L^2 -ACYCLIC MANIFOLDS

Jim Davis Indiana University Joint with Sylvain Cappell and Shmuel Weinberger. also Thomas Schick and Jae Choon Cha

Analysis and Topology (and Algebra) in Interaction Cortona, June 2017

L^2 -ACYCLIC

X finite complex (or compact manifold)

$$\begin{array}{l} \overline{X} \\ \downarrow \\ X \end{array}$$
regular *G*-cover (e.g. Universal cover)

$$\begin{array}{l} X \end{array}$$
Hilbert space $l^2G = \{f : G \to \mathbb{C} \mid \sum |f(g)|^2 < \infty\}$

$$\cdots \to C_{p+1}(\overline{X}) \otimes_{\mathbb{Z}G} l^2G \xrightarrow{\partial_{p+1}} C_p(\overline{X}) \otimes_{\mathbb{Z}G} l^2G \xrightarrow{\partial_p} C_{p-1}(\overline{X}) \otimes_{\mathbb{Z}G} l^2G \to \cdots$$

$$X \to BG \text{ is } L^2\text{-acyclic if ker } \partial_p = \overline{im \ \partial_{p+1}} \text{ for all } p$$

Exercise: S^1 is L^2 -acyclic.
Remark: $X \to BG \ L^2$ -acyclic $\iff b_*^{(2)}(\overline{X}; G) = 0 \iff L^2\text{-Laplacian}$
on \overline{X} is injective.

Special case $G = \mathbb{Z}, BG = S^1$

THEOREM (J. COHEN)

TFAE

- $X \to S^1$ is L^2 -acyclic
- $H_*\overline{X}$ is torsion over $\mathbb{Z}[\mathbb{Z}] = \mathbb{Z}[t, t^{-1}]$
- $0 = H_*(X; \mathbb{Q}(t)) := H_*(C(\overline{X}) \otimes_{\mathbb{Z}[\mathbb{Z}]} \mathbb{Q}(t))$ "twisted coefficients"

Idea of proof: In general, $C(\overline{X}) \otimes_{\mathbb{Z}[\mathbb{Z}]} \mathbb{Q}(t)$ is sum of an acyclic complex and a complex with 0 differential.

Special case $G = \mathbb{Z}$, $BG = S^1$, KM Surgery!

Let $X \to S^1$ be a *k*-manifold (with L^2 -acyclic boundary). Question: Is $X \to S^1$ bordant (rel ∂) to an L^2 -acyclic manifold?

THEOREM (CDW)

- k odd. Answer is yes.
- k even. $X \to S^1$ is bordant (rel ∂) to a "highly connected" manifold, i.e. $H_{< k/2}(\overline{X})$ is a f.g \mathbb{Z} -module. $(\Longrightarrow H_{< k/2}(X; \mathbb{Q}(t)) = 0.)$

Framing issues are dealt with using:

Embedding Lemma

Let M be a connected k-manifold, $1 , and <math>t \in \pi_1 M$. Suppose $\alpha \in \pi_p M$ is represented by an embedded sphere. Then $(t-1)\alpha \in \pi_p M$ is represented by an embedding $S^p \times D^{k-p} \hookrightarrow M$.

Special case $G = \mathbb{Z}, BG = S^1$ symmetric signature

Let k = 2j, let $X \rightarrow S^1$ be a compact k-manifold with L^2 -acyclic boundary.

DEFINITION

Symmetric signature $\sigma(X \to S^1) \in L_k(\mathbb{Q}(t))$ is the Witt class of the intersection form

$$I_X: H_j(X; \mathbb{Q}(t)) imes H_j(X; \mathbb{Q}(t)) o \mathbb{Q}(t)$$

THEOREM (CDW)

For even k > 4, $X \to S^1$ is bordant to an L^2 -acyclic manifold iff $\sigma(X \to S^1) = 0$.

Special case $G = \mathbb{Z}$, $BG = S^1$, Repackaging

DEFINITION

 $\Omega_k^2(BG)$ is the bordism group of closed L^2 -acyclic k-manifolds

THEOREM (CDW)

$$\sigma: \Omega_k^{2\to SO}(B\mathbb{Z}) \to L_k(\mathbb{Q}(t))$$

is an isomorphism for k > 4 and onto for k = 4.

THEOREM (CDW)

$$LES: \cdots \to \Omega^2_k(B\mathbb{Z}) \to \Omega^{SO}_k(B\mathbb{Z}) \to L_k(\mathbb{Q}(t)) \to \cdots \to L_4(\mathbb{Q}(t))$$

$$L_k(\mathbb{Q}(t)) = egin{cases} 0 & k ext{ odd} \ \mathbb{Z}^\infty \oplus (\mathbb{Z}/4)^\infty \oplus (\mathbb{Z}/2)^\infty & k ext{ even} \end{cases}$$

For every odd dimension, there an (infinitely generated) group of L^2 -acyclic manifolds (with secondary invariants).

L^2 -ACYCLIC MANIFOLD GROUPS

Question (Weinberger): What are the fundamental groups of L^2 -acyclic manifolds?

• Method 1 (Surgery) : (CDW) If G is polycyclic-by-finite, there for any n > 4, there is an (null bordant/G) L^2 -acyclic manifold with fundamental group G.

• Method 2 (Handlebody and analysis): (D-Schick) If a finitely presented *G* satisfies

•
$$b_2^{(2)}G = b_1^{(2)}G = b_0^{(2)}G = 0$$

"Quantization condition" ∃ε > 0 so that if M is a finitely presented ZG-module so that dim NG ⊗ M < ε, then dim NG ⊗ M = 0

The Quantization condition holds, for example, if G is a torsionfree group satisfying the Atiyah Conjecture, e.g the free group times \mathbb{Z}^2 (take $\varepsilon = 1$).

L^2 -ACYCLICITY AND ALGEBRA

Question: For which groups G is there a homological criterion for acyclicity?

Answer: If $\mathbb{Z}G$ has a semisimple (Ore) ring of quotients.

DEFINITION

Let $\Delta \subset R$ be the nonzero divisors. R has a *classical ring of quotients* if there is a ring hom $\phi : R \to K$ so that

• $\phi(\Delta) \subset K^{ imes}$

•
$$K = \phi(\Delta)^{-1}\phi(R)$$
.

Write $K = \Delta^{-1} R$.

LEMMA

Suppose $\Delta^{-1}\mathbb{Z}G$ exists and is semisimple. $X \to BG$ is L^2 -acyclic iff $H_*(X; \Delta^{-1}\mathbb{Z}G) = 0$.

RING OF QUOTIENTS

Question: What groups G have a (semisimple) ring of quotients?

Answer: No for G the free group, yes for EAB-groups (elementary amenable with a bound on the order of finite subgroups)

MAIN THEOREM

Theorem (CDW)

For G polycyclic-by-finite,

$$\sigma: \Omega_k^{2 \to SO}(BG) \to L_k(\Delta^{-1}\mathbb{Z}G)$$

is an isomorphism for k > 4 and is surjective for k = 4.

ALGEBRAIC L-THEORY

- L is the letter after K
- L_n : Rings with involution \rightarrow Abelian groups
- 4-periodic: $L_n(R, -) = L_{n+4}(R, -)$
- If 1/2 ∈ R, L₀R (resp. L₂R) is the Witt group of Hermitian (resp. Skew-Hermitian) forms.
- $L_0\mathbb{R} = L_0(\mathbb{C}, -) \xrightarrow{\cong} \mathbb{Z}$ signature
- $L_0\mathbb{C} = \mathbb{Z}/2$ rank
- $L_0(R,-) = L_2(R,-)$ if $\exists \alpha \in R^{\times}$ s.t. $\overline{\alpha} = -\alpha$.
- intersection forms ∈ *L*-group

L-GROUPS

Question: What is the computation of $L_k(\Delta^{-1}\mathbb{Z}G)$?

Question: What is the torsion?

Question: What should we conjecture about $L_k(\Delta^{-1}\mathbb{Z}G)\otimes\mathbb{Q}$ for G torsionfree?

- $L_0(\mathbb{Q}(t)) \cong L_2(\mathbb{Q}(t)) \cong \mathbb{Z}^{\infty} \oplus \mathbb{Z}_2^{\infty} \oplus \mathbb{Z}_4^{\infty}$
- $L_{odd}(\Delta^{-1}\mathbb{Z}G) = 0$ for G torsionfree.
- $L_{odd}(\Delta^{-1}\mathbb{Z}G)$ detected by semicharacteristics.

Related to Pfister theory, Hilbert's 17-th problem, Milnor conjecture in algebraic K-theory, etc.

L^2 -ACYCLICITY AND LOW-DIMENSIONAL TOPOLOGY

There is a homomorphism from knot concordance group

$$\mathcal{C} o \Omega^2_3(S^1)$$

 $K \mapsto M_K$ 0-surgery on K

Question: Is $\sigma: \Omega_4^{2 \to SO}(BG) \to L_4(\Delta^{-1}\mathbb{Z}G)$ an isomorphism?

THEOREM (JAE CHOON CHA)

There are algebraically slice knots K so that M_K (0-surgery on K) is nontrivial in $\Omega_3^{(2)}(B\mathbb{Z})$?

Acknowledgement

Research (partially) sponsored by the Alexander von Humboldt-Stiftung

CONCLUSION

There are a lot of questions:

- What are the fundamental groups of L^2 -acyclic manifolds?
- For which G does $\mathbb{Z}G$ have a semisimple localization?
- What is the conjectural picture for $L_*(\Delta^{-1}\mathbb{Z}G)$? For the torsion?
- How to compute (or study) $\Omega_3^{(2)}(BG)$?
- Extension questions
- Connections with bordism of diffeomorphisms (a la Kreck)