is dense in L2(Rn×Rn). Tg⊗f is a rank-one op-
erator and every rank one operator is of this form. Hence T (L2(Rn×Rn)) ⊆ K(L2(Rn))
is dense.4 We define Ψ: L2(Rn×Rn)→ L2(Rn×Rn) by (Ψ(k))(x, ξ) = k(x, ξ) · e2πi〈x,ξ〉.
Then Ψ is a unitary operator. If g, f ∈ Cc(Rn), then

(TΨ(g⊗f)h)(x) =

∫
Rn
g(x) · f(ξ)e2πi〈x,ξ〉h(ξ) dξ

= ((Mg · F−1 ◦Mf )h)(x).

4T (L2(Rn × Rn)) is the set of Hilbert-Schmidt operators on L2(Rn).
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Hence F · TΨ(g⊗f) = Dgf ∈ P. Since Ψ is unitary Ψ(span(D)) is dense in L2(Rn × Rn).
Therefore, (T ◦Ψ)(span(D)) is dense in K(L2(Rn)). Since P is closed, we have F ◦S ∈ P
for all S ∈ (T ◦Ψ)(span(D)). Let K ∈ K(L2(Rn)) and ε > 0. Then F−1◦K ∈ K(L2(Rn)).
So there is S ∈ (T ◦Ψ)(span(D)) such that

‖K −F ◦ S‖ = ‖F−1 ◦K − S‖ < ε.

Since F · S ∈ P this implies K ∈ P = P.

From now on fix ω ∈ C∞c ([0,∞)) with 0 ≤ ω ≤ 1, ω|[0,1] = 1 and ω|[2,∞) = 0.

Lemma 4.6. Let f ∈ C∞c (Rn) with
∫
Rn f(x) dx = 0. For every ξ ∈ Rn the integral

Lf (ξ) :=

∫
Rn
ω(λ−1) · (Ff)(λ−1ξ)

dλ

λ

exists. We have Lf ∈ S with

L∞f (ξ0) =

∫
Rn

(Ff)(λ−1ξ0)
dλ

λ
for ξ0 ∈ Sn−1.

The sequence (Lf,k)k∈N ⊆ C0(Rn) given by

Lf,k(ξ) =

∫
Rn
χk(λ) · ω(λ−1) · (Ff)(λ−1ξ)

dλ

λ

converges uniformly on compact subsets to Lf .

Proof. Let R > 0. Ff is smooth with (Ff)(0) =
∫
Rn f(x) dx = 0. The Mean Value

Theorem yields a constant C > 0, such that |(Ff)(ξ)| ≤ C‖ξ‖ for ‖ξ‖ ≤ 2R. If ‖ξ‖ ≤ R,
then

|ω(λ−1) · (Ff)(λ−1ξ)| ≤ χ( 1
2
,∞)(λ) · C · ‖λ−1ξ‖ ≤ CRλ−1 · χ( 1

2
,∞)(λ).

Since CRλ−1 · χ( 1
2
,∞)(λ) ∈ L1(R∗+, dλ

λ ) this shows the existence of the integral.

The Dominated Convergence Theorem yields

|Lf (ξ)− Lf,k(ξ)| ≤
∫

( 1
2
,∞)

(1− χk(λ)) · CR · 1

λ2
dλ −→ 0 for k →∞.

Hence Lf,k
k→∞−−−→ Lf uniformly on {ξ ∈ Rn : ‖ξ‖ ≤ R}. Therefore, Lf is continuous.

Next we prove that Lf is bounded. As above there is C > 0, such that |(Ff)(ξ)| ≤ C‖ξ‖
for ‖ξ‖ ≤ 1. From F

 n∑
j=1

∂2
xjf

 (ξ) = (2πi)2n · ‖ξ‖2(Ff)(ξ)

we get |(Ff)(ξ)| ≤ D‖ξ‖−2 for a constant D > 0. For ξ0 ∈ Sn−1 we estimate

|(Ff)(λ−1ξ0)| ≤ D · χ(0,1]λ
2 + C · χ(1,∞)λ

−1.
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We define θ(λ) = D · χ(0,1]λ
2 + C · χ(1,∞)λ

−1. Then θ ∈ L1(R∗+, dλ
λ ). We estimate

|Lf (ξ)| ≤
∫
R∗+
|(Ff)(λ−1ξ)| dλ

λ

=

∫
R∗+

∣∣∣∣(Ff)

(
λ−1 ξ

‖ξ‖

)∣∣∣∣ dλ

λ

=

∫
R∗+
θ(λ)

dλ

λ
.

Therefore, L is bounded.
Let ε > 0. Since θ ∈ L1(R∗+, dλ

λ ), there is δ > 0, such that
∫

(0,δ) θ(λ) dλ
λ < ε. Let s > 1

δ

and ξ0 ∈ Sn−1. Then∣∣∣∣∣
∫
R∗+

(Ff)(λ−1ξ0)
dλ

λ
− Lsf (ξ0)

∣∣∣∣∣ =

∣∣∣∣∣
∫
R∗+

(Ff)(λ−1ξ0)−
∫
R∗+
ω(λ−1)(Ff)(λ−1sξ0)

dλ

λ

∣∣∣∣∣
≤
∫
R∗+

(1− ω((sλ)−1))‖(Ff)(λ−1ξ0)
dλ

λ

≤
∫

(0, 1
s

)
θ(λ)

dλ

λ
≤
∫

(0,δ)

dλ

λ
< ε.

Hence the net (Lsf )s>0 converges uniformly to
∫
R∗+

(Ff)(λ−1ξ0) dλ
λ on Sn−1. Hence L ∈ S

with L∞(ξ0) =
∫
R∗+

(Ff)(λ−1ξ0) dλ
λ by Proposition 4.1.

If k, g ∈ Cc(Rn), we define Conk(g) = k ∗ g. We obtain

(F ◦ Conk)(g) = F(k ∗ g) = F(k) · F(g) = (MF(k) ◦ F)(g).

Hence Conk = F−1 ◦MF(k) ◦ F ∈ B(L2(Rn)).

Theorem 4.7. π1(FixR) = P. If g ∈ C0(Rn) and f ∈ S, then

sym(Dgf )(y, ξ) = g(y) · f∞(ξ).

Proof. Let g, k1, k2 ∈ C∞c (Rn) with
∫
Rn k1(x) dx =

∫
Rn k2(x) dx = 0. We define

f = k1 ∗ k∗2 and fλ(x) = ω(λ−1) · λn · f(λx). By Lemma 3.6 there are f1, f2 ∈ R0,
such that (f1 ∗ f∗2 )(y, t, x) = g(y + tx) · ω(t) · f(x). Let λ ∈ R∗+. We compute

(π1(σλ(f1 ∗ f∗2 ))h)(x) =

∫
Rn
λn · (f1 ∗ f∗2 )(y, λ−1, λ(x− y)) · h(y) dy

=

∫
Rn
λn · g(x) · ω(λ−1) · f(λ(x− y)) · h(y) dy

= g(x) ·
∫
Rn
fλ(x− y) · h(y) dy

= ((Mg ◦ Confλ)h)(x)
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Hence π1(σλ(f1 ∗ f∗2 )) = Mg ◦ F−1 ◦MF(fλ) ◦ F . If ξ ∈ Rn, then

(Ffλ)(ξ) =

∫
Rn
λnω(λ−1) · fλ(x) · e2πi〈x,ξ〉 dx = ω(λ−1) · (Ff)(λ−1ξ).

Let Lf and Lf,k as in Lemma 4.6. We have

π1(Λf1 ◦ Λ∗f2)
1.36
=

s
lim
k→∞

∫
R∗+
χk(λ) · π1(σλ(f1 ∗ f∗2 ))

dλ

λ

=
s

lim
k→∞

∫
R∗+
χk(λ)(Mg ◦ F−1 ◦MF(fλ)F)

dλ

λ

= Mg ◦ F−1 ◦
(

s
lim
k→∞

MLk

)
◦ F

= Mg ◦ F−1 ◦ML ◦ F = DgL,

because Lf,k → Lf uniformly on compact subsets. Let (y, ξ0) ∈ Rn×Sn−1. We compute

sym(DgL)(y, ξ) = (πr0 ◦ π−1
1 )(DgL)(y, ξ0)

= πr0(Λf1 ◦ Λ∗f2)(y, ξ0)

=

(
s

lim
k→∞

∫
R∗+
χk(λ)σλ(π0(f1 ∗ f∗2 ))

dλ

λ

)
(y, ξ0)

= lim
k→∞

∫
R∗+
χk(λ)π0(f1 ∗ f∗2 )(y, ξ0)

dλ

λ

= g(y) · lim
k→∞

∫
R∗+
χk(λ)(Ff)(λ−1ξ0)

dλ

λ

= g(y) ·
∫
R∗+

(Ff)(λ−1ξ0)
dλ

λ

4.6
= g(y) · L∞f (ξ0).

In Lemma 4.6 we saw that |(Ff)(λ−1ξ)| is dominated by a L1(R∗+, dλ
λ )-function. Hence

second last equality holds by the Dominated Convergence Theorem.
Let E = π−1

1 (P) ⊆ FixR. Then E is a C∗-subalgebra of FixR. The computation above
shows, that Λf1 ◦ Λ∗f2 ∈ E, for all f1, f2 ∈ R0 that are obtained from the construction
in Lemma 3.6. For the Stone-Weierstraß argument in the proof of Theorem 3.7 we
only used functions obtained by the construction in Lemma 3.6. Therefore, the same
arguments as in the proof of Lemma 3.6 show πr0(E) = C0(Rn × Sn−1).
Let F ∈ ker(πr0). Then π1(F ) ∈ K(L2(Rn)) by Corollary 3.17. Hence π1(F ) ∈ P by
Proposition 4.5. That is F ∈ E. Therefore, ker(πr0) ⊆ E.
Let F0 ∈ FixR . Then there is F ∈ E with πr0(F0) = πr0(F ). Hence F0 = (F0−F )+F ∈ E.
Therefore, FixR = E, so that π1(FixR) ⊆ P.
To prove the other inclusion, we use Lemma 4.4. By the computations above, we have
DgLk1∗k∗2

∈ π1(FixR) and sym(DgLk1∗k2
)(y, ξ0) = g(y) ·L∞k1∗k∗2 (ξ0) for all g ∈ C∞c (Rn) and
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Lk1∗k2 with k1, k2 ∈ C∞c (Rn) integrating to 0. Let D1 = C∞c (Rn) and D2 ⊂ C(Sn−1) be
the set of functions q ∈ C(Sn−1) of the form q(ξ) = ξm1

1 · . . . · ξmnn for m1, . . . ,mn ∈ N.
Then D1 is dense in C0(Rn) and the linear span of D2 is dense in C(Sn−1) by the Stone-
Weierstraß Theorem. By Corollary 3.17 we have K(L2(Rn)) = ker(sym).
Let q ∈ D2 with q(ξ) = ξm1

1 · . . . · ξmnn . Let k2 ∈ C∞c (Rn), such that
∫
Rn k2(x) dx = 0 and

(Fk2) = g̃(‖ξ‖) with g̃ ∈ C∞c ([0,∞)) not equal to 0. We constructed such a function in
Theorem 3.7. We define m =

∑n
j=1mj and

C = (2πi)m ·
∫
R∗+
λm|g̃(λ)|2 dλ

λ
.

Then C 6= 0. Let k1 = 1
C · ∂

m1
x1 . . . ∂mnxn k2. Then k1 ∈ C∞c (Rn) with

(Fk1)(ξ) =
1

C
(2πi)mq(ξ)(Fk2)(ξ).

Since q(0) = 0 we have
∫
Rn k1(x) dx = 0. Let ξ0 ∈ Sn−1. We compute

L∞k1∗k∗2 (ξ0) =

∫
R∗+
F(k1 ∗ k∗2)(λ−1ξ0)

dλ

λ

=

∫
R∗+

(Fk1)(λ−1ξ0) · (Fk2)(λ−1ξ0)
dλ

λ

=
1

C
(2πi)m · q(ξ0) ·

∫
R∗+
λ−m|(Fk2)(λ−1ξ0)

dλ

λ
= q(ξ0).

This shows that for every q ∈ D2 there is L ∈ S, such that L∞ = q and DgL ∈ π1(FixR)
and sym(DgL)(y, ξ0) = g(y) ·L∞(ξ0) for all g ∈ D1. Hence Lemma 4.4 applies and yields
P ⊆ π1(FixR), with sym(Dgf )(y, ξ0) = g(y) · f∞(ξ0) for all g ∈ C0(Rn × Sn−1) and
f ∈ S.

Corollary 4.8. The sequence

0→ K(L2(Rn)) −→ P sym−−→ C0(Rn × Sn−1)→ 0

is exact.

Proof. Since P = π1(FixR), this is the same the statement as in Corollary 3.17.

4.1 Comparison to the Pseudodifferential Operator Extension
described by Higson and Roe

In Higson and Roe’s Analytic K-homology there is a brief discussion on a C∗-algebra
generated by pseudodifferential operators on a smooth manifold.[2, pages 46-48] In the
case of Rn the construction is as follows:
Consider complex-valued function u on T ∗Rn = Rn × Rn with the following properties:

• u(x, tξ) = u(x, ξ) for t ≥ 1 and ‖ξ‖ ≥ 1.
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• u(x, ξ) vanishes for x outside a compact subset of Rn.

Define the linear map Tu : C∞c (Rn)→ C∞c (Rn) by the formula

(Tuf)(x) =

∫
Rn
u(x, ξ)(Ff)(ξ)e2πi〈x,ξ〉 dξ.

The first condition on u implies that u gives rise to a function on the cosphere bundle
S∗Rn = Rn × Sn−1. This function is called the symbol of Tu. Tu extends to L2(Rn),
so define the C∗-algebra P(Rn) generated by the Tu. Higson and Roe claim that the
map sending Tu to its symbol extends to a surjective ∗-homomorphism from P(Rn) to
C0(Rn × Sn−1) whose kernel is precisely K(L2(Rn)).
Using functions of the form u(x, ξ) = g(x) · f(ξ) where g ∈ C∞c (Rn) and f ∈ H smooth
we obtain Tu = Dgf ∈ P(Rn) and the symbol of Du is

sym(Du)(x, ξ) = g(x) · f∞(ξ) = g(x) · f(ξ).

Lemma 4.4 yields P ⊆ P(Rn). Both P and P(Rn) are extensions of C0(Rn × Sn−1) by
K(L2(Rn)) with compatible ∗-homomorphisms onto C0(Rn × Sn−1). Hence P = P(Rn).
Therefore, the generalised fixed point algebra FixR of the scaling action on JCC∗r (GRn)
is isomorphic to π1(FixR) = P = P(Rn).
By Remark 1.50 the C∗-algebra P(Rn) is Morita-Rieffel equivalent to an ideal of
C∗r (R∗+, J). The existence of such a Morita-Rieffel equivalence is a special case of Debords
and Skandalis’ results in [5].

5 Appendix

5.1 Positive Linear Functionals

To define an inner product on Cc(G,A) and in many other places in this work we need
to integrate functions with values in C∗-algebras. We define and describe the integral
using positive linear functionals and deduce the needed properties from the standard
C-valued integral.
For this we first need two lemmas about positive linear functionals. A positive linear
functional φ on A is a linear map φ : A → C, such that φ(a) ≥ 0 for all positive a ∈ A.
We denote the set of all positive linear functionals on A by P(A).

Lemma 5.1 (Selfadjointness).
Let φ be a positive linear functional, then

φ(a∗) = φ(a) for all a ∈ A and φ(a) ∈ R if a is self-adjoint.

Proof. First let a ∈ A be self-adjoint. Then we have a = a+−a− for a+, a− ∈ A positive.
Therefore, φ(a) = φ(a+)− φ(a−) ∈ R as a difference of two non-negative numbers.
Now take an arbitrary a ∈ A and write a = a1 + ia2, where a1, a2 are the real and
imaginary part of a. Since a1, a2 are self-adjoint, we obtain

φ(a∗) = φ(a1 + ia2) = φ(a1)− iφ(a2) = φ(a1) + iφ(a2) = φ(a).
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Lemma 5.2 (Boundedness [6, Lemma I.9.5]).
Positive linear functionals are bounded.

Proof. Assume that φ is a positive linear functional and that there is a sequence
(an)n∈N ⊆ A of positive elements with ‖an‖ ≤ 1, such that φ(an) > 2n. Since the
positive cone is closed, we have

∑∞
n=1 2−nan ≥

∑N
n=1 2−nak so

f

( ∞∑
n=1

2−nan

)
≥ f

(
N∑
n=1

2−nan

)
≥ N

for all N ∈ N, which is absurd. Therefore, there is M > 0, such that φ(a) ≤ M for all
a ∈ A positive with ‖a‖ ≤ 1.
If a = a∗ ∈ A with ‖a‖ ≤ 1, then we write a = a+ − a− for a+, a− ∈ A positive with
‖a+‖, ‖a−‖ ≤ ‖a‖ ≤ 1 and obtain |φ(a)| ≤ φ(a+) + φ(a−) ≤ 2M .
Finally, for a ∈ A arbitrary, write a = a1 + ia2 for a1, a2 self-adjoint. Then
‖a1‖, ‖a2‖ ≤ ‖a‖, so that |φ(a)| ≤ |φ(a1)|+ |φ(a2)| ≤ 4M . This proves that φ is bounded
on the unit ball of A.

The next lemma says that there are enough positive linear functionals to detect the
elements of A and their positivity or self-adjointness.
Its proof uses that for every self-adjoint element a ∈ A there is a positive linear functional
φ, such that |φ(a)| = ‖a‖ and ‖φ‖ = 1. This fact is proved by a Hahn-Banach type
argument and is used in the proof of the Gelfand–Naimark Theorem, which says that
every C∗-algebra has a faithful representation (see for example [6, Lemma I.9.10] or [7,
Chapter 4.3]).

Lemma 5.3 (Separation and Positivity via positive linear functionals).
For a, b ∈ A we have

(i) φ(a) = φ(b) for all φ ∈ P(A) iff a = b;

(ii) φ(a) ≥ 0 for all φ ∈ P(A) iff a ≥ 0.

Proof. (i) First assume a ∈ A such that φ(a) = 0 for every φ ∈ P(A). As mentioned
above, for a self-adjoint, we can pick φ ∈ P(A) with ‖a‖ = φ(a) = 0. Hence a = 0.
For a ∈ A arbitrary, we decompose a = a1 + ia2 for a1, a2 self-adjoint. From

0 = φ(a) = φ(a1) + iφ(a2),

we deduce φ(a1) = φ(a2) = 0, since those are real numbers by Lemma 5.1. From
the self-adjoint case, we get a1 = a2 = 0. Hence a = 0.
Now assume a, b ∈ A, such that φ(a) = φ(b) for all φ ∈ P(A). Then φ(b− a) = 0
for all φ ∈ P(A) by linearity. Therefore, a − b = 0. Hence a = b. The other
implication is trivial.

73



(ii) [8, Remark 2.6] Let π : A→ B(H) be a faithful representation on a Hilbert spaceH.
To ξ ∈ H we associate the positive linear functional φξ(a) = 〈π(a)ξ, ξ〉.
For a ∈ A with φ(a) ≥ 0 for all φ ∈ P(A) we obtain 0 ≤ φξ(a) = 〈π(a)ξ, ξ〉
for all ξ ∈ H. Hence π(a) is a positive operator on H. Those are exactly the
positive elements of B(H). We have π(a∗) = π(a)∗ = π(a), so a is self-adjoint by
injectivity of π. By spectral permanence we have σA(a) = σB(H)(π(a)) ⊆ [0,∞).
Therefore, a is positive. The other implication is true by definition of positive
linear functionals.

Remark 5.4. In Lemma 5.3 we used the existence of φ ∈ P(A) with |φ(a)| = ‖a‖ and
‖φ‖ = 1 when a is self-adjoint. The norm of a general element is not detected by its
values on positive linear functionals in that way. For example, consider the element
a = ( 0 1

0 0 ) ∈M2(C). We have ‖a‖ = 1, but for φ ∈ P (M2(C)) with ‖φ‖ = 1 we obtain

|φ(a)| = 1

2

∣∣φ ( 0 1
1 0 ) + iφ

(
0 −i
i 0

)∣∣ =
1

2

√
|φ ( 0 1

1 0 )|2 +
∣∣φ ( 0 −i

i 0

)∣∣2 ≤ 1

2

√
2 < 1.

5.2 C∗-Valued Integration

Let X be a locally compact Hausdorff space and µ a locally finite and strictly positive
Borel measure on X. Locally finite means that µ is finite on compact subsets of X.
Equivalently, every point x ∈ X has a neighbourhood of finite measure. Strictly positive
means, that µ(U) > 0 for every nonempty open set U ⊆ X.
We will first work in the more general setting of Banach space-valued functions. Let
V be a Banach space. We denote the vector space of compactly supported continuous
functions X → V by Cc(X,V ) and we write Cc(X) for Cc(X,C).
For f ∈ Cc(X,V ), the function X → R≥0 given by x 7→ ‖f(x)‖ is compactly supported
and continuous. Therefore, the Lebesgue integral ‖f‖1 : =

∫
X ‖f(x)‖ dµ(x) exists. It

is easy to verify that ‖ · ‖1 defines a norm on Cc(X,V ).
For f ∈ Cc(X) and a ∈ V we obtain f.a ∈ Cc(X,V ) with (f.a)(x) = f(x)a for x ∈ X.
Let

M = span {f.a : f ∈ Cc(X), a ∈ V } ⊆ Cc(X,V ).

To define the integral, we are going to use the following lemma to approximate com-
pactly supported functions by elements of M .

Lemma 5.5. Let f ∈ Cc(X,V ). For every ε > 0 and U ⊆ X open with supp(f) ⊆ U,
there is h ∈M with supp(h) ⊆ U and ‖f(x)− h(x)‖ < ε for all x ∈ X.

Proof. Every x ∈ supp(f) has an open neighbourhood Ux ⊆ U with compact clo-
sure and ‖f(x) − f(y)‖ < ε for all y ∈ Ux. By the compactness of supp(f), we find
x1, . . . , xn ∈ supp(f) such that Ux1 , . . . Uxn cover supp(f). Put ai = f(xi) and let
h1, . . . , hn : X → [0, 1] be a continuous partition of unity for supp(f) subordinate to the
Uxi ’s. That is, 0 ≤

∑n
i=1 hi(x) ≤ 1 for all x ∈ X,

∑n
i=1 hi(x) = 1 for x ∈ supp(f)

and supp(hi) ⊆ Ui. Since supp(hi) ⊆ Uxi is compact, we have hi ∈ Cc(X). Therefore,
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h =
∑n

i=1 hi.ai ∈M and supp(h) ⊆ supp(h1) ∪ . . . ∪ supp(hn) ⊆ U. We estimate

‖f(x)− h(x)‖ =

∥∥∥∥∥
(

n∑
i=1

hi(x)

)
f(x)−

n∑
i=1

hi(x)ai

∥∥∥∥∥
≤

n∑
i=1

‖hi(x)f(x)− hi(x)ai‖

=
n∑
i=1

hi(x) · ‖f(x)− f(xi)‖

<
n∑
i=1

hi(x) · ε = ε.

Corollary 5.6. The subspace M is dense in Cc(X,V ) with respect to ‖ · ‖1.

Proof. Let f ∈ Cc(X,A) and ε > 0. Since X locally compactness, there is an open
U ⊆ X with compact closure and supp(f) ⊆ U. Because µ is locally finite and strictly
positive, we have 0 < µ(U) ≤ µ

(
U
)
<∞.

By Lemma 5.5, there is h ∈M with supp(h) ⊆ U and

‖f(x)− h(x)‖ < ε

µ(U)
for all x ∈ U.

Then

‖f − h‖1 =

∫
X
‖f(x)− h(x)‖ dµ(x) =

∫
U
‖f(x)− h(x)‖ dµ(x) < µ(U) · ε

µ(U)
= ε.

The next proposition defines and characterises the integral. We write V ′ for the
topological dual space of V .

Proposition 5.7 (Banach space-valued integral).
For every f ∈ Cc(X,V ), there is a unique I(f) ∈ V , such that

φ (I(f)) =

∫
X
φ ◦ f dµ for all φ ∈ V ′. (3)

The map I : Cc(X,V )→ V given by f 7→ I(f) is linear and bounded with ‖I(f)‖ ≤ ‖f‖1.
For f ∈ Cc(X) and a ∈ V , we obtain I(f.a) =

∫
X f dµ ·a.

Proof. Let f ∈ Cc(X,V ). To prove that (3) determines I(f) uniquely if it exists, we
assume a, b ∈ V , such that φ (a) =

∫
X φ ◦ f dµ = φ(b) for all φ ∈ V ′. Then a = b, since

V ′ separates points of V .
Assume that we have f1, f2 ∈ Cc(X,V ) with I(f1), I(f2) ∈ V , such that (3) holds for
both. For λ1, λ2 ∈ C, we obtain

φ (λ1I(f1) + λ2I(f2))
(3)
= λ1

∫
X
φ ◦ f1 dµ+λ2

∫
X
φ ◦ f2 dµ =

∫
X
φ ◦ (λ1f1 + λ2f2) dµ .
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This shows the existence of I(λ1f1 + λ2f2) = λ1I(f1) + λ2I(f2).
By the Hahn-Banach Theorem, there is φ ∈ V ′ with |φ (I(f)) | = ‖I(f)‖ and ‖φ‖ = 1.
We obtain

‖I(f)‖ = |φ (I(f))) | (3)
=

∣∣∣∣∫
X
φ (f(x)) dµ(x)

∣∣∣∣
≤
∫
X
|φ (f(x))| dµ(x)

≤
∫
X
‖f(x)‖ dµ(x) = ‖f‖1.

For f ∈ Cc(X), a ∈ V and φ ∈ V ′,

φ

((∫
X
f dµ

)
a

)
=

∫
X
f dµ ·φ(a) =

∫
X
f(x)φ(a) dµ(x) =

∫
X
φ (f(x)a) dµ(x)

=

∫
X
φ ◦ (f.a) dµ,

showing that I(f.a) exists with I(f.a) =
∫
X f dµ ·a.

This implies the existence of I(h) for all h ∈M and that I is linear and bounded on M.
Since M is dense in Cc(X,V ) (Corollary 5.6) and V is complete, the bounded map I
extends to a linear and bounded map I : Cc(X,V )→ V.
Now let f ∈ Cc(X,V ) arbitrary. We find a sequence (hn)n∈N ⊆M converging to f . For
φ ∈ V ′, we obtain∣∣∣∣∫

X
φ ◦ f dµ−

∫
X
φ ◦ hn dµ

∣∣∣∣ ≤ ∫
X
|φ (f(x)− hn(x))| dµ(x)

≤ ‖φ‖
∫
X
‖f(x)− hn(x)‖ dµ(x)

= ‖φ‖ · ‖f − hn‖1n→∞0.

Hence

φ (I(f)) = φ
(

lim
n→∞

I (hn)
)

= lim
n→∞

φ (I (hn)) = lim
n→∞

∫
X
φ ◦ hn dµ =

∫
X
φ ◦ f dµ

This yields the existence of I(f).

From now on, we write
∫
X f dµ or

∫
X f(x) dµ(x) for the element I(f) from Proposi-

tion 5.7. Next we collect some properties of the integral that we need later.

Lemma 5.8 (Bounded linear maps and integration).
Let W be another Banach space together with a bounded linear map T : V →W .
For f ∈ Cc(X,V ) we obtain T ◦ f ∈ Cc(X,W ) and∫

X
T ◦ f dµ = T

(∫
X
f dµ

)
.
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Proof. If f(x) = 0, then (T ◦ f)(x) = 0. Hence supp(T ◦ f) ⊆ supp(f) is compact.
Let ψ ∈ W ′, then ψ ◦ T ∈ V ′ and

ψ

(
T

(∫
X
f dµ

))
= (ψ ◦ T )

(∫
X
f dµ

)
(3)
=

∫
X

(ψ ◦ T ) ◦ f dµ =

∫
X
ψ ◦ (T ◦ f) dµ .

By Proposition 5.7 this proves the claim.

Lemma 5.9 (Iterated Integration).
Let Y be another locally compact Hausdorff space with a locally finite Borel measure ν.
Let f ∈ Cc(X × Y, V ). The functions

F : Y → V ; y 7→
∫
X
f(x, y) dµ(x) and G : X → V ; x 7→

∫
Y
f(x, y) dν(y)

are continuous with compact support.
∫
Y F dν =

∫
X G dµ, that is,∫

Y

(∫
X
f(x, y) dµ(x)

)
dν(y) =

∫
X

(∫
Y
f(x, y) dν(y)

)
dµ(x).

Proof. First we show that F is well-defined and continuous.
Let y0 ∈ Y . There are K1 ⊆ X and K2 ⊆ Y , such that supp(f) ⊆ K1×K2. The support
of the function x 7→ f(x, y0) is a subset of K1, therefore, F (y0) =

∫
X f(x, y0) dµ(X) ∈ V

by Proposition 5.7. Hence F is well-defined.
Let ε > 0. For all x ∈ K1, there is a neighbourhood Ux ⊆ X of x and a neighbourhood
Vx of y0, such that

‖f(x′, y′)− f(x, y0)‖ < ε

2((K1) + 1)
for all x′ ∈ Ux and y′ ∈ Vx.

Since K1 is compact, there are x1, . . . , xn ∈ K1, such that Ux1 , . . . , Uxn cover K1. Put
V = Vx1 ∩ . . . ∩ Vxn and let y ∈ V. For x ∈ K1, we obtain an i = 1, . . . , n, such that
x ∈ Uxi . We estimate

‖f(x, y)− f(x, y0)‖ ≤ ‖f(x, y)− f(xi, y0)‖+ ‖f(xi, y0)− f(x, y0)‖ < ε

µ(K1) + 1
.

This leads to

‖F (y)− F (y0)‖ = ‖
∫
X
f(x, y) dµ(x)−

∫
X
f(x, y0) dµ(x)‖

≤
∫
K1

‖f(x, y)− f(x, y0)‖ dµ(x) < ε,

proving that F is continuous. If y /∈ K2, then f(x, y) = 0 for all x ∈ X. Hence F (y) = 0.
This shows supp(F ) ⊆ K2. Therefore, F ∈ Cc(Y, V ).
Using the same arguments we get G ∈ Cc(X,V ).
Since µ|K1 and ν|K2 are finite, there is a unique product measure µ|K1⊗ν|K2 on K1×K2.
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Since f ∈ Cc(X × Y, V ), there is M > 0, such that ‖f(x, y)‖ ≤ M for all x ∈ X and
y ∈ Y . Let φ ∈ V ′, we have∫

K1×K2

|(φ ◦ f)(x, y)| d (µ|K1 ⊗ ν|K2) ≤ ‖φ‖Mµ(K1)ν(K2) <∞.

Therefore, we can apply Fubini’s theorem to get

φ

(∫
Y
F dν

)
=

∫
Y
φ ◦ F dν

=

∫
K2

(∫
K1

φ ◦ f dµ

)
dν

=

∫
K1

(∫
K2

φ ◦ f dν

)
dµ

=

∫
X
φ ◦G dµ .

Hence
∫
Y F dν =

∫
X G dµ, by Proposition 5.7.

Lemma 5.10 (Dominated Convergence Theorem).
Let (fn)n∈N ⊆ Cc(X,V ) be a sequence and f ∈ Cc(G,V ) with fn(x) −→ f(x) for n→∞
for all x ∈ X. If there is g ∈ L1(X), with ‖fn(x)‖ ≤ g(x) for all x ∈ X, then

∫
X fn dµ

converges weakly to
∫
X f dµ.

Proof. Let φ ∈ V ′. Then φ ◦ fn converges pointwise to φ ◦ f and

|(φ ◦ fn)(x)| ≤ ‖φ‖‖fn(x)‖ ≤ ‖phi‖ · g(x).

Hence Lebesgue’s Dominated Convergence Theorem applies and we obtain

lim
n→∞

φ

(∫
X
fn dµ

)
3
= lim

n→∞

∫
X
φ ◦ fn dµ

3
=

∫
X
φ ◦ f dµ = φ

(∫
X
f dµ

)
.

Since a Haar measure µ on a locally compact group G is locally finite and strictly
positive, we can use our integral for Cc-functions G → V . The next lemma states the
translation invariance of the integral.

Lemma 5.11 (Translation Invariance).
Let g ∈ G and f ∈ Cc(X,V ). Then λg(f) ∈ Cc(X,V ), where (λg(f))(x) = f(g−1x) for
x ∈ X, and∫
X
f dµ =

∫
X
λg(f) dµ or

∫
X
f(x) dµ(x) =

∫
X
f(g−1x) dµ(x) in the other notation.

78



Proof. Since νg : G → G, x 7→ g−1x is continuous, so is λg(f) = f ◦ νg. We have
g supp(f) = supp(λg(f)). Therefore, λg(f) ∈ Cc(G,V ).
We assume the Haar measure µ to be left invariant, that is, µ(gA) = µ(A) for a Borel
set A ⊆ G. We have

((νg)∗ µ)(A) = µ
(

(νg)
−1 (A)

)
= µ (gA) = µ(A)

for all Borel sets A ⊆ G, showing (νg)∗µ = µ. For φ ∈ V ′ we obtain∫
X
φ ◦ (λg(f)) dµ =

∫
X
φ ◦ f ◦ νg dµ =

∫
X
φ ◦ f d ((νg)∗µ)

(3)
= φ

(∫
X
f dµ

)
.

This proves the claim by Proposition 5.7.

Remark 5.12. If G is unimodular, such that µ is also right invariant. We obtain∫
X
f(x) dµ(x) =

∫
X
f(xg−1) dµ(x)

with the same arguments as in lemma 5.11. In this case we have µ(A) = µ(A−1) for all
Borel sets A ⊆ G, and a similar argument as above shows∫

G
f(g−1) dµ(g) =

∫
G
f(g) dµ(g).

Next we collect properties of the integral with values in a C∗- algebra A.

Lemma 5.13 (Properties of the C∗-valued Integral).
Let f ∈ Cc(X,A).

(i)
(∫
X f(x) dµ(x)

)∗
=
∫
X f(x)∗ dµ(x).

(ii) If f(x) is self-adjoint for all x ∈ X, then
∫
X f dµ is self-adjoint.

(iii) If f(x) is positive for all x ∈ X, then
∫
X f dµ is positive.

(iv) If f(x) is positive for all x ∈ X and
∫
X f dµ = 0, then f = 0.

(v) If a ∈ A, then f · a ∈ Cc(X,A), where (f · a)(x) = f(x)a, and∫
X
f · a dµ =

∫
X
f dµ ·a.

(vi) If a ∈ A ,then a · f ∈ Cc(X,A), where (a · f)(x) = af(x) and∫
X
a · f dµ = a ·

∫
X
f dµ .
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Proof. (i) Since the involution on A is isometric, (i) follows immediately from
Lemma 5.8.

(ii) Provided f(x) is self-adjoint for all x ∈ X, we use (i) to obtain(∫
X
f(x) dµ(x)

)∗
(i)
=

∫
X
f(x)∗ dµ(x) =

∫
X
f(x) dµ(x).

(iii) Positive linear functionals are continuous by Lemma 5.2. Therefore, we can use
them in equation (3).
Let f(x) be positive for all x ∈ X and φ ∈ P(A). Then

φ

(∫
X
f dµ

)
(3)
=

∫
X
φ ◦ f dµ ≥ 0,

because φ (f(x)) ≥ 0 for all x ∈ X. Therefore, 5.3(ii) implies
∫
X f dµ ≥ 0.

(iv) If f(x) is positive for all x ∈ X and
∫
X f dµ = 0, then

0 = φ

(∫
X
f dµ

)
(3)
=

∫
X
φ ◦ f dµ for all φ ∈ P(A).

Since φ ◦ f ≥ 0 and µ is strictly positive, this implies φ ◦ f = 0. Hence for x ∈ X,
we obtain φ (f(x)) = 0 for all φ ∈ P. Using 5.3(i), we conclude that f(x) = 0.

(v) The left multiplication map ma : A → A given by b 7→ ab is bounded. Therefore,
Lemma 5.8 applies and yields∫

X
f · a dµ = ma

(∫
X
f dµ

)
=

∫
X
ma ◦ f dµ =

∫
X
f dµ ·a.

(vi) One could argue as in (v) or use (i) to get∫
X

(a · f)(x) dµ(x) =

(∫
X

(a · f)(x)∗ dµ(x)

)∗
(v)
=

(∫
X
f(x)∗ dµ(x)a∗

)∗
= a ·

∫
X
f(x) dµ(x).

5.3 Equivariant Hilbert Modules

Let G be a locally compact group with Haar measure µ.
The Hilbert space L2(G) carries a natural action by left translation of G. We want to
define an action of G on L2(G,A) that is compatible with the Hilbert module structure
and with a given action of G on A.
An action (αg)g∈G of G on A by ∗-automorphisms is called continuous if for all a ∈ A
the map G→ A given by g 7→ αg(a) is norm continuous.
Let A be a C∗-algebra with a continuous G-action or briefly, a G-C∗-algebra.
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Definition 5.14 (Equivariant Hilbert Module). A linear action (γg)g∈G on a Hilbert
A-module E is called Hilbert module action if it satisfies the following conditions.

(i) The action is strongly continous, that is, for every ξ ∈ E the map G→ E given by
g 7→ γg(ξ) is norm continuous.

(ii) γg(ξ · a) = γg(ξ) · αg(a) for ξ ∈ E , a ∈ A and g ∈ G.

(iii) 〈γg(ξ), γg(η)〉 = αg(〈ξ, η〉) for all ξ, η ∈ E and g ∈ G.

A Hilbert A-module E equipped with a Hilbert module action (γg)g∈G is called a G-
equivariant Hilbert A-module or briefly, a Hilbert G-A-module.
We write BG(E) for the set of of G-equivariant adjointable maps E → E .

It is easy to see, that BG(E) is a C∗-subalgebra of B(E).

Example 5.15. (i) If we consider A as a Hilbert A-module the action (αg)g∈G turns
it into a Hilbert G-A-module. The first condition is just the continuity, and the
second condition is the multiplicativity of the C∗-algebra action (αg)g∈G.
The third condition is satisfied, since for a, b ∈ A, we have

〈αg(a), αg(b)〉 = αg(a)∗αg(b) = αg(a
∗b) = αg (〈a, b〉) .

(ii) For A = C with the trivial G-action, Hilbert module actions are just strongly
continuous actions by unitaries on Hilbert spaces.

For a Hilbert module action (γg)g∈G, it follows that

‖γg(ξ)‖ = ‖〈γg(ξ), γg(ξ)〉‖
1/2 (iii)

= ‖αg (〈ξ, ξ〉) ‖1/2 = ‖〈ξ, ξ〉‖1/2 = ‖ξ‖.

Therefore, every γg is an isometry.
To construct a tensor product of Hilbert G-A-modules we need to extend actions on
dense submodules.

Lemma 5.16 (Extension of G-actions). Let D ⊆ E be a dense submodule of a Hilbert
A-module E, such that there is a linear action (γg)g∈G on D satisfying (i), (ii) and (iii)
from Definition 5.14. Then (γg)g∈G extends uniquely to a Hilbert module action on E,
so that E becomes a Hilbert G-A-module.

Proof. Let g ∈ G. As above, we see that γg is an isometry on D. Since E is complete,
the map γg : D → D ⊆ E extends to a linear and isometric map γ̃g : E → E . Since this
extension is the only isometric one, this shows the uniqueness part.
We still have γ̃g ◦ γ̃g = γ̃gh, since these maps agree on the dense subset D. Therefore,
(γ̃g)g∈G is a linear action on E . It remains to verify (i), (ii) and (iii) from definition 5.14.
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(i) Let ξ ∈ E . Choose ξD ∈ D with ‖ξ − ξD‖ < ε
3 .

Let g0 ∈ G. Since g 7→ γg(ξD) is continuous, we find a neighbourhood U of g0 such
that

‖γ̃g0(ξD)− γ̃g(ξD)‖ = ‖γg0(ξD)− γg(ξD)‖ < ε

3
for all g ∈ U.

For g ∈ U , we obtain

‖γ̃g0(ξ)− γ̃g(ξ)‖ ≤ ‖γ̃g0(ξ)− γ̃g0(ξD)‖+ ‖γ̃g0(ξD)− γ̃g(ξD)‖+ ‖γ̃g(ξD)− γ̃g(ξ)‖

< ‖ξ − ξD‖+
ε

3
+ ‖ξD − ξ‖ < ε.

This shows that g 7→ γ̃g(ξ) is continuous.

(ii) Let ξ ∈ E and a ∈ A. Choose (ξn)n∈N ⊆ D with ξn −→ ξ. Then ξn · a ∈ D for all
n ∈ N and ξn · a −→ ξ · a. Thus

γ̃g(ξ · a) = lim
n∈N

γg(ξn · a) = lim
n∈N

γg(ξ)αg(a) = γ̃g(ξ) · αg(a).

(iii) Let ξ, η ∈ E . There are (ξn)n∈N, (ηn)n∈N ⊆ D with ξn −→ ξ and ηn −→ η. Then

〈γ̃g(ξ), γ̃g(η)〉 = lim
n→∞

〈γg(ξn), γg(η)〉 = lim
n→∞

αg (〈ξn, ηn〉) = α (〈ξ, η〉) .

Let E be a Hibert G-A-module. The G-action (γg)g∈G on E induces an action on B(E)
by ∗-automorphisms in the following way.
For T ∈ B(E), we obtain

〈
(
γg ◦ T ◦ γg−1

)
(ξ), η〉 = αg

(
〈(T ◦ γg−1)(ξ), γg−1(η)〉

)
= αg

(
〈γg−1(ξ), (T ∗ ◦ γg−1)(η)〉

)
= 〈ξ,

(
γg ◦ T ∗ ◦ γg−1

)
(η)〉

This shows that γg ◦ T ◦ γg−1 is adjointable with adjoint γg ◦ T ∗ ◦ γg−1 .
Hence we have a well defined map ρg : B(E)→ B(E) given by T 7→ γg ◦ T ◦ γg−1 .
We have

ρg ◦ ρh(T ) = ρg(γh ◦ T ◦ γh−1) = γg ◦ (γh ◦ T ◦ γh−1) ◦ γg−1 = γgh ◦ T ◦ γ(gh)−1 = φgh(T ).

Furthermore, γ1 = idE implies ρ1 = idB(E), hence every ρg is invertible.
Obviously, ρg is multiplicative, and above we proved ρg(T

∗) = ρg(T )∗. Therefore,
(ρg)g∈G is an action by ∗-automorphisms. We always endow B(E) with this canoni-
cal action.
Now let B be another G-C∗-algebra with action (βg)g∈G and F a Hilbert G-B-module
with action (δg)g∈G together with a G-equivariant ∗-homomorphism ρ : B → B(E).

Lemma 5.17 (Induced Action on Tensor Products).
The Hilbert A- module F ⊗B E is a Hilbert G-A module with the unique action (πg)g∈G
satisfying πg(ξ ⊗ η) = δg(ξ)⊗ γg(η).
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Proof. For g ∈ G, we have a bilinear map

F × E → F ⊗alg
B E , (ξ, η) 7→ δg(ξ)⊗ γg(η).

Since

δg(ξ · b)⊗ γg(η)
(ii)
=δg(ξ) · βg(b)⊗ γg(η)

=δg(ξ)⊗ φ (βg(b)) γg(η)

=δg(ξ)⊗ ρg (φ(b)) γg(η)

=δg(ξ)⊗ γg (φ(b)η) ,

it induces a linear map πg : F ⊗alg
B E → F ⊗

alg
B E . Now

πgh(ξ ⊗ η) = δgh(ξ)⊗ γgh(η) = δg (δh(ξ))⊗ γg (γg(η)) = πg ◦ πh(ξ ⊗ η).

Linearity yields πgh = πg ◦ πh. And since π1 = idF⊗alg
B E

, every πg is invertible. Hence

(πg)g∈G is a linear action of G on F ⊗alg
B E .

Now we verify properties (i), (ii) and (iii) from Definition 5.14.

(i) Since ‖ξ ⊗ η‖ ≤ ‖ξ‖ · ‖η‖, the canonical map F × E → F ⊗alg
B E is continuous with

respect to the product topology on F × E .
Now let g ∈ G. The map g 7→ (δg(ξ), γg(η)) is continuous, since both entries
are continuous by the strong continuity of (γg)g∈g and (δg)g∈g. Thus the map

g 7→ πg(ξ ⊗ η) = δg(ξ)⊗ γg(η) is continuous. An arbitrary element ζ ∈ F⊗alg
B is a

linear combination of elementary tensors. Therefore, g 7→ πg(ζ) is continuous as a
sum of continuous functions.

(ii) Let a ∈ A. We have

πg ((ξ ⊗ η) · a) = πg (ξ ⊗ (η · a))

= δg(ξ)⊗ γg(η · a)

= δg(ξ)⊗ (γg(η) · αg(a))

= πg(ξ ⊗ η) · αg(a).

By linearity, (ii) holds for every ζ ∈ F ⊗alg
B E .

(iii) Let ξ1, ξ2 ∈ F and η1, η2 ∈ E . Then

〈πg(ξ1 ⊗ η1), πg(ξ2 ⊗ η2)〉 = 〈δg(ξ1)⊗ δg(η1), δg(ξ2)⊗ γg(η2)〉
= 〈γg(η1)φ (〈δg(ξ1), δg(ξ2)〉) γg(η2)〉
= 〈γg(η1), ρg (φ(〈ξ1, ξ2〉)) γg(η2)〉
= 〈γg(η1), γg (φ(〈ξ1, ξ2〉)η2)〉
= αg (〈ξ1 ⊗ η1, ξ2 ⊗ η2〉) .

Linearity yields (iii) for arbitrary elements of F ⊗alg
B E .

By Lemma 5.16, the action (πg)g∈G on F⊗alg
B E extends uniquely to an action on F⊗B E ,

such that F ⊗B E becomes a Hilbert G-A-module.
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5.4 The Twisted Convolution Algebra Cc(G,A)

To define a the ∗-algebra structure on Cc(G,A) we need the following lemma.

Lemma 5.18. If m : G × G → A is a continuous function, then the function
f : G×G→ A given by (g, x) 7→ αx (m(g, x)) is continuous.

Proof. Let (x0, g0) ∈ G × G and ε > 0. Since (αg)g∈G is continuous, there is a neigh-
bourhood U1 if x0 ∈ G, such that

‖αx (m(g0, x0))− αx0 (m(g0, x0)) ‖ < ε

2
for all x ∈ U1.

By continuity of m, there are neighbourhoods U2 of x0 and V of g0 in G, such that

‖m(g, x)−m(g0, x0)‖ < ε

2
for all x ∈ U2 and y ∈ V

For (g, x) ∈ (U1 ∩ U2)× V we obtain

‖f(g, x)− f(g0, x0)‖ ≤ ‖αx (m(g, x))− αx (m(g0, x0)) ‖
+ ‖αx0 (m(g0, x0))− αx (m(g0, x0)) ‖ < ε.

Let f1, f2 ∈ Cc(G,A). The function

h : G×G→ A given by (g, x) 7→ f1(x)αx(f2(x−1g))

is continuous by Lemma 5.18. If x ∈ supp(f1) and x−1g ∈ supp(f2), then
g ∈ x supp(f2) ⊆ supp(f1) supp(f2). Hence

supp(h) ⊆ supp(f1)× (supp(f1) supp(f2))

is compact. Therefore, h ∈ Cc(G×G,A). We define

(f1 ∗ f2)(g) =

∫
G
h(g, x) dµ(x) =

∫
G
f1(x) · αx(f2(x−1g)) dµ(x).

Lemma 5.9 yields f1 ∗ f2 ∈ Cc(G,A).
If f ∈ Cc(G,A) we define f∗(g) = αg(f(g−1))∗. Since supp(f∗) = supp(f) is compact,
we obtain f∗ ∈ Cc(G,A).

Proposition 5.19. The above structures turn Cc(G,A) into a ∗-algebra. The norm ‖·‖1
is submultiplicative and ‖f∗‖1 = ‖f‖1 for all f ∈ Cc(G,A).

Proof. It is easy to see, that (f1, f2) 7→ f1 ∗ f2 is bilinear. For f, f1, f2, f3 ∈ Cc(G,A) we
obtain

((f1 ∗ f2) ∗ f3) (g) =

∫
G

(∫
G
f1(y)αy(f2(y−1x)) dµ(y)

)
· αx(f3(x−1g)) dµ(x)

5.9
=

∫
G
f1(y)

(∫
G
αy(f2(y−1x))αx(f3(x−1g)) dµ(x)

)
dµ(y)

5.8
=

∫
G
f1(y)αy

(∫
G
f2(y−1x)αy−1x(f3(x−1g)) dµ(x)

)
dµ(y)

5.11
=

∫
G
f1(y)αy

(
(f2 ∗ f3)(y−1g)

)
dµ(y) = (f1 ∗ (f2 ∗ f3)) (g).
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Hence ∗ is associative. It is easy to see (f1 + f2)∗ = f∗1 − f∗2 and (λf)∗ = λf∗ for λ ∈ C.
Furthermore we have

(f∗)∗(g) = αg(f
∗(g−1))∗ = αg ◦ αg−1(f((g−1)−1)) = f(g)

and

(f1 ∗ f2)∗(g)
5.13(i)

= αg

(∫
G
αx(f2(x−1g−1))∗ · f1(x)∗ dµ(x)

)
5.8
=

∫
G
αgx(f2(x−1g−1))∗ · αg(f1(x))∗ dµ(x)

5.11
=

∫
G
αx(f2(x−1))∗ · (αx ◦ αx−1g)(f1(g−1x))∗ dµ(x)

=

∫
G
f∗2 (x) · αx(f∗1 (x−1g)) dµ(x) = (f∗2 ∗ f∗1 )(g).

Hence Cc(G,A) is a ∗-algebra.
Using Fubini’s theorem, we obtain

‖f1 ∗ f2‖1
5.7
≤
∫
G

(∫
G
‖f1(x)‖ · ‖αx(f2(x−1g))‖ dµ(x)

)
dµ(x)

=

∫
G
‖f1(x)‖ ·

(∫
G
‖f2(x−1g)‖ dµ(g)

)
dµ(x)

5.11
=

∫
G
‖f1(x)‖ dµ(x) ·

∫
G
‖f2(g)‖ dµ(g) = ‖f1‖1 · ‖f2‖1.

Finally, Remark 5.12 implies

‖f∗‖1 =

∫
G
‖αg(f(g−1))∗‖ dµ(g) =

∫
G
‖f(g−1)‖ dµ(g) = ‖f‖1.

The following lemma shows the existence of approximate identities in Cc(G,A).

Lemma 5.20 (Approximate Identities).
There is a net (ui)i∈I ⊆ Cc(G,A) with ‖ui‖ ≤ 1 and u∗i = ui for all i ∈ I, such that

‖f − f ∗ ui‖1 −→ 0 and ‖f − ui ∗ f‖1 −→ 0 for all f ∈ Cc(G,A).

Proof. Let (aj)j∈J be an approximate identity of A. Let K be the set of compact
neighbourhoods of the identity in G. For every U ∈ K, there is a continuous function
ψU : G → [0,∞), such that supp(ψU ) ⊆ U and

∫
G ψU dµ = 1. We define I = J × K.

Then I is directed by

(j1, U1) ≤ (j2, U2) if and only if j1 ≤ j2andU2 ⊆ U1.

For (j, U) ∈ I, we define u(j,U) = ψU .aj . Then (u(j,U))(j,U)∈I is a net in Cc(G,A) with
‖u(j,U)‖ ≤ 1.
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Let f ∈ Cc(G) and a ∈ A, with f 6= 0 and a 6= 0. The proof of Lemma 1.21 shows, that
there is U1 ∈ K and K ⊆ G compact, such that U1 supp(f) ⊆ K and

|f(x)− f(g−1x)| < ε

3‖a‖ · µ(K)
for all x ∈ G and g ∈ U0.

There is U2 ∈ K, such that

‖a− αg(a)‖ ≤ ε

3‖f‖1
for all g ∈ U2.

Define U0 = U1 ∩ U2.
There is j0 ∈ J , such that ‖a− aja‖ ≤ ε

3·‖f‖1 . For (j, U) > (j0, U0), we estimate

‖f(x)aja− (u(U, j) ∗ f.a)(x)‖ ≤
∥∥∥∥∫

G
ψU (g)f(x)aj(a− αg(a)) dµ(g)

∥∥∥∥
+

∥∥∥∥∫
G
ψU (g)ajαg(a)(f(x)− f(g−1x)) dµ(g)

∥∥∥∥
≤ ε

3‖f‖1
‖f(x)‖+ 1K(x) · ε

3µ(K)
.

Therefore

‖f.a− u(j,u) ∗ f.a‖1 ≤ ‖f.a− f.(aja)‖1 + ‖f.(aja)− u(U, j) ∗ f.a‖1

≤ ‖f‖1‖a− aia‖+
2

3
ε < ε

This implies ‖f − ui ∗ f‖1 → 0 for all f ∈M . By Corollary 5.6 M is dense in Cc(G,A).
Therefore we obtain ‖f − ui ∗ f‖1 → 0 for all f ∈ Cc(G,A) by an ε

3 -argument.
Using ‖f‖1 = ‖f∗‖1, we obtain ‖f − f ∗ ui‖1 −→ 0 for all f ∈ Cc(G,A).
We can arrange u∗i = ui by taking 1

2(ui + u∗i ) instead of ui.
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