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What is the string group?
Whitehead tower of O(n) :

String(n) −→ Spin(n)︸ ︷︷ ︸
π3∼=Z

∼=−→ Spin(n)︸ ︷︷ ︸
π2=0

2:1−−→ SO(n)︸ ︷︷ ︸
π1=Z/2

↪→ O(n)︸ ︷︷ ︸
π0=Z/2

Motivation:

I Spin geometry  String geometry?

I loop space geometry

I SUSY σ-modles

Observation: If P = f ∗(E Spin(n))→ M is a principal Spin(n)
bundle, then a lift

B String(n)

��

M

f̃
::

f // B Spin(n)

exists iff p1
2 (M) vanishes.



String group models

May replace Spin(n) by an arbitrary simple 1-connected compact
Lie group G .

Definition: A smooth model (for the string group) is a morphism

q : StringG → G

of Lie groups which is a 3-connected cover (i.e. π3(StringG ) = 0

and πi (q) : πi (StringG )
∼=−−→ πi (G ) for i 6= 3). Analogously one

defines topological models.

Lemma: ker(q) is a K (Z, 2) and thus StringG cannot be
finite-dimensional.

 consider generalisations for Lie group structures on StringG :

I topological groups

I infinite-dimensional Lie groups

I Lie 2-groups (smooth group stacks)



Towards an infinite-dimensional model

Fact: PU := PU(`2) is a K (Z, 2) and a Lie group when endowed
with the norm topology.

⇒ ∃ a smooth principal PU-bundle q : P → G representing

1 ∈ [G ,BPU] ∼= [G ,K (3,Z)] ∼= H3(G ,Z) ∼= Z

⇒ π3(P) = 0 and πi (q) is an isomorphism for i 6= 3, so P → G
could serve as a string group model.

Problems:

I No explicit construction of P → G known (only existence)!
 if anybody knows...

I No criteria for existence of Lie group structure known
(compare to Spin or the abelian case)!

However, we can use P → G to construct another model.



The automorphism group of P → G
Definition: Aut(P) := {ϕ ∈ Diff(P) : ∀g ∈ PU f (p ·g) = f (p) ·g}

 Q : Aut(P)→ Diff(G ) given by

P

��

ϕ
// P

��

G
Q(ϕ)

// G

I Gau(P) := ker(Q) ∼= C∞(P,PU)PU is the gauge group of P

I There are continuous versions Autc(P) and Gauc(P) and Q
extends to

Qc : Autc(P)→ Homeo(G )

Fact: Gau(P), Aut(P) and Diff(G ) are Lie groups and

Gau(P)→ Aut(P)→ Diff(G )[P]

is an extension of Lie groups. The corresponding Lie algebras are
Vvert(P)PU , V(P)PU and V(G ).



The Lie group model

Definition: StringG := Aut(P)|G and StringG ,c := Autc(P)|G ,
where G ⊂ Diff(G ) via left translation.

Theorem [Stolz]: Qc : StringG ,c → G is a topological model.

Theorem [NSW]: Q : StringG → G is a smooth model.

Proof: Show that StringG → StringG ,c is a (weak) homotopy
equivalence:

· · · // πi (Gau(P)) //

∼=��

πi (StringG )

��

// πi (G ) // · · ·

· · · // πi (Gauc(P)) // πi (StringG ,c) // πi (G ) // · · ·

(Gauc(P) has the compact-open, Gau(P) the C∞ topology).

Note: StringG ,c cannot be turned into a Lie group, although
Gauc(P) does.



Improving the model
Aim: Promote the model StringG → G to a 2-group model.

Why?
I Compare: line bundle are best studied as U(1)-bundles, not as

maps to |BU(1)| or as Z bundle gerbes.
 This is because U(1) is the preferred model of K (Z, 1)!

The preferred model for K (Z, 2), the 2-group U(1) →→ ∗.
I String theory predicts backgrounds with bundle-like structures

having 3-forms as curvature.
 2-bundles (or U(1) bundle gerbes) have this structure!

Definition: A (strict) Lie 2-group H consists of
I a homomorphism H

τ−→ K of Lie groups
I a smooth (right) action K → Aut(H)

such that

τ(h.k) = k−1 · τ(h) · k (equivariance)

h.τ(h′) = h′
−1 · h · h′. (Peiffer identity)



Lie 2-groups
Definition: A (strict) Lie 2-group H consists of

I a homomorphism H
τ−→ K of Lie groups

I a smooth (right) action K → Aut(H)

such that

τ(h.k) = k−1 · τ(h) · k (equivariance)

h.τ(h′) = h′
−1 · h · h′. (Peiffer identity)

Technical assumptions:

I always assume H and K to be metrisable!

I always assume that π0(H) := K/τ(H) and π1(H) := ker(τ)
have natural Lie group structures

First Examples:

I For K a Lie group {∗} → K trivial (denoted again by K ).

I For A an abelian Lie group A→ {∗} trivial (denoted BA).



Lie 2-group models

Note: There is the geometric realisation functor

| · | : Lie-2-Grp → Top-Gp

and |BA| is the classifying space of A (whence the name). In
particular, |BU(1)| is a K (Z, 2). Moreover, |K | = K (on the nose).

This allows us to define 2-group models in terms of group models:

Definition: A Lie 2-group model (for the string group) is a Lie

2-group H with isomorphisms π1(H)
∼=−−→ U(1) and π0(H)

∼=−−→ G
such that

|H| → |π0(H)|
∼=−−→ G

is a topological model.

In fact, there is a story in Lie group cohomology going on here (C.
Schommer-Pries, work in progress with F. Wagemann).



Construction of the 2-group model
Recall:
I P → G : principal PU-bundle (generator in H3(G ,Z))
I StringG ⊆ Aut(P), covering left multiplication G ⊂ Diff(G )

 Gau(P) ∼= C∞(P,PU)PU has a universal central extension

C∞(G ,U(1))→ C∞(P,U)PU → Gau(P) (∗)
 StringG ⊆ Aut(P) acts on C∞(P,U)PU by f ϕ := f ◦ϕ. This

yields a Lie 2-group

C∞(P,U)PU
τ //

((

StringG

Gau(P)
+ �

88

with π1(H) = C∞(G ,U(1)).

Proposition: StringG acts smoothly on the bundle

U(1)→ Ĝau(P)→ Gau(P)

associated to (∗) along the homomorphism

IG : C∞(G ,U(1))→ U(1), f 7→
∫
G
fdµ.



Why is this a 2-group model?
Definition: The 2-group STRINGG is given by the homomorphism

Ĝau(P) = C∞(P,U)PU ×C∞(G ,U(1)) U(1)
τ ◦ pr1−−−−→ StringG

and the action
[f , λ]ϕ := [f ◦ϕ, λ].

 want to check that this is a Lie 2-group model for String:

I π1(STRING) = ker
(
Ĝau(P)→ Gau(P)

)
= U(1) (by constr.)

I π0(STRING) = coker
(

Gau(P)→ StringG
)

= G (by constr.)
I remains to show that | STRING | → G is a topological model

Note: There exists a canonical inclusion StringG → STRINGG ,
given by

{∗} ' //

��

Ĝau(P)

��

StringG
' // StringG



Why is this a 2-group model?
Proposition: Both horizontal maps in

{∗} ' //

��

Ĝau(P)

��

StringG
' // StringG

are in fact (weak) homotopy equivalences.

Proof: Show that U(1)→ Ĝau(P)→ Gau(P) universal (recall
Gau(P) is a K (Z, 2)).

Theorem [NSW]: | StringG | → | STRINGG | is a (weak) homotopy
equivalence and thus STRINGG is a Lie 2-group model.

Proof: Show that adding a contractible space of “morphisms”
does not affect the geometric realisation. This relies heavily on the
homotopy theory of topological metrisable manifolds [Palais ’66].



String bundles and string connections

Aim: Do differential geometry with Lie 2-groups by using the
theory of 2-bundles and connections.

Proposition: The inclusion StringG → STRINGG induces a functor

BunStringG (M)→ 2-BunSTRINGG (G )

which induces a bijection on isomorphism classes.

Theorem [Nikolaus-Waldorf]: If H → H′ is a morphism between
2-group models, then the induced functor

2-BunH(G )→ 2-BunH′(G )

is an equivalence of 2-groupoids.

Open: Corresponding statements for 2-bundles with connections.



Other existing models

I [BCSS ’07] start with the contractible cover PeG → G ,

construct an action of PeG on Ω̂G turning

Ω̂G
τ //

""

PeG

ΩG
- 
;;

into a Lie 2-group and show that this is a 2-group model.

I [Stolz-Teichner ’04] associate the above along a positive
energy representation ρ : ΩG → PU.

I [Schommer-Pries ’10] classifies central extensions of smooth
group stacks

[∗/U(1)]→ E → [G ]

and relates this to H3
Lie(G ,U(1)) ∼= H4(|BG |,Z) ∼= Z.

I [Henriques ’08] develops integration procedure for
L∞-algebras and applies this to the string Lie 2-algebra.

I [Stolz ’96]: StringG → G (topological/smooth model)



Relation between the models

[Stolz-Teichner]
jj

pos. enery rep.

[Henriques]

pops out naturally
��

[Schommer-Pries] oo
Morita equiv.

// [BCSS] oo
??? // [Stolz]

Where “Morita equivalence” has to be understood as follows:

I take cover (Ui )i=1,..,n of G with sections σi : Ui → PeG

I γij := σi · σ−1j : Uij → ΩG is a Čech cocycle for the smooth
principal bundle PeG → G

⇒ Get a Morita equivalence

⊔
Uij

����

γij×σi
// ΩG o PeG

����⊔
Ui

σi // PeG

(Morita equiv. of Lie groupoids ↔ diffeomorphism of manifolds)



Relation between the models
Where “Morita equivalence” has to be understood as follows:

I take good cover (Ui )i=1,..,n of G with sections σi : Ui → PeG

I γij := σi · σ−1j : Uij → ΩG is a Čech cocycle for the smooth
principal bundle PeG → G

I assume (Ui )i=1,..,n to be good ⇒ γij has lifts γ̂ij : Uij → Ω̂G

I γ̂ij · γ̂jk · γ̂−1ik : Uijk → U(1) is a Čech cocycle and defines a Lie

groupoid
⊔
U(1)×h Uij

//
//

⊔
Ui .

⇒ Get a Morita equivalence

⊔
U(1)×h Uij

����

ι·γ̂ij×σi
// Ω̂G o PeG

����⊔
Ui

σi // PeG

⇒ induces smooth group structure on the associated smooth
stack [ ⊔

U(1)×h Uij
//
//

⊔
Ui

]
.

 Can do the same with the model Ĝau(P)→ StringG .



Comparison to the BCSS model:
Pass to the associated stacks to apply Schommer-Pries’ result:

Ω̂G o PeG

����

PeG

 ∼=←−

⊔
Uij ×hU(1)

����⊔
Ui

∼=

⊔
U ′ij ×h′U(1)

����⊔
Vi

 ∼=−→


Ĝau(P) o StringG

����

StringG


⇒ The BCSS model and the NSW model are equivalent as

(infinite-dimensional) smooth stacks.

⇒ The BCSS model and the NSW are equivalent as Lie 2-groups
[Noohi].

⇒ There exists a Lie 2-group H
τ−→ K and smooth morphisms

Ω̂G

τBCSS

��

Hoo

τ

��

// Ĝau(P)

τNSW

��

PeG Koo // StringG

 Explicit construction? Any ideas?



C ∗-algebras vs. von Neumann algebras
Since the Stolz-Teichner construction (’04) von Neumann algebras
are considered to yield meaningful representations of String.

The present model seems to be closer to C ∗ algebras:

PU y K (for K=compact operators of `2), so we get a C ∗-algebra
bundle

K := P ×PU K

and an action Gau(P) ⊆ Aut(P) y Γ(K).

⇒ For each string manifold M (i.e. p1
2 (M) = 0) and each string

lift P̃ → M of a spin bundle we get a bundle P̃ ×StringG Γ(K) of
C ∗-algebras over M.

Problem: This does not seem to be meaningful, since the action
of StringG is linear.

Note: For a 2-group model H = (H
τ−→ K ), interesting

representations come from the outer action of K on Repλ(H),
where λ is a fixed character for the U(1)-action.
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