A Smooth Model for the String Group

Christoph Wockel (Hamburg)

(with Th. Nikolaus and Ch. Sachse)

May 7, 2011

A smooth Lie group model

Promoting the model to a Lie 2-group model

Comparison with other models

What is the string group?

Whitehead tower of O(n):

$$\operatorname{String}(n) \to \underbrace{\operatorname{Spin}(n)}_{\pi_3 \cong \mathbb{Z}} \xrightarrow{\cong} \underbrace{\operatorname{Spin}(n)}_{\pi_2 = 0} \xrightarrow{2:1} \underbrace{\operatorname{SO}(n)}_{\pi_1 = \mathbb{Z}/2} \hookrightarrow \underbrace{O(n)}_{\pi_0 = \mathbb{Z}/2}$$

Motivation:

- Spin geometry ~> String geometry?
- loop space geometry
- SUSY σ-modles

Observation: If $P = f^*(E \operatorname{Spin}(n)) \to M$ is a principal $\operatorname{Spin}(n)$ bundle, then a lift

exists iff $\frac{p_1}{2}(M)$ vanishes.

String group models

May replace Spin(n) by an arbitrary simple 1-connected compact Lie group G.

Definition: A smooth model (for the string group) is a morphism

$$q: \operatorname{String}_G \to G$$

of Lie groups which is a 3-connected cover (i.e. $\pi_3(\text{String}_G) = 0$ and $\pi_i(q) \colon \pi_i(\text{String}_G) \xrightarrow{\cong} \pi_i(G)$ for $i \neq 3$). Analogously one defines topological models.

Lemma: ker(q) is a $K(\mathbb{Z}, 2)$ and thus String_G cannot be finite-dimensional.

 \rightsquigarrow consider generalisations for Lie group structures on String_G:

- topological groups
- infinite-dimensional Lie groups
- Lie 2-groups (smooth group stacks)

Towards an infinite-dimensional model

Fact: $PU := PU(\ell^2)$ is a $K(\mathbb{Z}, 2)$ and a Lie group when endowed with the norm topology.

 $\Rightarrow \exists$ a *smooth* principal *PU*-bundle $q: P \rightarrow G$ representing

$$1 \in [G, BPU] \cong [G, K(3, \mathbb{Z})] \cong H^3(G, \mathbb{Z}) \cong \mathbb{Z}$$

 $\Rightarrow \pi_3(P) = 0$ and $\pi_i(q)$ is an isomorphism for $i \neq 3$, so $P \rightarrow G$ could serve as a string group model.

Problems:

- No explicit construction of P → G known (only existence)!
 ~→ if anybody knows...
- No criteria for existence of Lie group structure known (compare to Spin or the abelian case)!

However, we can use $P \rightarrow G$ to construct another model.

The automorphism group of $P \rightarrow G$ **Definition:** Aut $(P) := \{ \varphi \in \text{Diff}(P) : \forall g \in PU f(p \cdot g) = f(p) \cdot g \}$

- $Gau(P) := ker(Q) \cong C^{\infty}(P, PU)^{PU}$ is the gauge group of P
- There are continuous versions Aut_c(P) and Gau_c(P) and Q extends to

$$Q_c$$
: Aut_c(P) \rightarrow Homeo(G)

Fact: Gau(P), Aut(P) and Diff(G) are Lie groups and

$$\operatorname{Gau}(P) \to \operatorname{Aut}(P) \to \operatorname{Diff}(G)_{[P]}$$

is an extension of Lie groups. The corresponding Lie algebras are $\mathcal{V}_{vert}(P)^{PU}$, $\mathcal{V}(P)^{PU}$ and $\mathcal{V}(G)$.

The Lie group model

Definition: String_G := Aut(P)|_G and String_{G,c} := Aut_c(P)|_G, where $G \subset \text{Diff}(G)$ via left translation.

Theorem [Stolz]: Q_c : String_{*G*,*c*} \rightarrow *G* is a topological model.

Theorem [NSW]: Q: String_G \rightarrow G is a smooth model. **Proof:** Show that String_G \rightarrow String_{G,c} is a (weak) homotopy equivalence:

(Gau_c(P) has the compact-open, Gau(P) the C^{∞} topology).

Note: String_{*G*,*c*} cannot be turned into a Lie group, although $Gau_c(P)$ does.

Improving the model

Aim: Promote the model $String_G \rightarrow G$ to a 2-group model.

Why?

- Compare: line bundle are best studied as U(1)-bundles, not as maps to |BU(1)| or as ℤ bundle gerbes.
 - \rightsquigarrow This is because U(1) is the *preferred* model of $K(\mathbb{Z}, 1)$! The preferred model for $K(\mathbb{Z}, 2)$, the 2-group $U(1) \Rightarrow *$.
- String theory predicts backgrounds with bundle-like structures having 3-forms as curvature.
 - \rightsquigarrow 2-bundles (or U(1) bundle gerbes) have this structure!

Definition: A (strict) Lie 2-group \mathcal{H} consists of

- a homomorphism $H \xrightarrow{\tau} K$ of Lie groups
- a smooth (right) action $K \to \operatorname{Aut}(H)$

such that

$$\tau(h.k) = k^{-1} \cdot \tau(h) \cdot k \qquad (equivariance)$$
$$h.\tau(h') = h'^{-1} \cdot h \cdot h'. \qquad (Peiffer identity)$$

Lie 2-groups

Definition: A (strict) Lie 2-group \mathcal{H} consists of

- a homomorphism $H \xrightarrow{\tau} K$ of Lie groups
- a smooth (right) action $K \to \operatorname{Aut}(H)$

such that

$$\tau(h.k) = k^{-1} \cdot \tau(h) \cdot k \qquad (equivariance)$$
$$h.\tau(h') = {h'}^{-1} \cdot h \cdot h'. \qquad (Peiffer identity)$$

Technical assumptions:

- always assume H and K to be metrisable!
- ▶ always assume that <u>m</u>₀(H) := K/τ(H) and <u>m</u>₁(H) := ker(τ) have natural Lie group structures

First Examples:

- For K a Lie group $\{*\} \rightarrow K$ trivial (denoted again by K).
- For A an abelian Lie group $A \rightarrow \{*\}$ trivial (denoted *BA*).

Lie 2-group models

Note: There is the geometric realisation functor

 $|\cdot|$: Lie-2-Grp \rightarrow Top-Gp

and |BA| is the classifying space of A (whence the name). In particular, |BU(1)| is a $K(\mathbb{Z}, 2)$. Moreover, |K| = K (on the nose).

This allows us to define 2-group models in terms of group models:

Definition: A Lie 2-group model (for the string group) is a Lie 2-group \mathcal{H} with isomorphisms $\underline{\pi}_1(\mathcal{H}) \xrightarrow{\cong} U(1)$ and $\underline{\pi}_0(\mathcal{H}) \xrightarrow{\cong} G$ such that

$$|\mathcal{H}| \to |\underline{\pi}_0(\mathcal{H})| \xrightarrow{\cong} G$$

is a topological model.

In fact, there is a story in Lie group cohomology going on here (C. Schommer-Pries, work in progress with F. Wagemann).

Construction of the 2-group model

Recall:

• $P \to G$: principal *PU*-bundle (generator in $H^3(G, \mathbb{Z})$)

• String_G \subseteq Aut(P), covering left multiplication $G \subset \text{Diff}(G)$

 \rightsquigarrow Gau $(P) \cong C^{\infty}(P, PU)^{PU}$ has a universal central extension

$$C^{\infty}(G, U(1)) \rightarrow C^{\infty}(P, U)^{PU} \rightarrow \operatorname{Gau}(P)$$
 (*)

→ String_G ⊆ Aut(P) acts on $C^{\infty}(P, U)^{PU}$ by $f^{\varphi} := f \circ \varphi$. This yields a Lie 2-group

$$C^{\infty}(P, U)^{PU} \xrightarrow{\tau} String_{G}$$

with $\underline{\pi}_{1}(\mathcal{H}) = C^{\infty}(G, U(1)).$

Proposition: String_G acts smoothly on the bundle

$$U(1)
ightarrow \widehat{\mathsf{Gau}(P)}
ightarrow \mathsf{Gau}(P)$$

associated to (*) along the homomorphism

$$I_G: C^{\infty}(G, U(1)) \rightarrow U(1), \quad f \mapsto \int_G f d\mu.$$

Why is this a 2-group model? **Definition:** The 2-group STRING_G is given by the homomorphism

$$\widehat{\mathsf{Gau}(P)} = C^{\infty}(P, U)^{PU} \times_{C^{\infty}(G, U(1))} U(1) \xrightarrow{\tau \circ \mathsf{pr}_1} \mathsf{String}_G$$

and the action

$$[f,\lambda]^{\varphi} := [f \circ \varphi,\lambda].$$

 \rightsquigarrow want to check that this is a Lie 2-group model for String:

- $\underline{\pi}_1(\text{STRING}) = \ker \left(\widehat{\text{Gau}(P)} \to \text{Gau}(P) \right) = U(1)$ (by constr.)
- ▶ $\underline{\pi}_0(\text{STRING}) = \text{coker}(\text{Gau}(P) \rightarrow \text{String}_G) = G$ (by constr.)
- ▶ remains to show that | STRING $| \rightarrow G$ is a topological model

Note: There exists a canonical inclusion $String_G \rightarrow STRING_G$, given by

Why is this a 2-group model? **Proposition:** Both horizontal maps in

are in fact (weak) homotopy equivalences.

Proof: Show that $U(1) \to \widehat{\operatorname{Gau}(P)} \to \operatorname{Gau}(P)$ universal (recall $\operatorname{Gau}(P)$ is a $K(\mathbb{Z}, 2)$).

Theorem [NSW]: $|String_G| \rightarrow |STRING_G|$ is a (weak) homotopy equivalence and thus STRING_G is a Lie 2-group model.

Proof: Show that adding a contractible space of "morphisms" does not affect the geometric realisation. This relies heavily on the homotopy theory of topological metrisable manifolds [Palais '66].

String bundles and string connections

Aim: Do differential geometry with Lie 2-groups by using the theory of 2-bundles and connections.

Proposition: The inclusion $String_G \rightarrow STRING_G$ induces a functor

$$\operatorname{\mathsf{Bun}}_{\operatorname{\mathsf{String}}_G}(M) \to 2\operatorname{\mathsf{-Bun}}_{\operatorname{\mathsf{STRING}}_G}(G)$$

which induces a bijection on isomorphism classes.

Theorem [Nikolaus-Waldorf]: If $\mathcal{H} \to \mathcal{H}'$ is a morphism between 2-group models, then the induced functor

$$2\text{-Bun}_{\mathcal{H}}(G) \rightarrow 2\text{-Bun}_{\mathcal{H}'}(G)$$

is an equivalence of 2-groupoids.

Open: Corresponding statements for 2-bundles with connections.

Other existing models

[BCSS '07] start with the contractible cover P_eG → G, construct an action of P_eG on ΩG turning

into a Lie 2-group and show that this is a 2-group model.

- [Stolz-Teichner '04] associate the above along a positive energy representation ρ: ΩG → PU.
- [Schommer-Pries '10] classifies central extensions of smooth group stacks

$$[*/U(1)] \rightarrow E \rightarrow [G]$$

and relates this to $H^3_{\text{Lie}}(G, U(1)) \cong H^4(|BG|, \mathbb{Z}) \cong \mathbb{Z}.$

- ► [Henriques '08] develops integration procedure for L_∞-algebras and applies this to the string Lie 2-algebra.
- ▶ [Stolz '96]: String_G \rightarrow G (topological/smooth model)

Relation between the models

Where "Morita equivalence" has to be understood as follows:

take cover (U_i)_{i=1,..,n} of G with sections σ_i: U_i → P_eG
 γ_{ij} := σ_i · σ_j⁻¹: U_{ij} → ΩG is a Čech cocycle for the smooth principal bundle P_eG → G

(Morita equiv. of Lie groupoids \leftrightarrow diffeomorphism of manifolds)

Relation between the models

Where "Morita equivalence" has to be understood as follows:

- ▶ take good cover $(U_i)_{i=1,..,n}$ of G with sections $\sigma_i \colon U_i \to P_eG$
- ► $\gamma_{ij} := \sigma_i \cdot \sigma_j^{-1} \colon U_{ij} \to \Omega G$ is a Čech cocycle for the smooth principal bundle $P_e G \to G$
- ► assume $(U_i)_{i=1,..,n}$ to be good $\Rightarrow \gamma_{ij}$ has lifts $\widehat{\gamma}_{ij} \colon U_{ij} \to \widehat{\Omega G}$
- ▶ $\widehat{\gamma}_{ij} \cdot \widehat{\gamma}_{jk} \cdot \widehat{\gamma}_{ik}^{-1}$: $U_{ijk} \to U(1)$ is a Čech cocycle and defines a Lie groupoid $\bigsqcup U(1) \times_h U_{ij} \Longrightarrow \bigsqcup U_i$.

$$\Rightarrow \text{ Get a Morita equivalence} \qquad \begin{array}{c} \bigsqcup U(1) \times_h U_{ij} \xrightarrow{\iota \cdot \widehat{\gamma}_{ij} \times \sigma_i} & \widehat{\Omega G} \rtimes P_e G \\ \downarrow \downarrow & \qquad \qquad \downarrow \downarrow \\ \bigsqcup U_i \xrightarrow{\sigma_i} & P_e G \end{array}$$

⇒ induces smooth group structure on the associated smooth stack

$$\left[\bigsqcup U(1) \times_h U_{ij} \Longrightarrow \bigsqcup U_i \right].$$

 \rightsquigarrow Can do the same with the model $\widehat{\mathsf{Gau}(P)} \rightarrow \mathsf{String} \ G$.

Comparison to the BCSS model:

Pass to the associated stacks to apply Schommer-Pries' result:

$$\begin{bmatrix} \widehat{\Omega G} \rtimes P_e G \\ \downarrow & \downarrow \\ P_e G \end{bmatrix} \rightleftharpoons \begin{bmatrix} \bigsqcup U_{ij} \times_h U(1) \\ \downarrow & \downarrow \\ \bigsqcup U_i \end{bmatrix} \cong \begin{bmatrix} \bigsqcup U'_{ij} \times_{h'} U(1) \\ \downarrow & \downarrow \\ \bigsqcup V_i \end{bmatrix} \stackrel{\simeq}{\to} \begin{bmatrix} \widehat{\operatorname{Gau}(P)} \rtimes \operatorname{String}_G \\ \downarrow & \downarrow \\ \operatorname{String}_G \end{bmatrix}$$

 \Rightarrow The BCSS model and the NSW model are equivalent as (infinite-dimensional) smooth stacks.

- ⇒ The BCSS model and the NSW are equivalent as Lie 2-groups [Noohi].
- \Rightarrow There exists a Lie 2-group $H \xrightarrow{\tau} K$ and smooth morphisms

~>> Explicit construction? Any ideas?

C*-algebras vs. von Neumann algebras

Since the Stolz-Teichner construction ('04) von Neumann algebras are considered to yield meaningful representations of String.

The present model seems to be closer to C^* algebras:

 $PU \curvearrowright K$ (for K=compact operators of ℓ^2), so we get a C^* -algebra bundle

 $\mathcal{K} := P \times_{PU} K$

and an action $Gau(P) \subseteq Aut(P) \curvearrowright \Gamma(\mathcal{K})$.

⇒ For each string manifold M (i.e. $\frac{p_1}{2}(M) = 0$) and each string lift $\tilde{P} \to M$ of a spin bundle we get a bundle $\tilde{P} \times_{\text{String}_G} \Gamma(\mathcal{K})$ of C^* -algebras over M.

Problem: This does not seem to be meaningful, since the action of $String_G$ is linear.

Note: For a 2-group model $\mathcal{H} = (H \xrightarrow{\tau} K)$, interesting representations come from the outer action of K on $\operatorname{Rep}_{\lambda}(H)$, where λ is a fixed character for the U(1)-action.

- Baez, J. C., A. S. Crans, D. Stevenson, and U. Schreiber, From loop groups to 2-groups, Homology, Homotopy Appl. 9(2) (2007), 101–135, arXiv:math/0504123.
- Henriques, A., Integrating L_∞-algebras, Compos. Math. 144(4) (2008), 1017–1045, arXiv:math/0603563.
- Nikolaus, T., C. Sachse, and C. Wockel, A Smooth Model for the String Group, arXiv:1104.4288.
- Nikolaus, T. and K. Waldorf, Four Equivalent Versions of Non-Abelian Gerbes, arXiv:1103.4815.
- Schommer-Pries, C., Central Extensions of Smooth 2-Groups and a Finite-Dimensional String 2-Group, arXiv:0911.2483.
- Stolz, S., A conjecture concerning positive Ricci curvature and the Witten genus, Math. Ann. 304(4) (1996), 785–800
- Stolz, S. and P. Teichner, What is an elliptic object?, in "Topology, geometry and quantum field theory," volume 308 of London Math. Soc. Lecture Note Ser., 247–343, Cambridge Univ. Press, Cambridge, 2004.