Intersection Spaces, Perverse Sheaves and Type IIB String Theory

LAURENTIU MAXIM University of Wisconsin-Madison (joint with Markus Banagl and Nero Budur)

Cortona, 2014

LAURENTIU MAXIM Intersection Spaces, Perverse Sheaves, String Theory

Convention:

- *singular space* = *n*-dim. complex projective variety
- *manifold* = *n*-dim. complex projective manifold
- coefficients: Q
- Manifolds have a nice hidden symmetry: *Poincaré Duality*.
- In particular: X manifold $\implies b_k(X) = b_{2n-k}(X)$.
- Singular spaces do **not** posses such symmetry.

- much of the manifold theory (e.g., Poincaré Duality, Kähler package) is recovered in the singular context if one uses instead the *intersection (co)homology groups IH*_{*}(X) of Goresky-MacPherson.
- these are homology groups of a complex of allowed chains, defined by imposing restrictions on how chains meet the singularities.

Properties of intersection homology

• if \widetilde{X} is a resolution of singularities of X, then:

$$IH_*(X) \subset H_*(\widetilde{X})$$

- if \widetilde{X} is a *small resolution*: $IH_*(X) \cong H_*(\widetilde{X})$.
- *IH*_{*}(*X*) carries the *Kähler package*: Hodge structure, weak and hard Lefschetz.
- *IH*_{*} is a topological invariant, but is *not* functorial, and has *no* ring structure in general.
- *IH**(X) is realized by a perverse, self-dual, constructible sheaf complex *IC_X*, i.e.

$$IH^i(X) \cong \mathbb{H}^i(X, \mathcal{IC}_X[-n]).$$

• *IH*_{*} (like *H*_{*}) is *unstable* under *smoothings of singularities*.

Example

Let $X_s := \{y^2 = x(x-1)(x-s)\} \subset \mathbb{P}^2$, with |s| < 1. For $s \neq 0$, X_s is an elliptic curve (i.e., a 2-torus T^2). $X = X_0$ has a nodal singularity (X is a pinched torus).

 $H_1(X) = \mathbb{Q}$, $IH_1(X) = 0$, but $H_1(X_s) = IH_1(X_s) = \mathbb{Q} \oplus \mathbb{Q}$ so neither $H_*(-)$ nor $IH_*(-)$ is invariant under the smoothing $X \rightsquigarrow X_s$.

Questions: Is there a (co)homology theory for singular spaces, so that:

- Poincaré Duality holds;
- it has a ring structure;
- it is more stable under deformations;
- it carries a Kähler package;
- it is realized by a self-dual perverse sheaf?

- Banagl (2010) uses homotopy theory to associate to a (certain) singular space X a cellular complex *IX*, the intersection space of X.
- **Theorem** (Banagl): $\tilde{H}_*(IX)$ satisfies Poincaré Duality.
- Note: The intersection space cohomology H*(IX) has an internal ring structure defined by the usual cup product in cohomology, so H*(IX) ≠ IH*(X) !!!

- *IX* is defined via spatial homology truncation, i.e., by replacing links of singularities of *X* by their *Moore approximations*.
- Let K be a simply-connected CW complex, and fix $n \in \mathbb{Z}_{\geq 0}$.
- Moore approximation of (K, n) is a CW complex K_{<n} together with a structural map f : K_{<n} → K, so that:
 - $f_* : H_r(K_{\leq n}) \to H_r(K)$ is an isomorphism if r < n

•
$$H_r(K_{< n}) = 0$$
 for all $r \ge n$.

Moore approximations exist (P. Hilton), and can often be constructed in the non-simply-connected case, e.g., if ∂_n = 0, choose K_{<n} := K⁽ⁿ⁻¹⁾ with f = incl.

Construction of Intersection Spaces, cont'd

- *IX* is defined by replacing links of singularities of *X* by their Moore approximations.
- Assume X has only one isolated singularity x, with link K.
- Let $M := X c^{\circ}(K)$. Then $\partial M = K$, and $X = M \cup_{K} c(K)$.

• Let
$$g: K_{< n} \xrightarrow{f} K = \partial M \hookrightarrow M$$
, with $n = \dim_{\mathbb{C}} X$.

Set

$$IX := cone(g) := M \cup_g cone(K_{< n})$$

- If X has several isolated singularities, IX is defined by performing this procedure on each of the links, simultaneously.
- $H_*(IX; \mathbb{Q})$ is well-defined, i.e., independent of all choices.

Example

In the case of the nodal curve X, with n = 1, the link of the singular point is two circles $K = S^1 \sqcup S^1$, so $K_{<1} = \bullet \sqcup \bullet$. The intersection space *IX* of X is

 $H_1(IX) = \mathbb{Q} \oplus \mathbb{Q} = H_1(X_s).$

LAURENTIU MAXIM Intersection Spaces, Perverse Sheaves, String Theory

- In (10*d*) string theory, the 6 (real) dimensions needed for a string to vibrate form a CY space.
- But which Calabi-Yau 3-fold should model the string?
- **Conjecture** [Green-Hübsch] Topologically distinct Calabi-Yau's are connected to each other by conifold transitions, which induce a phase transition between the corresponding string models.

Conifold transition:

$X_s \stackrel{s \to 0}{\leadsto} S \stackrel{\pi}{\longleftarrow} Y,$

where:

- X_s and Y are topologically distinct smooth Calabi-Yau 3-folds.
- S is obtained from X_s by deforming the complex structure.
- π is a *small* resolution.
- The deformation collapses embedded 3-spheres (*vanishing cycles*) to isolated o.d.p.'s.
- π resolves the singularities of **S** by replacing each of them with a \mathbb{CP}^1 .

In type IIA string theory, there are charged 2-branes that wrap around the \mathbb{CP}^1 2-cycles, and which become massless when these 2-cycles are collapsed to points by the resolution map π . The *intersection homology* of the conifold accounts for all of these so it *is the physically correct homology theory for type IIA string theory*.

In type IIB string theory there are charged 3-branes wrapped around the vanishing cycles, and which become massless as these vanishing cycles are collapsed by the deformation of complex structure. Neither $H_*(S)$ nor $IH_*(S)$ account for these massless 3-branes, but $H_*(IS)$ yields the correct count. So the homology of intersection spaces is the physically correct homology theory in the IIB string theory. Given a Calabi-Yau 3-fold X, the *mirror map* associates to it another Calabi-Yau 3-fold X° so that type IIB string theory on $\mathbb{R}^4 \times X$ corresponds to type IIA string theory on $\mathbb{R}^4 \times X^\circ$. If X and X° are smooth, their Betti numbers are related by precise algebraic identities, e.g., $b_3(X^\circ) = b_2(X) + b_4(X) + 2$, etc. **Conjecture:** [Morrison] The mirror of a conifold transition is again a conifold transition, but performed in the reverse order (mirror symmetry should exchange resolutions and deformations). So, if S and S° are *mirrored conifolds* (in mirrored conifold transitions), the intersection space homology of one space and the intersection homology of the mirror space form a mirror-pair, i.e.,

$$b_3(IS^\circ) = Ib_2(S) + Ib_4(S) + 2,$$

etc., where Ib_i is the *i*-th intersection homology Betti number.

Upshot: The above mirror symmetry considerations suggest that one should be able to compute $H_*(IX)$ for a variety X in terms of the topology of a smoothing family X_s , by "mirroring" known results relating the intersection homology groups $IH_*(X)$ of X to the topology of a resolution of singularities \tilde{X} . Let f be a homogeneous polynomial s.t.

$$X = \{f(x) = 0\} \subset \mathbb{CP}^{n+1}$$

has only one isolated singularity x. Let K_x , F_x and $T_x : H^n(F_x) \to H^n(F_x)$ be the link, Milnor fiber and local monodromy operator of (X, x). $F_x \stackrel{h.e.}{\simeq} \bigvee_{\mu_x} S^n$, $\mu_x =$ Milnor number (=number of vanishing cycles at x).

Theorem A (Banagl-M.)

Let $X \subset \mathbb{CP}^{n+1}$ be a hypersurface with only one isolated singular point x. Let X_s be a nearby smoothing of X. Then:

$$\dim H^{i}(IX) = \begin{cases} \dim H^{i}(X_{s}) & \text{if } i \neq n, 2n \\ \dim H^{i}(X_{s}) - \operatorname{rank}(T_{x} - 1) & \text{if } i = n \\ 0 & \text{if } i = 2n. \end{cases}$$

Corollary

$$H^n(IX) \cong H^n(X_s) \iff T_x$$
 is trivial.

Remark

Recall that $IH^*(-)$ is invariant under small resolutions. We regard the local trivial monodromy condition as "mirroring" that of the existence of small resolutions.

Theorem B (Banagl-Budur-M., *ATMP (to appear)*)

(a) There exists a perverse sheaf complex IS_X on X so that there are (abstract) isomorphisms

$$\mathbb{H}^{i}(X;\mathcal{IS}_{X}[-n]) \simeq \begin{cases} H^{i}(IX) & \text{if } i \neq 2n \\ H^{2n}(X_{s}) = \mathbb{Q} & \text{if } i = 2n. \end{cases}$$

(b) $\mathbb{H}^{i}(X; \mathcal{IS}_{X})$ carries a natural mixed Hodge structure, $\forall i$. (c) If the local monodromy T_{x} at x is semi-simple in the eigenvalue 1, the intersection-space complex \mathcal{IS}_{X} is self-dual. (d) If the local monodromy T_{x} at x is semi-simple in the eigenvalue 1, and the global monodromy T acting on $H^{*}(X_{s})$ is semi-simple in the eigenvalue 1, then $\mathbb{H}^{*}(X; \mathcal{IS}_{X})$ carry pure Hodge structures satisfying the Hard Lefschetz theorem.

Nearby and vanishing cycles.

• Let $X \subset \mathbb{CP}^{n+1}$ be a hypersurface with $Sing(X) = \{x\}$.

• Assume
$$n > 2$$
, so $\pi_1(K_x) = 0$.

- Let π : X̃ → S ⊂ C be a family of hypersurfaces with X = π⁻¹(0), s.t. X̃ is smooth and X_s := π⁻¹(s) for s ≠ 0 is a smooth hypersurface in CPⁿ⁺¹.
- Let ψ_π, φ_π : D^b_c(X̃) → D^b_c(X) be the nearby and vanishing cycle functors of π, with monodromy T and resp. T̃.
- $H^{i}(X_{s}) \cong \mathbb{H}^{i}(X; \psi_{\pi}\mathbb{Q}_{\widetilde{X}})$, with compatible monodromies.
- If $i_x : \{x\} \hookrightarrow X$ is the inclusion, then:

$$H^{i}(F_{x}) \cong H^{i}(i_{x}^{*}\psi_{\pi}\mathbb{Q}_{\widetilde{X}}) , \quad \widetilde{H}^{i}(F_{x}) = H^{i}(i_{x}^{*}\varphi_{\pi}\mathbb{Q}_{\widetilde{X}})$$

with compatible monodromies.

•
$$Supp(\varphi_{\pi}\mathbb{Q}_{\widetilde{X}}) = Sing(X) = \{x\}.$$

• There are decompositions:

$$\psi_{\pi} = \psi_{\pi,1} \oplus \psi_{\pi,\neq 1}$$
 and $\varphi_{\pi} = \varphi_{\pi,1} \oplus \varphi_{\pi,\neq 1}$

• There are canonical morphisms:

$$can: \psi_{\pi} \to \varphi_{\pi} \text{ and } var: \varphi_{\pi} \to \psi_{\pi}$$

s.t. $can \circ var = \widetilde{T} - 1$, $var \circ can = T - 1$.

Recall:

$$\dim H^{i}(IX) = \begin{cases} \dim H^{i}(X_{s}) & \text{if } i \neq n, 2n \\ \dim H^{i}(X_{s}) - \operatorname{rank}(T_{x} - 1) & \text{if } i = n \\ 0 & \text{if } i = 2n. \end{cases}$$

where:

•
$$H^{i}(X_{s}) \cong \mathbb{H}^{i}(X; \psi_{\pi}\mathbb{Q}_{\widetilde{X}})$$

•
$$\widetilde{H}^{i}(F_{x}) = H^{i}(i_{x}^{*}\varphi_{\pi}\mathbb{Q}_{\widetilde{X}}) \cong \mathbb{H}^{i}(X; \varphi_{\pi}\mathbb{Q}_{\widetilde{X}})$$

with compatible monodromies.

Intersection space complex: Construction

Let

$$\mathcal{C} := Image(\widetilde{T} - 1) \stackrel{\iota_{\varphi}}{\hookrightarrow} \varphi_{\pi} \mathbb{Q}_{\widetilde{X}}[n] \in Perv(X)$$

• Then $\mathcal{C} \in Perv(X)$, $Supp(\mathcal{C}) = \{x\}$, and

$$\mathbb{H}^{i}(X; \mathcal{C}) = \begin{cases} 0 & , \text{ if } i \neq 0, \\ i \neq 0, & i \neq 0, \end{cases}$$

 $\mathbb{H}^{i}(X; C) = \left\{ \text{Image}(T_{x} - 1), \text{ if } i = 0. \right.$

Let

$$\iota := \mathsf{var} \circ \iota_{\varphi} : \mathcal{C} \longrightarrow \psi_{\pi} \mathbb{Q}_{\widetilde{X}}[\mathsf{n}].$$

Define:

 $\mathcal{IS}_X := \mathsf{Coker}\left(\iota : \mathcal{C} \longrightarrow \psi_{\pi} \mathbb{Q}_{\widetilde{X}}[n]\right) \in \mathsf{Perv}(X)$

- \mathcal{IS}_X underlies a mixed Hodge module.
- If T_x is semi-simple in the eigenvalue 1, then:

$$\mathcal{IS}_X \cong \psi_{\pi,1}\mathbb{Q}_{\widetilde{X}}[n].$$

THANK YOU !!!