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The classical Dirac operator

X compact oriented spin Riemannian manifold.

STX
�
TX, gTX

�
spinors, rSTX

LC connection.�
E, gE,rE

�
Hermitian vector bundle with connection.

DX classical Dirac operator acts on C1 �X,STX ⌦ E
�
.

�X Bochner Laplacian, KX scalar curvature.

Lichnerowicz formula

DX,2 = ��X +
1

4
KX +

1

2
c (ei) c (ej)R

E (ei, ej) .
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The Dirac operator with torsion

rTX
T metric connection on TX with torsion T .

hT, ✓i assumed to be antisymmetric.
⌘ = hT ^ ✓i 3-form on X.
rSTX

T connection on STX induced by rTX
T .

DX
T self-adjoint Dirac operator associated with rSTX

T .
DX

T = DX + 1
4
c⌘.

�H
T Bochner Laplacian associated with connection

with torsion T .

Theorem B89

DX,2
T = ��H

3T +
KX

4
+

1

4
c (d hT ^ ✓i)� 1

8
|T ^ ✓|2 .
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The case where hT ^ ✓i is closed.

•DX,2
T = ��H

3T + KX

4 � 1
8 |T ^ ✓|2 .

Theorem B89

The local index theorem holds, with bA (TX) calculated
with rTX

�3T .
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The case of a compact Lie group G

G compact Lie group with Lie algebra g.

B a G-invariant scalar product on g.

TG ' g left-invariant vector fields.

d trivial connection on TG, T (U, V ) = � [U, V ].

hT ^ ✓i = �B (✓2, ✓) closed.
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The Dirac operator of Kostant

g (U, V,W ) = B ([U, V ] ,W ) closed, g = �1
3 hT ^ ✓i.

DKo = DG
T/3.

DKo = c (ei)rei +
1
2c (

g).

Theorem (Kostant)

DK,2 = ��G +
1

24
f 2
ijk.

Proof.

The connection rG
T is the canonical trivial connection on

TG ' g.
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A reductive group

G connected reductive group, K maximal compact
subgroup.

✓ Cartan involution, K fixed by ✓.

g = p� k Cartan splitting.

B a G invariant form on g, > 0 on p, < 0 on k.

X = G/K symmetric space.
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The case where G = SL2 (R)

G = SL2 (R), ✓g = eg�1.

K = S1, sl2 (R) = p� k.

B (a, b) = 2Tr [ab].

X upper half-plane.
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Casimir and Kostant

��G is now the Casimir operator Cg (not elliptic).

We still have a Kostant operator DKo such that

DKo,2 = Cg + c.
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bDKo and C1 (G)⌦ ⇤· (g⇤)

bc (g) acts on ⇤· (g⇤).
bDKo = bc (ei) ei + 1

2bc (�g) acts on C1 (G)⌦ ⇤· (g⇤).

bDKo,2 = �Cg � c. . .

. . . analogue of (�dx + d⇤x)
2 = @2

@x2 .

Z = � \X compact quotient.

Tr
⇥
exp

�
t
�
�Z � c

��⇤
= Tr

h
exp

⇣
t bDKo,2

⌘i
. . .

. . . looks like a McKean-Singer formula . . .

. . . but it is not, because ⇤· (g⇤) appears in the right
hand-side.
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How to make ⇤· (V ⇤) great again

V vector space.

A (V ⇤) = ⇤· (V ⇤)⌦ S· (V ⇤).

In representation theory, A (V ⇤) ' R.�
A (V ⇤) , dV

�
de Rham complex of polynomial forms.

This complex is acyclic, and H0 = R.⇥
dV , iY

⇤
= LY , and LY = NA(V ⇤).

If hV scalar product (positivity can be dropped!), iY is
the adjoint of dV .

The above is a Hodge theoretic proof of acyclicity.
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Action of Db on C1 (G)⌦ S (g⇤)⌦ ⇤· (g⇤)

dg + iY acts on S· (g⇤)⌦ ⇤· (g⇤).
bDKo acts on C1 (G)⌦ ⇤· (g⇤).

Db = bDKo + 1
b
(dg + iY ).

Db acts on C1 (G)⌦ S· (g⇤)⌦ ⇤· (g⇤).

A spectral sequence argument shows that as b ! 0,
S· (g⇤)⌦ ⇤· (g⇤) is replaced by R.

If P projection S· (g⇤)⌦ ⇤· (g⇤) ! R, P bDKoP = 0.

Db deforms the operator 0.
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Quotienting by K

The above construction is invariant by K.

DX
b acts on [C1 (G)⌦ S· (g⇤)⌦ ⇤· (g⇤)]K .

g = p� k descends to TX �N .

DX
b acts on C1 (X,S· (T ⇤X �N⇤)⌦ ⇤· (T ⇤X �N⇤)).
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The Bargmann isomorphism

V Euclidean vector space.

B : S (V ⇤) ' L2 (V ) isomorphisms of Hilbert spaces.

B depends explicitly on the metric.

Jean-Michel Bismut Torsion and the Dirac operator 15 / 40



The Dirac operator with torsion
The Dirac operator of Kostant

The action of DKo on ⌦· (G,R)
The operator DX

b
Kostant and Dirac

Hypoelliptic Laplacian, math, and ‘physics’
References

The geometric action of DX
b

DX
b acts on C1 (X,S· (T ⇤X �N⇤)⌦ ⇤· (T ⇤X �N⇤)).

DX
b on C1 (X,L2 (TX �N)⌦ ⇤· (T ⇤X �N⇤)).
bX total space of TX �N .

DX
b acts on C1

⇣
bX , b⇡⇤ (⇤· (T ⇤X �N⇤))

⌘
.
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The explicit form of DX
b

DX
b = bDKo + ic

�⇥
Y N , Y TX

⇤�
| {z }

mystery

+
1

b
(dp + Y p ^+dp⇤ + iY p)| {z }

Witten

+

p
�1

b

�
�dk � Y k ^+dk⇤ + iY k

�
.

•P orthogonal projection on ker (dp + . . .).

•P
⇣
bDKo + ic

�⇥
Y N , Y TX

⇤�⌘
P = 0.

•DX
b deforms the operator 0.
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The operator LX
b

LX
b = 1

2

⇣
� bDKo,2 +DX,2

b

⌘
acts on

C1
⇣
bX , b⇡⇤⇤· (T ⇤X �N⇤)

⌘
.

LX
b deforms 1

2

�
��X + c

�
.
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A formula for LX
b

✓ Cartan involution = ±1 on N, TX.

LX
b =

1

2

��⇥Y N , Y TX
⇤��2

| {z }
quartic term

+
1

2b2
�
��TX�N + |Y |2 � n

�

| {z }
Harmonic oscillator of TX�N

+
N⇤·(T ⇤X�N⇤)

b2

+
1

b

 
rY TX| {z }

geodesic flow

+bc
�
ad
�
Y TX

��
�c
�
ad
�
Y TX

�
+ i✓ad

�
Y N
��
!
.

Remark

By Hörmander, @
@t
+ LX

b is hypoelliptic.
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A fundamental identity

Theorem B11

If Z = � \X compact quotient, for t > 0, b > 0,

TrC
1(Z,R)

⇥
exp

�
t
�
�Z � c

�
/2
�⇤

= Trs
⇥
exp

�
�tLZ

b

�⇤
.

Proof

Limit as b ! 0, Bianchi identity⇥
DZ

b ,LZ
b

⇤
=
h
DZ

b ,
⇣
DZ,2

b + Cg
⌘
/2
i
= 0, combined with

@

@b
Trs
⇥
exp

�
�tLZ

b

�⇤
= � t

2
Trs


DZ

b ,
@

@b
DZ

b exp
�
�tLZ

b

���
= 0.
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Splitting the identity

1 The identity splits as identity of orbital integrals. . .
2 . . . which are contributions of the conjugacy classes of

� = ⇡1 (Z).
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Semisimple orbital integrals

� 2 G semisimple, [�] conjugacy class.

For t > 0, I ([�]) = Tr[�]
⇥
exp

�
t
�
�X � c

�
/2
�⇤

orbital
integral of heat kernel on orbit of �:

I ([�]) =

Z

Z(�)\G
pXt
�
g�1�g

�
dg.
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The minimizing set

•X (�) ⇢ X minimizing set for the convex displacement
function d (x, �x).
•X (�) ⇢ X totally geodesic symmetric space for the
centralizer Z (�).
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Geometric form of the orbital integral

I (�) =

Z

NX(�)/X

Tr
⇥
pXt (Y, �Y )

⇤
r (Y )| {z }
Jacobian

dY.

x0 �x0

Y �Y

d(Y, �Y ) � C|Y |� C

0

X(�)

pXt (x, x0)  C exp(�C 0d2(x, x0)).
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The heat kernel for LX
b

exp
�
�tLX

b

�
has a heat kernel qXb,t ((x, Y ) , (x0, Y 0)).

Theorem (B2011)

• For b 2]0,M ], t > 0 fixed,

��qXb,t ((x, Y ) , (x0, Y 0))
��

 C exp
⇣
�C 0

⇣
d2 (x, x0) + |Y |2 + |Y 0|2

⌘⌘
,

qXb,t ((x, Y ) , (x0, Y 0))
b!0�!

PpXt (x, x0) ⇡� dim g/2 exp

✓
1

2

⇣
|Y |2 + |Y 0|2

⌘◆
P.
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A second fundamental identity

Theorem B2011

For b > 0, t > 0,

Tr[�]
⇥
exp

�
t
�
�X � c

�
/2
�⇤

= Trs
[�]
⇥
exp

�
�tLX

b

�⇤
.

Remark

The proof uses the fact that Tr[�] is a trace on the algebra
of G-invariants smooth kernels on X with Gaussian decay.
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The limit as b ! +1

After rescaling of Y TX , Y N , as b ! +1,
Lb ' b4

2

��⇥Y N , Y TX
⇤��2 + 1

2 |Y |2 � rY TX| {z }
geodesic flow

.

As b ! +1, the orbital integral localizes near X (�)
exactly like in Lefschetz formulas.

� = eak�1, a 2 p, k 2 K,Ad (k) a = a.

Z (�) centralizer of �, z (�) = p (�)� k (�) Lie algebra
of Z (�).
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Semisimple orbital integrals

Theorem (B. 2011)

There is an explicit function J�
�
Y k
0

�
, Y k

0 2 k (�), such that

Tr[�]
⇥
exp

�
t
�
�Z � c

�
/2
�⇤

=
exp

�
� |a|2 /2t

�

(2⇡t)p/2Z

k(�)

J�
�
Y k
0

�
TrE

⇥
⇢E
�
k�1
�
exp

�
�i⇢E

�
Y k
0

��⇤

exp
⇣
�
��Y k

0

��2 /2t
⌘ dY k

0

(2⇡t)q/2
.
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The function J� (Y0) , Y k
0 2 k (�)

Definition

J�
�
Y k
0

�
=

1
���det (1� Ad (�)) |z?0

���
1/2

bA
�
iad
�
Y k
0

�
|p(�)

�

bA
⇣
iad
�
Y k
0

�
k(�)

⌘

"
1

det (1� Ad (k�1)) |z?0 (�)

det
�
1� exp

�
�iad

�
Y k
0

��
Ad (k�1)

�
|k?0 (�)

det
�
1� exp

�
�iad

�
Y k
0

��
Ad (k�1)

�
|p?0 (�)

#1/2
.
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The formula of Atiyah-Bott

• Compare with fixed point formulas by Atiyah-Bott

L (g) =

Z

Xg

bAg (TX) chg (E) .

• We ultimately compute the trace of any heat kernel, and
not ‘only’ the index of a Dirac operator, and this by a
‘local’ formula.
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DKo and DX

• Recall that DKo,2 = Cg + c.
•DKo splits as the sum of two commuting pieces

DKo
H =

mX

1

c (ei) ei,

DKo
V = �

m+nX

m+1

c (ei) (ei + c (ad (ei) |p)) +
1

2
c
�
k
�
.
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The fibration G ! X
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The descent of DKo to DX

For eta invariant of DX , Casimir not enough.

Assume K to be simply connected.

Then DKo descends to DX + 1
2c
�
k
�
acting on

C1 �X,STX ⌦ ⇤· (N⇤)
�
.

Before, DKo was acting on
C1 (X,S· (T ⇤X �N⇤)⌦ ⇤· (T ⇤X �N⇤)).

We have to combine the action of bc (g⇤) on ⇤· (g⇤) and
on Sp.
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An action of SO (2)

g = p� k .

Introduce another copy p of p, so that g� p = p� p� k.

SO (2) acts by rotations on p� p.

If e 2 p, R#bc (e)R�1
# = cos (#)bc (e) + sin (#)bc (e).

bDKo
# = R#

bDKoR�1
# .

bDKo
# = sin (#) bDX + . . .

Ultimately, we can recover results of Moscovici-Stanton
on geometric evaluation of eta invariants on locally
symmetric spaces.
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The results of Shu Shen on analytic torsion

Using the above geometric formulas for orbital integrals,
Shu Shen was able to complete the results of
Moscovici-Stanton on the Fried conjecture for analytic
torsion on locally symmetric spaces.
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Geodesic flow and Fourier transform

Z =
P

Y i @
@xi .

� (Z) =
p
�1 hY, ⇠i = Fourier.
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Exterior algebra and symmetric algebra

Exterior algebra ⇤· (T ⇤X) in de Rham
�
⌦· (X) , dX

�
.

Symmetric (polynomial) algebra S· (T ⇤X) is less
popular.
Introducing S· (T ⇤X) restores supersymmetry.
If gTX Riemannian metric, S

·
(T ⇤X) is L2 space for

fibrewise Gaussian measure.
If ai =

1p
2

�
@

@Y i + Y i
�
, a⇤i =

1p
2

�
� @

@Y i + Y i
�

annihilation, creation operators, geodesic flow

Z = Y i @

@xi
=

1p
2
(ai + a⇤i )

@

@xi

Z Bosonic Dirac operator.
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