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Foliations appear in many situations:
@ Actions of Lie group(oid)s
@ Poisson geometry...

o Stratified spaces...
Most foliations: singular

Aim: understand "space of leaves” M/TF.
Best model: Holonomy groupoid H(J)

@ Desingularizes F...

@ No unnecessary isotropy...

Applications
@ NCG methods: Caclulate spectrum of Laplacian
@ Topology/DG: Normal form about a leaf, linearization
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Noncommutative Geometry methods

Regular case: H(JF) smooth, attach C*(F).
@ Leaves correspond to ideals.

o If all leaves are dense, C*(¥) simple (Fack-Skandalis).

If H(F) smooth, attach longitudinal pseudodifferential calculus.
@ Replace leaves with operators...

@ C*(F) carries all info about this calculus.

Particularly longitudinal Laplacian A: essentially self-adjoint, unbounded
multiplier of C*(F).
Also Scroedinger-type operators A +f...

Gaps in spectrum correspond to projections of C*(JF). Calculations:
K-theory, index theory, Baum-Connes map...
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Motivation: Laplacian of Kronecker foliation

Kronecker foliationon M =T2: §=(X=% 4+ 94) [ =R
Two Laplacians:

o AL = —dd—jz acting on L?(R)

e Ap = —X? acting on [2(M)
By Fourier:
e Ap ~» mult. by &2 on L?(R). Spectrum: [0, 4-c0).
e Apm ~ mult. by (n+ 0k)? on L2(Z?2). Spectrum dense in [0, +-00).
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Spectrum Calculation

Consider the action of the "ax + b"-group on a compact manifold M.
e.g. M =SL(2,R)/T where I" discrete co-compact group.
Leaves = orbits of "x +b" subgroup (dense).

‘ Spectrum of Laplacian is an interval [m, +o0) ‘

@ 1 ax + b-invariant measure of M = get trace of C*(M, F). Faithful
because C*(M, F) simple (Fack-Skandalis).
@ "ax" subgroup induces R* -action on C*(M, F) which scales the trace.
@ Image of Kq is a countable subgroup of R, invariant with respect
R* -action.
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Singular foliations

Definition

A singular foliation (M, ) is a C*(M)-submodule of X.(M) which is invo-
lutive and locally finitely generated.

F projective = almost regular foliation.

I. Androulidakis (Athens) Singular foliations, holonomy and their use



Singular case: A-Skandalis constructions

For any singular foliation, we were able to construct:
@ Holonomy groupoid H(JF). Very singular...
C*(9), representations...

°
@ The cotangent bundle F*: locally compact space.
@ Pseudodifferential caclulus...

© 0 C (M,T) =¥ (M, TF) = Co(F*) = 0

@ Elliptic operators of order 0 are regular unbounded multipliers

Analytic index (element of KK(Co(F*); C*(M, F)))

I. Androulidakis (Athens) Singular foliations, holonomy and their use Cortona, June 2014 7 /20



-
Holonomy groupoid: Examples

@ F =< X > s.t. X has non-periodic integral curves around 9{X = 0}:

H(F) = H(X)|{X7go} UInt{X =0}U (R x o{X =0})

@ action of SL(2,R) on RZ:
H() = (R*\ {0})* USL(2, R) x {0}

topology: Let x € R?\ {0}. Then (X, X) € H(JF) converges to every g

n'n

in stabilizer group of x... namely to every point of R!

s-fibers of H(F) is always smooth. J

H() is a diffeological space (Souriau) J
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]
Results A-Skandalis

M compact manifold, X1,..., XN € C®(M; TM) such that

X1, X1 Zf

Then A=Y X!X; is essentially self-adjoint (both in L?(M) and L?(L)).

This operator is indeed a regular unbounded multiplier of our C*-algebra.

v
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What about calculating the spectrum?

Assume that:

o the (dense open) set QO C M where leaves have maximal dimension
has Lebesgue measure 1.

@ the restriction of all leaves to QQ are dense in Q.

@ the holonomy groupoid of the restriction of F to Q is Hausdorff and
amenable.

Then An and A have the same spectrum.

Calculation: Need to know the "shape” of Ko(C*(F)).

leaves of given dimension ~ locally closed subsets ~ filtration of C*(J)

Now give a formula for the K-theory. Baum-Connes conjecture... )
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Holonomy revisited

Regular foliation = F: projective module of vector fields. J

@ Choose path y:[0,1] = L and S, (q), Sy (1) small transversals of L.
e Path holonomy: (germ of) local diffeomorphism S, o) — S, (1)
by "sliding along v in nearby leaves”.
o Explicitly: Let X € F whose flow at y(0) is y.
Now flow X at other points of S, (o) until time 1.
@ H(F) = {paths in leaves}/{path holonomys}

Recall: Path holonomy depends only on the homotopy class of y.
Get holonomy map

h:m (L, x) — GermAuts(Sy; Sx)
Image H}: holonomy group of F.
@ Linearizes to representation

dh: (L, x) — GL(NyL)
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Path holonomy in the singular case fails!
Orbits of action by rotations in R?%: F = spance g2y < xdy — ydx >.

@ Take y: constant path at origin.
@ Transversal Sg: open neighborhood of origin in R?.

Realize y either by integrating the zero vector field or xd,, —y9d at the
origin. Get completely different diffeomorphisms of Sg!

Here & is projective as welll

A projective foliation F always has a smooth holonomy groupoid. J

Non-projective F = span < X >: Take X with non-empty interior of
{xeM:X(x) =0}

h:mmi (L, x) = GermAutg(Sy; Sx) not defined! J
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-
Stability for regular foliations

If L is a compact embedded leaf and H is finite then nearby L the foliation
F is isomorphic to its linearization.

Namely, around L the manifold looks like

L x R4
i (L)

71 (L) acts diagonally by deck transformations and linearized holonomy.

This is equal to
Hy x NyL

HX

The action of HX on NyL is the one that integrates the Bott connection

V:F— CDO(N), (X, (Y)) = (IX,Y])
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The holonomy map

Let (M, J) a singular foliation, L a leaf, x,y € L and S, S slices of L at
X,y respectively.

There is an injective map

GermAuts(Sy, Sy)
exp(IxF) [s,

QY :HY —

It defines a morphism of groupoids

GermAuts(Sy, Sy)
exp (1 F) |SX

O :H — Uy

Regular case: then exp(IxJF) [s, = {Id}.
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Holonomy map and the Bott connection

@ Differentiating @ gives
W, . H; — Iso(NL, NL)
Lie groupoid representation of Hy on NL;
@ Differentiating W gives
VE+ AL — Der(NL)
It is the Bott conection...

All this justifies the terminology "holonomy groupoid™!
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Linearization

Vector field Y on M tangent to L ~~
Vector field Yiin on NL, defined as follows:

Y1in acts on the fibrewise constant functions as Y |{
Yiin acts on C$%, (NL) = I /T2 as Yiin[f] = [Y(f)].

The linearization of J at L is the foliation F1i, on NL generated by

Min : Y€ T}

Let L be a leaf. Then Fyi, is the foliation induced by the Lie groupoid
action ¥ of Hp on NL.

v
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We say ¥ is linearizable at L if there is a diffeomorphism mapping F to Cﬂ;m.J

For ¥ = (X) with X vanishing at L = {x} linearizability means:
There is a diffeomorphism taking X to fXii,, for a non-vanishing function f.

This is a weaker condition than the linearizability of the vector field X!

I. Androulidakis (Athens) Singular foliations, holonomy and their use Cortona, June 2014 17 /20



Question: When is a singular foliation isomorphic to its linearization?

We don’t know yet, but:

Let L, embedded leaf.
The following are equivalent:
© F is linearizable about Ly and H¥ compact

@ there exists a tubular neighborhood U of L and a (Hausdorff) Lie
groupoid G — U, proper at x, inducing the foliation F |y;.

In that case:

- G can be chosen to be the transformation groupoid of the action Wy of
H; on NL.

- (U, F |u) admits the structure of a singular Riemannian foliation.
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-
The bigger picture
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A-Zambon results

Log-symplectic manifolds, e.g. (R?, 7w =xdx A dy). Construct symplectic
realizations?

Weinstein's programme: M. Gualtieri and S. Li used Melrose's blow-up
construction to give a symplectic realization.

(Recall: B. Monthubert showed Melrose's b-calculus is really a groupoid
calculus)

A-Zambon: Holonomy groupoid construction can be extended to any
singular subalgebroid. Special case: symplectic groupoid of Gualtieri-Li.
Can construct many other symplectic realizations this way...
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