Singular foliations, holonomy and their use

lakovos Androulidakis

Department of Mathematics, University of Athens

Cortona, June 2014

Foliations appear in many situations:

- Actions of Lie group(oid)s
- Poisson geometry...
- Stratified spaces...

Most foliations: singular

Aim: understand "space of leaves" M/\mathfrak{F} . Best model: Holonomy groupoid $H(\mathfrak{F})$

- Desingularizes $\mathcal{F}...$
- No unnecessary isotropy...

Applications

- In NCG methods: Caclulate spectrum of Laplacian
- **②** Topology/DG: Normal form about a leaf, linearization

Noncommutative Geometry methods

Regular case: $H(\mathcal{F})$ smooth, attach $C^*(\mathcal{F})$.

- Leaves correspond to ideals.
- If all leaves are dense, $C^*(\mathcal{F})$ simple (Fack-Skandalis).

If $H(\ensuremath{\mathcal{F}})$ smooth, attach longitudinal pseudodifferential calculus.

- Replace leaves with operators...
- $C^*(\mathcal{F})$ carries all info about this calculus.

Particularly longitudinal Laplacian Δ : essentially self-adjoint, unbounded multiplier of $C^*(\mathfrak{F})$.

Also Scroedinger-type operators $\Delta + f...$

Gaps in spectrum correspond to projections of $C^*(\mathfrak{F}).$ Calculations: K-theory, index theory, Baum-Connes map...

Motivation: Laplacian of Kronecker foliation

Kronecker foliation on $M = T^2$: $\mathcal{F} = \langle X = \frac{d}{dx} + \theta \frac{d}{dy} \rangle$. $L = \mathbb{R}$ Two Laplacians:

• $\Delta_L = -\frac{d^2}{dx^2}$ acting on $L^2(\mathbb{R})$ • $\Delta_M = -X^2$ acting on $L^2(M)$

By Fourier:

- $\Delta_L \rightsquigarrow mult.$ by ξ^2 on $L^2(\mathbb{R})$. Spectrum: $[0, +\infty)$.
- $\Delta_M \rightsquigarrow \text{mult. by } (n + \theta k)^2 \text{ on } L^2(\mathbb{Z}^2).$ Spectrum dense in $[0, +\infty)$.

Spectrum Calculation

Consider the action of the "ax + b"-group on a compact manifold M. *e.g.* $M = SL(2, \mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of "x + b" subgroup (dense).

Spectrum of Laplacian is an interval $[m, +\infty)$

- $\exists ax + b$ -invariant measure of $M \Longrightarrow$ get trace of $C^*(M, F)$. Faithful because $C^*(M, F)$ simple (Fack-Skandalis).
- " αx " subgroup induces \mathbb{R}^*_+ -action on $C^*(M, F)$ which scales the trace.
- Image of K_0 is a countable subgroup of \mathbb{R} , invariant with respect \mathbb{R}^*_{\perp} -action.

Singular foliations

Definition

A singular foliation (M, \mathcal{F}) is a $C^{\infty}(M)$ -submodule of $\mathfrak{X}_{c}(M)$ which is involutive and locally finitely generated.

 ${\mathcal F}$ projective \Rightarrow almost regular foliation.

Singular case: A-Skandalis constructions

For any singular foliation, we were able to construct:

- Holonomy groupoid H(F). Very singular...
- C^{*}(F), representations...
- The cotangent bundle \mathcal{F}^* : locally compact space.
- Pseudodifferential caclulus...
 - $0 \to C^*(M, \mathfrak{F}) \to \Psi^*(M, \mathfrak{F}) \to C_0(\mathfrak{F}^*) \to 0$
 - 2 Elliptic operators of order 0 are regular unbounded multipliers
- Analytic index (element of $KK(C_0(\mathcal{F}^*); C^*(\mathcal{M}, \mathcal{F}))$)

7 / 20

Holonomy groupoid: Examples

• $\mathcal{F} = \langle X \rangle$ s.t. X has non-periodic integral curves around $\partial \{X = 0\}$: $H(\mathcal{F}) = H(X)|_{\{X \neq 0\}} \cup Int\{X = 0\} \cup (\mathbb{R} \times \partial \{X = 0\})$

2) action of
$$SL(2, \mathbb{R})$$
 on \mathbb{R}^2 :

$$H(\mathcal{F}) = (\mathbb{R}^2 \setminus \{0\})^2 \cup SL(2, \mathbb{R}) \times \{0\}$$

topology: Let $x \in \mathbb{R}^2 \setminus \{0\}$. Then $(\frac{x}{n}, \frac{x}{n}) \in H(\mathcal{F})$ converges to every g in stabilizer group of x... namely to every point of $\mathbb{R}!$

Debord

s-fibers of $H(\mathcal{F})$ is always smooth.

A-Zambon

 $H(\mathcal{F})$ is a diffeological space (Souriau)

Results A-Skandalis

Theorem 1

M compact manifold, $X_1,\ldots,X_N\in C^\infty(M;TM)$ such that

$$[X_{i}, X_{j}] = \sum f_{ij}^{k} X_{k}$$

Then $\Delta = \sum X_i^* X_i$ is essentially self-adjoint (both in $L^2(M)$ and $L^2(L)$).

Proof

This operator is indeed a regular unbounded multiplier of our C*-algebra.

What about calculating the spectrum?

Theorem 2

Assume that:

- the (dense open) set $\Omega \subset M$ where leaves have maximal dimension has Lebesgue measure 1.
- the restriction of all leaves to Ω are dense in Ω .
- the holonomy groupoid of the restriction of ${\mathcal F}$ to Ω is Hausdorff and amenable.

Then Δ_M and Δ_L have the same spectrum.

Calculation: Need to know the "shape" of $K_0(C^*(\mathcal{F}))$.

leaves of given dimension \rightsquigarrow locally closed subsets \rightsquigarrow filtration of $C^*(\mathcal{F})$

Now give a formula for the K-theory. Baum-Connes conjecture...

Holonomy revisited

Recal

Regular foliation = \mathcal{F} : projective module of vector fields.

- Choose path $\gamma:[0,1]\to L$ and $S_{\gamma(0)},S_{\gamma(1)}$ small transversals of L.
- Path holonomy: (germ of) local diffeomorphism $S_{\gamma(0)} \rightarrow S_{\gamma(1)}$ by "sliding along γ in nearby leaves".
- Explicitly: Let X ∈ 𝔅 whose flow at γ(0) is γ. Now flow X at other points of S_{γ(0)} until time 1.
 H(F) = {paths in leaves}/{path holonomy}

Recall: Path holonomy depends only on the homotopy class of $\gamma.$ Get holonomy map

$$h: \pi_1(L, x) \rightarrow GermAut_{\mathcal{F}}(S_x; S_x)$$

Image H_{x}^{x} : holonomy group of F.

• Linearizes to representation

 $dh:\pi_1(L,x)\to GL(N_xL)$

Path holonomy in the singular case fails!

Orbits of action by rotations in \mathbb{R}^2 : $\mathfrak{F} = span_{C^{\infty}(\mathbb{R}^2)} < x \mathfrak{d}_y - y \mathfrak{d}_x >$.

- Take γ : constant path at origin.
- Transversal S_0 : open neighborhood of origin in \mathbb{R}^2 .

Realize γ either by integrating the zero vector field or $x\partial_y - y\partial_x$ at the origin. Get completely different diffeomorphisms of S_0 !

Here \mathcal{F} is projective as well!

"Almost projective" (singular) case (Debord)

A projective foliation $\mathcal F$ always has a smooth holonomy groupoid.

Non-projective $\mathcal{F} = span < X >$: Take X with non-empty interior of $\{x \in M : X(x) = 0\}$

Singular case (projective or not):

 $h: \pi_1(L, x) \to GermAut_{\mathfrak{F}}(S_x; S_x) \text{ not defined}!$

Stability for regular foliations

Local Reeb stability theorem

If L is a compact embedded leaf and $H^x_{\rm x}$ is finite then nearby L the foliation F is isomorphic to its linearization.

Namely, around L the manifold looks like

$$\frac{\widetilde{L} \times \mathbb{R}^q}{\pi_1(L)}$$

 $\pi_1(L)$ acts diagonally by deck transformations and linearized holonomy. This is equal to

$$\frac{H_x \times N_x L}{H_x^x}$$

The action of H_x^{χ} on $N_{\chi}L$ is the one that integrates the Bott connection

$$\nabla: \mathsf{F} \to \mathsf{CDO}(\mathsf{N}), \quad (X, \langle \mathsf{Y} \rangle) \to \langle [\mathsf{X}, \mathsf{Y}] \rangle$$

The holonomy map

Let (M, \mathcal{F}) a singular foliation, L a leaf, $x,y \in L$ and S_x,S_y slices of L at x,y respectively.

Theorem (A-Zambon)

There is an injective map

$$\Phi^{y}_{x}: \mathsf{H}^{y}_{x} \to \frac{\mathsf{GermAut}_{\mathcal{F}}(\mathsf{S}_{x}, \mathsf{S}_{y})}{exp(\mathsf{I}_{x}\mathcal{F})|_{\mathsf{S}_{x}}}$$

It defines a morphism of groupoids

$$\Phi: \mathsf{H} \to \cup_{\mathbf{x}, \mathbf{y}} \frac{\mathsf{GermAut}_{\mathcal{F}}(\mathsf{S}_{\mathbf{x}}, \mathsf{S}_{\mathbf{y}})}{\exp(\mathsf{I}_{\mathbf{x}}\mathcal{F})|_{\mathsf{S}_{\mathbf{x}}}}$$

Regular case: then $exp(I_x \mathcal{F}) |_{S_x} = \{Id\}.$

Holonomy map and the Bott connection

 $\bullet \ \ \mathsf{Differentiating} \ \Phi \ \ \mathsf{gives}$

 $\Psi_L: H_L \to Iso(NL, NL)$

Lie groupoid representation of H_L on NL;

2 Differentiating Ψ_L gives

$$\nabla^{L,\perp} : A_L \to Der(NL)$$

It is the Bott conection...

All this justifies the terminology "holonomy groupoid"!

Linearization

Vector field Y on M tangent to L \rightsquigarrow Vector field Y_{lin} on NL, defined as follows:

 $\begin{array}{l} Y_{lin} \text{ acts on the fibrewise constant functions as } Y \mid_L \\ Y_{lin} \text{ acts on } C^\infty_{lin}(NL) \equiv I_L/I_L^2 \text{ as } Y_{lin}[f] = [Y(f)]. \end{array}$

The linearization of \mathfrak{F} at L is the foliation \mathcal{F}_{lin} on NL generated by $\{Y_{lin}: Y \in \mathfrak{F}\}$

Lemma

Let L be a leaf. Then \mathcal{F}_{lin} is the foliation induced by the Lie groupoid action Ψ_L of H_L on NL.

We say \mathcal{F} is linearizable at L if there is a diffeomorphism mapping \mathcal{F} to \mathcal{F}_{lin} .

For $\mathcal{F} = \langle X \rangle$ with X vanishing at $L = \{x\}$ linearizability means:

There is a diffeomorphism taking X to fX_{lin} for a non-vanishing function f.

This is a weaker condition than the linearizability of the vector field X!

Question: When is a singular foliation isomorphic to its linearization?

We don't know yet, but:

Proposition (A-Zambon)

Let $L_{\mathbf{x}}$ embedded leaf.

The following are equivalent:

- ${\small \textcircled{0}} \ \ \mathfrak{F} \ \text{is linearizable about } L_x \ \text{and} \ \ \mathsf{H}^x_x \ \text{compact}$
- ② there exists a tubular neighborhood U of L and a (Hausdorff) Lie groupoid G → U, proper at x, inducing the foliation $\mathcal{F}|_{U}$.

In that case:

- G can be chosen to be the transformation groupoid of the action Ψ_L of H_L on NL.

- $(\boldsymbol{U}, \boldsymbol{\mathfrak{F}} \mid_{\boldsymbol{U}})$ admits the structure of a singular Riemannian foliation.

The bigger picture

Singular subalgebroids

I. Androulidakis (Athens)	Singular foliations, holonomy and their use	C

A-Zambon results

Log-symplectic manifolds, e.g. $(\mathbb{R}^2, \pi = x dx \wedge dy)$. Construct symplectic realizations?

Weinstein's programme: M. Gualtieri and S. Li used Melrose's blow-up construction to give a symplectic realization.

(Recall: B. Monthubert showed Melrose's b-calculus is really a *groupoid calculus*)

A-Zambon: Holonomy groupoid construction can be extended to any singular subalgebroid. Special case: symplectic groupoid of Gualtieri-Li. Can construct many other symplectic realizations this way...