Deformation of constant curvature conical metrics

Xuwen Zhu (Stanford University)

Analysis and Topology in Interaction, Cortona June 28 2017

Joint with Rafe Mazzeo

Xuwen Zhu (Stanford University)

Configuration of conical metrics

Cortona June 28 2017 1 / 17

Outline

- Constant curvature conical metrics
- 2 Compactification of configuration family
- 3 Motivation and further application

Configuration of conical metrics

Cortona June 28 2017 2 / 17

Constant curvature metric with conical singularities

Consider a compact Riemann surface M, with the following data:

- *k* distinct points $\mathfrak{p} = (p_1, \ldots, p_k)$
- Angle data $\vec{\beta} = (\beta_1, \dots, \beta_k) \in (0, \infty)^k$
- Curvature constant $K \in \{-1, 0, 1\}$
- Area A
- Conformal structure c given by M

A constant curvature metric with prescribed conical singularities is a smooth metric with constant curvature, except near p_j the metric is asymptotic to a cone with angle $2\pi\beta_j$.

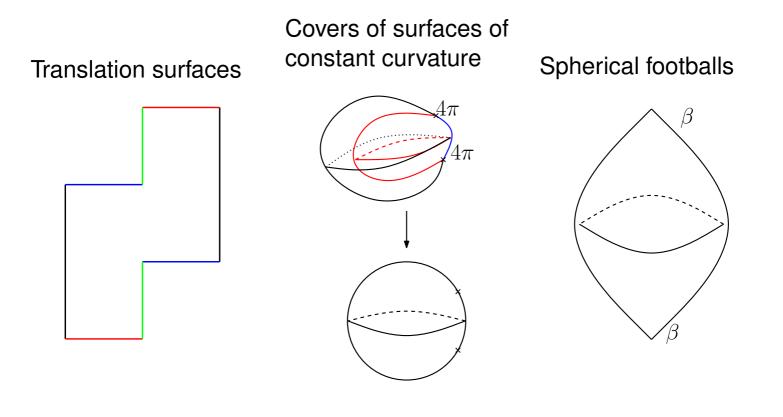
(Gauss-Bonnet)
$$\chi(\boldsymbol{M}, \vec{\beta}) := \chi(\boldsymbol{M}) + \sum_{j=1}^{k} (\beta_j - 1) = \frac{1}{2\pi} K A.$$

Xuwen Zhu (Stanford University)

Configuration of conical metrics

Cortona June 28 2017 3 / 17

Some examples of constant curvature conical metrics



Xuwen Zhu (Stanford University)

Configuration of conical metrics

Cortona June 28 2017 4 / 17

Existence and Uniqueness

Theorem (88' McOwen, 91' Troyanov, 92' Luo-Tian)

For any compact surface M and conical data $(\mathfrak{p}, \vec{\beta})$ satisfying one of the following constraints:

• $\chi(M, \vec{\beta}) \leq 0$; or

•
$$\chi(M,ec{eta})>\mathsf{0},ec{eta}\in(\mathsf{0},\mathsf{1})^k$$

▶
$$k = 2, \ \beta_1 = \beta_2; or$$

$$k \geq 3, \ \beta_j + k - \chi(M) > \sum_{i \neq j} \beta_i, \forall j.$$

there is a unique constant curvature metric with the prescribed singularities.

Configuration of conical metrics

Cortona June 28 2017 5 / 17

The moduli space for $\vec{\beta} \in (0, 1)^k$

Theorem (Mazzeo–Weiss, 2015)

- ["Teichmüller space"] The space of constant curvature conical metrics CM_{cc}(M, p) are Banach manifolds.
- [Moduli space] There is an embedded (6γ − 6 + 3k)-dimensional submanifold S ⊂ CM_{cc}(M, p) as the quotient by the action of diffeomorphism group.

Question

- What happens when cone points collide?
- Ompactification of the moduli space?

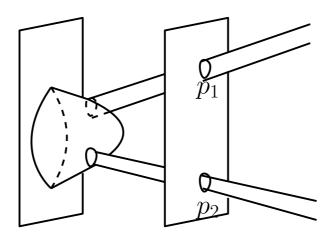
Xuwen Zhu (Stanford University)

Configuration of conical metrics

Cortona June 28 2017 6 / 17

When two points collide

- Scale back the distance between two cone points (Blow up)
- Half sphere at the collision point, with two cone points over the half sphere:



• Flat metric on the half sphere, and curvature *K* metric on the original surface

Xuwen Zhu (Stanford University)

Configuration of conical metrics

Cortona June 28 2017 7 / 17

Iterative structure

- "bubble over bubble" structure
- Higher codimensional faces from deeper scaling
- Flat conical metrics on all the new faces

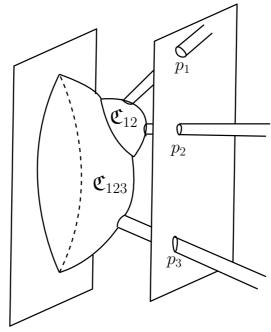


Figure: One of the singular fibers in C_3 , where two of the points collide faster than the third one

Xuwen Zhu (Stanford University)

Configuration of conical metrics

Cortona June 28 2017 8 / 17

Resolution of the configuration family

Resolve the product fiberation $M^{k+1} \rightarrow M^k$

 Step 1: In the base, blow up the diagonals iteratively according to the partial order on the index ("extended configuration space")

$$\tilde{\mathcal{H}}_k = [M^k; \cup_{\mathcal{I}} \Delta_{\mathcal{I}}].$$

• Step 2: Lift the fibration to $\tilde{\mathcal{H}}_k \times M \to \tilde{\mathcal{H}}_k$, blow up all the partial diagonals ("compactified configuration family")

$$\tilde{\mathcal{C}}_k = [\tilde{\mathcal{H}}_k \times M; \cup \Delta_{\mathcal{I}}^C]$$

- The above two steps resolve the compact group action by Σ_k . Take the quotient to get the unordered version: $\mathcal{H}_k = \tilde{\mathcal{H}}_k / \Sigma_k, \ C_k = \tilde{\mathcal{C}}_k / \Sigma_k.$ [Albin-Melrose, 2010]
- We obtain a b-fibration

$$\pi_k: \mathcal{C}_k \to \mathcal{H}_k$$

Xuwen Zhu (Stanford University)

Configuration of conical metrics

Cortona June 28 2017 9 / 17

Example: $\mathcal{C}_2 \to \mathcal{H}_2$

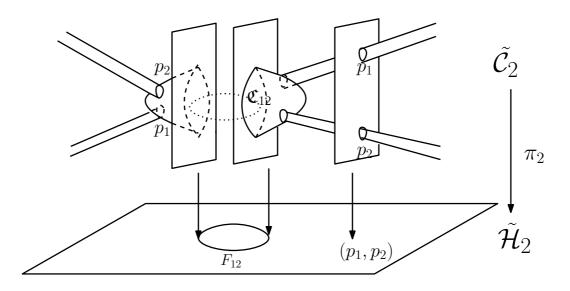


Figure: "Centered" projection of $\tilde{\mathcal{C}}_2 \to \tilde{\mathcal{H}}_2$

Xuwen Zhu (Stanford University)

Configuration of conical metrics

Cortona June 28 2017 10 / 17

Results about fiber metrics on C_k

Theorem (Mazzeo-Z, 2017)

For any* given $\vec{\beta}$, the family of constant curvature metrics with conic singularities is polyhomogeneous on C_k .

- *: The metric family can be hyperbolic / flat (with any cone angles), or spherical (with angles less than 2π)
- Solve the curvature equation $\Delta_{g_0} f Ke^{2f} + K_{g_0} = 0$ uniformly
- The leading term of the metric is given by the flat metric
- When $K = \pm 1$, the difference from the flat metric is bounded by $O(\rho^2)$
- This matches the blow up limit

Xuwen Zhu (Stanford University)

Configuration of conical metrics

Cortona June 28 2017 11 / 17

Motivation: positive curvature with big cone angles

- $M = \mathbb{S}^2$, k = 2, 3, 4: [Troyanov, 1991] [Umehara–Yamada, 2000] [Eremenko, 2000] [Eremenko–Gabrielov–Tarasov, 2014] [Eremenko–Gabrielov, 2015]
- Genus ≥ 1, minimax theory [Carlotto–Malchiodi, 2011] [Malchiodi, 2016].
- [Mondello–Panov, 2016] $M = \mathbb{S}^2$, necessary condition & construction in the interior

$$d_1(ec{eta} - ec{1}, \mathbb{Z}_{odd}^k) \geq 1$$

 The boundary of the Mondello-Panov region [Dey, 2017] [Kapovich, 2017] [Eremenko, 2017]

Xuwen Zhu (Stanford University)

Configuration of conical metrics

Cortona June 28 2017 12 / 17

Questions to answer

Goal

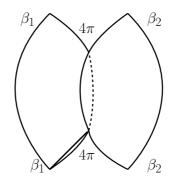
- Find out the structure of the moduli space
- The full solution space: for given admissible (β, p, c), how many solutions are there?
- Deformation theory: is there a manifold structure?

Configuration of conical metrics

Cortona June 28 2017 13 / 17

The eigenvalue 2

- The linearized operator $\Delta_{g_0} 2K$ acting on the Friedrichs domain
- When $\vec{\beta} \in (0, 1)^k$, $\lambda_1 \ge 2K$; when angles increase, eigenvalues decrease
- Example: two footballs glued together



- The surjectivity (and injectivity) of linearized operator is lost, hence implicit function theorem fails
- Indicial roots of $\Delta_g 2$ given by $\{\pm \frac{k}{\beta}\}$

Xuwen Zhu (Stanford University)

Configuration of conical metrics

Cortona June 28 2017 14 / 17

Geometric realization of the indicial roots

We discover that one key step to make it unobstructed is the following:

Proposition (Mazzeo-Z, in progress)

The linearized space generated by the splitting of cone angles are spanned by $\{r^{-\frac{k_i}{\beta}}, 1 < k_i \leq \beta\}$.

- Proof by computing the Jacobi field generated by the geometric motion
- The linearized operator is surjective after adding those parameters
- It provides additional coordinates for the moduli space

Configuration of conical metrics

Cortona June 28 2017 15 / 17

Summary

- We constructed the compactification of configuration space
 - characterized geometrically the process of merging cone points
 - developed new regularity results regarding the constant curvature metric family
- We hope to apply this construction
 - to capture the analytic behavior of the curvature operator
 - to understand the moduli space of spherical conical metrics with no angle constraints, including its compactification

Configuration of conical metrics

Cortona June 28 2017 16 / 17

Thank you for your attention!

Xuwen Zhu (Stanford University)

Configuration of conical metrics

Cortona June 28 2017

17 / 17