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L2-acyclic

X finite complex (or compact manifold)

X

X

regular G -cover (e.g. Universal cover)

Hilbert space l2G = {f : G ! C |
P

|f (g)|2 < 1}

· · · ! Cp+1(X )⌦ZG l
2G

@p+1���! Cp(X )⌦ZG l
2G

@p�! Cp�1(X )⌦ZG l
2G ! . . .

X ! BG is L2-acyclic if ker @p = im @p+1 for all p

Exercise: S1 is L2-acyclic.

Remark: X ! BG L2-acyclic () b
(2)
⇤ (X ;G ) = 0 () L2-Laplacian

on X is injective.



Special case G = Z, BG = S1

Theorem (J. Cohen)

TFAE

X ! S1 is L2-acyclic

H⇤X is torsion over Z[Z] = Z[t, t�1]

0 = H⇤(X ;Q(t)) := H⇤(C (X )⌦Z[Z] Q(t)) “twisted coe�cients”

Idea of proof: In general, C (X )⌦Z[Z] Q(t) is sum of an acyclic
complex and a complex with 0 di↵erential.



Special case G = Z, BG = S1
, KM Surgery!

Let X ! S1 be a k-manifold (with L2-acyclic boundary).
Question: Is X ! S1 bordant (rel @) to an L2-acyclic manifold?

Theorem (CDW)

k odd. Answer is yes.

k even. X ! S1 is bordant (rel @) to a “highly connected”
manifold, i.e. H<k/2(X ) is a f.g Z-module.
(=) H<k/2(X ;Q(t)) = 0.)

Framing issues are dealt with using:

Embedding Lemma

Let M be a connected k-manifold, 1 < p < k � 2, and t 2 ⇡1M.
Suppose ↵ 2 ⇡pM is represented by an embedded sphere. Then
(t � 1)↵ 2 ⇡pM is represented by an embedding Sp ⇥ Dk�p ,! M.



Special case G = Z, BG = S1

symmetric signature

Let k = 2j , let X ! S1 be a compact k-manifold with L2-acyclic
boundary.

Definition

Symmetric signature �(X ! S1) 2 Lk(Q(t)) is the Witt class of the
intersection form

IX : Hj(X ;Q(t))⇥ Hj(X ;Q(t)) ! Q(t)

Theorem (CDW)

For even k > 4, X ! S1 is bordant to an L2-acyclic manifold i↵
�(X ! S1) = 0.



Special case G = Z, BG = S1
, Repackaging

Definition

⌦2
k(BG ) is the bordism group of closed L2-acyclic k-manifolds

Theorem (CDW)

� : ⌦2!SO
k (BZ) ! Lk(Q(t))

is an isomorphism for k > 4 and onto for k = 4.

Theorem (CDW)

LES: · · · ! ⌦2
k(BZ) ! ⌦SO

k (BZ) ! Lk(Q(t)) ! · · · ! L4(Q(t))

Lk(Q(t)) =

(
0 k odd

Z1 � (Z/4)1 � (Z/2)1 k even

For every odd dimension, there an (infinitely generated) group of
L2-acyclic manifolds (with secondary invariants).



L2-acyclic manifold groups

Question (Weinberger): What are the fundamental groups of
L2-acyclic manifolds?

• Method 1 (Surgery) : (CDW) If G is polycyclic-by-finite, there for
any n > 4, there is an (null bordant/G ) L2-acyclic manifold with
fundamental group G .
• Method 2 (Handlebody and analysis): (D-Schick) If a finitely
presented G satisfies

b
(2)
2 G = b

(2)
1 G = b

(2)
0 G = 0

“Quantization condition” 9" > 0 so that if M is a finitely
presented ZG -module so that dimNG ⌦M < ", then
dimNG ⌦M = 0

The Quantization condition holds, for example, if G is a torsionfree
group satisfying the Atiyah Conjecture, e.g the free group times Z2

(take " = 1).



L2-acyclicity and algebra

Question: For which groups G is there a homological criterion for
acyclicity?
Answer: If ZG has a semisimple (Ore) ring of quotients.

Definition

Let � ⇢ R be the nonzero divisors. R has a classical ring of quotients
if there is a ring hom � : R ! K so that

�(�) ⇢ K⇥

K = �(�)�1�(R).

Write K = ��1R .

Lemma

Suppose ��1ZG exists and is semisimple. X ! BG is L2-acyclic i↵
H⇤(X ;��1ZG ) = 0.



ring of quotients

Question: What groups G have a (semisimple) ring of quotients?

Answer: No for G the free group, yes for EAB-groups (elementary
amenable with a bound on the order of finite subgroups)



main theorem

Theorem (CDW)

For G polycyclic-by-finite,

� : ⌦2!SO
k (BG ) ! Lk(�

�1ZG )

is an isomorphism for k > 4 and is surjective for k = 4.



Algebraic L-theory

L is the letter after K

Ln : Rings with involution ! Abelian groups

4-periodic: Ln(R ,�) = Ln+4(R ,�)

If 1/2 2 R , L0R (resp. L2R) is the Witt group of Hermitian (resp.
Skew-Hermitian) forms.

L0R = L0(C,�)
⇠=�! Z signature

L0C = Z/2 rank

L0(R ,�) = L2(R ,�) if 9↵ 2 R⇥ s.t. ↵ = �↵.

intersection forms 2 L-group



L-groups

Question: What is the computation of Lk(��1ZG )?
Question: What is the torsion?
Question: What should we conjecture about Lk(��1ZG )⌦Q for G
torsionfree?

L0(Q(t)) ⇠= L2(Q(t)) ⇠= Z1 � Z1
2 � Z1

4

Lodd(��1ZG ) = 0 for G torsionfree.

Lodd(��1ZG ) detected by semicharacteristics.

Related to Pfister theory, Hilbert’s 17-th problem, Milnor conjecture in
algebraic K -theory, etc.



L2-acyclicity and low-dimensional topology

There is a homomorphism from knot concordance group

C ! ⌦2
3(S

1)

K 7! MK 0-surgery on K

Question: Is � : ⌦2!SO
4 (BG ) ! L4(��1ZG ) an isomorphism?

Theorem (Jae Choon Cha)

There are algebraically slice knots K so that MK (0-surgery on K ) is

nontrivial in ⌦(2)
3 (BZ)?
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Conclusion

There are a lot of questions:

What are the fundamental groups of L2-acyclic manifolds?

For which G does ZG have a semisimple localization?

What is the conjectural picture for L⇤(��1ZG )? For the torsion?

How to compute (or study) ⌦(2)
3 (BG )?

Extension questions

Connections with bordism of di↵eomorphisms (a la Kreck)


