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Abstract

Recall from basic differential geometry:
(X , g) Riemannian manifold ) Riemannian curvature tensor tr)
scalar curvature g .

Question 1: Which manifolds have a metric g with g > 0?
We say that g is a metric of positive scalar curvature (PSC).

Question 2: If a manifold has a metric g with g > 0, what is
the topology of the space of all such metrics (mod diffeos)?



Abstract

Not all manifolds admit metrics with PSC, as can be shown by
many techniques:

Dirac operators (Lichnerowicz; Gromov-Lawson-Rosenberg)
and minimal surfaces (Schoen-Yau) in all dimensions;

gauge theory (Seiberg-Witten) special to dimensions 3 and 4.

I will a describe a technique to address these questions for
even dimensional manifolds, based on the analysis of the Dirac
operator on end-periodic, non-compact manifolds.



Abstract

We obtain two types of results on PSC metrics for compact spin
manifolds that are even dimensional.

The first type of result are obstructions to the existence of
PSC metrics on such manifolds, expressed in terms of
end-periodic eta invariants that were defined by
Mrowka-Ruberman-Saveliev (MRS), and are the even
dimensional analogs of the results by Higson-Roe.
Also Keswani, Weinberger and myself, Piazza, Schick,
Benameur, Deeley, Goffeng,....



Abstract

The second type of result studies the size of the group of
components of the space of PSC metrics for compact spin
manifolds that are even dimensional, whenever this space is
non-empty.These are the even dimensional analogs of the
results by Botvinnik-Gilkey and refine certain results in MRS.
Hitchin, Piazza-Schick, ....

End-periodic analogs of K-homology, structure groups and spin
bordism theory are defined and are utilised to prove many of
our results.



End-periodic manifolds
Let Z be a compact spin manifold with boundary Y and that Y
is an oriented, connected submanifold of a compact spin X that
is Poincaré dual to � 2 H1(X , Z). Let W be the fundamental
segment obtained by cutting X open along Y ,

The end is modeled on an infinite cyclic cover X̃ of a manifold X :

W

Y Y
glue Y to Y

X

Y

S1

f

The cover is classified by a map f : X ! S1.

W W W

Y Y Y

W

Y Y

Direction to � determined by cohomology class [df ] = � 2 H1(X ; Z).
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Figure: Pieces of an end-periodic manifold



End-periodic manifolds
If Wk are isometric copies of W , then we can attach
X1 = [k�0Wk to the boundary component Y of Z , forming the
end-periodic manifold Z1.

Proof uses a new index theorem for operators on manifolds with a
periodic end

Z1 = Z [Y W0 [Y W1 [Y W2 · · ·

Z

Z1

Y Y Y

W0 W1 W2

The model is the Atiyah-Patodi-Singer theorem, which I’ll briefly review.
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Figure: End-periodic manifold



End-periodic manifolds

Often in the talk, we also deal with manifolds with more than
one periodic end. End-periodic elliptic operators on
end-periodic manifolds were studied by Taubes, who first
established conditions under which the L2-closure of such
operators is Fredholm, and also calculated the index of the
end-periodic analog of the anti-self-dual operator occurring in
Yang-Mills theory.



Index theorem for end-periodic manifolds

A key step is to introduce the weighted Sobolev spaces on
Z1 as follows. First recall that the Sobolev space L2

k (Z1, S) for
an integer k � 0, is defined as the completion of C1

0 (Z1, S) in
the norm

kuk2
L2

k (Z1,S) =
X

jk

Z

Z1

|rj u|2

for a fixed choice of end-periodic metric and compatible
end-periodic Clifford connection on Z1.



Index theorem for end-periodic manifolds

Now, restrict the upstairs covering map F : X̃ ! R to the
half-cover X1 =

S
k�0 Wk , and choose an extension of this map

to Z1, which we continue to denote F .For a weight � 2 R and
an integer k � 0, then u 2 L2

k ,� (Z1, S) if e�F u 2 L2
k (Z1, S).

Define the weighted Sobolev L2
k ,�-norm by

kukL2
k,� (Z1,S) = k e�F ukL2

k (Z1,S).



Index theorem for end-periodic manifolds

It is easy to check that up to equivalence of norms, this is
independent of the choice of extension of F to Z1, since the
region over which we are choosing an extension is compact.
The spaces L2

k ,�(Z1, S) are all complete in this norm, and the
operator D+(Z1) extends to a bounded operator

D+(Z1) : L2
k+1,� (Z1, S+) ! L2

k ,� (Z1, S�) (0.1)

for every k and �.



Index theorem for end-periodic manifolds

The following theorem of Taubes characterises Fredholmness
of the operator D+(Z1) in terms of invertibility of the family
D+

z (X ) = D+(X ) � ln(z) c(dF ).

Lemma (Taubes)

The operator D+(Z1) : L2
k+1,� (Z1, S+) ! L2

k ,� (Z1, S�) is
Fredholm if and only if the operators D+

z (X ) are invertible for all
z on the circle |z| = e�.



Index theorem for end-periodic manifolds

Corollary

A necessary condition for the operator D+(Z1) to be Fredholm
is that index D+(X ) = 0.

It also follows that the operator D+(Z1) acting on the Sobolev
spaces of weight � is Fredholm for all but a discrete (and finite
on bounded intervals) set of � 2 R.



Index theorem for end-periodic manifolds

Theorem (MRS Index Theorem A)

If the L2–closure of the operator D+(Z1) is Fredholm, and
choose a form ! on X such that d! = I(D+(X )), then

indL2(D+(Z1)) =

Z

Z
I(D+(Z )) �

Z

Y
!+

Z

X
�^! � 1

2
⌘ep(D+(X )).

MRS Theorem C relaxes the Fredholm assumption, when their
theorem is harder to state. Their theorem reduces to the APS
index theorem when the end is a cylinder.



End-periodic eta invariant

⌘ep(D+(X )) =
1
⇡i

Z 1

0

I

|z|=1
Tr
�
c(�) · D+

z exp(�t(D+
z )⇤D+

z )
� dz

z
dt ,

= 2
Z 1

0
⌧(c(�)D+e�tD�D+

) dt

where ⌧ is the von Neumann trace (cf. [Atiyah76]) on X̃ .

The definition extends to flat Hermitian bundles, or equivalently
unitary representations of the fundamental group.



End-periodic eta invariant - asymmetry of the spectral
set interpretation

It turns out that the family C⇤ 3 z 7! D+
z (X ) is meromorphic,

invertible when |z| = 1 (by Fredholmness - Taubes).

The poles of this family is called the spectral set of D+(X ).

Then ⌘ep(D+(X )) can be interpreted as the asymmetry of the
spectral set wrt the circle |z| = 1. More precisely, it is a
regularization of the number of spectral points with |z| > 1
minus the number of spectral points with |z| < 1.



End-periodic eta invariant

⌘ep changes sign when either the orientation of X changes or �
goes to ��.

⌘ep can be twisted by flat Hermitian bundles/unitary reps of the
fundamental group. Also when X = S1 ⇥ Y , then
⌘ep(D+(X ) ⌦ ↵) = ⌘(D(Y ) ⌦ ↵) for a unitary rep ↵ of ⇡1(Y ).



End-periodic rho invariant

Define the end-periodic rho invariant, ⇢ep as follows:

⇢ep(D+(X ),↵1,↵2) = ⌘ep(D+(X ) ⌦ ↵1) � ⌘ep(D+(X ) ⌦ ↵2)

Then follows from MRS that

⇢ep(D+(X ),↵1,↵2) mod Z

is metric independent. More generally,
⇢ep has the analogous properties of the usual rho invariant.



End-periodic K-homology

Definition
An (odd) end-periodic K -cycle, or simply a K ep-cycle for a
discrete group ⇡ is a quadruple (X , S, �, f ), where X is a
compact oriented even-dimensional Riemannian manifold,
S = S+ � S� is a Z2-graded Dirac bundle over X , � 2 H1(X , Z)

is a cohomology class whose restriction to each connected
component of X is primitive, and a cts map f : X ! B⇡.



End-periodic K-homology

The Z2-graded structure of S includes a Clifford multiplication
by tangent vectors to X which swaps the positive and negative
sub-bundles. As in K-homology, the manifold X is allowed to be
disconnected, with the connected components possibly having
different even dimensions. NB the definition of a K ep-cycle
imposes topological restrictions on X , namely each connected
component of X must have non-trivial first cohomology in order
for the class � to be primitive on each component.



End-periodic K-homology

Definition

Two K ep-cycles (X , S, �, f ) and (X 0, S0, �0, f 0) are isomorphic if
there exists an orientation preserving diffeomorphism
' : X ! X 0 which is covered by a Z2-graded isometric bundle
isomorphism  : S ! S0 such that

 � cX (v) = cX 0('⇤v) �  

for all v 2 TX . The diffeomorphism ' must additionally satisfy
'⇤(�0) = �, and f 0 � ' = f .



End-periodic K-homology

We now define what it means for a K ep-cycle (X , S, �, f ) to be a
boundary. First, let Y ⇢ X be a codimension-1 submanifold that
is Poincaré dual to �. The orientation of Y is such that for all
closed forms ↵ of codimension 1 (over each component of X ),

Z

Y
◆⇤(↵) =

Z

X
� ^ ↵,

where ◆ : Y ! X is the inclusion. In other words, the orientation
of Y is such that the signs of the above two integrals always
agree.



End-periodic K-homology

Now, cut X open along Y to obtain a compact manifold W with
boundary @W = Y q �Y , with our boundary orientation
conventions. Glue infinitely many isometric copies Wk of W
end to end along Y to obtain the complete oriented Riemannian
manifold X1 =

S
k�0 Wk with boundary @X1 = �Y . Pull back

the Dirac bundle S on X to get a Z2-graded Dirac bundle on X1,
also denoted S, and pull back f to get a map f : X1 ! B⇡.



End-periodic K-homology

Definition

The K ep-cycle (X , S, �, g) is a boundary if there exists a
compact oriented Riemannian manifold Z with boundary
@Z = +Y , which can be attached to X1 along Y to form a
complete oriented Riemannian manifold Z1 = Z [Y X1, such
that the bundle S extends to a Z2-graded Dirac bundle on Z1
and the map f extends to a continuous map f : Z1 ! B⇡.

The manifold Z1 is an end-periodic manifold, with end
modelled on (X , �).



End-periodic K-homology

The negative of a K ep-cycle (X , S, �, f ) is simply (X , S, ��, f ).
This is so that the disjoint union of a K ep-cycle with its negative
is a boundary – it is clear that the Z-cover X̃ of X
corresponding to � is an end-periodic manifold with end
modelled on (X q X , � q ��). The definitions of bordism and
direct sum – disjoint union are exactly the same as in
K-homology, with the class � left unchanged.



End-periodic K-homology

In the case of bundle modification, the class �̂ on X̂ = X ⇥⇢ S2k

is the pullback of � by the projection p : X̂ ! X . There is also
one more relation we define which relates the orientation on X
to the one-form �:

(X , S, ��, f ) ⇠ (�X , ⇧(S), �, f )

where �X is X with the reversed orientation and ⇧(S) is S with
its Z2-grading reversed. We call this relation orientation – sign,
as it links the orientation on X to the sign of �.



End-periodic K-homology

Definition
The end-periodic K -homology group, K ep

1 (B⇡), is the abelian
group consisting of K ep-cycles up to the equivalence relation
generated by isomorphism of K ep-cycles, bordism, direct sum –
disjoint union, bundle modification, and orientation – sign.
Addition is given by disjoint union of cycles

(X , S, �, f ) q (X 0, S0, �0, f 0) = (X q X 0, S q S0, � q �0, f q f 0).

As for K -homology, we could also define the group K ep
0 (B⇡)

using odd-dimensional manifolds.



End-periodic K-homology - the isomorphism

We now ST there is a natural isomorphism K1(B⇡) ⇠= K ep
1 (B⇡).

First we describe the map K1(B⇡) ! K ep
1 (B⇡). Let (M, S, f ) be

a K -cycle for B⇡. Define X = S1 ⇥ M an even dimensional
manifold with the product orientation and Riemannian metric,
the Dirac bundle S � S ! X with Clifford multiplication as
before, � = d✓ 2 H1(X , Z), and f : X ! B⇡ the extension of
f : M ! B⇡. Map the equivalence class of (M, S, f ) in K1(B⇡)

to the equivalence class of (S1 ⇥ M, S � S, d✓, f ) in K ep
1 (B⇡).



End-periodic K-homology - the isomorphism

Now for the inverse map, K ep
1 (B⇡) ! K1(B⇡).

Let (X , S, �, f ) be an end-periodic cycle. Choose a submanifold
Y ⇢ X Poincaré dual to �, oriented as before. We map the
cycle (X , S, �, f ) to (Y , S+, f ), where S+ and f are restricted to
Y .



End-periodic K-homology

If ! is an oriented volume form for Y then we let @t be the unit
normal to Y such that @t ^ ! is the orientation on X . The
Clifford multiplication on S+ is then defined to be

cY (v) = cX (@t)cX (v)

for v 2 TY . One easily verifies that this indeed defines a
Clifford multiplication on S+.

Theorem (HM)
The above maps between K -homologies define an
isomorphism of groups K1(B⇡) ⇠= K ep

1 (B⇡).



End-periodic K-homology

Proof.
We must check that the above maps on K -homologies are
inverse to each other. If we begin with a cycle (M, S, f ), this
maps to (S1 ⇥ M, S � S, d✓, f ). Mapping this again, we get
(M, S, f ) back, so this direction is easy.
Now suppose we begin with a cycle (X , S, �, f ). This maps to
(Y , S+, f ) which then maps to (S1 ⇥ Y , S+ � S+, d✓, f ). We will
show this cycle is bordant to the original cycle (X , S, �, f ).
Consider the half cover X1 of X obtained using ��. Near the
boundary, this is diffeomorphic to a product (��, 0] ⇥ Y . The
half cover of S1 ⇥ Y obtained from d✓ is R0 ⇥ Y .



End-periodic K-homology

Proof.
The two half covers clearly glue together to produce and
end-periodic manifold with two ends as in the figure.

(-∞, 0] x Y

Figure: End-periodic manifold with two ends

The Dirac bundles and maps to B⇡ extend over this manifold,
and hence the two cycles are bordant.



End-periodic K-homology & end-periodic rho
invariants

We use the end-periodic eta invariant of MRS to define
homomorphisms from the end-periodic K -homology group
K ep

1 (B⇡) to R/Z. Any pair of unitary representations
�1,�2 : ⇡ ! U(N) will determine such a homomorphism, and
we see that this homomorphism agrees with that constructed in
Higson-Roe under the natural isomorphism K1(B⇡) ⇠= K ep

1 (B⇡)

constructed earlier.



End-periodic K-homology & R/Z-index theorem

Theorem (HM)
The mod Z reduction of the end-periodic rho invariant
⇢ep(X , S, �, f ,�1,�2) associated to �1,�2 : ⇡ ! U(N) depends
only on the equivalence class of (X , S, �, f ) in K ep

1 (B⇡). Hence
there is a well-defined group homomorphism

⇢ep : K ep
1 (B⇡) ! R/Z.

Furthermore, the following diagram commutes:

K ep
1 (B⇡)

⇢ep

⌧⌧

⇠= // K1(B⇡)

⇢

⇥⇥
R/Z

(0.2)



End-periodic K-homology & R/Z-index theorem

Proof.
Key is the invariance of ⇢ep under bordism. First suppose that
(X , S, �, f ) is a boundary, with a Dirac operator D+(X ) whose
associated family D+

z (X ) has discrete spectrum. Then the
families associated to the twisted operators D+

1 (X ) and D+
2 (X )

have discrete spectrum, and we apply the MRS index theorem
to each operator separately to get

indMRSD+
i (Z1) =

Z

Z
I(D+

i (Z ))�
Z

Y
!i +

Z

X
df^!i �

hi + ⌘ep (D+
i (X ))

2

for i = 1, 2. Now, since we are twisting by flat vector bundles,
both the index form and the transgression classes for the
twisted operators are constant multiplies of the index form and
transgression class of the original operator.



End-periodic K-homology & R/Z-index theorem

Proof.
Hence when we subtract the two equations, the terms involving
these vanish and we are left with

⇢ep = indMRSD+
2 (Z1) � indMRSD+

1 (Z1)

which is an integer. Now the end-periodic rho invariant behaves
additively under disjoint unions of cycles and changes sign
when the negative of a cycle is taken. This proves bordism
invariance mod Z for cycles having Dirac operators whose
families have discrete spectra....



End-periodic K-homology & R/Z-index theorem

Proof.
Now the K ep-cycle (X , S, �, f ) is bordant to (S1 ⇥ Y , S, d✓, f ),
where Y is Poincaré dual to �. By Section 6.3 of MRS, the
end-periodic rho invariant of (S1 ⇥ Y , S, d✓, f ) is equal to the
rho invariant of the K -cycle (Y , S, f ). Hence

⇢ep(X , S, �, f ;�1,�2) = ⇢(Y , S, f ;�1,�2) mod Z.

The isomorphism K1(B⇡) ⇠= K ep
1 (B⇡) then immediately implies

the theorem.



End-periodic analogs of other functors

We also define End-periodic analogs of other functors and
prove results about these in our paper.

These include end-periodic spin bordism groups ⌦ep,spin
⇤ (B⇡),

end-periodic psc spin bordism groups ⌦ep,spin,+
⇤ (B⇡), end

periodic structure groups Sep
⇤ (B⇡) etc.



PSC obstructions & end-periodic rho invariant

Using the above isomorphisms of K -homologies (and
cobordism theories), we can immediately transfer results on
positive scalar curvature from the odd-dimensional case to the
even-dimensional case in which a primitive 1-form is given.

Odd-dimensional results in the literature

First we will state the odd-dimensional results that we will be
generalising to the even-dimensional case using our
isomorphisms. The first ones are obstructions to positive scalar
curvature.



PSC obstructions & rho invariant

Theorem (Weinberger, Higson-Roe Theorem 6.9 )

Let (M, S, f ) be an odd K -cycle for B⇡, where M is an odd
dimensional spin manifold with a Riemannian metric of positive
scalar curvature, and S is the bundle of spinors on M. Then for
any pair of unitary representations �1,�2 : ⇡ ! U(N), the
associated rho invariant ⇢(M, S, f ,�1,�2) is a rational number.



PSC obstructions & rho invariant

Theorem (Higson-Roe Remark 6.10 )

Let (M, S, f ) be an odd K -cycle for B⇡, where M is an odd
dimensional spin manifold with a Riemannian metric of positive
scalar curvature, and S is the bundle of spinors on M. If ⇡ is
torsion-free, then for any pair of unitary representations
�1,�2 : ⇡ ! U(N), the associated rho invariant ⇢(M, S, f ,�1,�2)

is an integer.

This uses, the result that the maximal Baum-Connes map for ⇡
is injective whenever for instance ⇡ is a torsion-free linear
discrete group, [Guentner-Higson-Weinberger].



PSC obstructions & rho invariant

Theorem (Higson-Roe Theorem 1.1, Keswani)

Let (M, S, f ) be an odd K -cycle for B⇡, where M is an odd
dimensional spin manifold with a Riemannian metric of positive
scalar curvature, and S is the bundle of spinors on M. If the
maximal Baum-Connes conjecture holds for ⇡, then for any pair
of unitary representations �1,�2 : ⇡ ! U(N), the associated
rho invariant ⇢(M, S, f ,�1,�2) is zero.

NB. The maximal Baum-Connes conjecture holds for ⇡
whenever ⇡ is K-amenable.



PSC obstructions & end-periodic rho invariant

Our even dimensional results

The following is our even dimensional analog of Theorem HRW.

Theorem
Let (X , S, �, f ) be an odd K ep-cycle for B⇡, where X is an even
dimensional spin manifold with a Riemannian metric of positive
scalar curvature, S is the bundle of spinors on X and � a
primitive class in H1(X , Z) such that there is a Poincaré dual
submanifold M whose scalar curvature in the induced metric is
positive. Then for any pair of unitary representations
�1,�2 : ⇡ ! U(N), the associated end-periodic rho invariant
⇢ep(X , S, �, f ,�1,�2) is a rational number.



PSC obstructions & end-periodic rho invariant

Proof.
The odd K ep-cycle for B⇡, (X , S, �, f ) determines an odd
K -cycle for B⇡, (M, S

��, f
��) where M is a Poincaré dual

submanifold for � having positive scalar curvature. Clearly M
has an induced spin structure. By Theorem HRW,
⇢(M, S

��, f
��,�1,�2) 2 Q. By our RE/Z index Theorem it follows

that ⇢ep(X , S, �, f ,�1,�2) 2 Q as claimed.



PSC obstructions & end-periodic rho invariant

Theorem
Let (X , S, �, f ) be an odd K ep-cycle for B⇡, where X is an even
dimensional spin manifold with a Riemannian metric of positive
scalar curvature, S is the bundle of spinors on X and � a
primitive class in H1(X , Z) such that there is a Poincaré dual
submanifold M whose scalar curvature in the induced metric is
positive. Then for any pair of unitary representations
�1,�2 : ⇡ ! U(N), the associated end-periodic rho invariant
⇢ep(X , S, �, f ,�1,�2) is an integer.



PSC obstructions & end-periodic rho invariant

Proof.
The odd K ep-cycle for B⇡, (X , S, �, f ) determines an odd
K -cycle for B⇡, (M, S

��, f
��) where M is a Poincaré dual

submanifold for � having positive scalar curvature. Clearly M
has an induced spin structure. By Theorem 11,
⇢(M, S

��, f
��,�1,�2) 2 Z. By our RE/Z index Theorem it follows

that ⇢ep(X , S, �, f ,�1,�2) 2 Z is an integer.



PSC obstructions & end-periodic rho invariant

Theorem
Let (X , S, �, f ) be an odd K ep-cycle for B⇡, where X is an even
dimensional spin manifold with a Riemannian metric of positive
scalar curvature, S is the bundle of spinors on X and � a
primitive class in H1(X , Z) such that there is a Poincaré dual
submanifold M whose scalar curvature in the induced metric is
positive. If the maximal Baum-Connes conjecture holds for ⇡,
then for any pair of unitary representations �1,�2 : ⇡ ! U(N),
the associated end-periodic rho invariant ⇢ep(X , S, �, f ,�1,�2) is
zero.



PSC obstructions & end-periodic rho invariant

Proof.
The odd K ep-cycle for B⇡, (X , S, �, f ) determines an odd
K -cycle for B⇡, (M, S

��, f
��) where M is a Poincaré dual

submanifold for � having positive scalar curvature. Clearly M
has an induced spin structure. By Theorem 12,
⇢(M, S

��, f
��,�1,�2) = 0. By Theorem 8.5, [MRS] it follows that

⇢ep(S1 ⇥ M, S, �, f ,�1,�2) = 0. By the bordism invariance of
⇢ep, we deduce that ⇢ep(X , S, �, f ,�1,�2) = 0.
This can also be proved via results on the end periodic
structure group.



⇡0(PSC metrics) & end-periodic rho invariant

Size of the space of components of positive scalar
curvature metrics
Hitchin proved the first results on the size of the space of
components of the space of Riemannian metrics of positive
scalar curvature metrics on a compact spin manifold, when
non-empty. Botvinnik-Gilkey, Piazza-Schick and others



⇡0(PSC metrics) & end-periodic rho invariant

Theorem (HM)
Let Y be a compact spin manifold of dimension (4n � 1), n > 1,
admitting a metric of positive scalar curvature such that ⇡1(Y )

is finite and nontrivial, with Y ,! X is a smooth submanifold, X
is a psc-adaptable compact spin manifold of dimension 4n wrt
Y , with a map f : X ! B⇡1(Y ), then ⇡0(M

+(X )) is infinite,
where M+(X ) denotes the quotient of the space of positive
scalar curvature metrics by the diffeomorphism group.



PSC obstructions & psc-adaptable
The end is modeled on an infinite cyclic cover X̃ of a manifold X :

W

Y Y
glue Y to Y

X

Y

S1

f

The cover is classified by a map f : X ! S1.

W W W

Y Y Y

W

Y Y

Direction to � determined by cohomology class [df ] = � 2 H1(X ; Z).
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Cut X along Y . Since Y has psc, a theorem of Miyazaki and
Rosenberg enables one to push the psc metric on Y across the
bordism (pictured on the right) to get a possibly different psc
metric on Y . The problem is that one doesn’t know whether the
new psc metric on Y is isotopic to the original (this would be
true if the general concordance = isotopy conjecture were true).
Hence the concept psc-adaptable which hypothesizes this.
It is the case when the bordism is symmetric for instance.



PSC obstructions & psc-adaptable

That is starting with a bordism W 0 from Y to Y 0, we get a
bordism from Y to itself by thinking of W 0 as a bordism from Y 0

to Y and gluing to the original bordism, see Figure below.

,

, ,

,

Then one can use the Miyazaki-Rosenberg construction
starting with the psc metric Y to get another another psc metric
on Y 0 halfway through, and then reverse the M-R construction
from the psc metric on the halfway Y 0 to get a psc metric on Y
on the other end. In this case, we end up with the original psc
metric on Y .



⇡0(PSC metrics) & end-periodic rho invariant

Mrowka, Ruberman and Saveliev (Theorem 9.20 also note a
class of psc-adaptable manifolds – those of the form
(S1 ⇥ Y )#M where Y and M are manifolds of positive scalar
curvature.



⇡0(PSC metrics) & end-periodic rho invariant

Proof.
Start with the product metrics d✓2 + gj , j = 1, . . . on S1 ⇥ Y ,
where gj is an infinite family of PSC metrics on Y that lie in
different components of M+(Y ), as constructed in
Botvinnik-Gilkey (B-G) Theorem 0.3, and having the property
that ⇢(Y , DY , gi ,↵) 6= ⇢(Y , DY , gj ,↵) if i 6= j , for the explicitly
constructed ↵ 2 R0(⇡1(Y )). The condition in B-G that
rm(⇡1(Y )) > 0 is automatically satisfied since m = 4n � 1, see
the remark following Theorem 0.1 in B-G.
Since X is assumed to be psc-adaptable, each psc metric gj on
Y determines a psc metric hj on X . By MRS Theorem 8.5,
⇢ep(X , D, hj ,↵) = ⇢(Y , DY , gj ,↵).
Therefore, ⇢ep(X , D, hi ,↵) 6= ⇢ep(X , D, hj ,↵) if i 6= j .
Conclude that ⇡0(M

+(X )) is infinite.



Vanishing of end-periodic rho using the representation
variety

Next, we give a proof of the vanishing of the end-periodic rho
invariant of the twisted Dirac operator with coefficients in a flat
Hermitian vector bundle on a compact even dimensional
Riemannian spin manifold X of positive scalar curvature using
the representation variety of ⇡1(X ) instead.
Let ◆ : Y ,! X be a codimension one submanifold of X which is
Poincaré dual to a generator � 2 H1(X , Z). Given a
representation ↵ : ⇡1(Y ) ! U(N), define a representation
↵̃ : ⇡1(X ) ! U(N) using the commutative diagram,

⇡1(X ) ↵̃ // U(N)

⇡1(Y )

◆⇤

dd
↵

::
(0.3)



Vanishing of end-periodic rho using the representation
variety

Let R = Hom(⇡, U(N)) denote the representation variety of
⇡ = ⇡1(Y ), and R̃ denote the representation variety of ⇡1(X ).
We now construct a generalization of the Poincaré vector
bundle P over B⇡ ⇥ R. Let E⇡ ! B⇡ be a principal ⇡-bundle
over the space B⇡ with contractible total space E⇡. Let
h : Y ! B⇡ be a continuous map classifying the universal
⇡-covering of Y . We construct a tautological rank N Hermitian
vector bundle P over B⇡ ⇥ R as follows: consider the action of
⇡ on E⇡ ⇥ R ⇥ CN given by

E⇡ ⇥ R ⇥ CN ⇥ ⇡ �! E⇡ ⇥ R ⇥ CN

((q,�, v), ⌧) �! (q⌧,�,�(⌧�1)v).



Vanishing of end-periodic rho using the representation
variety

Define the universal rank N Hermitian vector bundle P over
B⇡ ⇥ R to be the quotient (E⇡ ⇥ R ⇥ CN)/⇡. Then P has the
property that the restriction P

��
B⇡⇥�

is the flat Hermitian vector
bundle over B⇡ defined by �. Let I denote the closed unit
interval [0, 1] and � : I ! R be a smooth path in R joining the
unitary representation ↵ to the trivial representation. Define
E = (f ⇥ �)⇤P ! X ⇥ I to be the Hermitian vector bundle over
X ⇥ I. By the Kunneth Theorem in cohomology, we have
ch(F ) =

P
i xi⇠i , where ch(F ) is the Chern character of F , for

some xi 2 H⇤(B⇡, R) and ⇠i 2 H⇤(R, R), by the Kunneth
theorem. It follows that if yi = f ⇤(xi) and µi = �⇤(⇠i) ,then
ch(E) =

P
i yiµi . Note that the pullback connection makes E

into a Hermitian vector bundle over Y ⇥ I.



Vanishing of end-periodic rho using the representation
variety

Theorem (PSC and vanishing of end-periodic rho)
Let (X , g) be a compact spin manifold of even dimension, and
let ◆ : Y ,! X be a codimension one submanifold of X which is
Poincaré dual to a primitive class � 2 H1(X , Z). Suppose that

1 g is a Riemannian metric of positive scalar curvature;
2 the restriction g

��
Y is also a metric of positive scalar

curvature.

Let ⇡ denote the fundamental group of Y and ↵ : ⇡ ! U(N) a
unitary representation that can be connected by a smooth path
� : I ! R to the trivial representation in the representation
space R, and the induced unitary representation ↵̃ : ⇡̃ ! U(N),
where ⇡̃ = ⇡1(X ). Then ⇢ep(X , S, �, g; ↵̃, 1) = 0, where the flat
hermitian bundle E↵̃ is determined by ↵̃.


