Hsiang-Pati coordinates

Edward Bierstone University of Toronto

Cortona, 20 June 2014

Collaborators

André Belotto

Vincent Grandjean

Pierre Milman

Franklin Vera Pacheco

Hsiang–Pati problem

Given a complex variety $X_0 \subset Z_0$ (Z_0 smooth, e.g., $P^N(\mathbb{C})$), can we find a resolution of singularities

$$\sigma: X \to X_0 \hookrightarrow Z_0$$

such that the pull-back cotangent sheaf is locally generated by

$$d(u^{\alpha_i}), \ i = 1, ..., s, \quad d(u^{\beta_j}v_j), \ j = 1, ..., n-s$$

where

 $n = \dim X_0$ $(u, v) = (u_1, \dots, u_s, v_1, \dots, v_{n-s}))$ local coordinates on X, $E = (u_1 \cdots u_s = 0)$ exceptional divisor α_i linearly independent over \mathbb{Q}

 $\{\alpha_i, \beta_j\}$ totally ordered ?

Consequence

Pull-back to X of induced Fubini-Study metric on $X_0 \setminus \text{Sing } X_0$ locally quasi-isometric to

$$\sum_{i=1}^{s} d(u^{\alpha_i}) \otimes \overline{d(u^{\alpha_i})} + \sum_{j=1}^{n-s} d(u^{\beta_j} v_j) \otimes \overline{d(u^{\beta_j} v_j)}$$

Proved in case X_0 surface with isolated singularities by Wu-Chung Hsiang, Vishwambkar Pati (1985) William Pardon, Mark Stern (2001)

Formulation of HP problem due to Boris Youssin (1998)

(u, v) called Hsiang-Pati coordinates

Interest?

Applications to L₂-cohomology (following Cheeger)

Hsiang-Pati: Intersection cohomology (with middle perversity) of a surface $X_0 = L_2$ -cohomology of $X_0 \setminus \text{Sing } X_0$

(cf. Cheeger-Goresky-Macpherson conjecture)

Melrose: Extension of *b*-calculus to singular varieties

Local HP problem. Is there a semiproper locally finite covering

$$\{\sigma_j: X_j \to X_0\}$$

of X_0 such that each σ_j is a finite composite of local blowings-up satisfying HP?

Theorem

HP holds for X_0 *of dimension* \leq 3 (at least locally)

Exercises

(1)
$$y_1 = x_1^{\alpha_{11}} \cdots x_n^{\alpha_{1n}} \delta_1$$
$$\vdots$$
$$y_n = x_1^{\alpha_{n1}} \cdots x_n^{\alpha_{nn}} \delta_n$$

(δ_i units). We can absorb units, i.e., $y_i = \overline{x}^{\alpha_i}$ after coordinate change $\overline{x}_j = \delta^{\epsilon_j} x_j$, where $\epsilon_j \in \mathbb{Q}^n$, provided that { α_i } linearly independent

(2) HP coordinates induce HP coordinates at nearby points

Problem. Does HP \Rightarrow toroidalization (monomialization) of morphisms? (cf. Cutkosky)

Regularization of the Gauss mapping

We can reduce HP problem to the case that $\sigma^*(\Omega^1_{M_0})$ is locally free of rank *n* (i.e., defines a vector bundle)

by regularization of the Gauss mapping

A Gauss-regular resolution of singularities of X_0 can be obtained by taking the Nash blow-up of X_0 , followed by resolution of singularities.

The Nash blow-up is the closure in $X_0 \times \text{Grass}(n, TM_0)$ of the graph of G_{X_0} .

Log Fitting ideals

Given (X, E), where X smooth, E exceptional divisor $\Omega^1_X(\log E)$ denotes sheaf of log 1-forms on X

i.e., in local coordinates $(u, v) = (u_1, \dots, u_s, v_1, \dots, v_{n-s})$ such that $E = (u_1 \cdots u_s = 0)$, generated by

$$\frac{du_i}{u_i}, \quad dv_j$$

Given resolution $\sigma: (X, E) \rightarrow (M_0, X_0, \text{Sing } X_0)$, consider

$$\sigma^*(\Omega^1_{M_0}) \xrightarrow{\Sigma} \Omega^1_X(\log E) \longrightarrow \operatorname{Coker} \Sigma \longrightarrow 0$$

If σ Gauss-regular, then Σ has a presentation given by

$$\log \operatorname{Jac} \sigma = \begin{pmatrix} u_1 \frac{\partial \sigma_1}{\partial u_1} & \cdots & u_s \frac{\partial \sigma_1}{\partial u_s} & \frac{\partial \sigma_1}{\partial v_1} & \cdots & \frac{\partial \sigma_1}{\partial v_{n-s}} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ u_1 \frac{\partial \sigma_n}{\partial u_1} & \cdots & u_s \frac{\partial \sigma_n}{\partial u_s} & \frac{\partial \sigma_n}{\partial v_1} & \cdots & \frac{\partial \sigma_n}{\partial v_{n-s}} \end{pmatrix}$$

Fitting ideal

$$F_{n-k}=F_{n-k}(\sigma)\subset \mathcal{O}_X$$

generated by $k \times k$ minors of log Jac σ (independent of presentation of Σ)

Log rank

$$\begin{split} \log \mathsf{rk}_a \, \sigma &:= \mathsf{rk}_a \, \log \operatorname{Jac} \sigma \\ &= \mathsf{rk}_a \, \sigma|_{E(a)}, \quad \text{where } E(a) = \text{ stratum of } a \text{ in } E \end{split}$$

Let $p := \max \log \operatorname{rk} \sigma$ (at points of E) $= \dim \operatorname{Sing} X_0$ $\Sigma_k := \{a \in E : \log \operatorname{rk}_a \sigma \le p - k\}$ $Y_k := \sigma(\Sigma_k)$ (so $Y_0 = \operatorname{Sing} X_0$)

 $\label{eq:clearly} \begin{array}{c} \Sigma_{\rho} \subset \Sigma_{\rho-1} \subset \cdots \subset \Sigma_0 \end{array}$

Theorem

HP is equivalent to the following conditions:

- (1) $\sigma^* \mathcal{I}_{Y_i}$ principal (generated by monomial in E), j = 0, ..., p
- (2) fitting ideal $F_{n-k}(\sigma)$ principal, k = 1, ..., n

Neither condition behaves well with respect to blowing up:

(1) is not stable after an admissible blowing up β but, given σ , we can principalize the $\sigma^* \mathcal{I}_{Y_i}$ by further blowings up

(2)
$$F_{n-k}(\sigma \circ \beta) \subset \beta^* F_{n-k}(\sigma)$$
,
though $F_0(\sigma \circ \beta) = \exp^{\ell} \beta^* F_0(\sigma)$

If log $rk_a \sigma = r$ and $\sigma^* \mathcal{I}_{Y_{p-r}}$ is principle, then we can assume

$$\sigma_1 = v_1, \ldots, \sigma_r = v_r$$
 and $\sigma_{r+1} = u^{\alpha_1}$

Corollary. HP in two-dimensional case

Proof of (local) HP in three dimensions

In general (dimension *n*), we can begin with $\sigma_1 = u_1^{\alpha}$ (e.g., at a point of log rank 0) and write

$$\sigma_j = g_j(u) + u^{\delta} T_j(u, v), \quad j \ge 2,$$

where u_1^{α} divides σ_j , and $g_j(u)$ comprises all monomials u^{γ} of σ_j , with γ linearly dependent on α_1 over \mathbb{Q}

Say $T_j = \sum_{\epsilon \in \mathbb{N}^{n-s}} c_{j\epsilon}(u) v^{\epsilon}$ Let *d* denote smallest ϵ such that $c_{j\epsilon}$ is a unit, for some *j* (maybe $d = \infty$)

Then *d* is a local invariant of the Fitting ideal F_{n-2}

We can reduce to the case *d* finite, by resolution of singularities of the ideal generated by the coefficients $c_{j\epsilon}$

At an *n*-point (i.e., $u = (u_1, \ldots, u_n)$) this means we get

$$u^{\delta} T_{i}(u) = u^{\alpha_{2}} \cdot \text{unit}, \text{ for some } j, \text{ say } j = 2,$$

and can absorb the unit to put σ_2 in HP form

In three dimensions (n = 3): we have

3-points:	coordinates	(u_1, u_2, u_3)
2-points:		(u_1, u_2, w)
1-points:		(u, v, w)

I. We reduce to the following normal forms:

at a 3-point:	$u^{\delta}T_2 = u^{\alpha_2}, \alpha_2$ independent of α_1 (HP)
at a 2-point:	$\mathit{T}_{j} = \mathit{a}_{jd} \: \mathit{w}^{\mathit{d}} \: + \: \sum_{i=0}^{\mathit{d}-1} \mathit{a}_{ji} \: \mathit{u}^{\gamma_{ji}} \: \mathit{w}^{i}$
at a 1-point:	$\mathcal{T}_{j} = \mathbf{a}_{jd} \mathbf{w}^{d} + \sum_{i=0}^{d-1} \mathbf{a}_{ji} \mathbf{u}^{q_{ji}} \mathbf{v}^{s_{ji}} \mathbf{w}^{i}$

where

 a_{jd} unit and $a_{j,d-1} \equiv 0$ (j = 2 or 3), a_{ji} unit or 0, $i \leq d - 1$, there is a term of order ≤ 1 in (v, w), we can assume $a_{20} = 1$, and $s_{20} = 1$ (1-point case) by HP in dimension 2,

all $s_{jj} = 0$ or 1

II. We principalize the ideal generated by

 w^d , $u^{\gamma_{ji}} w^i$ (or $u^{q_{ji}} w^i$)

to achieve order reduction over every point

Example

$$u^{2}$$

$$u^{3}(w^{3} + (v^{2} + u x^{2}) w + u^{2} y)$$

$$u^{6} w$$

$$u^{6} v$$

$$u^{6} x$$

Thank you for your attention!